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Abstract We present an Abstract Interpretation-based framework for
automatically analyzing programs containing digital filters. Our frame-
work allows refining existing analyses so that they can handle given
classes of digital filters. We only have to design a class of symbolic prop-
erties that describe the invariants throughout filter iterations, and to
describe how these properties are transformed by filter iterations. Then,
the analysis allows both inference and proofs of the properties about the
program variables that are tied to any such filter.

1 Introduction

Digital filters are widely used in real-time embedded systems (as found in auto-
motive, aeronautic, and aerospace applications) since they allow modeling into
software behaviors previously ensured by analogical filters. A filter transforms
an input stream of floating-point values into an output stream. Existing analyses
are very imprecise in bounding the range of the output stream, because of the
lack of precise linear properties that would entail that the output is bounded.
The lack of precise domains when analyzing digital filters was indeed the cause
of almost all the remaining warnings (potential floating-point overflows) in the
certification of a critical software family with the analyzer described in [1,2].

In this paper, we propose an Abstract Interpretation-based framework for
designing new abstract domains which handle filter classes. Human intervention
is required for discovering the general shape of the properties that are required
in proving the stability of such a filter. Roughly speaking, filter properties are
mainly an abstraction of the input stream, from which we deduce bounds on
the output stream. Our framework can then be used to build the corresponding
abstract domain. This domain propagates all these properties throughout the
abstract computations of programs. Our approach is not syntactic, so that loop
unrolling, filter reset, boolean control, and trace (or state) partitioning are dealt
with for free and any filter of the class (for any setting) is analyzed precisely.

Moreover, in case of linear filters, we propose a general approach to build the
corresponding class of properties. We first design a rough abstraction, in which
at each filter iteration, we do not distinguish between the contributions of each
input. Then, we design a precise abstraction: using linearity, we split the output
between the global contribution of floating-point errors, and the contribution of
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the ideal filter behavior. Global floating-point error contribution is then bounded
using the rough abstraction, while ideal filter output is precisely described by
formally expanding it, so that the contribution of each input is exactly described
in the real field, and then approximated in floating-point arithmetics.

We have instantiated our framework for two kinds of widely used linear filters:
the high bandpass and second order filters. The framework was fully implemented
in OCaml [8] and plugged into an existing analyzer. We have obtained bounds
that are very close to sample experimental results, which has allowed solving
nearly all of our remaining warnings [2].

Previous works. To our knowledge, this is the first analysis that abstracts
filter output invariants. Nevertheless, some work has been done in filter optimiza-
tion. In [7], affine equality relationships [6] among variables at the beginning and
at the end of loop iterations are used to factorize filters at compile time. In our
case, because of floating-point rounding errors, there are no such affine equal-
ity relationships, so a more complex domain such as polyhedra [5] is required to
perform the same task. Moreover, our programs involve complex boolean control
flows. Thus, filter factorization cannot be performed without a highly expensive
partitioning. Furthermore, our goal is just to prove the absence of error at run-
time, and not to describe precisely the global behavior of filters.

Outline. In Sect. 2, we present the syntax and semantics of our language. In
Sect. 3, we describe a generic abstraction for this language. In Sect. 4, we define a
generic extension for refining existing abstractions. In Sect. 5, we give numerical
abstract domains for describing sets of real numbers. In Sect. 6, we describe,
on our examples, the general approach to building such generic extensions. In
Sect. 7, we describe the impact of these extensions on the analysis results.

2 Language

We analyze a subset of C without dynamic memory allocation nor side-effect.
Moreover, the use of pointer operations is restricted to call-by reference. For
the sake of simplicity, we introduce an intermediate language to describe pro-
grams interpreted, between the concrete and an abstract level. We suppose that
lvalue resolution has been partially solved (see [2, Sect. 6.1.3]). Furthermore, as-
signments (which use floating-point arithmetics at the concrete level) have been
conservatively abstracted into non-deterministic assignments in the real field,
i.e., floating-point expressions have been approximated by linear forms with real
interval coefficients. These linear forms include both the rounding errors and
some expression approximations (see [10]). We also suppose that runtime errors
(such as floating-point overflows) can be described by interval constraints on the
memory state after program computations.

Let V be a finite set of variables. We denote by I the set of all real number
intervals (including R itself). We define inductively the syntax of programs in
Fig. 1. We denote by E the set of expressions E. We describe the semantics of
these programs in a denotational way. An environment (ρ ∈ V → R) denotes a
memory state. It maps each variable to a real number. We denote by Env the set



V ∈ V, I ∈ I
E := I | V | (−V ) + E | V + E | I × V + E
P := V = E | skip | if (V ≥ 0) {P} else {P} | while (V ≥ 0) {P} | P ; P

Figure 1. Syntax.

JIKE(ρ) = I, JV KE(ρ) = {ρ(V )}
J(−V )+ EKE(ρ) = {a− ρ(V ) | a ∈ JEKE(ρ)}, JV + EKE(ρ) = {ρ(V )+ a | a ∈ JEKE(ρ)}
JI × V + EKE(ρ) = {b× ρ(V ) + a | a ∈ JEKE(ρ), b ∈ I}
JV = EKP (ρ) = {ρ[V 7→ x] | x ∈ JEKE(ρ)}
JskipKP (ρ) = {ρ}

Jif (V ≥ 0) {P1} else {P2}KP (ρ) =

{
JP1KP (ρ) if ρ(V ) ≥ 0

JP2KP (ρ) otherwise

Jwhile (V ≥ 0) {P}KP (ρ) = {ρ′ ∈ Inv | ρ′(V ) < 0}
where Inv = lfp

(
X 7→ {ρ} ∪

(⋃
{JP KP (ρ′) | ρ′ ∈ X, ρ′(V ) ≥ 0}

))
JP1; P2KP (ρ) =

⋃
{JP2KP (ρ′) | ρ′ ∈ JP1KP (ρ)}

Figure 2. Concrete semantics.

of all environments. The semantics of a program P is a function (JP KP ∈ Env →
℘(Env)) mapping each environment ρ to the set of the environments that can
be reached when applying the program P starting from the environment ρ. The
function J KP is defined by induction on the syntax of programs in Fig. 2. Loop
semantics requires the computation of a loop invariant, which is the set of all
environments that can be reached just before the guard of this loop is tested.
This invariant is well-defined as the least fixpoint of a ∪-complete endomorphism
in the powerset ℘(Env). Nevertheless, such a fixpoint is usually not computable,
so we give a decidable approximate semantics in the next section.

We describe two filter examples, that we will use throughout the paper.

Example 1. A high bandpass filter can be encoded by the following program:

V = R; E1 = [0; 0]; S = [0; 0];
while (V ≥ 0) {
V = R; T = R; E0 = I;
if (T ≥ 0) {S = [0; 0]}
else {S = A× S + E0 + (−E1) + F};
E1 = E0;

}

Roughly speaking, the interval I denotes the range of filter entries. Floating-
point rounding errors are captured by the range of both intervals A and F . The
interval A describes the filter coefficient and satisfies A ⊆ [ 12 ; 1[. Variables V and
T allow control flow enforcement. At each loop iteration, the variable S denotes
the value of the current filter output, the variable E0 denotes the value of the
current filter input, and the variable E1 denotes the value of the previous filter
input. Depending on the value of T , the filter is either reset (i.e., the output is
set to 0), or iterated (i.e., the value of the next output is calculated from the
last output value and the two last input values). The analysis described in [2]



only discovers inaccurate bounds for the variable S. It works as if the expression
A× S +E0 −E1 + F were approximated by A× S + (2× I + F ). The analysis
discovers the first widening threshold l (see [1, Sect. 2.1.2]) such that l is greater
than 2×i+f

1−a , for any (i, f, a) ∈ I × F × A. It proves that l is stable, and then
successive narrowing iterations refine the value l. �

Example 2. A second order digital filter can be encoded as follows:

V = R; E1 = [0; 0]; E2 = [0; 0]; S0 = [0; 0]; S1 = [0; 0]; S2 = [0; 0];
while (V ≥ 0) {
V = R; T = R; E0 = I;
if (T ≥ 0) {S0 = E0; S1 = E0}
else {S0 = A× S1 +B × S2 + C × E0 +D × E1 + E × E2 + F};
E2 = E1; E1 = E0; S2 = S1; S1 = S0

}

Roughly speaking, the interval I denotes the range of filter entries. Intervals A,
B, C, D and E denote filter coefficients and satisfy A ⊆ [0;∞[, B ⊆]− 1; 0[ and
∀(a, b) ∈ A×B, a2 + 4× b < 0. Floating-point rounding errors are captured by
the range of intervals A, B, C, D, E and F . Variables V and T allow control flow
enforcement. At each loop iteration, the variable S0 denotes the value of current
filter output, variables S1 and S2 denote the last two values of filter output, the
variable E0 denotes the value of the current filter input, and variables E1 and
E2 denote the last two values of filter input. Depending on the value of T , either
the filter is reset (i.e., both the current and the previous outputs are set to the
same value), or iterated (i.e., the value of the next output is calculated from the
last two output values and the last three input values). The analysis described
in [2] fails to discover any bound for the variables S0, S1, S2. �

3 Underlying Domain

We use the Abstract Interpretation framework [3,4] to derive a generic approxi-
mate semantics. An abstract domain Env] is a set of properties about memory
states. Each abstract property is related to the set of the environments which
satisfy it via a concretization map γ. An operator t allows the gathering of infor-
mation about different control flow paths. Some primitives assign and guard
are sound counterparts to concrete assignments and guards. To effectively com-
pute an approximation of concrete fixpoints, we introduce an iteration basis ⊥,
a widening operator O and a narrowing operator M. Several abstract domains
collaborate, and refine each others using very simple constraints: variable ranges
and equality relations. These constraints are related to the concrete domains
via two concretization functions γI and γ= that respectively map each function
ρ] ∈ V → I to the set of the environments ρ such that ∀X ∈ V, ρ(X) ∈ ρ](X),
and each relation R ⊆ V2 to the set of environments ρ such that for any vari-
ables X and Y , (X,Y ) ∈ R implies that ρ(X) = ρ(Y ). The primitives range
and equ capture simple constraints about the filter input stream, and about



JV = EK](a) = assign(V = E, a)
JskipK](a) = a

Jif (V ≥ 0) {P1} else {P2}K](a) = a1 t a2, with

{
a1 = JP1K](guard(V, [0;+∞[, a))

a2 = JP2K](guard(V, ]−∞; 0[, a))

Jwhile (V ≥ 0) {P}K](a) = guard(V, ]−∞; 0[, Inv])
where Inv] = lfp]

(
X 7→ a t JP K](guard(V, [0;+∞[, X))

)
JP1; P2K](ρ]) = JP2K](JP1K](ρ]))

Figure 3. Abstract semantics.

the initialization state, to be passed to the filter domains. Conversely, a primi-
tive reduce receives the constraints about the filter output range to refine the
underlying domain.

Definition 1 (Generic abstraction). An abstraction is defined by a tuple
(Env], γ,t,assign,guard,⊥,O,M,range,equ,reduce) such that:

1. Env] is a set of properties;
2. γ ∈ Env] → ℘(Env) is a concretization map;
3. ∀a, b ∈ Env], γ(a) ∪ γ(b) ⊆ γ(a t b);
4. ∀a ∈ Env], ρ] ∈ (V → I), γ(a) ∩ γI(ρ]) ⊆ γ(reduce(ρ], a));
5. O is a widening operator such that: ∀a, b ∈ Env], γ(a)∪ γ(b) ⊆ γ(aOb); and
∀k ∈ N, ρ1, ..., ρk ∈ (V → I), (ai) ∈ (Env])N, the sequence

(
aO

i

)
defined by

aO
0 = ρ(a0) and aO

n+1 = ρ(aO
n Oan+1) with ρ = [X 7→ reduce(ρk, X)] ◦ ... ◦

[X 7→ reduce(ρ1, X)], is ultimately stationary;
6. M is a narrowing operator such that: ∀a, b ∈ Env], γ(a) ∩ γ(b) ⊆ γ(aMb);

and ∀k ∈ N, ρ1, ..., ρk ∈ (V → I), (ai) ∈ (Env])N, the sequence
(
aM

i

)
defined

by aM
0 = ρ(a0) and aM

n+1 = ρ(aM
n Man+1), with ρ = [X 7→ reduce(ρk, X)] ◦

... ◦ [X 7→ reduce(ρ1, X)], is ultimately stationary;
7. ∀a ∈ Env], X ∈ V, E ∈ E , ρ ∈ γ(a), JX = EKP (ρ) ⊆ γ(assign(X = E, a));
8. ∀a ∈ Env], X ∈ V, I ∈ I, {ρ ∈ γ(a) | ρ(X) ∈ I} ⊆ γ(guard(X, I, a));
9. ∀a ∈ Env], γ(a) ⊆ γI(range(a)) and γ(a) ⊆ γ=(equ(a)).

Least fixpoint approximation is performed in two steps [3]: we first com-
pute an approximation using the widening operator; then we refine it using
the narrowing operator. More formally, let f be a ∪-complete endomorphism
of ℘(Env), and (f ] ∈ Env] → Env]) be an abstract counterpart of f satisfying
∀a ∈ Env], (f ◦ γ)(a) ⊆ (γ ◦ f ])(a). The abstract upward iteration (CO

n ) of f ] is
defined by CO

0 = ⊥ and CO
n+1 = CO

n Of ](CO
n ). The sequence (CO

n ) is ultimately
stationary and its limit CO

ω satisfies lfp(f) ⊆ γ(CO
ω ). Then the abstract down-

ward iteration (DM
n ) of f ] is defined by DM

0 = CO
ω and DM

n+1 = DM
n Mf ](DM

n ). The
sequence (DM

n ) is ultimately stationary and its limit DM
ω satisfies lfp(f) ⊆ γ(DM

ω ).
So we define lfp](f ]) by the limit of the abstract downward iteration of f ].

The abstract semantics of a program is given by a function (J K] ∈ Env] →
Env]) in Fig. 3. Its soundness can be proved by induction on the syntax:

Theorem 1. For any program P , environment ρ, abstract element a, we have:

ρ ∈ γ(a) =⇒ JP KP (ρ) ⊆ γ
(
JP K](a)

)
. �



4 Generic Extension

We now show how an analysis can be extended to take into account a given class
of digital filters. We first introduce all the primitives that we need to build such
a domain. Then we define a single domain. At last, we build an approximate
reduced product between such a domain and an underlying domain.

4.1 Primitives

A filter domain collects constraints that relate some variables that will be used
again at the next filter iteration with some filter parameters and a dynamic
information. This provides approximation of both filter input and output. For
instance, the variables may be the last outputs, the parameters some directing
coefficients, and the dynamic information a radius inferred during the analysis.
Let m be the numbers of variables to be used and n that of the filter param-
eters. The abstract domain maps tuples in T = Vm × Rn to elements of the
set B of dynamic information. The set of the environments that satisfies a con-
straint c ∈ T × B is given by its concretization γB(c). An operator tB is used
to merge constraints related to the same tuple, but coming from distinct flows.
For each assignment X = E interpreted in an environment satisfying the range
constraints described by ρ] ∈ V → I, the set rlvt(X = E) denotes the set
of tuples corresponding to the constraints that are modified by this assignment
(usually the tuples containing some variables that occurs in the expression E).
For each of these tuples t associated with the dynamic information a, the pair
pt(X = E, t, ρ]) = (t′, info) is such that t′ is the tuple that is tied, after the
assignment (obtained by shifting the variables), by the new constraint1, and info
contains all the parameters about both the filter and the input stream that are
required to infer the dynamical information. This information is itself updated
by δ(info, a). The element ⊥B provides the basis of iterations. Extrapolation op-
erators OB and MB allow the concrete post-fixpoint approximation. A primitive
build receives some range and equality constraints from the underlying domain
to build filter constraints when the filter is reset. Conversely, the function to
extracts information about the range of the output stream to be passed to the
underlying domain.

Definition 2 (Generic extension). An abstract extension is given by a tuple
(T,B, γB ,tB ,rlvt, info,pt, δ,⊥B ,OB ,MB ,build,to) which satisfies:

1. T = Vm × Rn, where m,n ∈ N; B is a set of dynamical information;
2. γB ∈ T × B → ℘(Env) is a concretization map;
3. ∀a, b ∈ B,t ∈ T, γB(t, a) ∪ γB(t, b) ⊆ γB(t, a tB b);
4. assignments: rlvt maps an expression E ∈ E to a subset T of T; info

is a set of filter parameters; ∀X ∈ V,E ∈ E,ρ] ∈ V → I, we have pt(X =
E, t, ρ]) ∈ T × info, the map [t 7→ fst(pt(X = E, t, ρ]))] is injective, and

1 ρ] may be used to interpret some variables that occur in E. It also infers a bound
to the filter input.



∀t ∈ rlvt(E), a ∈ B, such that ρ ∈ γB(t, a)∩γI(ρ]), we have JX = EKP (ρ) ⊆
γB(t′, δ(info, a)), with (t′, info) = pt(X = E, t, ρ]);

5. OB is a widening operator such that: ∀a, b ∈ B, ∀t ∈ T, γB(t, a) ∪ γB(t, b) ⊆
γB(t, (aOBb)); and ∀ (ai) ∈ BN, the sequence

(
aO

i

)
defined by aO

0 = a0 and
aO

n+1 = aO
n OBan+1 is ultimately stationary;

6. MB is a narrowing operator such that: ∀a, b ∈ B, ∀t ∈ T, γB(t, a)∩ γB(t, b) ⊆
γB(t, aMBb); ∀ (ai) ∈ BN, the sequence

(
aM

i

)
defined by aM

0 = a0 and aM
n+1 =

aM
n MBan+1, is ultimately stationary;

7. filter constraint synthesis from the underlying domain:
∀ρ] ∈ V → I,R ∈ ℘(V2), t ∈ T, γI(ρ]) ∩ γ=(R) ⊆ γB(t,build(t, ρ],R));

8. interval constraint synthesis:
to ∈ (T × B) → (V → I) and ∀t ∈ T, a ∈ B, γB(t, a) ⊆ γI(to(t, a)).

4.2 Abstract Domain

We now build an abstraction from a generic extension. We first enrich the set B
with an extra element >B 6∈ B. That element will denote the fact that a tuple is
tied to no constraint. We set γB(t,>B) = Env] and to(t,>B) = Env]. We also
lift other primitives of the domain so that they return >B as soon as one of their
arguments is >B . The abstract domain Env]

F = (T → B) is related to ℘(Env) by
the concretization function γF which maps f ∈ Env]

F to the set of environments(⋂
t∈T γB(t, f(t))

)
that satisfy all the constraints encoded by f . The operator

tF applies componentwise the operator tB . The abstract assignment may re-
quire information about variable ranges in order to extract filter parameters (in
particular the input values). The abstract assignment assignρ]

F (X = E, f) of an
abstract element f under the interval constraints ρ] ∈ V → I, is given by the
abstract element f ′ where:

1. if E is a variable Y , each constraint containing Y gives a constraint for X:
we take f ′(t) = f(σt), where σ substitutes each occurrence of X by Y ;

2. otherwise, we remove each constraint involving X, and add each constraint
corresponding to some filter iteration, f ′(t) is given by:

δ(info, f(t−1)) if ∃t−1 ∈ rlvt(E), (t, info) = pt(X = E, t−1, ρ
]),

f(t) if t ∈ (V \ {X})m × Rn,

>B otherwise;

We also set assignF (X = E, f) = assign
rangeF (f)
F (X = E, f). Since filter

invariants do not rely on guards, we set guardF (X, I, f) = f . The function
rangeF (f) maps each variable X to the interval

(⋂
t∈T toF (t, f(t))(X)

)
; since

filters do not generate syntactic equality constraints, we take equF = ∅. We
also ignore the constraints that are passed by the other domains, this way we
take reduceF (ρ], a) = a. The ⊥F element maps each tuple to the element >B .
The operators (OF ,MF ) are defined componentwise. We define the tuple AF by
(Env]

F , γF ,tF ,assignF ,guardF ,⊥F ,OF ,MF ,rangeF ,equF ,reduceF ).

Theorem 2. The tuple AF is an abstraction. �



4.3 Product and Approximate Reduced Product

Unfortunately the abstraction AF cannot compute any constraint, mainly be-
cause of inaccurate assignments and guards, and abstract iterations always re-
turn the top element. Hence we use a reduced product between this abstraction
and an existing underlying abstraction to refine and improve the analysis.
Let A0 = (Env]

0, γ0,t0,assign0,guard0,⊥0,O0,M0,range0,equ0,reduce0)
be an abstraction. We first introduce the product of the two abstractions. The
abstract domain Env] is the Cartesian product Env]

0 × Env]
F . The operator t,

the transfer functions (assign,guard), the function reduce and the extrap-
olation operators (⊥,O,M) are all defined pairwise. The concretization and the
remaining refinement primitives are defined as follows:

γ(a, f) = γ0(a) ∩ γF (f),
equ(a, f)(X,Y ) ⇐⇒ equ0(a)(X,Y ) or equF (f)(X,Y ),
range(X)(a, f) = range0(X)(a) ∩ rangeF (X)(f),

which corresponds to taking the meet of collected information.
We refine abstract assignments and binary operators:

– before assignments, we synthesize the filter constraints that are relevant for
the assignment; during assignments, we use the underlying constraints to
interpret the expression; and after assignments, we use the filter constraints
to refine the properties in the underlying domain. That is to say, we define
assign′(X = E, (a, f)) by (reduce0(rangeF (f ′′), a′′), f ′′) where:
• (a′′, f ′′) = (assign0(X = E, a),assign

range0(a)
F (X = E, f ′))

• f ′(t)=

{
build(t,range0(a),equ0(a)) if t ∈ rlvt(E) and f(t) = >B ,
f(t) otherwise.

– before applying a binary operator, we refine the filter constraints so that both
arguments constrain the same set of tuples; after applying a binary operator,
we use the filter constraints to refine the underlying domain properties. That
is to say, for any operator ~ ∈ {t,M,O}, we define (a1, f1) ~′ (a2, f2) by
(reduce0(rangeF (f ′′), a′′), f ′′) where:
• (a′′, f ′′) = (a1 ~0 a2, f

′
1 ~F f ′2),

• f ′i(t)=

{
build(t,range0(ai),equ0(ai)) if fi(t) = >B and f2−i(t) 6= >B ,
fi(t) otherwise.

We set A = (Env], γ,t′,assign′,guard,⊥,O′,M′,range,equ,reduce).

Theorem 3. The tuple A is an abstraction. �

5 Numerical Abstract Domains

Until now, we have only used real numbers. In order to implement numerical
abstract domains, we use a finite subset F of real numbers (such as the floating-
point numbers), that is closed under negation. The set F is obtained by enriching
the set F with two extra elements +∞ and −∞ that respectively describe the



reals that are greater (resp. smaller) than the greatest (resp. smallest) element of
F. Since the result of a computation on elements of F may be not in F, we suppose
we are given a function d e, that provides an upper bound in F to real numbers.
The set F is also endowed with a finite widening ramp L [2, Sect. 7.1.2]. For any
two elements a and b in F we set aOFb = min{l ∈ L ∪ {a; +∞} | max(a, b) ≤ l}.
We now design two families of abstract domains parametrized by the integers q
and r that allow tuning the extrapolation strategy.

– The domain Fq,r is the set F×Z. It is related to ℘(R) via the concretization
γFq,r

that maps any pair (e, k) into the set of the reals r such that |r| ≤ e.
The bottom element ⊥Fq,r

is (−∞, 0). The binary operators tFq,r
, OFq,r

,
and MFq,r

are defined as follows:
• (a1, k1) tFq,r (a2, k2) = (max(a1, a2), 0);

• (a1, k1)OFq,r
(a2, k2) =


(a1, k1) if a1 ≥ a2

(a2, k1 + 1) if a2 > a1 and k1 < q

(a1OF a2, 0) otherwise;

• (a1, k1)MFq,r (a2, k2) =

{
(a1, k1) if a1 ≤ a2 or k1 ≤ (−r)
(a2,min(k1, 0)− 1) if a2 < a1 and k1 > (−r);

A constraint is only widened if it has been unstable q times since its last
widening. On the other side, narrowing stops after r iterations.

– The domain F2
q,r is the Cartesian product between F0,r and Fq,0. It is related

to ℘(R) via a concretization map γF2
q,r

that maps elements (a, b) to γF0,r
(a)∩

γFq,0(b). The element ⊥F2
q,r

is the pair (⊥F0,r ,⊥Fq,0). Binary operators are
defined pairwise, except the widening, that is defined as follows:

((a1, k1), (b1, l1))OF2
q,r

((a2, k2), (b2, l2)) = ((min(a3, b3), 0), (b3, l3)),
where (a3, k3) = (a1, k1)OF0,r

(a2, k2) and (b3, l3) = (b1, l1)OFq,0(b2, l2).
The elements a and b in the pair (a, b) are intended to describe the same
set of reals. Nevertheless, they will be iterated using distinct extrapolation
strategies and distinct transfer functions. The element a will be computed
via a transfer function f ∈ F → F, whereas b will be computed via a relaxed
transfer function that try to guess the fixpoint of f . The element b is used
to refine the element a after widening, in case it becomes more precise. This
allows computing arbitrary thresholds during iterations. To ensure termina-
tion, it is necessary also to widen b, but this is not done at each iteration.

6 Applications

We propose a general approach to build accurate instantiations for generic ex-
tensions in case of linear filtering. We first design a rough abstraction ignoring
the historical properties of the input. That way, filters will be considered as if
the output only depends on the previous outputs and on only the last global
contributions of the last inputs. Then, we formally expand filter equations, so
that the overall contribution of each input is exactly described. We use the rough
abstraction to approximate the contribution of the floating-point rounding errors



during filter iterations. In the whole section, we use a function eval] that maps
each pair (E, ρ]), where E is an expression and ρ] is an abstract environment in
V → I, to m ∈ F such that ∀ρ ∈ γI(ρ]), JEKE(ρ) ⊆ [−m;m]. We also use two
natural number parameters q and r, and a real number parameter ε > 0.

6.1 Rough Abstraction

To get the rough abstraction, we forget any historical information about the
inputs during the filter iterations, so that each output is computed as an affine
combination of the previous outputs. The constant term is an approximation of
the contributions of both the previous inputs and the floating-point rounding
errors. Human intervention is only required during the design of the domain to
discover the form of the properties that are relevant, and the way these properties
are propagated throughout a filter iteration.

6.1.1 Simplified High Passband Filter

A simplified high passband filter relates an input stream En to an output stream
defined by Sn+1 = aSn + En.

Theorem 4. Let εa ≥ 0, D ≥ 0, m ≥ 0, a, X and Z be real numbers such that
|X| ≤ D and aX − (m+ εa|X|) ≤ Z ≤ aX + (m+ εa|X|).
Then we have:

– |Z| ≤ (|a|+ εa)D +m;

–
[
|a|+ εa < 1 and D ≥ m

1−(|a|+εa)

]
=⇒ |Z| ≤ D. �

We define two maps φ1 ∈ F2 × F2 → F and φ2 ∈ F2 × F → F by:
φ1(a, εa,m,D) = d(|a|+ |εa|)D +me ,

φ2(a, εa,m) =


⌈

m(1+ε)

1−(|a|+|εa|)

⌉
if |a|+ |εa| < 1

+∞ otherwise.

We derive the following extension:

– Tr1 = (V × F2) and info = F2 × F;
– (Br1 ,⊥r1 ,tBr1

,OBr1
,MBr1

) = (F2
q,r,⊥F2

q,r
,tF2

q,r
,OF2

q,r
,MF2

q,r
);

– γBr1
((X, a, εa), e) = {ρ ∈ Env | ρ(X) ∈ γF2

q,r
(e)};

– rlvtr1 maps each expression E to the set of the tuples (X, a, εa), such that
E matches I ×X + E′ with I ⊆ [ 12 ; 1[ and I = [a− εa; a+ εa];

– ptr1(Z = I ×X + E′, (X, a, εa), ρ]) = ((Z, a, εa), (a, εa,m))
where m = eval](E′, ρ]);2

– δr1((a, εa,m), ((D1, k1), (D2, k2))) = ((r1, 0), (r2, 0)) where
r1 = φ1(a, εa,m,D1) and r2 = max(φ1(a, εa,m,D2), φ2(a, εa,m));

– buildr1((X, a, εa), ρ],R) = ((m, 0), (m, 0)), with m = eval](X, ρ]);

– tor1((X, a, εa), e) =

{
Y 7→ γF2

q,r
(e) if X = Y

Y 7→ R otherwise.



6.1.2 Simplified Second Order Filter

A simplified second order filter relates an input
stream En to an output stream defined by:

Sn+2 = aSn+1 + bSn + En+2.
Thus we experimentally observe, in Fig. 4, that starting
with S0 = S1 = 0 and provided that the input stream
is bounded, the pair (Sn+2, Sn+1) lies in an ellipsoid.
Moreover, this ellipsoid is attractive, which means that
an orbit starting out of this ellipsoid, will get closer of
it. This behavior is explained by Thm. 5. Figure 4: Orbit.

Theorem 5. Let a, b, εa ≥ 0, εb ≥ 0, K ≥ 0, m ≥ 0, X, Y be real numbers,
such that a2 + 4b < 0, and X2 − aXY − bY 2 ≤ K. Let Z be a real number such
that: aX + bY − (m+ εa|X|+ εb|Y |) ≤ Z ≤ aX + bY + (m+ εa|X|+ εb|Y |).

Let δ be 2
εb+εa

√
−b√

−(a2+4b)
, we have:

1. |X| ≤ 2

√
bK

a2+4b
and |Y | ≤ 2

√
−K

a2+4b
;

2. Z2 − aZX − bX2 ≤
(
(
√
−b+ δ)

√
K +m

)2

;

3.


√
−b+ δ < 1

K ≥
(

m

1−
√
−b−δ

)2 =⇒ Z2 − aZX − bX2 ≤ K.
�

We define two maps ψ1 ∈ F4 × F2 → F and ψ2 ∈ F4 × F → F by:

ψ1(a, εa, b, εb,m,D) =


⌈((√

−b+ δ(a, εa, b, εb)
)√

D +m
)2
⌉

if a2 + 4b < 0

+∞ otherwise

ψ2(a, εa, b, εb,m) =


⌈(

(1+ε)m

1−
√
−b−δ(a,εa,b,εb)

)2
⌉

if

{
a2 + 4b < 0√
−b+ δ(a, εa, b, εb)<1

+∞ otherwise.

where δ(a, εa, b, εb) = 2
|εb|+|εa|

√
−b√

−(a2+4b)

We derive the following abstract extension:
– Tr2 = (V2 × F4) and info = F4 × F;
– (Br2 ,⊥r2 ,tBr2

,OBr2
,MBr2

) = (F2
q,r,⊥F2

q,r
,tF2

q,r
,OF2

q,r
,MF2

q,r
);

– γBr2
((X,Y, a, εa, b, εb), e) is given by the set of environments ρ that satisfies:

(ρ(X))2 − aρ(X)ρ(Y )− b(ρ(Y ))2 ≤ max(γF2
q,r

(e));
– rlvtr2 maps each expression E to the set of tuples (X,Y, a, εa, b, εb), such

that E matches [a−εa; a+εa]×X+[b−εb; b+εb]×Y +E′ with a2 +4b < 0;
– ptr2(Z = [a−εa; a+εa]×X+[b−εb; b+εb]×Y +E′, (X,Y, a, εa, b, εb), ρ]))

is given2 by ((Z,X, a, εa, b, εb), (a, εa, b, εb,m)), where m = eval](E′, ρ]);
2 If [t → fst(ptri(Z = E, t, ρ]))] is not injective, we take a subset of rlvtri(E).



– δr2((a, εa, b, εb,m), ((D1, k1), (D2, k2))) = ((r1, 0), (r2, 0)) where r1 =
ψ1(a, εa, b, εb,m,D1) and r2 = max(ψ1(a, εa, b,m,D2), ψ2(a, εa, b, εb,m));

– buildr2((X,Y, a, εa, b, εb), ρ],R)(X) = ((m, 0), (m, 0))

where m =


⌈
|1− a− b|x2

⌉
if (X,Y ) ∈ R⌈

x2 + |a|xy + |b|y2
⌉

otherwise
with x = eval](X, ρ]) and y = eval](Y, ρ]);

– tor2(X,Y, a, εa, b, εb)(e) =

{
V 7→ [−m;m] if X = V and a2 + 4b < 0
V 7→ R otherwise

where m =

2

√
max(γF2

q,r
(e))×b

a2+4b

 .
6.2 Formal Expansion

We design a more accurate abstraction by formally expanding the definition of
the output in the real field. The overall contribution of rounding errors is then
over-approximated using the rough abstraction, while the contribution of each
input is exactly described. The obtained domain is history-aware: concretization
uses an existential quantification over past inputs, which forbids precise abstract
intersection and narrowing.

6.2.1 High Passband Filter

Theorem 6. Let α ∈ [ 12 ; 1[, i and m > 0 be real numbers. Let En be a real
number sequence, such that ∀k ∈ N, Ek ∈ [−m;m]. Let Sn be the following
sequence: {

S0 = i

Sn+1 = αSn + En+1 − En.

We have:

1. Sn = αni+ En − αnE0 +Σn−1
l=1 (α− 1)αl−1En−l

2. |Sn| ≤ |α|n|i|+ (1 + |α|n + |1− αn−1|)m;
3. |Sn| ≤ 2m+ |i|. �

We derive the following abstract extension:

– Td1 = V2 × F, Bd1 = Fq,r ×Fq,r ×F2
q,r, and infod1 = F× F× F;

– (⊥d1 ,tBd1
,OBd1

) are defined componentwise;
– γBd1

((S′, E′, α), (a, b, c)) is given byρ ∈ Env

∣∣∣∣∣∣∣∣
∃ε ∈ γF2

q,r
(c), ∃S0 ∈ γFq,r (a),

∃n ∈ N,∃(Ei)0≤i≤n ∈ (γFq,r
(b))n+1 such that

ρ(E′) = En and
ρ(S′) = ε+ αnS0 + En − αnE0 +Σn−1

l=1 (α− 1)αl−1En−l

 ;



– rlvtd1 maps each expression E to the set of the tuples (Xα, X−, α), such
that E matches
[α−εα;α+εα]×Xα +[1−ε+; 1+ε+]×X+ +[−1+ε−; ε−−1]×X−+[−ε, ε]
where εα ≥ 0, ε+ ≥ 0, ε− ≥ 0, ε ≥ 0 and [α − εα;α + εα] ⊆ [ 12 ; 1[; the pair
ptr1(Z = E, (Xα, X−, α), ρ]) is given by ((Z,X+, α), (α,m+,m

′)), where
m+ = eval](X+, ρ

]) and m′ = eval](E + {−α} ×Xα + (−X+) +X−, ρ
]);

– δd1((α,m, ε), (a, b, c)) = (a, b tFq,r
(m, 0), δr1((α, 0, ε), c));

– buildd1((Xα, X+, α), ρ],R) = ((mα, 0), (m+, 0), ((0, 0), (0, 0))) where
mα = eval](Xα, ρ

]) and m+ = eval](X+, ρ
]);

– tod1((Xα, X+, α), (a, b, c)) =

{
Y 7→ [−m;m] if X = Y and α ∈ [ 12 ; 1[
Y 7→ R otherwise,

where m =
⌈
max(γFq,r

(a)) + 2max(γFq,r
(b)) + max(γF2

q,r
(c))

⌉
;

– ∀a, b ∈ Bd1 , aMBd1
b = a.

6.2.2 Second Order Filter

Theorem 7. Let a, b, c, d, e, i0, and i1 be real numbers, such that −1 < b < 0
and a2 +4b < 0. Let (En) be a sequence of real numbers. We assume there exists
m ∈ F such that ∀k ∈ N, we have Ek ∈ [−m;m], and ∀k ∈ {1; 2}, we have
ik ∈ [−m;m]. We define the sequence (Cn) as follows:{

S0 = i0, S1 = i1,

Sn+2 = aSn+1 + bSn + cEn+2 + dEn+1 + eEn

Let (Ai)i∈N, (Bi)i∈N, and (Cj
i )i,j∈N be real coefficient families such that 3:

∀n ∈ N, Sn = Ani0 +Bni1 +Σn
i=0C

n
i Ei.

For any pair (n,N) ∈ N such that N > 3 and n ≥ N , we define the residue RN
n

by Sn −Σn
i=n−N+1C

n
i Ei. We have:

1. ∀N > 3, n ≥ N + 2, RN
n = aRN

n−1 + bRN
n−2 + εN

n

where εN
n = aCn−1

n−NEn−N + bCn−2
n−1−NEn−1−N + bCn−2

n−NEn−N ;
2. ∀N > 3, n ∈ N, |Sn| ≤ (max(SN

≤ (i1 = i2), SN
∞(i1 = i2))).m

where
– SN

≤ (b) = max{(Σp
k=0|C

p
k |) + init(p,b) | p ∈ J0;N + 2K}

– SN
∞(b) =

(
ΣN−1

i=0 |Ci+2
2 |+ 2

√
−bmax(KN

∞,KN
0 (b))

a2+4b

)

– ∀n ≥ 2, init(n,b) =

{
|An|+ |Bn| if (not(b))
|An +Bn| otherwise,

– KN
∞ =

(
|aC1+N

2 +bCN
2 |+|bC1+N

2 |

1−
√
−b

)2

and KN
0 (b) = X2 + |a|XY − bY 2,

where

{
X = (init(N + 2,b)) +ΣN+2

i=0

∣∣CN+2
i

∣∣
Y = (init(N + 1,b)) +ΣN+1

i=0

∣∣CN+1
i

∣∣ . �
3 We omit the explicit recursive definition of these coefficients, for conciseness.



We set N ∈ N and define the map ψ∞ that maps each tuple (b, a, b, c, d, e) ∈
B × F5 into

⌈
max(SN

≤ , S
N
∞(b))

⌉
where SN

≤ and SN
∞ are defined as in Thm. 7.

We derive the following abstract extension:

– Td2 = V4 × F5, Bd2 = B × Fq,r ×F2
q,r, and infod2 = F× F;

– (⊥d2 ,tBd2
,OBd2

) are defined componentwise.
– γBd2

((S′′, S′, E′′, E′, a, b, c, d, e), (b,m,Kε)) is given by:ρ ∈ Env

∣∣∣∣∣∣∣∣∣∣
∃εX , εY , such that ε2X − aεXεY − bε2Y ≤ max(γF2

q,r
(Kε))

∃n ∈ N,∃(Ei)−2≤i≤n+1 ∈ (γFq,r (m))n+4 such that
ρ(S′′) = εX +An+1E−2 +Bn+1E−1 +Σn+1

i=0 C
n+1
i Ei

ρ(S′) = εY +AnE−2 +BnE−1 +Σn
i=0C

n
i Ei

ρ(E′′) = En+1, ρ(E′) = En, [b =⇒ E−1 = E−2]


– rlvtd2(E) is the set of tuples t=(Xa, Xb, Xd, Xe, a, b, c, d, e), such that there

exists Xc ∈ V such that E matches Σi∈{a;b;c;d;e}[i− εi; i+ εi]×Xi + [−ε, ε]
where ∀i ∈ {a; b; c; d; e}, εi ≥ 0, ε > 0, a2 +4b < 0, and −1 < b < 0, then the
pair ptr1(Z = E, t, ρ]) is given by (t′, (eval](Xc, ρ

]),eval](E′, ρ]))) where
t′ = (Z,Xa, Xc, Xd, a, b, c, d, e) and E′ = E +Σi∈{a;b;c;d;e}{−i} ×Xi;

– δd2((m, ε), (a, iE , iε)) = (a, iE tFq,r
(m, 0), δr2((a, 0, b, 0, ε), iε));

– buildd2((Xa, Xb, Xd, Xe, a, b, c, d, e), ρ],R) = (b, (m, 0), ((0, 0), (0, 0))) with
b = ((Xa, Xb) ∈ R) and m = max{eval](X, ρ]) | ∀X ∈ {Xa, Xb, Xd, Xe}};

– tod2((Xa, Xb, Xd, Xe, a, b, c, d, e), (a, iE , iε))=

Y 7→ [−m;m] if

{
X = Y
a2

4 <−b
Y 7→ R otherwise

where m =

max(γFq,r (iE))ψ∞(a, a, b, c, d, e) + 2

√
max(γF2

q,r
(iε))b

a2+4b


– ∀a, b ∈ Bd2 , aMBd2

b = a.

7 Benchmarks

We tested our framework with the same program as in [2]. This program is
132, 000 lines of C long with macros (75 kLOC after preprocessing) and has
about 10, 000 global variables. The underlying domain is the same as in [2] (i.e.,
we use intervals [3], octagons [9], decision trees, except the ellipsoid domain which
corresponds to the rough abstraction of second order digital filters). We perform
three analyses with several levels of accuracy for filter abstraction. First, we use
no filter abstraction; then we only use the rough abstraction; finally we use the
most accurate abstraction. For each of these analyses, we report in Fig. 5 the
analysis time, the number of iterations for the main loop, and the number of
warnings (in polyvariant function calls). These results have been obtained on a
2.8 GHz, 4 Gb RAM PC.

8 Conclusion

We have proposed a highly generic framework to analyze programs with digital
filtering. We have also given a general approach to instantiate this framework in



no filter rough filter accurate filter
abstraction abstraction abstraction

iteration number 69 120 72

average time by iteration 48.0 s. 58.4 s. 61.7 s.

analysis time 3313 s. 7002 s. 4444 s.

warnings 639 10 6

Figure 5. Some statistics.

the case of linear filtering. We have enriched an existing analyzer, and obtained
results that were far beyond our expectations. As a result, we solved nearly all
remaining warnings when analyzing an industrial program of 132, 000 lines of C:
we obtain a sufficiently small number of warnings to allow manual inspection,
and we discovered they could be eliminated without altering the functionality of
the application by changing only three lines of code.

Linear filtering is widely used in the context of critical embedded software,
so we believe that this framework is crucial to achieve full certification of the
absence of runtime error in such programs.
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