
MFPS 2011

Formal reduction for rule-based models

Ferdinanda Camporesi1,2

Dipartimento di Scienze dell’Informazione
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1 Introduction

Modelers of molecular signaling networks must cope with the combinatorial
explosion of protein states generated by post-translational modifications and
complex formations. Rule-based models provide a powerful alternative to ap-
proaches that require an explicit enumeration of all possible chemical species
of a system [6,1]. Such models consist of formal rules stipulating the (partial)
contexts for specific protein-protein interactions to occur. The behavior of
the models can be formally described by stochastic or differential semantics.
Yet, the naive computation of these semantics does not scale to large sys-
tems, because it does not exploit the lower resolution at which rules specify
interactions.

We present a formal framework for constructing coarse-grained differential
semantics. We instantiate this framework with two abstract domains. The
first one tracks information flow between the different regions of chemical
species, so as to detect and abstract away some useless correlations between
the state of sites. The second one detects pairs of sites having the same
capabilities of interaction and abstracts away any distinction between them.

The result of our abstraction is a set of chemical patterns, called fragments,
and a system which describes exactly the concentration evolution of these
fragments. The method never requires the execution of the concrete rule-
based model and the soundness of the approach is described and proved by
abstract interpretation [4].

Related works. In [3] is proposed a framework where the information
flow between the sites of chemical species is used so as to build reduced models.
With this approach there is no formal definition for the semantics or for the
flow of information. Moreover, reduced models have to be written by hand.

In [7], a framework is proposed to automatically derive reduced models
from sets of rules. The semantics of reduced models are formally related to
the semantics of the unreduced ones. The framework that we present here is
an extension of this framework. Unlike in [7], our fragments are heterogeneous.
The cutting of a protein into portions may depend on its position within the
chemical species. This matches more closely with the flow of information.
Indeed, within a chemical species, the behavior of a protein may be driven by
the state of a site without being driven by the state of the same site in other
instances of the protein. Our new analysis exploits this efficiently. In [10],
another family of fragments are defined, with an even higher level of context-
sensitivity. The set of fragments is computed iteratively by building overlaps
between connected components in rules and already built fragments. It is not
clear whether this approach scales to large models, or not. In our approach,
we have taken an appropriate trade-off of context-sensitivity: we first compute
very fastly an over-approximation of the flow of information, from which we
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deduce an efficient symbolic description of the set of fragments. In [14], a
language independent approach is described. Yet it requires an extensional
description of rules as sets of reactions, and fragments as multi-set of species,
which makes the approach impractical for large systems. Lastly, in [9,8],
fragments are use to reduce the dimension of the stochastic semantics of rule-
based models.

Outline. In the Section 2, we describe some case study to illustrate our
approach. In the Section 3, we provide a generic framework to define differen-
tial semantics, reduce these semantics, and combine these reductions. In the
Section 4, we introduce the language Kappa and its differential semantics. In
the Section 5, we show how to detect pairs of sites having the same capabil-
ities of interaction and we use this information to design a model reduction.
In the Section 6, we introduce an analysis of the flow of information between
the different regions of chemical species, and deduce which correlations can
be abstract away. Then, we use this information to cut chemical species into
self-consistent fragments.

2 Case study

Let us start out with some motivating examples.

2.1 Symmetric sites

This first example illustrates that we can detect when some sites have the
same capabilities of interaction, and use this to abstract away any distinction
between these sites.

We consider four kinds of chemical species: P, ‹P, P‹, and ‹P‹. These are
four instantiations of a given protein P which bears two activation sites. Each
site can be activated (which is denoted by the symbol ‘‹’ on the left or on
the right according to which site is activated), or not. Initially, all proteins
have no activated site. The evolution of the state of the proteins is described
thanks to some chemical reactions. There is no order in the activation of the
sites. A first site (either the left or the right one) can be activated at rate
k1 thanks to the reactions in the Figure 1(a) (the rates specify the speed of
the reactions). Then the other site can be activated at rate k2 thanks to the
reactions in the Figure 1(b). Once both sites are activated the protein can be
destroyed at rate k3 by the reaction in the Figure 1(c).

The differential semantics of this model is the solution of the system of
ordinary differential equations (ODEs) which is given in the Figure 1(d). This
system is obtained by applying Mass Action Law. It describes the continuous
evolution of the concentration of each chemical species along the time. Intu-
itively, Mass Action Law states that the amount of time a reaction is applied
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P ÝÑ ‹P k1

P ÝÑ P‹ k1
(a) First activation.

‹P ÝÑ ‹P‹ k2

P‹ ÝÑ ‹P‹ k2
(b) Second activation.

‹P‹ ÝÑ k3
(c) Destruction.

$

’

’

’

&

’

’

’

%

rPs1 “ ´2k1rPs

r‹Ps1 “ k1rPs ´ k2r
‹Ps

rP‹s1 “ k1rPs ´ k2rP
‹s

r‹P‹s1 “ k2pr
‹Ps ` rP‹sq ´ k3r

‹P‹s
(d) Initial differential system.

$

’

&

’

%

rPs1 “ ´2k1rPs

r‹P` P‹s1 “ 2k1rPs ´ k2r
‹P` P‹s

r‹P‹s1 “ k2r
‹P` P‹s ´ k3r

‹P‹s
(e) Reduced differential system.

Fig. 1. Chemical reactions and ODEs for the protein with two symmetric sites.

within a small amount of time is obtained by multiplying the rate constant of
the reaction by the product of the concentration of the reactants (which are
the chemical species which occur in the left hand side of the reaction).

We notice that, in a protein, both sites have the same capabilities of in-
teraction. Thus we propose to ignore any distinction between these two sites.
Indeed, what is important is not which sites are activated in a given protein,
but how many sites are activated. Doing this, we get the system of equations
in the Figure 1(e). This system can be derived analytically from the system
given in the Figure 1(d). We observe a reduction of the dimension of the state
space. In a more general setting, if the protein had n such sites, there would
be 2n chemical species, but only pn` 1q variables in the reduced system.

We have seen through this example how the fact that several sites may
have the same capabilities of interaction allows the inference of a changement
of variables which reduces the model.

2.2 Hierarchic flow of information

Now we consider an example where a changement of variables can be deduced
from an over-approximation of the flow of information among sites.

We consider a protein having three activation sites r, c, l, each of which
can be activated ‘p’, or deactivated ‘u’. Thus a chemical species is denoted as
a triple of symbols among ‘u’ and ‘p’, the first component denotes the state of
the site l, the second one the state of the site c, and the third one the state of
the site r. Initially, all proteins have no activated site. The evolution of the
state of the proteins is described thanks to some chemical reactions. There is
some hierarchic control between the states of the sites. The site c has to be
activated first, at rate k1, thanks to the reaction in the Figure 2(a). Once the
site c has been activated, the l site can get activated at rate k2, no matter the
state of the site r is (see the Figure 2(b)); and the site r can get activated at
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pu,u,uq ÝÑ pu,p,uq k1

(a) 2nd site activation.

pu,p,uq ÝÑ pp,p,uq k2

pu,p,pq ÝÑ pp,p,pq k2
(b) 1st site activation.

pu,p,uq ÝÑ pu,p,pq k3

pp,p,uq ÝÑ pp,p,pq k3
(c) 3rd site activation.

c

l r

(d) Flow of information.
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%

ru, u, us1 “ ´k1ru, u, us

ru, p, us1 “ ´k2ru, p, us ` k1ru, u, us ´ k3ru, p, us

ru, p, ps1 “ ´k2ru, p, ps ` k3ru, p, us

rp, p, us1 “ k2ru, p, us ´ k3rp, p, us

rp, p, ps1 “ k2ru, p, ps ` k3rp, p, us
(e) Initial differential system.
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’
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’

’

%

ru, u, us1 “ ´k1ru, u, us

pru, p, us ` ru, p, psq1 “ k1ru, u, us ´ k2pru, p, us ` ru, p, psq

prp, p, us ` rp, p, psq1 “ k2pru, p, us ` ru, p, psq

pru, p, us ` rp, p, usq1 “ k1ru, u, us ´ k3pru, p, us ` rp, p, usq

pru, p, ps ` rp, p, psq1 “ k3pru, p, us ` rp, p, usq
(f) Reduced differential system.

Fig. 2. Chemical reactions, flow of information, and ODEs for the protein with hierarchic flow of
information

rate k3, no matter the state of the site l is (see the Figure 2(c)). We describe
the flow of information among the states of the sites of a protein in the Figure
2(d). Intuitively, the flow of information summarizes the fact that the state
of the site c may control the behavior of the states of the sites l and r, but
that the states of the sites l and r do not control the behavior of the states of
the other sites.

The differential semantics of this model is the solution of the system of
ODEs which is given in the Figure 2(e), where the concentration of the protein
in the state px1, x2, x3q is denoted by rx1, x2, x3s. Since the state of the site l
does not control the evolution of the state of the site r, and conversely, we can
abstract away the correlation between the states of the sites l and r. To do this,
we cut the chemical species into fragments, each fragment documenting either
the sites l and c, or the sites c and r. Such a fragmentation defines a linear
changement of variables. Indeed we can define the concentration of a fragment,
as the linear combination of the concentration of the chemical species in which
this fragment occurs. For instance, the concentration of the fragment which
documents the sites l and c, and where both these sites are activated is equal
to the sum of the concentrations of the chemical species pp,p,uq and pp,p,pq.
Applying this changement of variables, we get the reduced system which is
given in the Figure 2(f). We notice that the number of variables in the two
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systems are the same, because of the simplicity of the example. In practice,
abstracting away a correlation reduces a lot the number of variables.

We have seen in this example, that an over-approximation of the flow of
information between the sites of chemical species, can be used to identify
useless correlations, which can be used to discover appropriate changement of
variables.

2.3 Dimers

Our third example illustrates the weakness of our previous approach [7,5] to
reduce models where the states of some sites flow across binding between
proteins.

We consider a kind of receptors, which when activated, can form dimers
and initiate other cascades of interactions. More precisely, we consider a
protein having four interaction sites a, b, c, d. The sites a, c, and d can be
activated (‘p’) or not (‘u’), while the site b is a binding site: the sites b of
two receptors can be bound together. We call a dimer the gathering of two
receptors. With these constraints, we can form exactly 38 chemical species
(either single receptors, or dimers, in various configurations according to the
states of the sites a, c, and d). Thus, describing explicitly the reactions of the
system would be cumbersome. So we describe these reactions only implicitly:
the site a of any receptor can get activated at rate k1; two receptors having
their site a activated can bind to each other at rate k2; then, when both sites
a of a dimer are still activated, the site c can be activated at rate k3 and the
site d at rate k4; lastly, all these reactions are reversible: any activated site
can become deactivated at rate k5 for the site a, k7 for the site c, and k8 for
the site d, and dimers may break their binding at rate k6.

We notice that the behavior of the site c (resp. d) does depend neither on
the state of the site d (resp. c) of the same receptor, nor on the state of the
site c and d of the potential partner in case of dimer. But, in a dimer, the
state of the site a of a receptor controls the evolution of the sites c and d of
the other receptor. We say, that there is a flow of information across bindings.
An over-approximation of the flow of information between the sites of dimers
is given in the Figure 2.3. We can use the framework in [7,5], to cut down the
combinatorial complexity of this example. Indeed, in this framework, we use
a set of fragments, the evolution of the concentration of which can be defined
in a self-consistent way. These fragments are homogeneous, because the way
proteins are cut into portions of proteins is defined once for all: in our case,
each portion of protein will document either the states of the sites a, b, and
c; or the states of the sites a, b, and d. As a consequence, the fragments of
dimer will all document 6 sites. Thus the fact that the states of the sites c or
d of a given receptor cannot control the behavior of the sites c and d in the
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a

c
b b

a

c

d d

Fig. 3. Flow of information within the sites of a dimer.

other receptor of a dimer is not exploited, which is a severe limitation of the
framework in [7,5]. In the framework that we are presenting in this paper,
the way proteins are cut is not the same for all the proteins of a chemical
species. We are using heterogeneous fragments: in the fragments of dimer,
one receptor is privileged and documents three sites (a, b, and either c and
d), while the other documents only the sites a and b. This cutting of chemical
species into fragments matches more closely with the flow of information.

We have seen in this example that the framework that is proposed in [7,5],
can be improved by using heterogeneous fragments, where the cut of proteins
is not the same throughout a chemical species.

3 Model reduction of differential semantics

3.1 Notations

Let A be a set. We define a state over A as a mapping between A and R,
such that we have ρpAq ě 0 for any element a P A. Let B be another set.
We consider two norms || ¨ ||A and || ¨ ||B respectively over A and B. Let φ
be a mapping between A Ñ R and B Ñ R. The mapping φ is called an
abstraction between A Ñ R and B Ñ R if and only the following properties
are satisfied: (i) φ is a linear mapping between A Ñ R and B Ñ R; (ii)
for any state ρ over A, the element φpρq is a state over B; and (iii) for any
sequence pρnqnPN of states such that the sequence p||ρn||AqnPN diverges, then
the sequence p||φpρnq||BqnPN diverges as well. In such a case, we write:

pAÑ Rq
φ
( pB Ñ Rq.

We notice that whenever the sets A and B are both finite, then the property
(iii) does not depend on the choice of the norms || ¨ ||A and || ¨ ||B.

3.2 Concrete semantics

We define an autonomous system as a pair pV ,Fq where V is a finite set
of variables and F is a continuously differentiable function from V Ñ R to
V Ñ R. By the Cauchy-Lipschitz theorem[11], for any state ρ0 over V , the
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system of equations:
#

ρ1ptq “ Fpρptqq
ρp0q “ ρ0

has a unique maximal differentiable solution: fρ0 : r0, Tρ0q Ñ pV Ñ Rq,
with Tρ0 ď `8. An autonomous system pV ,Fq is said to be positive, if and
only if, for any state ρ0 over V and any t P r0, Tρ0q, fρ0ptq is a state over V
as well. The concrete semantics of the system pV ,Fq is the mapping JV ,FK
which associates the unique maximal differentiable solution fρ0 to each state
ρ0 over V (in this context, ρ0 is called the initial state).

3.3 Exact reduction of differential semantics

A model reduction pV ,F,V7, φ,F7q is a tuple such that the pair pV ,Fq is an
autonomous system, V7 is a finite set of variables, φ is an abstraction function
between V Ñ R and V7 Ñ R, and F7 a continuously differentiable function
from V7 Ñ R to V7 Ñ R, and such that the following square commutes:

φ φ

F

F7

The trajectories in the semantics of the (abstract) autonomous system
pV7,F7q are the exact projections by φ of the trajectories in the semantics of
the (concrete) autonomous system pV ,Fq, as stated by the following theorem
which is proved in [5].

Theorem 3.1 Let ρ0 be an initial state over V. We introduce Tρ0 an T 7φpρ0q
such that r0, Tρ0q is the definition domain of JV ,FKpρ0q and r0, T 7φpρ0qq is the

definition domain of JV7,F7Kpφpρ0qq.
Then, under these assumptions, Tρ0 “ T 7φpρ0q and, for any t P r0, Tρ0q,

φpJV ,FKpρ0qptqq “ JV7,F7Kpφpρ0qqptq.

If follows from the Theorem 3.1 that if the system pV ,Fq is positive, then
the system pV7,F7q is positive as well.

3.4 Projections-based reductions

Now we investigate a specific class of model reductions: we focus on the case
when an equivalence relation over the variables of the autonomous system can
be lifted to a bisimulation, and use this to define a model reduction.

We consider a concrete autonomous system pV ,Fq. We consider r a func-
tion from V to V such that r is idempotent (i.e. r ˝r “ r). The function r de-
fines an equivalence relation „r over V by v1 „r v2 if and only if rpv1q “ rpv2q.
Moreover, for any variable v P V , the variable rpvq is called the representative
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of the equivalence class of v. We define two linear projections Pr and Zr over
V Ñ R as follows:

Prpρq :

#

V Ñ R
v ÞÑ

ř

tρpv1q | rpv1q “ vu
Zrpρq :

$

’

&

’

%

V Ñ R
v ÞÑ ρpvq if rpv1q “ v

v ÞÑ 0 otherwise.

Intuitively, Pr gathers the values of each „r-equivalent variable, and stores the
result to the value of the representative of each „r-equivalence class, while Zr
ignores the values of the variables which are not the representative of their
„r-equivalence class.

We notice that pV Ñ Rq
Pr
( pV Ñ Rq and that the following diagram

commutes:
Pr

ZrPr

We says that the relation r induces a bisimulation over the autonomous system
pV ,Fq if and only if for any pair pρ, ρ1q of states over V , if Prpρq “ Prpρ

1q, then
PrpFpρqq “ PrpFpρ1qq. Equivalently, the relation r induces a bisimulation, if
and only if the following diagram commutes:

F

Pr

Pr
Pr

F

Theorem 3.2 Whenever r induces a bisimulation, then pV ,F,V , Pr, Pr ˝ F ˝
Zrq is a model reduction.

Proof. The proof is given by the following commutative diagram:

Zr F Pr

Pr

F

Pr Pr

l

Example 3.3 Let us consider the example of the Section 2.1. The set of vari-
ables V is defined as trPs, r‹Ps, rP‹s, r‹P‹su. We want to identify the proteins
which have only one site activated, no matter which site it is. Thus, we define
the mapping r by rprPsq “ rPs, rpr‹Psq “ rprP‹sq “ r‹Ps, and rpr‹P‹sq “ r‹P‹s.
By using a matrix notation, we get:

F “

»

—

—

—

—

—

—

–

´2k1 0 0 0

k1 ´k2 0 0

k1 0 ´k2 0

0 k2 k2 ´k3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,F7 “

»

—

—

—

—

—

—

–

´2k1 0 0 0

2k1 ´k2 0 0

0 0 0 0

0 k2 0 ´k3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Pr “

»

—

—

—

—

—

—

–

1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and Zr “

»

—

—

—

—

—

—

–

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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and we can check that F7 “ Pr ˆ Fˆ Zr.

3.5 Combining a model reduction with projections-based reductions

An existing model reduction can be abstracted further thanks to a bisimulation
induced by an equivalence relation over the concrete variables.

Theorem 3.4 Let pV ,F,V7, φ,F7q be a model reduction, r be an idempotent
mapping r over V such that r induces a bisimulation over the autonomous
system pV ,Fq, and r7 be an idempotent mapping over V7. We assume that the
following square:

φ φ

Pr

Pr7
commutes.

Under these assumptions, the tuple pV ,F,V7, Pr7 ˝ φ, Pr7 ˝ F7 ˝ Zr7q is a
model reduction.

Proof. The proof is given by the following commutative diagram:

F

F Pr

Pr
φ

Pr7

Zr7

φ

Pr7F7

φ φ

Pr7
Pr7

φ

Pr

l

Interestingly, we notice that no commutative diagram was required to re-
late the functions F7 and Pr7 . Thus, we only need to prove that r induces a
bisimulation in the concrete. Then, to inherit this construction we need to
prove that Pr7 ˝φ “ φ˝Pr. Such a proof is quite easy, since only the structure
of the abstract variables matters, and not their dynamics.

4 The Kappa language

Now, we instantiate the generic framework that we have proposed in the Sec-
tion 3 with a particular language. We focus our study to the models that
are written in Kappa [6]. In the present section, we present Kappa and its
semantics.

Kappa is a graph-rewriting-based language. It has a graphical notation
that eases the design of models. Nevertheless, we use here a process-algebra
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a ::“ Nlpσq (agent)

N ::“ A P A (agent type)

l ::“ i P N | i P N (agent identifier)

σ ::“ ε | s,σ (interface)

s ::“ nλι (site)

n ::“ x P S (site name)

λ ::“ ε | N l@n | N@n | ´ | ? (binding state)

ι ::“ ε | w P I (internal state)

Fig. 4. Syntax for agents.

notation where agents are identified, which facilitates the presentation of the
semantics and the various analyses.

4.1 Syntax

We fix a finite set of agent types A, a finite set of sites S, and a finite set I of
non empty strings. We also consider two signature maps Σι and Σλ assigning a
set of sites to each agent type such that for any agent type A P A. Intuitively,
ΣιpAq is the set of sites which can bear a modifiable internal state w P I (such
as a level of energy), whereas ΣλpAq is the set of sites which can be bound to
some other sites. We also denote by Σ the signature map that associates to
each agent type A P A the combined interface ΣιpAq Y ΣλpAq. The syntax of
agents is given in the Figure 4.

An agent identifier l belongs to the set N of natural numbers, or to a copy
N of the set of natural numbers. Most agents will be identified by natural
numbers. Identifiers in N will be used temporary when agents are created,
before a proper identifier is allocated.

An interface σ is a sequence of sites with internal states (as subscript)
and binding states (as superscript). The internal state of the site s may be
written as sε, which means that either it does not have internal states (when
s P ΣpAqzΣιpAq), or it is not specified. A site that bears an internal state w P I
is written sw (in such a case s P ΣιpAq). A site can be free, or bound (which
is possible only when s P ΣλpAq). There are also several levels of information
about binding states. We use a question mark ‘?’ if we do not know anything
about the binding state; we use the symbol ‘ε’, if we know that the site is
free. There are also several levels of information about bound sites: we use a
site address Al@x if we know the binding partner (this means that the site
is bound to the site x of the agent A with identifier l); we use a binding type
A@x if we only know that the partner is some site x of some agent A; lastly
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we use a wildcard bond ‘´’ if we only know that a site is bound but have no
further information about its partner. We generally omit the symbol ‘ε’ in
examples.

An agent is given by a type A in A, an agent identifier l and an interface
σ. Such an agent is denoted by Alpσq. An expression E is a sequence of
agents such that (i) no two agents have both the same type and the same
identifier; (ii) no site name occurs more than once in a given interface; (iii)
each site name s occurring in the interface of the agent A occurs in ΣpAq; (iv)
each site name s which occurs in the interface of the agent A with an internal
state distinct from ‘ε’ occurs in ΣιpAq; (v) each site name which occurs in
the interface of the agent A with a binding state distinct from ‘ε’ occurs in
ΣλpAq. Furthermore, given an expression E and an agent type A P A, we
denote by agentspE,Aq the set of identifiers l such that there is an agent A
in the expression E with identifier l.

A pattern is an expression E such that whenever the binding state of the
site x in the agent of type A with identifier l is A1l1 @x’ , then there exists an
agent of type A1 with the identifier l1 such that this agent has the site x1 in its
interface and that the binding state of this site is Al@x (thus site addresses
encode a pairing relation between some sites). A proper pattern is a pattern
where each agent is identified with a proper identifier (in N). A mixture E is
a proper pattern that is fully specified, that is to say that each agent of type
A in a mixture E documents its full interface ΣpAq, sites can only be free or
bear a site address, and any sites in ΣιpAq have a non empty internal state.
A pattern E is said to be disconnected if there is a strict subsequence E 1 of it
that is a non-empty pattern. A pattern component is a connected pattern. A
species is a non-empty connected mixture.

A rule is given by a pair of patterns pE`, Erq and a rate k (which is a

non negative real number), that is written E`
k
ÝÑ Er, with some additional

constraints explained below. The left hand side (lhs) E` of a rule describes
the agents taking part in it and various conditions on both their internal and
binding states for the rule to apply. The right hand side (rhs) describes what
the rule does.

Definition 4.1 In a rule E`
k
ÝÑ Er, firstly agents in the lhs are identified with

natural numbers i P N and secondly the pattern Er is obtained from E` in the
following stepwise fashion (the order matters):
- (i) creation: some agents Aipσq with an agent identifier in N, with their full
interfaces ΣpAq, with all sites free and with all sites s P ΣιpAq having a non
empty internal state are added;
- (ii) unbinding : some occurrences of the wildcard ‘´’ and some site addresses
Ai@n are removed;
- (iii) deletion: some agents with only free sites are removed;

12
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P1plu,ruq
k1
ÝÑP1

`

lp,ru
˘

P1plu,ruq
k1
ÝÑP

`

lu,r p
˘

(a) First activation.

P1

`

lp,ru
˘ k2
ÝÑP1

`

lp,r p
˘

P1

`

lu,r p
˘ k2
ÝÑP1

`

lp,r p
˘

(b) Second activation.

P1

`

lp,r p
˘ k3
ÝÑ ε

(c) Destruction.

Fig. 5. Encoding of the example of the Section 2.1 in Kappa. The signature is defined as: A “ tP u,
I “ tu, pu, S “ tl, ru, ΣλpP q “ H, ΣιpP q “ tl, ru.

- (iv) modification: some (non empty) internal states are replaced with (non
empty) internal states;
- (v) binding : some free sites are bound pair-wise by using appropriate site
addresses.

Agent types and identifiers ensure a 1-1 mapping correspondence between
the agents in the lhs and in the rhs that are neither removed, nor created.
Moreover, this correspondence preserves the set of sites which are documented
in interfaces, and the set of sites which carry a non empty internal state.

Note that according to the Definition 4.1, only the bonds that are denoted
by a pair of site addresses, or a wildcard ‘´’ can be released, unlike binding
types which can only be tested.

Example 4.2 Let us encode in Kappa the three examples of the Section 2.
The example with the two symmetric sites is written in the Figure 5. We
notice that in this example, we do not take benefit of the context freeness of
Kappa: indeed, there are as many Kappa rules as there are chemical reaction
and the Kappa rules document exactly the same amount of information as
the chemical reactions. The example with the hierarchic flow of information
is given in the Figure 6. In this example, there are fewer rules than reactions
and they do not document all the sites of the protein. For instance, in the
Figure 6(b), we use the fact that the state of the third site does not control
the activation of the first site, so as to gather the two reactions in the Figure
2(b) into a single one which does not document the state of the third site. The
example of the dimer is given in the Figure 7. This last example illustrates
well the fact that Kappa allows for a compact description of models. By
using context-free rule, we have described a model which involves 38 chemical
species. The rule in the Figure 7(a) stipulates that the site a of a receptor can
get activated. Then two activated receptors may bind to each other thanks
to the rule in the Figure 7(b). When the two receptors in a dimer are still
activated, then one receptor in the dimer may activate the site c or d in the
other receptor, as stated by the rules in the Figure 7(c). At any moment,
activated sites can get deactivated and dimers may break their connexion as
stated in the Figure 7(d).

13
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P1pcuq
k1
ÝÑP1

`

cp
˘

(a) 2nd site activation.

P1

`

lu,cp
˘ k2
ÝÑP1

`

lp,cp
˘

(b) 1st site activation.

P1

`

cp,ru
˘ k3
ÝÑP1

`

cp,r p
˘

(c) 3rd site activation.

Fig. 6. Encoding of the example of the Section 2.2 in Kappa. The signature is defined as: A “ tP u,
I “ tu, pu, S “ tl, c, ru, ΣλpP q “ H, ΣιpP q “ tl, c, ru.

R1pauq
k1
ÝÑR1

`

ap
˘

(a) Receptor activation.

R1

`

ap,b
˘

, R2

`

ap,b
˘ k2
ÝÑ R1

`

ap,b
A2@b

˘

, R2

`

ap,b
A1@b

˘

(b) Dimerisation.

R1

`

ap,b
A2@b,cu

˘

, R2

`

ap,b
A1@b

˘ k3
ÝÑR1

`

ap,b
A2@b,cp

˘

, R2

`

ap,b
A1@b

˘

R1

`

ap,b
A2@b,du

˘

, R2

`

ap,b
A1@b

˘ k4
ÝÑR1

`

ap,b
A2@b,dp

˘

, R2

`

ap,b
A1@b

˘

(c) Cross-activation.

R1

`

ap
˘ k5
ÝÑR1pauq

R1

`

cp
˘ k7
ÝÑR1pcuq

R1pb
´q

k6
ÝÑ R1pbq

R1

`

dp
˘ k8
ÝÑR1pduq

(d) Relaxation.

Fig. 7. Encoding of the example of the Section 2.3. The signature is defined as: A “ tRu, I “ tu, pu,
S “ ta, b, c, du, ΣλpRq “ tbu, ΣιpRq “ ta, c, du.

4.2 Operational semantics

Now we define the operational semantics of sets of rules.

First, we define the application of a rule E`
k
ÝÑ Er to a proper pattern

E. Informally, one needs to embed E` into E. For that purpose, we define a
substitution as a partial mapping φ between pairs pA, lq P AˆpNYNq of agent
type/identifier and agent identifiers l1 P NYN. A substitution φ is clean when
for any couple pA, lq P pA ˆ Nq X dompφq, φpA, lq “ l. A substitution φ can
be applied with a pattern E if, and only if, for any agent type A P A, we have
pA, lq P dompφq for any agent identifier l P agentspE,Aq. Indeed applying
a substitution φ consists in replacing the agent identifier l with the agent
identifier φpA, lq, in the agent of type A and identifier l (if it exists). This
is formalized, in the Figure 8(b), by defining the extension φ of φ to agents.
Furthermore, a given substitution φ is into if, and only if, for any agent type
A, and any two identifiers l,l1, we have φpA, lq “ φpA, l1q ùñ l “ l1. An into
substitution φ is a candidate for identifying the agents of two patterns. More
precisely, each agent Al`pσ`q in the first pattern can be identified with the
agent Alpσq, if (i) agent identifiers are the same (ie l “ φpA, l`q) and (ii) the
signature σ contains more information than the signature φpσ`q. The second
property is formalized by a matching relation |ù which is given in the Figure
8(c). Yet, since interfaces are defined up to permutations of sites, one may
have to reorder the sites before applying the matching relation, thanks to the
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E,Nlpσ,s,s
1,σ1q, E 1 ” E,Nlpσ,s

1,s,σ1q, E 1

E, a, a1, E 1 ” E, a1, a, E 1

(a) Structural congruence.

λ “ ε,N@n,´, ? ùñ φpλq “ λ

φpN l@nq “ NφpN,lq@n

φpnλι q “ n
φpλq
ι

φps, σq “ φpsq, φpσq

φpNlpσqq “ NφpN,lq

`

φpσq
˘

(b) Agent substitution.

ι` “ ι, ε ùñ ι |ù ι`

λ “ λ` ùñ λ|ùλ`

N l@n |ù N@n

N l@n |ù ´

λ |ù ?

ι |ù ι` ^ λ |ù λ` |ù nλι |ù nλ`ι`

σ |ù ε

s |ù s` ^ σ |ù σ` ùñ s, σ |ù s`, σ`

σ |ù σ` ùñ Nlpσq |ù Nlpσ`q

(c) Agent matching.

ιrεs “ ι ιrwrs “ wr

λrεs “ ε λrN l@n s “ N l@n

λrNl@n s “ λ

λr´s “ λ

λr?s “ λ

nλι rn
λr
ιr s “ n

λrλrs
ιrιrs

σrεs “ σ

ps, σqrsr, σrs “ srsrs, σrσrs

NlpσqrNlpσrqs “ Nlpσrσrsq

(d) Agent replacement.

Fig. 8. Structural congruence, substitution, matching and replacement. Definitions are made by
induction over the syntax.

congruence relation ” which is defined in the Figure 8(a).

We can now properly define an embedding between two patterns. An
embedding φ between two patterns E` and E is an into substitution such
that: (i) dompφq “ tpA, lq | A P A, l P agentspE`, Aqu, (ii) and for any
pA, lq P dompφq, there exists an agent a1 such that a ” a1 and a1 |ù φpa`q,
where a` is the unique agent in E` of type A with identifier l and a the unique
agent in E of type A with identifier φpA, lq. A clean embedding is a clean
into substitution. Moreover, whenever there exist an embedding φ between
E and E`, and an embedding φ1 between E` and E, we say that φ is an
isomorphic embedding. We notice that any embedding between two species
is an isomorphic embedding. Given a pattern E, we define the number of
symmetries in E as the number of embeddings φ such as E and φpEq are
”-equivalent. We denote the number of symmetries of E as sympEq.

Now we define the impact of applying the rule E`
k
ÝÑ Er along a given

clean embedding φ between the lhs E` of the rule and a pattern E. For that
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purpose we consider three kinds of agents:
- Agents Ai`pσ`q are said to be preserved if, and only if, Al`pσ`q occurs in E`
and there exists an interface σr such that Al`pσrq occurs in Er;
- Agents Alrpσrq are said to be created if, and only if, Alrpσrq occurs in Er,
but there is no agent of type A with identifier lr in E`;
- Agents Al`pσ`q are said to be removed if, and only if, Al`pσ`q occurs in E`,
but there is no agent of type A with identifier l` in Er.

We extend the clean embedding φ so as to deal with newly created agents.
Thus, we define the clean into substitution φ‹ over dompφq Y pA ˆ Nq by
φ‹pA, iq “ φpA, iq for any pA, iq P dompφq and φ‹pA, iq “ i otherwise (this
way, φ‹ preserves temporary identifiers). Then, for any agent Al`pσ`q that is
removed, the agent of type A with identifier φpA, l`q is removed in E; for any
agent ar that is created, the agent φ‹parq is added in E; last for any preserved
agent a`, we denote by ar and a the agents in Er and E which have the same
type and the same identifier as the agent a`, then we select an agent a1 (the
choice does not matter) such that a ” a1 and a1 |ù φpa`q, then the agent a
is replaced with agent a1rφ‹parqs, where .r.s is a replacement function that is
defined in the Figure 8(d). We denote by ErErsφ the so obtained expression
(which is well defined up to ”-equivalence).

One shall notice that ErErsφ might be not a pattern, because there might
be some pending bonds which are sites with a binding state of the form Al@x
but, either the agent of type A and identifier l has been removed, or the site
x of the agent of type A and identifier l has been made free. Thus, we remove
pending bonds: we introduce the function clean between patterns such that
cleanpEq is obtained by replacing with the symbol ε, each site address Al@x
such that either there is no agent of type A and identifier l in E, or the site x
of the agent of type A with identifier l is free.

In the case when the proper pattern E is a mixture, we expect the re-
sult of the application of a rule to be a mixture as well. Yet, we notice
that cleanpErErsφq might be not a mixture because of temporary identi-
fiers. We have to allocate fresh proper identifiers for the newly created agents:
we introduce the function fresh between patterns, such that freshpEq is
obtained by replacing any temporary agent identifier i of the agent A by
MpAq ` i ` 1 where MpAq is the maximum element of the non empty finite
set t0u Y pNX agentspE,Aqq.

Now we can define the operational semantics as a labeled transition system.
The states of the system are mixtures (up to ”). We shall notice that the

impact of applying a rule E`
k
ÝÑ Er on a mixture E is fully defined (up to ”)

by the clean embedding φ between the lhs E` of the rule and the mixture E.
So we define the set L of labels as the set of the tuples pr, E, φq where r is a

rule E`
k
ÝÑ Er, E is a state, φ is an embedding between E` and E. In such a
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case, we write:

E
pr,E,φq
ÝÑ freshpcleanpErErsφqq.

Example 4.3 Let us consider the following example. We set A “ tAu, I “ H,
S “ ta, bu, ΣλpAq “ ta, bu, ΣιpAq “ H. We consider the mixture E “

A1

`

aA2@b,bA3@a
˘

, A2

`

a ,bA1@a
˘

, A3

`

aA1@b,b
˘

and the rule A1pa q
k
ÝÑA0pa ,bq.

Intuitively, this rule can be applied with an agent of type A, the site a of
which is free (whatever the state of the site b is). Moreover, this rule removes
the agent A1pa q, and replace it with a new agent A0pa ,bq of type A with both
site a and b free (in this rule, no agent is preserved).

There exists only one embedding between the lhs A1pa q of the rule and
the mixture E. Namely, φ “ rA, 1 ÞÑ 2s (neither the substitution rA, 1 ÞÑ 1s,
nor rA, 1 ÞÑ 3s is an embedding, since the site a is free neither in the agent
A1

`

aA2@b,bA3@a
˘

, nor in the agent A3

`

aA1@b,b
˘

). Moreover, the expression
ErE`sφ is equal to the expression A1

`

aA2@b,bA3@a
˘

, A3

`

aA1@b,b
˘

, A0pa ,bq.
This expression has a pending bond (on the site a of agent A1), which
is removed by the primitive clean. Indeed the expression cleanpErErsφq

is equal to the expression A1

`

a ,bA3@a
˘

, A3

`

aA1@b,b
˘

, A0pa ,bq. Then the
temporary identifier 0 is replaced with 4 by the primitive fresh. As
the result, the expression freshpcleanpErErsφqq is equal to the expression

A1

`

a ,bA3@a
˘

, A3

`

aA1@b,b
˘

, A4pa ,bq.

A rule can be more or less refined. There are basically two ways of refining
a rule, either we add more information on the lhs of the rule (which is called
a left refinement), and report it on the rhs, or we add more information on
the rhs and report it to the lhs (which is called a right refinement).

More formally, let r :“ E`
k
ÝÑ Er be a rule. Given an embedding φ between

E` and a pattern E, we define the left refinement of r via the embedding φ

as the rule E
k1

ÝÑ cleanpErErsφq, where k1 is equal to the product between k
and the ratio between the number of symmetries in E and E`. Moreover given
a clean embedding φ1 between Er and a pattern E 1, there exists a pattern E
and an embedding φ between E` and E such that φpA, iq “ φ1pA, iq for any
pA, iq P dompφ1q such that i P N, we define the right refinement of r via the
embedding φ1 as the left refinement of r via the embedding φ.

4.3 Differential semantics

Now we remind the differential semantics of Kappa [7,5].

We consider a set of rules R and a finite set of species V , which is closed
under the rules in R and has at most one representative per species isomor-
phism class. More formally, (i) for any mixture E, any pattern component of

which is isomorphic to an element in V , any rule E`
k
ÝÑ Er, and any embedding
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φ between E` and E, each pattern component in cleanpErErsφq is isomorphic
to an element in V ; and (ii) for any pair pv, v1q of elements in V , if there exists
an embedding between v and v1, then v “ v1.

The states ρ of the system are mapping between chemical species v P V
and real numbers in R. (ρpvq denotes the concentration of the species v).
So as to define the function F which specifies the behavior of the system,
we consider the set of chemical reactions which are generated by the set of

rules R. Given a rule r :“ E`
k
ÝÑ Er in R, we may assume without any

loss of generality that E` is written as C1, . . . , Ck where each Ci is a pattern
component. A reaction is obtained, by choosing for any integer i between 1
and k, a reachable species vi P V and an embedding φi between Ci and vi.
The expression v1, . . . , vk might not be a mixture because distinct species may
share some agent identifiers. In order to define the product of a reaction, we
choose k species w1, . . . , wk and k embedding ψ1, . . . , ψk such that w1, . . . , wk
is a mixture, and that for any i between 1 and k, ψi is an embedding between
vi and wi. This way, we form a composite embedding φ “

ř

i ψi ˝ φi between
E` and w1, . . . , wk. The result of the application of the rule r on w1, . . . , wk
along φ is isomorphic to a tuple of species in V that we denote by p1, . . . , pl
(we can check that p1, . . . , pl does not depend on the choice of the w1, . . . , wk).

Then the function F is obtained by summing the contribution of each
reaction, as follows:

Fpρqpvjq
´
“ γ

ź

i
pρpviq | 1 ď i ď kq, Fpρqppj1q

`
“ γ

ź

i
pρpviq | 1 ď i ď kq.

where γ is the quotient between k and the number of symmetries in E` and j
ranges between 1 and k, and j1 between 1 and l.

The obtained autonomous system pV ,Fq is positive. Indeed, for any species
v P V , Fpvq can be written as ´ρpvq ¨P rρpv1q, . . . , ρpvmqs`Qrρpv

1
1q, . . . , ρpv

1
nqs,

where P and Q are two polynomial mapping with positive coefficients and
v1, . . . , vm, v

1
1, . . . , v

1
n are m` n species in V .

5 Symmetric sites in Kappa

5.1 Action of a transposition

In this section, we formalize the actions of a transposition of two sites on
patterns and rules. Then we define when two sites are symmetric in a given
set of rules.

We consider two kinds of transformation of pattern. The first one, called
transposition of binding types consists in replacing a site name with another
one in an instance of a binding type and the second one, called transposition
of states consists in permuting the states of two sites in one agent.
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More precisely, a transposition of binding types is defined as a tuple
pA, l, z, B, x, yq P AˆNˆSˆAˆSˆS, such that z P ΣλpAq and x, y P ΣλpBq.
A transposition of states is defined as a tuple pA, l, x, yq P AˆpNYNqˆSˆS,
such that the following properties are satisfied: (i) the site x belongs to the
set ΣpAq; (ii) the site x belongs to ΣιpAq if and only if the site y belongs to
ΣιpAq; (iii) the site x belongs to ΣλpAq if and only if the site y belongs to
the set ΣλpAq. A transposition is either a transposition of binding types, or a
transposition of states. The set of all transpositions is denoted by T.

Now we describe the action of transposition on patterns. A transposition
of binding type t :“ pA, l, z, B, x, yq operates on a pattern E in the following
way: if E contains an agent A with identifier l documenting the site z, then
if the binding state of z is the binding type B@x , then it is replaced with
the binding type B@y , else if the binding state of z is the binding type B@y ,
then it is replaced with the binding type B@x . In any other cases, E is not
modified.

The transposition of sites pA, l, x, yq denotes that we want to permute the
internal state and the binding state of the sites x and y in the agent A with
identifier l, if such an agent occurs in a pattern. Thus, whenever there is
no agent A with identifier l in the pattern E then the pattern E remains
unchanged. Otherwise, the transformation is defined in two steps. First we
define E 1 as the expression which is obtained by replacing any instance of a
site address Al@x with the site address Al@y and vice versa. Let us write
E 1 as a sequence a11, . . . , a

1
n of agents. We know that there exists a unique

agent a1k in E 1 of type A and identifier l. Let us write a1k “ Alpσq. We define
the expression E2 by replacing in E 1 the agent a1k with the agent Alpσ

1q where
σ1 is defined as the interface where σ1pxq is defined and equal to σpyq if and
only if σpyq is defined; σ1pyq is defined and equal to σpxq if and only if σpxq is
defined, and for any site in ΣpAqztx, yu, σ1pzq is defined and equal to σpzq if
and only if σpzq is defined. The expression E2 is then called the result of the
application of the transposition t on the pattern E.

Given a transposition, we denote by subspt,Eq the result of the application
of the transposition t on the pattern E. We notice that subspt,Eq is a pattern.
Moreover, if E is a proper pattern (resp. a mixture, resp. a species), then
subspt,Eq is a proper pattern (resp. a mixture, resp. a species) as well.

Example 5.1 We consider the following signature: A “ tA,Bu, S “

tx, y, zu, I “ H, ΣιpAq “ ΣιpBq “ H, and ΣλpAq “ ΣλpBq “ tx, y, zu.

We consider the pattern E :“ A1

`

xA2@y
˘

, A2

`

yA1@x,zB@x
˘

. Then, apply-
ing the transposition of binding types t1 :“ pA, 2, z, B, x, yq to E replaces the
binding type B@x with the binding type B@y in the agent A with identi-
fier 2: subspt1,Eq “ A1

`

xA2@y
˘

, A2

`

yA1@x,zB@y
˘

. Moreover, applying the
transposition of states t2 :“ pA, 1, x, yq to E is computed in two steps. Firstly
we replace the site address A1@x with the site address A1@y, secondly we
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replace the site name x with the site name y in the agent A with identifier 1.
Thus, we get: subspt2,Eq “ A1

`

yA2@y
˘

, A2

`

yA1@y,zB@x
˘

. Lastly, applying
the transposition of states t3 :“ pA, 2, y, zq is computed in two steps. Firstly
we replace the site address A2@y with the site address A2@z , secondly we
swap the states of the site y and of the site z in the agent A with identifier 2.
Thus, we get: subspt3,Eq “ A1

`

xA2@z
˘

, A2

`

zA1@x,yB@x
˘

.

Now we consider a rule r :“ E`
k
ÝÑ Er and a well-defined transposition t.

The rule:

r1 :“ subspt,E`q
k1

ÝÑ subspt,Erq,where k1 “ k ¨
sympsubspt,E`qq

sympE`q
,

is well-defined. In such a case, the rule r1 is called the action of the transpo-
sition t on the rule r, and is denoted by subsRpt, r1q.

5.2 Definition of symmetric sites

We use transpositions in order to identify the sites having the same capabilities
of interaction. The idea is the following: let us fix an agent type A and two
sites x and y in ΣpAq such that x P ΣλpAq if and only if y P ΣλpAq, and
x P ΣιpAq if and only if y P ΣιpAq. So as to detect whether x and y have the
same capabilities of interaction, we will replace each rule with the combination
of rules which can be obtained in substituting zero, one, or several occurrences
of x with y, and zero, one, or several occurrences of y with x. If the obtained
system of rules is equivalent to the initial one, then the sites x and y have the
same capabilities of interaction. Special care has to be taken about the kinetic
rates of rules. When a rule is replaced with n rules (up to transposition of x
and y in the instances of A), then the rate of each rule has to be divided by
n. Moreover, in order to show that the initial and the obtained systems are
equivalent, one may have to reorder interfaces and reindex agents in rules (by
applying a same into substitution to both sides of a given rule) and gather
some rules having the same lhs and the same rhs (summing up the rates).

More precisely, given a rule r and a non negative real number k P R`, we
define scalepr, kq as the rule that is obtained by multiplying the rate of r by
k. Moreover, we define the orbit of the rule r, as the set, which is written
orbitprq, of rules which can be obtained by applying zero, one, or several
transpositions of states to the rule r. Since the lhs and the rhs of a rule
are finite expressions, the orbit of a rule is always a finite set. Our model
transformation is formalized by the binary relation ùñ over sets of rules,
which is defined as follows:

R ùñ

"

scalepr1,
1

cardporbitprqq
q

ˇ

ˇ

ˇ

ˇ

r P R, r1 P orbitprq

*

.
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A1pxuq
k1
ÝÑ A1

`

x p
˘

A1pyuq
k2
ÝÑ A1

`

yp
˘

A1

`

x p,yp
˘ k3
ÝÑ ε

ùñ

A1pxuq
k1

ÝÑ A1

`

x p
˘

A1pyuq
k1

ÝÑ A1

`

yp
˘

A1

`

x p,yp
˘ k3
ÝÑ ε

where k1 “ k1
2
` k2

2
.

(a) In this first example, the signature is: A “ A, S “ tx, yu, I “ tu, pu, ΣιpAq “ tx, yu,
and ΣλpAq “ H. The set of rules on the left is transformed into a set of rules which is
equivalent to the one on the right. We can conclude that the sites x and y are symmetric
in A whenever k1 “ k2.

A1px q , A2px q
k1
ÝÑ A1

`

xA2@x
˘

, A2

`

xA1@x
˘

A1px q , A2py q
k2
ÝÑ A1

`

xA2@y
˘

, A2

`

yA1@x
˘

A1py q , A2py q
k3
ÝÑ A1

`

yA2@y
˘

, A2

`

yA1@y
˘

ùñ

A1px q , A2px q
k1

ÝÑ A1

`

xA2@x
˘

, A2

`

xA1@x
˘

A1px q , A2py q
k1

ÝÑ A1

`

xA2@y
˘

, A2

`

yA1@x
˘

A1py q , A2py q
k1

ÝÑ A1

`

yA2@y
˘

, A2

`

yA1@y
˘

where k1 “ k1
4
` k2

4
` k3

2
.

(b) In this second example, the signature is: A “ A, S “ tx, yu, I “ H, ΣιpAq “ H, and
ΣλpAq “ tx, yu. The sites x and y are symmetric in A whenever k1 “ k2 “ k3.

Fig. 9. Examples of symmetric sites.

for any set of rules R.

Agents and sites in rules can be reordered using the congruence relation
over their both hand sides. Moreover, agents can be reindexed using substi-
tutions. We use a slight extension of the substitution that we have used in
the Section 4.1, since we may need to reindex temporary identifiers (in N).
A generalized substitution is a mapping φ between N Y N and N Y N, such
that for any proper identifier l P N, φplq P N and such that for any temporary
identifier l P N, φplq P N. A generalized substitution is into if and only if for
any identifier l, l1 P N Y N, φplq “ φpl1q ùñ l “ l1. The extension φ of a
generalized substitution φ to agents is defined as in the case of substitution
(eg. see the Section 4.1). We define an equivalence relation « over rules such

that two rules r :“ E`
k
ÝÑ Er and r1 :“ E 1`

k1

ÝÑ E 1r are «-equivalent whenever
k “ k1 and there exists an into generalized substitution φ such that φpE`q ” E 1`
and φpErq ” Er.

Two set of rules are equivalent whenever they can be made equal by re-
placing their rules with «-equivalent ones and by gathering the rules having
the same lhs and the same rhs (in such a case, their rates are summed up).

Example 5.2 We consider two examples of rule sets. The first one is the
example of the Section 2.1, in which we do not assume that the rates of the
first two reactions are the same. The second example is a more subtle example.

The examples and their automatic transformation are given in the Figure
9. For each, the initial set of rules is given on the left, and the transformed
one (after reordering and reindexing) is given on the right. In the Figure
9(a), we notice that whenever the rates k1 and k2 are equal then the left and
the right systems are equal. Thus under this assumption, the sites x and y
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are symmetric in A. Let us detail the transformation, the first two rules are
replaced with two rules each, with a half rate, one applying on the site x, and
the other applying on the site y. The four obtained rules are pairwisely equal,
so we gather them pairwise. When transforming the third rule, we obtain two
equivalent rules (with half rate), that we can gather to recover the initial rule.

In the Figure 9(b), we notice that the sites x and y are symmetric whenever
k1 “ k2 “ k3. This case is more subtle, because some rules gain or loose some
symmetries during the transformation. For instance, the transformation of
the first rule gives four rules. One of them binds the sites x of two agents A,
another binds the sites y of two agents A. The lhss of these two rules have
the same number of symmetries as the one of the initial rule. Thus, their rate
are divided by 4 (since the rule is rewritten into 4 rules). Another rule binds
the site x of the agent A with identifier 1 and the site y of the agent A with
identifier 2, and the last one binds the site y of the agent A with identifier 1
and the site y of the agent A with identifier 2. The number of symmetries in
these rules is twice less as the number of symmetries in the initial rule. Thus
the rate are divided by 8 (4 since the rule is rewritten into 4 rules, and 2 due
to the loss of symmetries). But the two obtained rules are equivalent up to
reordering and reindexing, thus, we obtain a single rule, the rate of which had
been divided by 4. The transformation of the remaining rules works the same
way, except that the rule which binds the sites x of two agents A and the
rule which binds the sites y of two agents A both gain symmetries (the rate
is divided by 4 and multiplied by 2), and the rule which binds the site x and
the site y of two agents A keeps the same number of symmetries (the rate is
divided by 4).

5.3 Application to the reduction of differential semantics

As stated by the following theorem, pair of symmetric sites induces bisimula-
tion.

Theorem 5.3 When two sites x and y are symmetric in A, then the relation
„ which is the reflexive and transitive closure of the relation which identifies
two species E and E 1, if and only if there exists a transposition t of states
such that (i) E 1 “ subspt,Eq and (ii) t is either of the form pA, l, x, yq with
l P N YN , or of the form pB, l, z, A, x, yq with B P A, l P N YN , and z P S,
induces a bisimulation.

Proof. This theorem is a direct consequence of Proposition 6.5 in [2]. Indeed,
if the sites x and y are symmetric in the agent A, then the set of rules has the
same differential semantics that another system satisfying the requirements
of the Proposition 6.5 in [2]. We observe that the Proposition 6.5 in [2] was
not dealing with binding type, but the generalization of this result is straight
forward. l
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(a) The contact map.
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(b) The annotated contact map.

Fig. 10. The contact map and the annotated contact map for the Example in Section 2.3.

Thus, we can use the framework in the Section 3.4, to define model re-
ductions thanks to symmetric sites. We only need to pick a representative for
each equivalence class.

6 Information flow-based model reduction

In this section we show how to construct an abstract/reduced semantics track-
ing the flow of information between different regions of chemical species. The
first step is to define a family of suitable pattern components called fragments,
that will be the basis of our abstract domain. To define our fragments, we
will use a contact map (defined below) annoted with an over-approximation
of the flow of information between the sites of chemical species.

6.1 Contact map and annotated contact map

The contact map associated to V is a summary of the bindings found in the
species of V . Specifically, the contact map (CM) is a non-oriented graph where
the nodes are the pairs pA, xq P Aˆ S such that x P ΣpAq, and the edges are
the set of pairs ppA, xq, pB, yqq such that an instance of the site x in A can
be bound to an instance of the site y in B in a given chemical species in V .
Therefore, any pattern projects uniquely to the contact map. The contact
map for the example in the Section 2.3 is given in the Figure 10(a). As one
can see, in a contact map, a site can be connected to itself (which means that
an instance of the site can be bound to another instance of the same site).
Moreover, some sites in the contact map may be connected to several sites,
which implies a competition between two binding sites (but it does not occur
in our example).

We propose to annotate the contact map with an over-approximation of
the flow of information between the different regions of chemical species. The
main idea is to identify the correlations between the states of the sites, which
can be safely abstracted away, because they have no influence on the behavior
of the states of the other sites. This way, the so-obtained annotated contact
map (aCM) will be used as a symbolic description of the set of fragments
of chemical species, the concentrations of which will be the variables of our
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reduced system.

More formally, an annotated contact map (aCM) is given by a contact map
and a binary (oriented) relation over the nodes. The relation can relate two
pairs pA, xq and pB, yq only if A “ B and x ‰ y or if there is an edge between
pA, xq and pB, yq in the contact map. In such cases, we say that there is an
arc in the aCM from the site x of A to the site y of B.

Example 6.1 An aCM for the example in the Section 2.3 is given in the
Figure 10(b). This aCM should be read in the following way. In a receptor,
the state of site a may influence all the state of other sites, the state of site b
may influence the behavior of the state of sites c and d. Moreover, information
may flow across bonds: in dimers, the state of sites a and b of a receptor can
control the behavior of the state of sites b, c, and d of the other receptor.

In the Section 6.2, we define the set of fragments that is denoted by an
aCM and in the Section 6.3, we give the constraints that should be satisfied
by the aCM, so that it soundly summarizes the flow of information. In the
Section 6.4, we define the reduced model associated to the set of fragments of
a sound aCM.

6.2 Fragments

Fragments are well chosen pattern components, which can be derived from an
aCM.

Let us consider an aCM. Given a pattern, we call a site instance in the
pattern E a triple pA, l, xq P A ˆ L ˆ S such that there exists an agent A
with identifier l which documents the state of the site x P ΣpAq. A path in a
pattern E is a finite sequence of site instances p :“ pAi, li, xiq1ďiďn such that
(i) for any i between 1 and n ´ 2, pAi, li, xiq ‰ pAi`2, li`2, xi`2q; and (ii) for
any i between 1 and n ´ 1, either pAi, liq “ pAi`1, li`1q and xi ‰ xi`1, or the
instances of the site pAi, li, xiq and pAi`1, li`1, xi`1q are bound together in the
pattern E. In such a case, n is called the length of the path p, and for any
i between 1 and n ´ 1, ppAi, li, xiq, pAi`1, li`1, si`1qq is called an arc in p. A
path p in a pattern E is compatible with the aCM, if and only if, for any arc
ppA, l, xq, pA1, l1, x1qq in p, there is an arc in the aCM from the site x of the
agent A, to the site x1 of the agent A1.

As stated by the two following Lemmas, compatible paths can be composed
and the image of a compatible path by an embedding is a compatible path.

Lemma 6.2 (Path composition) If there exist two paths p1 and p2 in E,
both compatible with the aCM and, respectively from a site instance pA, l, sq
to a site instance pA1, l1, s1q, and from the site instance pA1, l1, s1q and a site
instance pA”, l”, s”q, then there exists a path in E, compatible with the aCM,
from the site instance pA, l, sq to the site instance pA”, l”, s”q.
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Fig. 11. Some annotated pattern components. Are they fragments ?

Proof. We prove the Lemma 6.2 by induction over the length of p1. Let us
write p1 “ pAi, li, siq1ďiďn and p2 “ pA

1
i, l
1
i, s

1
iq1ďiďn1 . If n “ 0 or n1 “ 0, then p1

or p2 is a path in E compatible with the aCM from the site instance pA, l, sq
to the site instance pA”, l”, s”q; else if pAn´1, ln´1, sn´1q ‰ pA12, l

1
2, s

1
2q, then

pA1, l1, s1q, . . . , pAn, ln, snq, pA
1
2, l

1
2, s

1
2q, . . . , pA

1
n1 , l1n1 , s1n1q is a path in E, com-

patible with the aCM; otherwise we apply the induction hypothesis with the
paths pAi, li, siq1ďiăn and pA1i, l

1
i, s

1
iq1ăiďn1 . l

Lemma 6.3 (path image) Let φ be an embedding between two patterns E
and E 1 and pAi, li, siq1ďiďn be a path in E, compatible with the aCM. Then
pAi, φpliq, siq1ďiďn is a path in E 1 which is compatible with the aCM.

Now we define two sets of pattern components. A prefragment is a pattern
component E such that there is a site instance pA, l, xq in E, such that, for
any site instance pA1, l1, x1q there is a path in E, compatible with the aCM,
from pA1, l1, x1q to pA, l, xq. In such a case, the site instance pA, l, xq is called
a target of the prefragment E. A fragment is a prefragment which is maximal
for the embedding ordering: a prefragment F is a fragment whenever for any
prefragment F 1 such that there exists an embedding between F and F 1, we
have F “ F 1.

Example 6.4 We consider the aCM which is given in the Figure 10(b) and
the pattern components which are given in the Figure 11. Among these pattern
components, only F1, F2, F4, F5, F6, and F7 are prefragments. Yet, we can
notice that F1 can be embedded into F2; F4 and F6 can be embedded into F7.
Thus neither F1, nor F4, nor F6 is a fragment. On the other side, both F2 and
F7 are fragments, since the only way to refine them is to add a site c , but in
such a case, the result is not a prefragment anymore.
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Given a pattern E and a state ρ over V , we define the concentration rEsρ
of the pattern E in the state ρ, as:

rEsρ “
ÿ

vPV

cardptφ | φ is an embedding between E and vuq

sympEq
ρpvq.

We often write rEs instead of rEsρ.

We define the set of abstract variables as the set of fragments of chemical
species modulo isomorphisms. Formally, V7 is a set of fragments, such that
(i) for each fragments F in V7, there exists v P V such that F embeds in v,
and (ii) for any pair pF1, F2q of fragments in V7, if F1 embeds into F2 then
F1 “ F2. Since V is a finite set, V7 is finite as well. The set of concrete states
V Ñ R over V and the set of (abstract) states V7 Ñ R over V7 are related
via the abstraction function φ which is defined as φpρqpv7q “ rv7sρ. The
(pre)fragments and the abstraction function φ enjoy the following properties.

Proposition 6.5 (orthogonal decomposition.) Let F be a prefragment.
The concentration of a prefragment F can be expressed as a linear combination
with positive coefficients of the concentration of some fragments.

Proof. Let us define the corrected concentration prEsqρ of a pattern E as
rEsρ ˆ sympEq, and prove the following equivalent property: prEsq can be
expressed as a linear combination with positive coefficients of the corrected
concentration of prFisq of some fragments.

The proof works iteratively. At each step, a prefragment E 1 will be replaced
with a multi-set of more refined prefragments, while preserving the overall
corrected concentration, until we obtain a multi-set of fragments. If E 1 does
not embed into a species in V , we remove it. Otherwise E 1 has to be refined.

A pattern can be refined into a multi-set of patterns while preserving the
overall correcting concentration, by using the following rewrite steps. We can
refine the internal state of a site which misses one with any internal state in I,
or refine a binding state ‘?’ or ‘´’ with either the symbol ‘ε’ and any potential
binding type (according to the CM). Moreover, a fresh site can be added in the
interface of an existing agent. Lastly, if E 1 constains a site instance annotated
with a binding type, one could replace it with a bond to an existing site (if its
binding state allows it), to fresh site in existing agents, or to a site in a fresh
agent.

We are left to show that, whenever a prefragment E 1 is not a fragment,
then there always exists a rewrite step which replaces E 1 into a multi-set of
prefragments. Only the steps which add a fresh site instance raise an issue.
Thus, let us assume that no other rewrite step can apply. We consider an
embedding φ between E 1 and a fragment F . We assume that there exists a
target pA, l, xq in F , which has no antecedent by φ. Let us consider pA1, l1, x1q a
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target in E 1. Then we can consider a path in F compatible with the aCM from
the site instance pA1, φpl1q, x1q to the site instance pA, l, xq. The first site in this
path which has no antecedent by φ can be aded to E 1 and, by construction,
it is a target of the result. Otherwise, there exists a site instance pA, l, xq in
E 1 such that pA, l, xq is a target in E 1 and pA, φplq, xq a target in F and there
exists a path in F compatible with the aCM from the site pA, φplq, xq and a
site having no antecedent by φ. The first site having no antecedent can be
added to E 1, and pA, l, xq is still a target of the result.

Thus we have a rewriting strategies, where all intermediar steps are multi-
set of prefragments. The set of prefragments which can be embedded into
chemical species in V is finite (since V is finite), which ensures the termination
of our iteration. l

Proposition 6.6 (divergence preservation) We have: pV Ñ Rq
φ
(

pV7 Ñ Rq.

Proof. By construction, φ is a linear function which maps any state over V
to a state over V7. Let us prove that φ preserves the divergence of sequences.
Let us consider a sequence pρnqnPN of states over V such that the sequence
p||ρn||qnPN diverges. Since V is a finite set, there exists a variable v P V such
that the sequence pρnpvqqnPN diverges toward `8 (by definition, in a state
ρ, ρpvq ě 0). Let us take an instance pA, l, xq of a site in v, we define ι as
its internal state and λ as ‘ε’ if the site is free, or as its binding type B@y
otherwise. The pattern E :“ A1(xλι ) is a prefragment. In given a mixture, the
number of embeddings of E is greater than the number of embeddings of v.
Moreover, by the Proposition 6.5, the number of embeddings of E in a mixture
E 1 can be expressed as a linear combination with positive coefficients of the
number of embeddings of some fragments F1, . . . , Fk in E 1. As a consequence,
for at least one of the fragments, let us say Fj, the sequence pρnpFjqnPN diverges
as well. Thus the sequence p||φpρnq||

7qnPN diverges as well. l

6.3 Flow analysis

In this section we define some criteria which ensure that the aCM is a sound
over-approximation of the information flow. So as to make the definitions
easier, we assume that the rules of our system have no side-effect, that is to
say that any site which may be modified by a rule has to be documented in
the lhs of the rule. More precisely, only the bonds that are written thanks to
a pair of site addresses can be released, and only the agents which document
the binding state of their sites with ‘ε’ or with a site address can be removed.
This is not a limitation of the framework, since any rule with side-effects
can be refined into a set of rules without side-effects without modifying the
differential semantics of the system [13].

27



Camporesi, Feret

Some specific rules induce no flow of information. We say that a rule is

trivial, if it is of the form A1

`

aB2@b
˘

, B2

`

bA1@a
˘ k
ÝÑ A1pa q , B2pbq. Thus a

trivial rule release a bond without testing any other information. We could
extend the class of trivial rules, but we do not do it for the sake of simplicity.

Definition 6.7 The aCM is valid with respect to a rule set R if it satisfies
the following constraints.

(i) direct flow: Any path in the lhs of a (non trivial) rule r to a site instance
which is modified by the rule r, is compatible with the aCM.

(ii) indirect flow: For any pattern component in the lhs of a non trivial rule
r, there exists a site instance pA, l, xq such that any path in the lhs of the
rule r to the site instance pA, l, xq is compatible with the aCM.

(iii) hidden flow: If a rule (trivial or not) can release a bond between two
site instances pA, l, xq and pA1, l1, x1q in a species v, and if there ex-
ist two paths pAi, li, xiq1ďiďn and pA1i, l

1
i, x

1
iq1ďiďn1 , compatible with the

aCM, in v respectively from pA, l, xq and pA1, l1, x1q to a common site in-
stance (ie such that pAn, ln, xnq “ pA1n1 , l1n1 , x1n1q, pA, l, xq “ pA1, l1, x1q,
and pA1, l1, x1q “ pA11, l

1
1, x

1
1q), then there is, in the aCM, either an arc

from the site x of the agent A to the site x1 of the agent A1, or an arc
from the site x1 of the agent A1 to the site x of the agent A.

Intuitively, direct flows describe the flow of information between the sites
that are tested (because they occur in the lhs of a rule), and the sites that
are modified. Indirect flows handle with the pattern components which are
not modified: the concentration of these patterns regulates the speed of rule
application. Moreover, whenever a fragment contains two site instances which
can potentially be bound together and there exists a rule which can release
this bound, then the behavior of the fragment is not the same if the two sites
are actually bound together, or not. This creates a hidden flow of information.
As a consequence, we have to describe explicitly in the fragment if the two
site instances are bound together, or not.

Example 6.8 The aCM in the Figure 10(b) is a valid aCM for the set of rules
in the Figure 7.

So as to derive the abstract dynamic function F7, we need to define the
notion of overlap between two patterns. Our definition should be universal so
that we can enumerate overlaps without over-counting them. At first glance,
an overlap between two patterns Z1 and Z2 could be defined by two patterns
X and Y and four embeddings ψ1, ψ2, γ1, γ2 where ψi is an embedding between
X and Zi, and γi an embedding between Zi and Y such that the following
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Fig. 12. Overlap.

diagram:

γ1 γ2

Y

X

ψ2ψ1

Z2Z1

commutes. Intuitively X denotes a common region (which can be empty), and
the existence of Y ensures that Z1 and Z2 are somehow compatible. Yet X
and Y can be less or more refined, and thus this construction is not universal.
Fortunately, whenever such a commutative square exists, it is always possible
to construct an universal square where the triple pX,ψ1, ψ2q is a pullback
and the triple pY, γ1, γ2q is an idem pushout [12] (See the Figure 12). Thus,
an overlap between two patterns F1 and F2 can be defined uniquely (up to
isomorphism) by a pullback pX,ψ1, ψ2q and an idem pushout pY, γ1, γ2q, and is
denoted by the tuple pZ1, Z2, X, Y, φ1, φ2, γ1, γ2q.We refer to [5, Section 4.B.3]
for more explanations, and complete definitions and proofs.

As formalized by the following lemma, whenever two fragments overlap on
a site instance which is a target of one of the two fragments, then, the glueing
of the two prefragments is also a prefragment.

Lemma 6.9 Let pF1, F2, X, Y, φ1, φ2, γ1, γ2q be an overlap between two pre-
fragments F1 and F2 and such that there is a site instance pA, l, xq in X such
that pA,ψ1plq, xq is a target of the prefragment F1, then Y is a prefragment as
well.

Proof. Let us prove that, for any target pA0, l0, x0q of the prefragment F2,
the site instance pA0, γ2pl0q, x0q is a target of Y . We consider a site instance
pA1, l1, x1q in Y . Indeed, since pY, γ1, γ2q is a pushout, the site instance
pA1, l1, x1q in Y is either the image of a site instance in F1 by γ1, or the
image of a site instance in F2 by γ2. (i) In the first case, let us introduce the
agent identifier l2 such that γ1pl2q “ l1 and pA1, l2, x1q is a site instance in F1.
By definition of a target, there exists a path in F1, compatible with the aCM,
from the site instance pA1, l2, x1q to the site instance pA,ψ1plq, xq. Then by
the Lemma 6.3, there exists a path in Y , compatible with the aCM, from the

29



Camporesi, Feret

site instance pA1, γ1pl2q, x1q to the site instance pA, γ1pψ1plqq, xq. Beside, since
pA0, l0, x0q is a target of F2, then there is a path in F2, compatible with the
aCM, from pA,ψ2plq, xq and pA0, l0, s0q. By the Lemma 6.3, we deduce that
there exists a path in Y , compatible with the aCM, from the site instance
p1, γ2pψ2plqq, xq and the site instance pA0, γ2pl0q, x0q. Since γ1pl2q “ l1 and
γ1 ˝ φ1 “ γ2 ˝ ψ2, we deduce from the Lemma 6.2, that there exists a path in
Y , compatible with the aCM, from the site instance pA1, l1, x1q and the site
instance pA0, γ2pl0q, x0q. (ii) In th second case, since pA0, l0, x0q is a target of
F2 then there exists a path in F2, compatible with the aCM, from the site
instance pA1, l2, x1q to the site instance pA0, l0, x0q. Thus, since γ2pl2q “ l1
and by the Lemma 6.3, there exists a path in X, compatible with the aCM,
from the site instance pA1, l1, x1q to the site instance pA0, γ2pl0q, x0q. l

The following proposition enables the computation of the activity of rules
as an expression of fragments.

Proposition 6.10 (prefragment.) Any pattern component which occurs in
the lhs of a non trivial rule is a prefragment.

Proof. The proposition 6.10 is a direct consequence of the definition of in-
direct flow. Let us consider a pattern component which occurs in a lhs of a
non trivial rule. By definition of the indirect flow, there exists a site instance
pA, l, xq such that for any path in the lhs of the rule r from a site instance to
pA, l, xq is compatible with the aCM. Thus, by definition, C is a prefragment
(since pA, l, xq is a target). l

A fragment cannot properly intersect a pattern component in the lhs of a
non trivial rule r on a site that is modified by r, as formalized as follows.

Proposition 6.11 (left overlap.) Let pF,C,X, Y, φ1, φ2, γ1, γ2q be an over-
lap between a fragment F and the pattern component C of the lhs of a non
trivial rule r. If there exists an site instance pA, l, xq in X such that the
site instance pA,ψ2plq, xq is modified by the rule r, then γ1 is an isomorphic
embedding (and thus Y is a fragment).

Proof. By the Proposition 6.10 C is a prefragment. Moreover any site in-
stance which is modified in C by the rule r is a target. Thus, if X contains
a site modified by the rule, then it contains a target of C. Thus, by Lemma
6.9, Y is a prefragment. Thus γ1 is an embedding between the fragment F
and the prefragment Y . So by definition of fragments, F “ Y . l

Thus we can express the consumption of fragments. Conversely, the fol-
lowing proposition enables the computation of the production of fragments.

Proposition 6.12 (right overlap.) Let r :“ E`
k
ÝÑ Er be a rule, and F be a

fragment. Let pF,Er, X, Y, φ1, φ2, γ1, γ2q be an overlap between F and Er. We
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assume that there is a site instance pA, l, xq in X such that the site instance
pA,ψ2plq, xq has been modified by the rule r. We can always assume that γ2 is

a clean embedding. Thus, we can consider r1 :“ E 1`
k1

ÝÑ Y , the right refinement
of r by the embedding γ2. Then if E` and E 1` have the same number of pattern
components, then any pattern component in E 1` is a prefragment.

Proof. [sketch] We take the notations of the theorem and assume that E` and
E 1` have the same number of pattern components. We consider the antecedent
F 1 of F before the application of the rule. F 1 may be not connected, but any
pattern component in F 1 intersects a pattern component in the E` on a site
that is modified by the rule. Moreover, a pattern component in F 1 intersects
at most one pattern component in E`, otherwise E` and E 1` would not have
the same number of pattern components. Moreover, for any bond occuring in
a cycle in F without occuring in F 1, the two sites of the bonds occurs in the
same pattern component of E`, and thus, there is a path, compatible with the
aCM, from one site of the bond to the other (and conversely) in F 1. Lastly, if
when removing a bond in a prefragment, we obtain two pattern components,
then both are fragments (at least one of the two pattern components contains
the target of the initial prefragment, while one of the freed site is a target
of the other pattern component). Thus, each pattern component in E 1` is
obtained by gluing a prefragment on a pattern component in E` on a site that
is modified, thus, by Proposition 6.3 and 6.2, each pattern component in E 1`
is a prefragment. l

Proposition 6.13 If a fragment F contains two site instances pA, l, xq and
pA1, l1, x1q with the respective binding states A1@x’ and A@x, then no rule can
release a bond between the site x of an agent A and the site x1 of an agent A1.

Proof. Let is consider a fragment F which contains two site instances pA, l, xq
and pA1, l1, x1q with the respective binding states A1@x’ and A@x , we consider
a target pA2, l2, x2q of the fragment F . By definition of a target, there is a path
from the site instance pA, l, xq (resp. pA1, l1, x1q) to the site instance pA2, l2, x2q,
thus there is a hidden flow of information, and there is an arc in the aCM either
from the site x of A to the site x1 of A1, or an arc in the aCM either from
the site x1 of A1 to the site x of A. In both case, one binding type can be
refined into the address of a fresh or existing site. Thus we can construct a
prefragment F 1 such that F strictly embeds into F 1, which contradicts the
fact that F is a fragment. l

6.4 Reduced system

Following the Theorem 6.1 in [5], since the set of prefragments and the set of
fragments satisfies the Propositions 6.5, 6.6, 6.10, 6.11, 6.12, and 6.13, we can
derive the abstract dynamic function F7 incrementally, by scanning the set of

31



Camporesi, Feret

embeddings between the pattern components in the lhs of rules and fragments
(for the consumption of fragments) and the set of overlaps between the rhs of
rules and fragments (for the production of fragments).

Let r be a rule. We distinguish between two cases, when expressing the
contribution of r in F7.
‚ Trivial rules. If r is a trivial rule A1

`

aB1@b
˘

, B1

`

bA1@a
˘ k
ÝÑ A1pa q , B1pbq,

such that there is no arc in the aCM either from the site a of the agent A
to site site b of the agent B, or from the site b of the agent B to the agent a
of the agent A. Then, for each embedding between either A1

`

aB@b
˘

and F ,
or B1

`

bA@a
˘

and F , the contribution of the consumption of F , in the rule
r, via the embedding φ is defined as:

F7pρ7qpF q ´“
k¨ρ7pF q

sympE`qsympF q
.

Whenever A “ B and a “ b, the contribution should be counted twice.
For each embedding φ between either A1pa q and F , or B1pbq and F , the

contribution of the production of F , in the rule r, via the embedding φ is
defined as:

F7pρ7qpF q `“
k¨ρ7pFψq

sympE`qsympFψq
.

where Fψ is obtained by replacing with the symbol ‘ε’, the binding state
of the site instance pA, φp1q, aq whenever φ is an embedding between A1pa q
and F , or the binding state of the site instance pB, φp1q, bq otherwise.

‚ Non trivial rules. We decompose the lhs of r as a tuple a non-empty pattern
components pCiq1ďiďn. Then for any p between 1 and n, and any embedding
φ between Cp and a fragment F , the consumption of F , in the rule r, via
the embedding φ is defined as:

F7pρ7qpF q1 ´“
k¨ρ7pF q

sympE`qsympF q

ź

i‰p
rCis.

Moreover, for any overlap pF,Er, X, Y, φ1, φ2, γ1, γ2q between a fragment
F and the rhs of the rule r, if the number of pattern components in the lhs
of the left refinement of r by the embedding γ2 is the same as the number
of pattern components in the lhs of r, then the production of F , in the rule
r, via the overlap pF,Er, X, Y, φ1, φ2, γ1, γ2q is defined as:

F7pρ7qpF q `“
k

sympE`qsympF q

ź

i
rC 1is.

Otherwise the overlap has no contribution.
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Theorem 6.14 If V7 is the set of fragments which is denoted by a valid aCM,
then, the following diagram:

φ φ

F

F7
is a model reduction.

Proof. The proof that is given in the Section 6 of [5] applies, providing the
fact that we replace the word ‘subfragment’ with the word prefragment. l

6.5 Combining fragments and symmetries

Now we wonder when we can use the potential symmetries among sites, so
as to reduce further the number of fragments. Thanks to the framework
that we have proposed in the Section 3.5, we propose to quotient the set of
chemical species in V and the set of fragments V7 by some equivalence relations
which identify chemical species and fragments upto permutation of symmetric
sites. Yet, this can only be done if we can provide two idempotent functions
r : V Ñ V and r7 : V7 Ñ V7, mapping respectively each species and each
fragment to a representative, and such that the following diagram:

φ φ

Pr

Pr7
commutes.

Given two symmetric sites x and y in an agent A, we consider two cases. If
there is an arc in the aCM from the site x in A, to the site y in A, then there
is also an arc from the site y in A to the site x in A in the aCM. Thus, in a
fragment, whenever an agent A documents the site x, the site y is documented
as well (and conversely). In such a case, it is always possible [2] to choose the
functions r and r7 which abstract away the difference between the site x and
the site y in agents A, so that the diagram commutes. Otherwise, there is no
way to define the mappings r and r7 such that the diagram commutes, but,
since no agents A in a fragment documents both x and y, there is no need to
abstract the difference between these two sites.

7 Conclusion

We have proposed a formal framework for reducing the differential semantics
of rule-based models. This framework combines two abstractions: we use the
flow of information to detect useless correlations and the pairs of site having
the same capabilities of interaction to abstract away any distinction between
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these sites. The initial semantics and the reduced one are formally related by
Abstract Interpretation.

In future works, we will implement this framework within the OpenKappa
platform (downloadable at kappalanguage.org). Then, we will address the
combinaison of the reductions based on the detection of useless correlations
(as in this framework), and the ones based on the detection of invariants (as
in [9,8]). On the theorical side, we are looking for a semantics definition of
the flow of information (based on the set of ground reactions induced by a
rule-based model), both for the stochastic semantics and for the differential
one. Then we will describe the abstractions of the flow of information which
is used in this paper and in [7,5,10,9,8] as a hierarchy of abstractions of this
semantics definition of the flow of information.
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