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Résumé
Le chiffrement fonctionnel est une technique émergente en cryptographie dans laquelle une
autorité toute puissante est capable de distribuer des clés permettant d’effectuer des calculs
sur des données chiffrées de manière contrôlée. La mode dans ce domaine est de construire
des schémas qui sont aussi expressifs que possible, c’est-à-dire du chiffrement fonctionnel qui
permet l’évaluation de n’importe quel circuit. Ces contributions délaissent souvent l’efficacité
ainsi que la sécurité. Elles reposent sur des hypothèses fortes, très peu étudiées, et aucune
construction n’est proche d’être pratique.
Le but de cette thèse est d’attaquer ce défi sous un autre angle: nous essayons de construire
des schémas de chiffrement fonctionnel les plus expressifs que nous le pouvons en se basant
sur des hypothèses classiques, tout en conservant la simplicité et l’efficacité des constructions.
C’est pourquoi nous introduisons la notion de chiffrement fonctionnel pour l’évaluation de
produits scalaires, où les messages sont des vecteurs #”x , et l’autorité peut transmettre des
clés correspondants à des vecteurs #”y qui permettent l’évaluation du produit scalaire 〈 #”x , #”y 〉.
Cette fonctionnalité possède immédiatement des applications directes, et peut aussi être
utilisée dans d’autres constructions plus théoriques, le produit scalaire étant une opération
couramment utilisée.
Enfin, nous présentons deux structures génériques pour construire des schémas de chiffrement
fonctionnels pour le produit scalaire, ainsi que des instanciations concrètes dont la sécurité
repose sur des hypothèses classiques, telles que DDH, DCR, et LWE. Nous comparons aussi
les avantages et inconvénients de chacune d’entre elles.
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Abstract
Functional encryption is an emerging framework in which a master authority can distribute
keys that allow some computation over encrypted data in a controlled manner. The trend
on this topic is to try to build schemes that are as expressive as possible, i.e., functional
encryption that supports any circuit evaluation. These results are at the cost of efficiency
and security. They rely on recent, not very well studied assumptions, and no construction is
close to being practical.
The goal of this thesis is to tackle this challenge from a different angle: we try to build the
most expressive functional encryption scheme we can get from standard assumptions, while
keeping the constructions simple and efficient.
To this end, we introduce the notion of functional encryption for inner-product evaluations,
where plaintexts are vectors #”x , and the trusted authority delivers keys for vectors #”y that
allow the evaluation of the inner-product 〈 #”x , #”y 〉. This functionality already offers some
direct applications, and it can also be used for theoretical constructions, as inner-product is
a widely used operation.
Finally, we present two generic frameworks to construct inner-product functional encryption
schemes, as well as some concrete instantiations whose security relies on standard assumptions
such as DDH, DCR, and LWE. We also compare their pros and cons.
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Chapter 1
Introduction

“All warfare is based on deception.”

— Sun Tzu, The Art of War

Throughout history, many generals have noticed that information was the key to victory:
whoever knows the most about the enemy often triumphs in battle. To this end, the use of
spies was capital. However, what use is a spy of, if his information can be intercepted or,
even worse, faked? This is the reason why cryptography was first invented: to protect – with
secure encryption – to authenticate – with signatures – and to hide – with steganography
techniques – the information obtained by a spy behind the enemy lines so that it can be
safely used as a weapon.
At this time, the use of symmetric cryptography was enough, because the spy could agree
with his master upon a key before his departure. It was not until the advances of technology
with the development of the Internet that public key cryptography was needed.

“With great power comes great responsibility.”

— Uncle Ben, Spider-Man

On the Internet, anyone is able to contact everybody. However, anybody can pretend to
be anyone, and can read everything. It is really hard to protect users’ privacy if this ability is
not used with caution. Unlike the previous example of the spy, it is not possible for a search
engine or an online encyclopedia for example to meet physically with all of its users, and
agree about a key with each of them, and remember all the keys. This is where public key
cryptography comes into play. For example, the use of a key exchange [DH76] allows the
user and the server to share a secret key, which allows them to rely on previously known
techniques. However, this has a flaw: how can the user know that he communicated with the
server he wanted to speak to, and not to another user trying to trick him? This explains the
need of public-key encryption and digital signatures [RSA78], and authenticated variants of
those primitives.
Another aspect of the Internet, is that the technical knowledge can be shared amongst
everybody, and it is very hard to restrict its spread. So security has to hold even if the
eventual attackers know the algorithm used to encrypt or sign messages.
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2 Chapter 1 Introduction

“Power! Unlimited power!”

— Palpatine, Star Wars

With the emergence of cloud computing, the Internet is now a place where everybody puts
all data online, and have servers do the work instead of their own computers. This sounds
like a dream world, where everybody would have equally easy access to a lot of computing
power when they need it. However, on this gigantic web, it is very hard to trust anybody
with your private information. Thus, this dream seems to be unreachable: since encryption
shouldn’t reveal anything about the message they contain, how could someone use those
data to provide you with a service? In the recent years, this challenge hasn’t remained
untouched. There have been many proposals that aim at bringing this dream closer to reality.
For example, secure multi-party computation [Yao82; Yao86; Yun84; GMW87] would allow
different users to compute together some function of their data, while only learning the
output of said function. Another approach is fully homomorphic encryption [Gen09; BV11b;
GSW13; AP14], which would allow anybody to perform some computation on one user’s
encrypted data, which could then be decrypted by that user in order to reveal the result of
the computation. The last example we give, but not the least, is the paradigm of functional
encryption [BSW11; GVW12; BO13; AGVW13; BF13; GGH+13].
It all started with identity-based encryption [BF01; BB04; Wat09; ABB10a; ABB10b], an
encryption scheme which allows all users to use the same public key, and have each a secret
key associated to their identity. One can encrypt using the public key and an identity,
and only the user with this identity can recover the message. Even if multiple adversaries
possessing different secret keys collude, they cannot recover anything at all. Then started the
generalization process. Identity-based encryption was generalized with fuzzy identity-based
encryption [SW05; ABV+12], where it is possible to encrypt a message for an identity, and
decryption is possible for users whose identity is almost the same. This allows constructions
of scheme where the sender can chose a set of recipients to its message, as in broadcast
encryption [FN94]. Then attribute-based encryption [GPSW06; OSW07; GJPS08; LOS+10;
Wat11; GVW13; BV16] was developped as a generalization of fuzzy identity-based encryption,
where the choice of recipients can be given by any predicate. The next step was to hide the
actual set of recipient, by hiding the identities, or attributes, used to encrypt the message, in
what we call predicate encryption [KSW08; KY09; OT09; GMW15; GVW15]. The problem
with all these definition is that the decryption is always all-or-nothing. A secret key either
recovers completely the message or learns nothing at all.
Hence the generalization to functional encryption. In this encryption scheme, it is possible to
derive secret keys for different functions, that allow for computation over the message. Then,
with a secret key associated with a function, and a ciphertext, it is only possible to recover the
result of this function on the encrypted message. Thus, it allows for computation on encrypted
data, and to recover the result in clear. Achieving functional encryption for any computation
would make our dream world come true. Some constructions have been proposed, but they
are relying on existence of really complex primitives like indistinguishability obfuscation or
multilinear maps. These construction are also extremely inefficient to the point where even a
proof of concept seems to be infeasible for the moment.
This is why this thesis will be focusing on designing efficient schemes for the special case
of inner-product functional encryption [ABDP15b], one of the smallest and yet powerful
example of functional encryption that is non-trivial (at least superpolynomial set of possible
functions) and that is not all-or-nothing – it allows partial computation on the data.
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Functional Encryption for Inner-Product Evaluations. In an inner-product func-
tional encryption scheme (IPFE), the messages are vectors, and it is possible to generate
keys for vectors y such that given an encryption of x, the secret key only reveals the partial
information 〈x,y〉 about the vector x. At first glance, this functionality might seem like a
step back, from the previous definitions and constructions of identity-based encryption and
attribute-based encryption. Indeed, inner-product functional encryption cannot be used to
construct those kind of cryptosystems. However, neither can identity-based encryption nor
attribute-based encryption be used to build IPFE. So this notion is completely separated
from previous work, in that its expressivity is somewhat diminished, but the fact that it
provides partial information and not all-or-nothing looks interesting. And in fact, IPFE
directly finds many natural applications, in theory as well as in practice.
First, it can be used directly to compute hamming distances between two words, and more
generally, the inner-product is already a distance for vectors of fixed norm. So this could
find some application for example in biometric identification. IPFE could also be used in
machine learning, where support vector machine evaluation can be just an inner-product
between a test vector and the data. In this case, a secret key could allow classifying the data
with regard to one criterion, and learn nothing about the rest of it. It also allows to make
statistical analysis, like weighted means, or by encrypting the cross-products between the
entries, it can even be used for variance computations or other degree 2 polynomial in the
input.
Theoretically, the inner-product functionality is interesting because it allows for all computa-
tion in NC0 by encrypting the powers of x, and using polynomial representation. Moreover,
as stated in [ALS16] and refined in [AR17], it can be used to construct bounded collusion
resistant functional encryption for any function. Note that this line of work has the upside of
building functional encryption with succint ciphertexts, which was not reached by previous
approaches. Another line of work [LV16; Lin16a; Lin16b; LT17; AS17] shows that a slightly
more expressive functional encryption scheme can be used to construct indistinguishability
obfuscation and functional encryption for all functions. It has also been used to construct
efficient public trace and revoke schemes [ABP+17].
All these reasons made the line of work very interesting and a lot of improvements have

been made to the first proposal. For example, hiding the vector y in the secret key [BJK15;
DDM16; TAO16], using multiple vectors xi to be concatenated as input [AGRW17] (we note
that those parts of vectors could be encrypted separately), or using pairings to compute
bilinear functions without having to increase the size of the vectors [BCFG17].

1.1 Personal Contributions

The detailed list of my personal publications with full names, authors, and conferences is
given at the end of the introduction. Here we briefly describe the goal of each of these papers,
as well as the results they achieve.

1.1.1 Contributions in this Thesis

[ABDP15b] In this paper, we introduce the notion of inner-product functional encryption.
We give the first very simple construction from the DDH assumption, and develop a
framework to generically construct IPFE schemes from public key encryption schemes.
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We also include a lattice-based instantiation whose security relies on the LWE assump-
tion. The details for the security proof of the lattice-based scheme can be found in the
full version [ABDP15a]. All of the constructions of this paper reach selective security
against chosen-plaintext attacks.

[ABCP16] In this paper, we refine the security of our previous construction in order to get
security against adaptive adversaries. We also include a new instantiation based on the
DCR assumption. As an added contribution, we also show the equivalence between non-
adaptive simulation-based security and adaptive indistinguishability. This paper wasn’t
published in any conference because the independent concurrent work [ALS16] was
accepted before, and therefore our paper was of little interest (the contributions left are
the genericity of our framework, and the comparison between simulation-based security
and indistinguishability). [ALS16] achieves slightly better parameters under the same
assumptions and also presents a construction of functional encryption for any circuits
secure against bounded collusions from their IPFE constructions by transforming their
non-modular IPFE schemes into stateful modular IPFE schemes. This second result
can be used together with our framework for building IPFE schemes.

[BBL17] In this paper, we further refine our construction to reach security against chosen-
ciphertext attacks. In order to do so, we rely on another building block: projective
hash functions. The downside of this technique is that it gives up on the lattice-based
concrete constructions, but we are able to show CCA security of our scheme based
on the plain DDH assumption, without the use of pairings, as well as a generalization
to any MDDH assumption. We also give another instantiation based on the DCR
assumption to avoid the problem of efficiency for the decryption.

1.1.2 Other Contributions

[BPMW16] In this paper, we look at the circuit privacy property for fully homomorphic
encryption (FHE). This property states that computing over encrypting data using an
FHE scheme shouldn’t reveal anything about the computation that has been performed
but the result. In this paper we show a new technique of noise analysis for lattice-based
fully homomorphic encryption schemes (we show the result for one particular scheme,
but we believe the same analysis could be valuable in many other instances) in order to
reach this property basically for free, adding just a really small noise to the output of the
computation. Our result also applies to somewhat homomorphic encryption schemes,
as it removes the necessity of bootstrapping (read: homomorphically evaluating the
decryption circuit on an encryption of the secret key) the ciphertext in order to have
circuit privacy.

1.2 Organization of this Thesis

In Chapter 2, we first define the notations that will be used throughout the thesis, and recall
preliminaries that will be necessary for proving the security of our constructions.
In Chapter 3, we formally define the notion of inner-product functional encryption and its
security model. We also show alternative models of security and compare them. We also show
a way to reach function hiding almost for free against bounded collusions of adversaries via
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partial function hiding inner-product functional encryption, which we think is an interesting
security notion in itself.
In Chapter 4, we combine the results of [ABDP15b; ABCP16] that generically builds inner-
product functional encryption from public key encryption with additional properties that are
defined in that chapter.
In Chapter 5, we present the construction of [BBL17] which uses projective hash functions in
order to generically build IPFE schemes secure against chosen-ciphertext attacks.
We then proceed to present concrete instantiations of our generic constructions based on
standard assumptions in Chapters 6, 7, and 8, where we show constructions from the decisional
Diffie-Hellman assumption, the decisional composite residuosity assumption, and the learning
with errors assumptions. Each of these constructions have their upsides and their downsides
that are discussed.
Finally, we conclude in Chapter 9 with a brief summary of what we achieved and open
questions that remain to be answered after this work.

Personal Publications
[ABCP16] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better

Security for Functional Encryption for Inner Product Evaluations. Cryptology
ePrint Archive, Report 2016/011. http://eprint.iacr.org/2016/011. 2016
(cit. on pp. 4, 5, 17, 41, 107).

[ABDP15a] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
Functional Encryption Schemes for Inner Products. Cryptology ePrint Archive,
Report 2015/017. http://eprint.iacr.org/2015/017. 2015 (cit. on pp. 4,
107).

[ABDP15b] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
“Simple Functional Encryption Schemes for Inner Products”. In: PKC 2015.
Ed. by Jonathan Katz. Vol. 9020. LNCS. Springer, Heidelberg, Mar. 2015,
pp. 733–751. doi: 10.1007/978-3-662-46447-2_33 (cit. on pp. 2, 3, 5, 17, 41,
85, 107).

[BBL17] Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. “CCA-Secure Inner-
Product Functional Encryption from Projective Hash Functions”. In: PKC 2017,
Part II. Ed. by Serge Fehr. Vol. 10175. LNCS. Springer, Heidelberg, Mar. 2017,
pp. 36–66 (cit. on pp. 4, 5, 17, 63, 85, 97).

[BPMW16] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. “FHE
Circuit Privacy Almost for Free”. In: CRYPTO 2016, Part II. Ed. by Matthew
Robshaw and Jonathan Katz. Vol. 9815. LNCS. Springer, Heidelberg, Aug.
2016, pp. 62–89. doi: 10.1007/978-3-662-53008-5_3 (cit. on p. 4).

http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2015/017
http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://dx.doi.org/10.1007/978-3-662-53008-5_3
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Chapter 2
Preliminaries
In this chapter we present the notations that will be used throughout the thesis. Then, we
recall some standard definitions adapted to our notations, and we recall some known results
or lemmas that will be used in our proofs. The definitions of Section 2.2.1 will be used in
Section 3.3.2 in order to transform tag-based schemes into standard tagless schemes. The
definitions of Section 2.2.2 will be the basic building blocks for our first generic construction,
in Chapter 4. Additional properties will be required and defined in that chapter. The
definitions of Section 2.3 will be the basic building blocks for our second generic construction,
in Chapter 5. Once again, additional properties will be defined in that chapter. Section 2.4.1
recalls some definitions and lemmas that will be useful for our concrete instantiations of
Chapter 7, while Section 2.4.2 recalls definitions and lemmas that will be useful for the
instantiations of Chapter 8.
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— 7 —



8 Chapter 2 Preliminaries

2.1 Notation and Preliminaries

2.1.1 Mathematical Notions

Integers, Sets. We denote by N the set of natural numbers, by Z the set of integers, and
by R the set of real numbers. The curly brackets {} denotes a set, and : is used as an
abreviation for “such that”. If n ∈ N, then [n] denotes the set {1, . . . , n} of positive integers
up to n, spf(n) denotes its smallest prime factor. The size of an integer logn is the number
of bits used to represent it, where log will be used to denote the base-2 logarithm. The
logarithm in natural base will be denoted ln. {0, 1}n denotes the set of n-bit strings, and
if x is a string then |x| denotes its length. More generally, if S is a set, then Sn is the set
of n-tuples of elements of S and |S| denotes the cardinality of S. We denote by U(S) the
uniform distribution on S, and we use the notation x $← S to say that x is sampled uniformly
at random from S. For any operation ◦ (e.g., + or ·), we extend it to sets in the following
way: if t is an element and S is a set, t ◦ S = {t ◦ s : s ∈ S}.
Vectors and Matrices. Let R be a commutative ring. We denote the set of d-dimensional
column vectors over R by Rd, the set of d-dimensional row vectors by R1×d, and the set of
`× d matrices by R`×d. Unless explicitly said otherwise, each vector is a column vector. We
denote vectors by using either boldface lower-case letters or lower-case letters with an arrow
over it as in b and #”

b . We denote matrices by using boldface upper-case letters like in A. We
have two possible notations for vectors, as we sometimes need to consider vectors of vectors
( #”

b ) and vectors of matrices ( #”

A). We denote the concatenation of two vectors a and b by
(a, b). The transpose of a matrix is denoted Aᵀ, and the inner-product between two vectors
by 〈·, ·〉. The ith coefficient of a vector b or #”

b is denoted by bi, while the ith coefficient of a
vector of vectors #”

b is a vector and is denoted by bi. The jth coefficient of this latter vector
is bi,j . The same convention is used with coefficients of matrices and coefficients of vectors of
matrices. Unless otherwise stated, the norm ‖ · ‖ considered in this paper is the `2 norm.

Abelian Groups. We extensively use Abelian groups, especially when dealing with projective
hash functions. In particular, in our concrete instantiations of PHFs in Chapters 6 and 7,
we use prime-order cyclic groups over an elliptic curve or subgroups of the (multiplicative)
group Z∗N , for some positive integer N . We denote the elements of such groups by using the
Fraktur script like in g or b. By extension, even in our generic constructions and definitions
in Chapter 5, we also use this font to indicate values which, in our concrete instantiations, are
group elements in such group G or vectors of such elements. However, we are also considering
other Abelian groups (e.g., the group K of hashing keys of a key-homomorphic PHF in
Definition 5.2.1) that are not related to cryptographic assumptions and for which group
elements are not denoted using the Fraktur script.
Except if explicitly stated otherwise, we use additive notation for all our Abelian groups,

even when this is not usual (as in the case of subgroups of Z∗N ).
Let G be an Abelian group. We recall that if g is a group element of order M , then

we have a canonical monomorphism w ∈ ZM 7→ w · g ∈ G. If G is a multiplicative group,
this monomorphism corresponds to exponentiation. Hence, we denote the inverse of this
monomorphism by logg. That is, if b = w · g, then logg b = w.

Furthermore, let R be R = Z or R = ZM with M being such that the order of any group
element in G divides M . Then G can be seen as a R-module. This means that for any w ∈ R
and g ∈ G, w · g is well defined. Importantly, by using additive notation, we can use the
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standard “matrix-vector” notation without prior explanation.
Asymptotic Behaviors. For two sequences of real numbers f = (fn)n∈N, g = (gn)n∈N we
use the following notations:

• f = O(g) if ∃M > 0, n0 ∈ N such that ∀n > n0, |fn| ≤M |gn|;

• f = o(g) if ∀ε > 0, ∃n0 ∈ N such that ∀n > n0, |fn| ≤ ε|gn|;

• f = Ω(g) if g = O(f);

• f = ω(g) if g = o(f).

We also often abuse the notation by writing directly an expression, for example f = O(n2)
instead of f = O(n 7→ n2), or using those notations as functions, for example we write
f = nω(1) if there exists a sequence g such that f = ng and g = ω(1). We say that a function
is polynomial in n if it is O(nc) for some constant c. We say that it is superpolynomial if it
is nω(1). We say that it is constant if it is O(1).

Probability. If X is a probability distribution, we will write v $← X when v is sampled from
the distribution X. Given two distributions X,Y over a finite or countable domain D, their
statistical distance is defined as

∆(X,Y ) = 1
2
∑
v∈D
|X(v)− Y (v)|. (2.1)

When defining a probability distribution, we use the symbol ∝ to denote proportionality, the
distribution can then be obtained by taking into account the normalizing factor.

We will often implicitly use the following lemmas.

Lemma 2.1.1. Let S1 and S2 be two finite sets. If S1 ⊆ S2, we have ∆(U(S1), U(S2)) =
1 − |S1|/|S2|. In particular, if |S2| = (1 + 1/t) · |S1| for some positive integer t, then
∆(U(S1), U(S2)) = 1/(t+ 1).

Proof. ∆(U(S1), U(S2)) = 1
2 (|S2 \ S1|/|S2|+ |S1| · (1/|S1| − 1/|S2|)) = 1− |S1|/|S2|.

Lemma 2.1.2. Let S ⊆ Z be an interval and t be an integer. Then ∆(U(S), U(S + t)) =
|t|/|S|.
Proof. In the sum in Equation 2.1, exactly 2|t| terms are non-zero: the ones corresponding
to y in (S \ (S + t)) ∪ ((S + t) \ S). And these terms are equal to 1/|S|.

Algorithms. Unless otherwise stated, all the algorithms considered in this paper are
randomized, and thus A (x) the result of running algorithm A with input x can be seen as
a probability distribution. We sometimes explicit the random tape of A : A (x; r) denotes
running algorithm A on input x with randomness r. If A is an algorithm, we will write
v

$← A (x) to denote running A on input x and assigning the result to the variable v. We
will instead write v ← A (x) if A is deterministic. We also use this definition for any
computation, e.g., v ← x + y, thus we reserve the notation = for equality testing and
definitions (or assignments without computation). An algorithm is called polynomial, or
efficient if its running time is polynomial in the size of its inputs. We sometimes allow
algorithms to have oracle access to probability distributions or other algorithms and write
A O the fact that the algorithm A can use oracle O.
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2.1.2 Provable Security

Security Parameter. In public key cryptography, any problem can be solved if given
enough time and efforts. The goal of provable security is to measure the quantity of time and
efforts required to solve a problem. To do so, we implicitely have a certain security parameter
κ, and every integers, vectors, matrices, functions that we define will implicetely be defined
with regard to that security parameter, and we often omit this in the definitions to make
everything more readable. We explicitely remind this sometimes, for example our algorithms
Setup will take as input the security parameter in unary representation 1κ. The reason it is
represented in unary is because we want the algorithm to run in a time that is polynomial in
κ, so its input must have size κ. We usually state that an algorithm is efficient if its running
time is polynomial in κ, and inefficient if not. Similarly, we say that a function f is negligible
if it is o(1/κc) for any constant c ∈ N, and we say that a probability p is overwhelming if
1− p is negligible. We consider a scheme secure if there is no efficient algorithm that has a
non-negligible probability of “breaking the scheme”.
Given two distributions X,Y over a finite or countable domain D, we say that they are equal
if their statistical distance ∆(X,Y ) is 0. We say that they are statistically indistinguishable if
∆(X,Y ) is negligible. We say that they are computationally indistinguishable if ∆(A X ,A Y )
is negligible for all probabilistic polynomial time (i.e., efficient) algorithms A . As an analogy
with the applications, we often call adversary an algorithm designed to attack the security of
a scheme.
Code-Based Games. We use the code-based game-playing [BR06] to define the security
notions. In such games, there exist procedures for initialization (Initialize) and finalization
(Finalize) and procedures to respond to adversary oracle queries. A game G is executed with
an adversary A as follows. First, Initialize executes and its outputs are the inputs to A .
Then A executes, its oracle queries being answered by the corresponding procedures of G.
When A terminates, its output becomes the input to the Finalize procedure. The output
of the latter, denoted G(A ), is called the output of the game, and “G(A ) = y” denotes the
event that the output takes a value y. Boolean flags are assumed initialized to false. Games
Gi,Gj are identical until bad if their code differs only in statements that follow the setting of
bad to true.

2.2 Basic Cryptographic Primitives
2.2.1 One-Time Signature and Collision Resistant Hash Functions

One-Time Signatures. The purpose of a one-time signature is to prevent messages to be
tampered with. Basically, it allows to sign a message and give out the verification key that
guarantees that the message was generated as a whole, and that no parts of it has been
replaced, added, or removed.
Definition 2.2.1 (One-Time Signature). A one-time signature scheme is a tuple OT S =
(Setup,Sign,Verify) of three probabilistic polynomial time algorithms:

• Setup(1κ) 7→ (sk, vk). On input security parameter κ outputs a signing key sk and a
verification key vk;

• Sign(sk,m) 7→ (σ). On input signature key sk and message m returns a signature σ;
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• Verify(vk,m, σ) 7→ ∅ or ⊥. On input verification key vk, message m and signature σ
returns nothing if the signature is valid, and ⊥ otherwise.

OT S must be complete, in the sense that if m is in the message space, then for all
(sk, vk) $← Setup(1κ), σ $← Sign(sk,m), it holds that Verify(vk,m, σ) passes the check.

Definition 2.2.2 (One-Time Unforgeability). A one-time signature scheme OT S = (Setup,
Sign,Verify) is strongly unforgeable, if no probabilistic polynomial time adversary A has a
non-negligible advantage in the following game:

1. The challenger sets (sk, vk) $← Setup and sends vk to A .

2. A chooses adaptively messages queries mi and sends them to the challenger. The
challenger sends back σi = Sign(sk,mi) to A for each i.

3. A outputs a forgery (m′, σ′) /∈ {(mi, σi)} and wins if Verify(vk,m′, σ′).

Collision Resistant Hash Functions. We call family of hash functions a family of functions
(Hk)k∈K that maps arbitraty bitstrings to fixed-length bitstrings: Hk : ×{0, 1}∗ → {0, 1}κ.
Definition 2.2.3 (Collision Resistance). A family of hash functions (Hk)k∈K is collision
resistant, if no probabilistic polynomial time adversary A can output a pair (m,m′) such
that Hk(m) = Hk(m′) with non-negligible probability for a randomly chosen key k.

This property is not only useful for cryptographic purposes, but it can also be used to
check if two users have the same data for example, they just have to compare the fixed-length
hash of their database.

2.2.2 Public Key Encryption
Some of our generic construction of inner-product functional encryption are using public key
encryption scheme as building blocks. We state here the formal definition of PKE, as well as
the security notion we require for our constructions.

Definition 2.2.4 (Public Key Encryption). A public key encryption (PKE) scheme E
consists of 4 probabilistic polynomial time algorithms:

• Setup(1κ) 7→ (pp, sk, pk). On input security parameter κ outputs public parameters pp,
secret key sk, and public key pk;

• Encrypt(pp, pk,m) 7→ ct. On input public parameter pp, public key pk, and plaintext
m, outputs ciphertext ct;

• Decrypt(pp, sk, ct) 7→ m or ⊥. On input public parameters pp, secret key sk, and
ciphertext ct, outputs a message m or an error symbol ⊥.

Definition 2.2.5 (Indistinguishability under Selective Chosen-Plaintext Attacks). For a
PKE scheme E, we define selective security against chosen-plaintext attacks (s-IND-CPA
security) via the security game depicted on Figure 2.1: we define the advantage of an adversary
A to be

Advs-ind-cpa
E,κ (A ) =

∣∣∣2 · Pr[Exps-ind-cpa-b
E,κ (A ) = 1]− 1

∣∣∣ .
Then we say that E is secure against chosen-plaintext attacks (s-IND-CPA secure) if
Advs-ind-cpa

E,κ (A ) is negligible for all probabilistic polynomial time A .
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Game Exps-ind-cpa-b
E,κ (A )

proc Initialize(κ,m∗0,m∗1)
(pp, sk, pk) $← Setup(1κ)
Return (pp, pk)

proc Encrypt()
ct $← Encrypt(pp, pk,m∗b)
Return ct

proc Finalize(b’)
Return (b′ = b)

Figure 2.1: Game Exps-ind-cpa-b
E,κ (A ) defines s-IND-CPA security of E .

The more standard security notion would be adaptibe security against chosen-plaintext
attacks, where the challenge messages m∗0 and m∗1 would be chosen when calling Encrypt.
We chose to only use a selective notion because it is a weaker assumption, and it was sufficient
for our construction.

Functional Encryption. Functional Encryption has been introduced to generalize the
concept of public key encryption and identity-based encryption. We briefly recall the definition
for completeness. We don’t elaborate on the security definitions, since we will discuss that
matter on the special case of inner-product functional encryption in Chapter 3.

A functionality F defined over (My,Mx) is a functionMy ×Mx → Σ ∪ {⊥}, whereMy

is a key space,Mx is a message space, and Σ is an output space that does not contain the
special symbol ⊥.
A functional encryption scheme for functionality F [ONe10; BSW11] is a tuple FE =

(Setup,KeyDer,Encrypt,Decrypt) of four probabilistic polynomial time algorithms:

• Setup(1κ) 7→ (pp,msk,mpk). On input security parameter κ outputs public parameters
pp, master secret key msk, and master public key mpk;

• KeyDer(pp,msk, y) 7→ sky. On input public parameter pp, master secret key msk, and
key y ∈My, outputs user secret key sky;

• Encrypt(pp,mpk, x) 7→ ctx. On input public parameter pp, master public key mpk, and
plaintext x ∈Mx, outputs ciphertext ctx;

• Decrypt(pp, sky, ctx) 7→ m or ⊥. On input public parameters pp, user secret key sky,
and ciphertext ctx, outputs a message m or an error symbol ⊥.

We say that a FE scheme is correct if m = F(y, x). The special case of inner-product
functional encryption is F(y,x) = 〈x,y〉.

2.3 Projective Hash Functions

Before being able to define projective hash functions, we have to define what is a subset
membership problem, which will be used in the definition of PHF.
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2.3.1 Subset Membership Problems
Our framework uses subset membership problems, which were originally defined in [CS02].
Basically, a subset membership problem defines an NP language L ⊂ X , in which a random
word in L is hard to distinguish from a random word in X \ L. In this thesis, we consider
a slight extension, where we instead require a random word in L to be hard to distinguish
from a random word in a given set L̄ ⊆ X \ L.
More formally, a subset membership problem P specifies an ensemble (Iκ)κ≥0 of distri-

butions. For every value of a security parameter κ ≥ 0, Iκ is a probability distribution of
instance descriptions. An instance description Λ = Λ[X ,L,W, %, L̄] specifies the following:
(a) finite, non-empty sets X , L, W, and L̄, such that L is a proper subset of X and L̄ is a
non-empty subset of X \ L, (b) a binary relation % ⊂ X ×W . For b ∈ X and w ∈ W , we say
that w is a witness for b if (b, w) ∈ %. We require that instance descriptions and elements of
X and W can be uniquely encoded as bitstrings of length poly(κ).

A subset membership problem satisfies the following properties:

1. Iκ is efficiently samplable, which means that there exists a probabilistic polynomial
time instance sampling algorithm that on input 1κ samples an instance Λ according to
the distribution Iκ;

2. % is efficiently samplable, which means that there exists a probabilistic polynomial time
subset sampling algorithm that on input Λ outputs a random b ∈ L together with a
witness w ∈ W for b; the distribution over % implicitly defines a distribution over L;

3. L̄ is efficiently samplable;

4. X is efficiently recognizable, which means that there exists a deterministic polynomial
algorithm that on input (Λ, ζ) checks whether ζ is a valid binary encoding of an element
of X ;

5. % is efficiently recognizable;

6. (L, L̄)-indistinguishability: a sample from L is computationally indistinguishable from
a sample from L̄.

We do not require the distributions over %, L, and L̄ to be uniform. However, when we do
not specify these distributions, we implicitly use the uniform distributions.

2.3.2 Projective Hash Functions
We are now ready to state the formal definition of projective hash functions.

Definition 2.3.1 (Projective Hash Function). Let P be a subset membership problem,
specifying an ensemble (Iκ)κ of instance distributions. A projective hash function for P is a
tuple PHF = (hashkg, projkg, hash, projhash) of four probabilistic polynomial time algorithms:

• hashkg(Λ) generates a hashing key hk in some set K for the instance Λ = Λ[X ,L,W, %],

• projkg(hk) (deterministically) derives from the hashing key hk a projection key hp,

• hash(hk, b) (deterministically) computes the hash value H (in some efficiently recogniz-
able set Π) of b ∈ X under hk ∈ K,
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• projhash(hp, b, w) (deterministically) computes the projected hash value pH of b ∈ L
using a witness w ∈ W.

A PHF must be complete, in the following sense:

• For any instance Λ, for any b ∈ X and w ∈ W, such that (b, w) ∈ %, for any hashing
key hk ∈ K, if hp← projkg(hk), then

hash(hk, b) = projhash(hp, b, w) .

The instance Λ is implicitly included in the hashing key hk and the projection key hp.
The standard statistical requirement for a projective hash function is to be smooth. The

smoothness property essentially states that the hash of a word not in the language is close to
uniform, and so unguessable. In our proof, we will require other properties that we define in
the beginning Chapter 5.

2.4 Additional Preliminaries for Concrete Instantiations
We now recall some additional preliminaries that will be required for our concrete instantia-
tions, starting with preliminaries that will be used for the instantiations based on DCR, and
then ones that will be used for the instantiations based on LWE.

2.4.1 Basic Number Theory
Let N be a positive integer. Let ϕ(N) be the Euler totient function. For any integer a and
an odd prime q, the Legendre symbol

(
a
q

)
is defined as

(
a

q

)
=


0 If a ≡ 0 (mod q)
+1 If a 6≡ 0 (mod q) and for some integer y, a ≡ y2 (mod q)
−1 If a 6≡ 0 (mod q) and there is no such y

For any integer a and any positive odd integer N , the Jacobi symbol is defined as the product
of the Legendre symbols corresponding to the prime factors of N ,

(
a
N

)
:= ∏t

i=1
(
a
pi

)αi , where
N = ∏t

i=1 p
αi
i for distinct primes pi. Let JN = {a ∈ ZN :

(
a
N

)
= 1}; clearly JN is a subgroup

of Z∗N . The Jacobi symbol can be computed in polynomial time, given only a and N [JOA96,
Algorithm 2.149].

2.4.2 Gaussians and Lattices
We first recall the definition of a lattice before defining discrete Gaussian distribution over a
lattice. We also recall some lemmas that will be used in Chapter 8.
Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm (e.g., Zm). For
an integer k < m and a rank k matrix B ∈ Rm×k, Λ(B) = {Bx ∈ Rm : x ∈ Zk} is the
lattice generated by the columns of B.
Gaussians. The n-dimensional Gaussian function ρ : Rn → [0, 1] is defined as

ρ(x) = exp(−π · ||x||2) = exp(−π · 〈x,x〉) .
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Applying a linear transformation given by a (not necessarily square) matrix B with linearly
independent columns yields the (possibly degenerate) Gaussian function

ρB(x) =
{
ρ(B−1x) = exp(−π · xᵀΣ−ᵀx) If x ∈ Span(B) = Span(Σ)
0 otherwise

where Σ = BBᵀ ≤ 0. Because ρB is distinguished only up to Σ, we usually refer to it as
ρ√Σ.
We say that a distribution D is subgaussian with parameter σ if there exists a constant

k ∈ R such that D(x) ≤ k · ρσ(x).

Definition 2.4.1 (Smoothing parameter). For a lattice Λ ⊆ Zm and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε, where
Λ∗ = {x ∈ Rm : xᵀΛ ⊆ Z}.

The next result gives a bound on the smoothing parameter of a generic lattice.

Lemma 2.4.2 ([MR07, Lemma 3.3]). Let Λ be any rank-m lattice and ε be any positive real.
Then

ηε(Λ) ≤ λm(Λ) ·
√

ln(2m(1 + 1/ε))
π

where λm(Λ) is the smallest R such that the ball BR centered in the origin and with radius R
contains m linearly independent vectors of Λ.

Corollary 2.4.3.

ηε(Z`) ≤
√

ln(2`(1 + 1/ε))
π

The following lemma gives a bound on values drawn from subgaussian distributions.

Lemma 2.4.4 ([AP14, Lemma 2.1]). There exists a universal constant C > 0, such that

Pr
[ ‖x‖ > Cσ

√
m
] ≤ 2−Ω(m)

where x is drawn from a subgaussian distribution over Zm with parameter σ.

Lemma 2.4.5. Let ρ√Σ(x) be the probability that a gaussian random variables of covariance
matrix Σ is equal to x. Then, for any invertible matrix β,

ρ√Σ(β−1x) = ρβ
√

Σ(x) .

Lemma 2.4.6. Let Λ ⊂ Rn be a lattice. For any Σ ≥ 0 and c ∈ Rn, we have ρ√Σ(Λ + c) ≤
ρ√Σ(Λ). Moreover, if

√
Σ ≥ ηε(Λ) for some ε > 0 and c ∈ Span(Λ), then ρ√Σ(Λ + c) ≥

1−ε
1+ε · ρ√Σ(Λ).

Generalized Leftover Hash Lemma. The following text and lemma are taken verbatim
from [DRS04]. The predictability of a random variable A is maxa Pr[A = a], and its min-
entropy H∞(A) is − log(maxa Pr[A = a]). The min-entropy of a distribution tells us how
many nearly uniform random bits can be extracted from it.
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Consider now a pair of (possibly correlated) random variables A,B. If the adversary finds
out the value b of B, then predictability of A becomes maxa Pr[A = a|B = b]. On average,
the adversary’s chance of success in predicting A is then E

b
$←B

[maxa Pr[A = a|B = b]]. Note
that we are taking the average over B (which is not under adversarial control), but the worst
case over A (because prediction of A is adversarial once b is known). Again, it is convenient
to talk about security in log-scale, which is why we define the average min-entropy of A given
B as simply the logarithm of the above:

H̃∞(A|B) = − log
(
E
b

$←B
[max

a
Pr[A = a|B = b]]

)
= − log

(
E
b

$←B

[
2H∞(A|B=b)

])
.

Lemma 2.4.7. Let A,B,C be random variables. Then If B has at most 2κ possible values,
then

H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C)− κ ≥ H̃∞(A|C)− κ ,
In particular, H̃∞(A|B) ≥ H∞((A,B))− κ ≥ H∞(A)− κ.

Lemma 2.4.8. [Generalized Leftover Hash Lemma [DRS04]] Assume {Hx : {0, 1}n →
{0, 1}`}x∈X is a family of universal hash functions. Then, for any random variables W and
I,

∆((HX(W ), X, I), (U`, X, I)) ≤ 1
2

√
2−H̃∞(W |I)2` .
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Chapter 3
Inner-Product Functional Encryption
In this Chapter, we provide the formal definition of inner-product functional encryption and
discuss the multiple ways to model its security, as well as the desirable properties it can have.
We start off with the definition as we introduced in [ABDP15b] and explain the functionality
it provides together with the standard security notion that we will use: indistinguishability
under chosen-plaintext attack.
Then we compare this model with the weaker model of selective security, and with the
other intuitive way to model security: simulation-based security. We show that adaptive
indistinguishability-based security is equivalent to the non-adaptive simulation-based security
(result from our paper [ABCP16]).
We also introduce the security against chosen-ciphertext attacks. We define the related
tag-based inner-product functional encryption, which is a variant of IPFE that is easier to
analyze in the case of CCA security, and we show how to translate it into a CCA secure
standard inner-product functional encryption scheme, as done in our contribution [BBL17].
Finally, we discuss the function hiding hiding property, another desirable security property
for an inner-product encryption scheme which means that a secret key doesn’t reveal the
computation it allows. We also show how to obtain weak versions of this property without
any additional assumption. This work is exclusive to this thesis.
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3.1 Definition and Security Model
3.1.1 Definition
The definition of an inner-product functional encryption scheme is best illustrated with an
example of what it allows to do. A diagram showing the functionality provided by an IPFE
scheme can be found on Figure 3.1. In this case, a user Bob transmits to another user Alice
the inner product 〈x,y〉 between a vector x that he knows and any vector y for which Alice
has a certified secret key:

• The trusted authority generates a pair (mpk,msk) of master public key and master
secret key. The former can be made public and retrieved by Bob, while the later will
be kept secret by the authority.

• Bob uses the master public key mpk to encrypt his vector x. He then makes public the
resulting ciphertext ctx.

• Alice makes a request for a secret key sky for her vector y, which the authority derives
using the master secret key msk, and privately sends to Alice if she is entitled.

• Alice uses her key sky to decrypt the ciphertext ctx that she received from Bob and
receives the value 〈x,y〉.

We say that an inner-product functional encryption scheme is correct if the result is indeed
〈x,y〉.

Setup

Encrypt KeyDer

Decrypt

mpk mskx y

ctx sky

〈x,y〉

Bob Alice

Figure 3.1: Illustration of an Inner-Product Functional Encryption scheme. Colors are used
as follows: in orange are the actions performed and the data owned by the trusted
authority; in red are the actions performed and the data owned by some user
Alice; and in blue are the actions performed and the data owned by another user
Bob.

More formally, we have the following definition and correctness property.

Definition 3.1.1 (Inner-Product Functional Encryption). An inner-product functional
encryption (IPFE) scheme FE is defined with regard to a some ring R, and consists of 4
probabilistic polynomial time algorithms:
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• Setup(1κ, 1`) 7→ (pp,msk,mpk). On input security parameter κ and functionality
parameter ` outputs public parameters pp, master secret key msk, and master public
key mpk;

• KeyDer(pp,msk,y) 7→ sky. On input public parameter pp, master secret key msk, and
key y ∈ R`, outputs user secret key sky;

• Encrypt(pp,mpk,x) 7→ ctx. On input public parameter pp, master public key mpk, and
plaintext x ∈ R`, outputs ciphertext ctx;

• Decrypt(pp, sky, ctx) 7→ m or ⊥. On input public parameters pp, user secret key sky,
and ciphertext ctx, outputs a message m ∈ R or an error symbol ⊥.

To lighten the notations, we sometimes omit the public parameters pp or assume they
are included in the public key. We also sometimes implicitely assume that y is included
in clear in the user secret key sky. We will focus on the rings Zq for some prime number
q (we also sometimes denote this prime number p to avoid confusions), and N. We will
sometimes refer to the first case as modular inner-product functional encryption, and to
the second as non-modular inner-product functional encryption. There are some major
differences between the two: modular IPFE is more friendly for security analysis and also
for applications. However, the only instantiations we know of requires the computation of a
discrete logarithm in order to decrypt, which means that we can only decrypt inner-products
in a fixed polynomial range, thus the whole plaintext space is not used. In the case of
non-modular IPFE, the computation is usually done modulo some integer, but we require
the inner-produt result to be smaller than the modulus for security issues. [ALS16] describes
a technique to build modular IPFE schemes from non-modular one, the downside being that
the key generation algorithm KeyDer has to be stateful. The idea is to remember the queries
that were answered, and change the queries that would allow a break into queries that give
the same information without threatening the security of the scheme.

Correctness. To account for the previous remarks, we allow the Decrypt algorithm to output
⊥ if 〈x,y〉 is outside of a polynomial sized set P fixed at setup. We also denote the plaintext
spaceMx and the key spaceMy, and they may be smaller than the full ring R. Hence the
following correctness property:
An IPFE scheme is correct if for any x ∈ Mx,y ∈ My,(pp,msk,mpk) $← Setup(1κ, 1`),
sky

$← KeyDer(pp,msk,y), ctx
$← Encrypt(pp,mpk,x). Then if 〈x,y〉 ∈ P, it holds that

Decrypt(pp, sky, ctx) = 〈x,y〉.

3.1.2 Indistinguishability-Based Security

We will use a left-or-right indistinguishability based definition of security also called security
against chosen-plaintext attacks. Intuitively, it means that an eavesdropping adversary cannot
tell appart between encryptions of messages of his chosing. For example, this implies that the
scheme has no weak plaintexts, otherwise the adversary could choose to attack this particular
message, and it also means that the scheme is non-deterministic, because this would lead
to a trivial attack in the model. It has been used for many years in the context of public
key encryption as well as symmetric key encryption, and has been adapted to identity-based
encryption and functional encryption as the most intuitive security property.
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Adversary Challenger
(x∗0,x∗1)

ctx∗b

KeyDer(msk, ·)
y

sky

Figure 3.2: Illustration of the IND-IPFE-CPA security game. Adversary wins if (b′ =
b) ∧ ∀y, 〈x∗0,y〉 = 〈x∗1,y〉.

As for the definition of IPFE, we give an informal illustration of the security model for
intuition on Figure 3.2. Here we only pictured a single challenge couple (x∗0,x∗1) because as
we show later, it is equivalent.

Definition 3.1.2 (Indistinguishability under Chosen-Plaintext Attacks). For an inner-
product functional encryption scheme FE = (Setup,KeyDer,Encrypt,Decrypt) defined over R,
we define security against chosen-plaintext attacks (IND-IPFE-CPA security) via the security
game depicted on Figure 3.3: we define the advantage of an adversary A to be

Advind-ipfe-cpa
FE,κ (A ) =

∣∣∣2 · Pr[Expind-ipfe-cpa-b
FE,κ (A ) = 1]− 1

∣∣∣ .
Then we say that FE is secure against chosen-plaintext attacks (IND-IPFE-CPA secure) if
Advind-ipfe-cpa

FE,κ (A ) is negligible for all probabilistic polynomial time A .

The event bad corresponds to the adversary making queries that trivially allows him to
find b. Those are attack that we cannot be secure against, by definition of the functionality.
The goal of the adversary is to find b without having access to those queries.

Game Expind-ipfe-cpa-b
FE,κ (A )

proc Initialize(κ, `)
(pp,msk,mpk) $← Setup(1κ, 1`)
Vy ← ∅
Vx ← ∅
Return (pp,mpk)
proc KeyDer(y)
Vy ← Vy ∪ {y}
sky

$← KeyDer(pp,msk,y)
Return sky

proc Encrypt(x0,x1)
Vx ← Vx ∪ {(x0,x1)}
ct $← Encrypt(pp,mpk,xb)
Return ct

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Figure 3.3: Game Expind-ipfe-cpa-b
FE,κ (A ) defines IND-IPFE-CPA security of FE . The event bad

corresponds to ∃y ∈ Vy, ∃(x0,x1) ∈ Vx, 〈x0,y〉 6= 〈x1,y〉.

Because we are dealing with public key encryption schemes, we can without loss of generality
only consider the adversaries A that only makes one encryption query (x∗0,x∗1). In particular,
we have the following theorem:
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Theorem 3.1.3. For any adversary A making q encryption queries {(xj0,xj1)}j∈[q], there
exists an adversary B making only 1 encryption query which runs in roughly the same time
as A and such that

Advind-ipfe-cpa
FE,κ (B) ≥ 1

q
· Advind-ipfe-cpa

FE,κ (A )

Proof. We prove this theorem by using a standard hybrid argument [GM84]. The adversary
B is as follows: It first picks a random number i ∈ {0, . . . , q}. It forwards A ’s queries to
Initialize, KeyDer and Finalize. However, it behaves differently with Encrypt on input
(xj0,y

j
1):
• If i<j, it sets ct = Encrypt(pp,mpk,x0);

• If i=j, it invokes Encrypt;

• If i>j, it sets ct = Encrypt(pp,mpk,x1).
Now, to analyze the advantage of B, we define the following hybrid experiment:

Game Hi

proc Initialize(κ, `)
(pp,msk,mpk) $← Setup(1κ, 1`)
Vy ← ∅
Vx ← ∅
Return (pp,mpk)
proc KeyDer(y)
Vy ← Vy ∪ {y}
sky

$← KeyDer(pp,msk,y)
Return sky

proc Encrypt(x0,x1)
if |V | < i

then ct $← Encrypt(pp,mpk,x0)
if |V | ≥ i

then ct $← Encrypt(pp,mpk,x1)
Vx ← Vx ∪ {(x0,x1)}
Return ct

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Notice that we have:

Advind-ipfe-cpa
FE,κ (A )

=
∣∣∣2 · Pr[Expind-ipfe-cpa-b

FE,κ (A ) = 1]− 1
∣∣∣

=
∣∣∣Pr[Expind-ipfe-cpa-0

FE,κ (A ) = 1] + Pr[Expind-ipfe-cpa-1
FE,κ (A ) = 1]− 1

∣∣∣
=
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣
=
∣∣∣∣Pr
H1

[b′ = 1]− Pr
Hq+1

[b′ = 1]
∣∣∣∣

=

∣∣∣∣∣∣
∑
i∈[q]

Pr
Hi

[b′ = 1]− Pr
Hi+1

[b′ = 1]

∣∣∣∣∣∣
≤
∑
i∈[q]

∣∣∣∣Pr
Hi

[b′ = 1]− Pr
Hi+1

[b′ = 1]
∣∣∣∣

= q · Advind-ipfe-cpa
FE,κ (B)
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Remark 3.1.4. We note that this reduction is not tight in the general case, but with most
instantiations, one can use random self-reducibility of the underlying assumption to have a
better reduction in the case of multiple encryption challenges. A good example would be the
resulting scheme based on the decisional Diffie-Hellman assumption presented in Chapter 6.

In the rest of this chapter, we will present alternative security notions and discuss their
relations with IND-IPFE-CPA security.

3.2 Alternative Security Models

3.2.1 Selectivity vs. Adaptivity

A natural weakening of IND-IPFE-CPA security is security against selective chosen-plaintext
attacks. The difference with the previous definition is that in this new model, the adversary
has to chose the challenge messages beforehand. It cannot see the public key or make any key
query before he choses the messages. This means that the security will be easier to prove: for
example, in the special case of IPFE, this means that the adversary has to chose the challenge
vectors x∗0 and x∗1, so that its queries are restricted to a known set (x∗1 − x∗0)⊥. To avoid
ambiguity, we sometimes refer to IND-IPFE-CPA as adaptive security in contrast with selective
security. We now define s-IND-IPFE-CPA security and compare it to IND-IPFE-CPA. We
also show that a modular IPFE scheme that satisfy s-IND-IPFE-CPA security can be slightly
modified to be IND-IPFE-CPA secure if it satisfies a very natural homomorphic property.

Definition 3.2.1 (Indistinguishability under Selective Chosen-Plaintext Attacks). For an
IPFE scheme FE, we define selective security against chosen-plaintext attacks
(s-IND-IPFE-CPA security) via the security game depicted on Figure 3.4: we define the
advantage of an adversary A to be

Advs-ind-ipfe-cpa
FE,κ (A ) =

∣∣∣2 · Pr[Exps-ind-ipfe-cpa-b
FE,κ (A ) = 1]− 1

∣∣∣ .
Then we say that FE is secure against chosen-plaintext attacks (s-IND-IPFE-CPA secure) if
Advs-ind-ipfe-cpa

FE,κ (A ) is negligible for all probabilistic polynomial time A .

The following theorem states the relation between those two security notions. Basically, if
the adversary is restricted in his queries, he can choose randomly beforehand, and abort if it
decides it was not the query he wanted. Its advantage will drop by the probability of guessing
correctly. This technique is called complexity leveraging, and is widely used when dealing
with more complex tools such as functional encryption for all circuits, or indistinguishability
obfuscation.

Theorem 3.2.2. For any IPFE scheme FE with message spaceMx, ifMx is polynomial in
κ and FE is s-IND-IPFE-CPA secure, then it is also IND-IPFE-CPA secure. More precisely,
for any adversary A , there exist an adversary B which runs in roughly the same time as A ,
and such that:

Advs-ind-ipfe-cpa
FE,κ (B) ≥ 1

|Mx|2
· Advind-ipfe-cpa

FE,κ (A )
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Game Exps-ind-ipfe-cpa-b
FE,κ (A )

proc Initialize(κ, `,x∗0,x∗1)
(pp,msk,mpk) $← Setup(1κ, 1`)
Vy ← ∅
Return (pp,mpk)
proc KeyDer(y)
Vy ← Vy ∪ {y}
sky

$← KeyDer(pp,msk,y)
Return sky

proc Encrypt()
ct $← Encrypt(pp,mpk,x∗b)
Return ct

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Figure 3.4: Game Exps-ind-ipfe-cpa-b
FE,κ (A ) defines s-IND-IPFE-CPA security of FE . The event

bad corresponds to ∃y ∈ Vy, 〈x∗0,y〉 6= 〈x∗1,y〉.

Proof. B just guesses the challenge messages x∗0 and x∗1 of A and does the same as A . If
B guessed wrongly, it just aborts and output a uniformly random guess b′, otherwise, he is
correct when A is correct. The result follows from the fact that B guesses correctly with
probability 1

|Mx|2 .

This implies that an IPFE scheme with polynomial message space is necessarily
IND-IPFE-CPA secure if it is s-IND-IPFE-CPA secure. Moreover, this is true if the mes-
sage space is independent of, or logarithmic in the security parameter κ. However, this factor
really impacts the concrete security of the scheme, which is why adaptive security is an
appealing property. It has been shown that if a functional encryption scheme supports all
polynomial functions, then one can use the functionality provided by the scheme to build
a tightly adaptively secure scheme [ABSV15]. However, this is not as simple in the case
of functional encryption limited to inner-product evaluations. We proceed to show a tight
(independent of the size of the message space) reduction from IND-IPFE-CPA security to
s-IND-IPFE-CPA security, which only works for certains modular IPFE but the same idea
will be used in Chapter 4 to build directly IND-IPFE-CPA secure schemes. First, we need to
define the additively homomorphic property that will be needed for this transformation.

Definition 3.2.3 (Additive Homomorphism). We say that an inner-product functional
encryption scheme FE = (Setup,KeyDer,Encrypt,Decrypt) is additively homomorphic if it is
possible to add encryptions: ∀(x0,x1) ∈M2

x, (pp,msk,mpk) $← Setup(1κ, 1`),

Encrypt(pp,mpk,x0) + Encrypt(pp,mpk,x1) = Encrypt(pp,mpk,x0 + x1)

for some operation + on the ciphertexts.

Note that we are talking about probability distributions. Moreover, we don’t actually need
rigorous equality for our reduction as computational inditinguishability would be enough.
However, this definition makes the notations much simpler and the proof easier to read.

We now move onto the construction of our IND-IPFE-CPA scheme. We construct an IPFE
scheme using another IPFE scheme, so for the sake of readability and simplicity, we add a
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prime to elements that corresponds to the new scheme and use notations without primes for
the building block.

Construction 3.2.4 (Inner-Product Functional Encryption Secure against Adaptive Chosen–
Plaintext Attacks). Let us assume the existence of a modular IPFE scheme FE = (FE .Setup,
FE .KeyDer,FE .Encrypt,FE .Decrypt). We define our improved IPFE scheme FE ′ as follows:

• Setup(1κ, 1`) 7→ (pp′,msk ′,mpk ′). On input security parameter κ and functionality
parameter `, samples (pp,msk,mpk) $← FE .Setup(1κ, 1`+1), and a random vector t $←
R`, and outputs public parameters pp′ = pp, master secret key msk ′ = (msk, t), and
master public key mpk ′ = mpk;

• KeyDer(pp′,msk ′,y) 7→ sky
′. On input public parameter pp′, master secret key msk ′,

and key y ∈ R`, samples sky
$← FEKeyDer(pp,msk, (y,−〈t,y〉)) and outputs user

secret key sky
′ = sky;

• Encrypt(pp′,mpk ′,x) 7→ ctx
′. On input public parameter pp′, master public key mpk ′,

and plaintext x ∈ R`, samples ctx
$← FE .Encrypt(pp,mpk, (x, 0)) and outputs ciphertext

ctx
′ = ctx;

• Decrypt(pp′, sky
′, ctx

′) 7→ m or ⊥. On input public parameters pp′, user secret key sky
′,

and ciphertext ctx
′, computes m← FE .Decrypt(pp, sky, ctx) and outputs message m.

Correctness. The correctness of FE ′ directly follows from the correctness of FE , because
−〈t,y〉 · 0 = 0. Notice that we require R to be finite in order to sample uniform vectors t.
Security. If FE is s-IND-IPFE-CPA secure, then FE ′ is IND-IPFE-CPA secure. More precisely,
we have the following theorem.

Theorem 3.2.5. Let FE and FE ′ be defined as in Construction 3.2.4. If FE is
s-IND-IPFE-CPA secure, then FE ′ is IND-IPFE-CPA secure. More precisely, for any ad-
versary A , there exists and adversary B which runs in roughly the same time as A and such
that:

Advs-ind-ipfe-cpa
FE,κ (B) = 1

2 · Advind-ipfe-cpa
FE ′,κ (A )

Proof. We prove this theorem by showing such an adversary B. B first picks a random
t $← R`, and a random bit b∗ $← {0, 1}. Then, it acts as follows on A ’s queries:

• Initialize (κ, `): B calls Initialize (κ, `,0, (t, 1));

• KeyDer(y): B appends −〈t,y〉 to y, and calls KeyDer((y,−〈t,y〉));

• Encrypt(x∗0,x∗1): B calls Encrypt() to get ct ′, and then sets and returns ct = ct ′ +
FE .Encrypt(pp,mpk, (xb∗ , 0));

• Finalize(b′): B checks if A has triggered the bad event, and trigger it in this case.
Otherwise, it calls Finalize(b′ 6= b∗).

Notice that in both experiments Exps-ind-ipfe-cpa
FE,κ (B) and Expind-ipfe-cpa

FE ′,κ (A ), bad is the same
event because B never triggers it unless A did: for any y ∈ R`, 〈(t, 1), (y,−〈t,y〉)〉 = 0.
We now analyze the advantage of B.
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• If b = 0, then ct ′ = FE .Encrypt(pp,mpk,0), and A receives FE ′.Encrypt(pp,mpk,x∗b).
This means that in this case, B wins whenever A wins.

• Now, if b = 1, then ct ′ = FE .Encrypt(pp,mpk, (t, 1)), and thus A receives
FE .Encrypt(pp,mpk, (x∗b +t, 1)). We want to show that in this case, A cannot correctly
guess b with probability more than 1

2 , because its view is independent of b. Indeed, we
show that replacing t by t′ = t + x∗1−b − x∗b yields the same keys sky, while changing
the message from x∗b to x∗1−b. The important thing to notice is just that for any query
y that doesn’t trigger bad:

〈x∗0,y〉 = 〈x∗1,y〉 =⇒ 〈t′,y〉 = 〈t,y〉.

Thus, the advantage of B is

Advs-ind-ipfe-cpa
FE,κ (B) = 1

2 · Advind-ipfe-cpa
FE ′,κ (A ).

3.2.2 Simulation-Based Security

Another very intuitive way to model the security is what we call simulation-based security. In
this setting, in order to prove security, we show that it is possible to generate the same view
(ciphertexts and keys), or at least a view that fools any adversary, only knowing the outputs
of the functionality, and not the inputs. In our context, this means generating a ciphertext, as
well as secret keys without knowing the underlying plaintext vector x, only using the results
〈x,y〉. This is formalized by a simulator that generates a view given the inner-products
values, and the adversary tries to tell apart if it’s interacting with the simulator, or if it has
been given normally generated keys and ciphertext.
Simulation-based security is a very strong notion of security. Its relation to indistinguishability-
based security has been well studied [ONe10; AGVW13; DIJ+13], and it has been shown to
be impossible to reach in the case of functional encryption for very simple functionalities like
IBE [BSW11], and even for any non-trivial functionality [BO13].
It is easy to see that in general, simulation-based security implies indistinguishability-based
security, because as the simulator doesn’t know the plaintext, it yields the same view whether
it was x∗0 or x∗1, as long as the adversary only makes allowed queries.

Definition 3.2.6 (Non-Adaptive Simulation-Based Security.). For an inner-product func-
tional encryption scheme FE = (Setup,KeyDer,Encrypt,Decrypt) defined over R, we define
non-adaptive simulation security (NA-SIM security, for short) via the security game depicted
on Figure 3.5: we define the advantage of an adversary A to be

Advna-sim-ipfe
FE,κ (A ) =

∣∣∣2 · Pr[Expna-sim-ipfe-b
FE,κ (A ,S ) = 1]− 1

∣∣∣ .
Then, we say that FE is simulation secure against non-adaptive adversaries (NA-SIM
secure, for short) if there exists a probabilistic polynomial time simulator S such that
Advna-sim-ipfe

FE,κ (A ,S ) is negligible for all probabilistic polynomial time A .
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Game Expna-sim-ipfe-b
FE,κ (A ,S )

proc Initialize(κ, `)
(pp,msk,mpk) $← Setup(1κ, 1`)
V ← ∅
Return (pp,mpk)
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(pp,msk,y)
Return sky

proc Encrypt(x∗)
ct∗0

$← Encrypt(mpk,x∗)
ct∗1

$← S (mpk, {〈x∗,y〉),y}y∈V )
Return ct∗b
proc Finalize(b’)
Return (b = b′)

Figure 3.5: Game Expna-sim-ipfe-b
FE,κ (A ,S ) define NA-SIM security of FE . The procedure Key-

Der can only be invoked before invoking Encrypt.

In this section, we compare the two a-priori incomparable security notions of NA-SIM
security and IND-IPFE-CPA security. It is a known result that simulation security implies
indistinguishability for any functionality. The next theorem shows that IND-IPFE-CPA
security notion lies somewhere between SIM security and NA-SIM security for the inner-
product functionality. Although we prove this result from scratch for completeness, we
remark that it follows from the work of [ONe10], because the inner-product functionality is
preimage sampleable, as noted in [ALS15].

Theorem 3.2.7. Let FE be any inner-product functional encryption scheme. If FE is
IND-IPFE-CPA secure, then it is NA-SIM secure.

Proof. We prove this statement by exhibiting a simulator S and showing that if FE is
IND-IPFE-CPA secure, then S satisfies the properties needed to prove NA-SIM security of
FE .
S is given as input mpk and the set of values {〈x,y〉,y}y∈V for some unknown x. It then
finds a vector x′ such that 〈x,y〉 = 〈x′,y〉 for all y ∈ V and encrypts it using mpk. S
returns this new formed ciphertext.
If an adversary A wins Game Expna-sim-ipfe

FE,κ (A ,S ), it wins Game Expind-ipfe-cpa-b
FE,κ (A ,S ) with

challenge messages x and x′ and without key queries after the challenge.

The next question is whether NA-SIM security implies IND-IPFE-CPA security or not. We
answer this question in a non-black box manner: We require that the functional encryp-
tion scheme supports key delegation in order to prove equivalence of NA-SIM security and
IND-IPFE-CPA security.

Definition 3.2.8 (Key delegation). We say that an inner-product functional encryption
scheme FE supports key delegation if sky can be obtained from any set {skz}z∈V where
y ∈ Span(V ).

Note that with this definition, any functional encryption scheme for the inner-product
functionality with a deterministic key derivation algorithm supports key delegation.
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Theorem 3.2.9. Let FE be any inner-product functional encryption scheme. If FE is
NA-SIM secure and supports key delegation, then it is IND-IPFE-CPA secure.

Proof. If there weren’t any secret key queries after the challenge ciphertext has been received,
we could use the same argument as for proving that SIM security implies IND-IPFE-CPA
security. This is a simple argument on games defining the security: the experiment
Expind-ipfe-cpa-0

FE,κ (A ) with challenges x0 and x1 is the same experiment as Expna-sim-ipfe-0
FE,κ (A ,S )

with challenge x0, which is indistinguishable from the experiment Expna-sim-ipfe-1
FE,κ (A ,S ) with

challenge x0, which is exactly the same as Expna-sim-ipfe-1
FE,κ (A ,S ) with challenge x1, which

is in turn indistinguishable from Expna-sim-ipfe-0
FE,κ (A ,S ) with challenge x1, or equivalently

Expind-ipfe-cpa-1
FE,κ (A ) with challenges x0 and x1. From which IND-IPFE-CPA security follows.

We now show that given x0 and x1, one can compute a basis {zi}i∈[`] of the orthogonal
(x1 − x0)⊥. Given secret keys for this basis, key delegation allows to compute a secret key
for any y such that 〈x0,y〉 = 〈x1,y〉.
This is easy for modular IPFE schemes where R = Zq because Zq is a field. For non-

modular IPFE schemes where R = Z, we want to find a basis {zi}i∈[`−1] of the lattice
orthogonal to a given vector x. We construct one recursively:
First, if the gcd of all coordinates of x is not 1, set x = 1

gcd(xi)x.

• If ` = 2: z = (−x2, x1) is a basis of (x1, x2)⊥

• If ` > 2: Let {zi}i∈[`−2] be a basis of (x1, · · · , x`−1)⊥. We set z`−1 = (−x` × a1,−x` ×
a2, . . . ,−x` × a`−1, gcd(x1, . . . , x`−1)) where the ai’s come from Bezout’s Identity.

This basis does not generate a sub-lattice of x⊥. Indeed, a vector y orthogonal to x has a
last coordinate which is a multiple of gcd(x1, . . . , x`−1), because x`y` = −∑i∈[`−1] xiyi.

To conclude the proof, suppose there is an adversary A that breaks the IND-IPFE-CPA
security. A simulator S can use this adversary to break the NA-SIM security: Upon reception
of x0 and x1, S queries secret keys for the zi before asking for a challenge ciphertext,
thus avoiding the non-adaptive queries. S can still answer A ’s adaptive queries using key
delegation.

3.3 Indistinguishability under Chosen-Ciphertext Attack
Although IND-IPFE-CPA security is a very attractive notion, because it provides really strong
security of the plaintext vectors, it only protects against passive attacks. In order to be secure
against active adversaries, we need to consider a stronger notion of security: IND-IPFE-CCA
security [BDPR98; Ble98](In this work, we only consider CCA2 security, not the weaker
CCA1 security or security against lunchtime attacks). In this model, the adversary tries to
attack a ciphertext while having access to a decryption oracle. IND-CCA security is nowadays
the go-to security notion for public key encryption. It is thus very natural to extend it to
functional encryption, as has been done in [NP15]. However, this result doesn’t directly give
any IPFE scheme secure against chosen-ciphertext attacks.
As noted in [BL17], there are multiple possibilities to be considered for this decryption oracle
for handling the private keys. However, since our schemes have deterministic key derivation,
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Adversary Challenger
(x∗0,x∗1)

ctx∗b

KeyDer(msk, ·)
y

sky

Decrypt(KeyDer(msk, ·), ·)

(y,ctx)

〈x,y〉 or ⊥

Figure 3.6: Illustration of the IND-IPFE-CCA security game. Adversary wins if (b′ =
b) ∧ ∀y, 〈x∗0,y〉 = 〈x∗1,y〉.

these definitions are equivalent to us. Noticing this, we chose to prove security of our schemes
in the one time key model, where a new secret key is generated for each decryption query.
We will present a generic construction of IND-IPFE-CCA secure schemes in Chapter 5. In
order to lighten the notations in this future construction, we define in this section the
notion of tag-based inner product functional encryption, and we show how to convert a
IND-TBIPFE-CCA secure scheme into a tagless IND-IPFE-CCA secure scheme.
In order to emphasize the difference between IND-IPFE-CCA security and IND-IPFE-CPA

security, we present on Figure 3.6 the Figure 3.2 updated with the new decryption oracle.

Definition 3.3.1 (Indistinguishability against Chosen-Ciphertext Attacks). For an inner-
product functional encryption scheme FE = (Setup,KeyDer,Encrypt,Decrypt) defined over
R, we define security against chosen-ciphertext attacks (IND-IPFE-CCA security) via the
security game depicted on Figure 3.7: we define the advantage of an adversary A to be

Advind-ipfe-cca
FE,κ (A ) =

∣∣∣2 · Pr[Expind-ipfe-cca-b
FE,κ (A ) = 1]− 1

∣∣∣ .
Then we say that FE is secure against chosen-ciphertext attacks (IND-IPFE-CCA secure) if
Advind-ipfe-cca

FE,κ (A ) is negligible for all probabilistic polynomial time A .

As in the case of IND-IPFE-CPA security, we only consider the case of a single challenge
vector pair (x∗0,x∗1). This is without loss of generality, because the same hybrid argument
proves security in the case of multiple challenge.

Remark 3.3.2. As in the case of public key encryption, if an inner-product functional en-
cryption scheme is additively homomorphic as in Definition 3.2.3, it cannot be IND-IPFE-CCA
secure. This is because one can always add an encryption of 0 to change the ciphertext
without changing the plaintext and submit this new ciphertext to the decryption oracle.

3.3.1 Tag-Based Inner-Product Functional Encryption
Tags are a really useful tool to construct schemes secure against active adversaries. The
reason is that this tag can be anything from a hash value to verification keys for signature
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Game Expind-ipfe-cca-b
FE,κ (A )

proc Initialize(κ, `)
(pp,msk,mpk) $← Setup(1κ, 1`)
Vy ← ∅
Vct ← ∅
Return (pp,mpk)
proc Dec(ct,y)
Vct ← Vct ∪ {ct}
sky

$← KeyDer(pp,msk,y)
m← Decrypt(pp, sky, ct)
return m

proc KeyDer(y)
Vy ← Vy ∪ {y}
sky

$← KeyDer(pp,msk,y)
Return sky

proc Encrypt(x∗0,x∗1)
ct∗ $← Encrypt(pp,mpk,xb)
Return ct∗

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Figure 3.7: Game Expind-ipfe-cca-b
FE,κ (A ) defines IND-IPFE-CCA security of FE . The event bad

corresponds to ∃y ∈ Vy, 〈x∗0,y〉 6= 〈x∗1,y〉 ∨ ct∗ ∈ Vct .

schemes. This allows the scheme to be protected against an adversary trying to tamper
with the ciphertexts. The security in a tag-based scheme is only required as long as tags are
differents. This allows for easier analysis and more elegant proofs. A very speaking example is
the original IND-CCA secure scheme of Cramer and Shoup [CS98], which use hashes of parts
of the ciphertext as tags in order to ensure its authenticity. Our definition is an adaptation
from the concept of tag-based encryption in [MRY04].

Basically, tags are bitstrings that we will denote τ and which will be added as inputs to
Encrypt and Decrypt. We denote the set of all possible tags T and assume that it is easy
to sample one at random. In order to preserve correctness, the tag τ used to decrypt a
ciphertext should match the one that has been used to encrypt it.

Definition 3.3.3 (Tag-Based Inner-Product Functional Encryption). Formally, a tag-based
inner-product functional encryption (TBIPFE) scheme T BFE is defined with regard to a
some ring R, and consists of 4 probabilistic polynomial time algorithms:

• Setup(1κ, 1`) 7→ (pp,msk,mpk). On input security parameter κ and functionality
parameter ` outputs public parameters pp, master secret key msk, and master public
key mpk;

• KeyDer(pp,msk,y) 7→ sky. On input public parameter pp, master secret key msk, and
key y ∈ R`, outputs user secret key sky;

• Encrypt(pp, τ,mpk,x) 7→ ctx. On input public parameter pp, master public key mpk,
and plaintext x ∈ R`, outputs ciphertext ctx;

• Decrypt(pp, τ, sky, ctx) 7→ m or ⊥. On input public parameters pp, user secret key sky,
and ciphertext ctx, outputs a message m ∈ R or an error symbol ⊥.
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Correctness. As in the case of standard inner-product functional encryption, we allow the
Decrypt algorithm to output ⊥ if 〈x,y〉 is outside of a polynomial sized set P fixed at setup.
We also denote the plaintext space Mx and the key space My, and they may be smaller
than the full ring R. Hence the following correctness property:
A tag-based inner-product functional encryption scheme is correct if for any tag τ , for
any x ∈ Mx,y ∈ My, (pp,msk,mpk) $← Setup(1κ, 1`), sky

$← KeyDer(pp,msk,y), ctx
$←

Encrypt(pp, τ,mpk,x). Then if 〈x,y〉 ∈ P, it holds that Decrypt(pp, τ, sky, ctx) = 〈x,y〉.
We also define IND-TBIPFE-CCA security for TBIPFE schemes, which is similar, but the

decryption oracle only allows queries that don’t have the same tag as the challenge ciphertext.

Definition 3.3.4 (Indistinguishability against Chosen-Ciphertext Attacks). For a tag-based
inner-product functional encryption scheme T BFE = (Setup,KeyDer,Encrypt,Decrypt) de-
fined over R, we define security against chosen-ciphertext attacks (IND-TBIPFE-CCA security)
via the security game depicted on Figure 3.8: we define the advantage of an adversary A to
be

Advind-tbipfe-cca
T BFE,κ (A ) =

∣∣∣2 · Pr[Expind-tbipfe-cca-b
T BFE,κ (A ) = 1]− 1

∣∣∣ .
Then we say that FE is secure against chosen-ciphertext attacks (IND-TBIPFE-CCA secure)
if Advind-tbipfe-cca

T BFE,κ (A ) is negligible for all probabilistic polynomial time A .

Game Expind-tbipfe-cca-b
T BFE,κ (A )

proc Initialize(κ, `, τ∗)
(pp,msk,mpk) $← Setup(1κ, 1`)
Vy ← ∅
Vct ← ∅
Return (pp,mpk)
proc Dec(τ, ct,y)
Vτ ← Vτ ∪ {τ}
sky

$← KeyDer(pp,msk,y)
m← Decrypt(pp, τ, sky, ct)
return m

proc KeyDer(y)
Vy ← Vy ∪ {y}
sky

$← KeyDer(pp,msk,y)
Return sky

proc Encrypt(x∗0,x∗1)
ct∗ $← Encrypt(pp, τ∗,mpk,xb)
Return ct∗

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Figure 3.8: Game Expind-tbipfe-cca-b
T BFE,κ (A ) defines IND-TBIPFE-CCA security of T BFE . The

event bad corresponds to ∃y ∈ Vy, 〈x∗0,y〉 6= 〈x∗1,y〉 ∨ τ∗ ∈ Vτ .

3.3.2 Removing the Tag

In order to get a IND-IPFE-CCA secure inner-product functional encryption scheme from a tag-
based one, we use a standard technique following the work of [Kil06] to transform tag-based
PKE schemes to IND-CCA secure PKE schemes. The tag is the hash of a fresh verification
key for a one-time signature scheme, used to sign the ciphertext. This signature prevents
attacks using the malleability of the scheme. This way, if the tag is reused, the ciphertext



Ch
ap

te
r3

3.4 Function Hiding 31

cannot be signed, and if the tag isn’t reused, the security is guaranteed by the security of the
tag-based IPFE. In order to transform our tag-based inner-product functional encryption
into a tagless inner-product functional encryption and preserve the security properties, we
are going to need: a strongly unforgeable one-time signature (see Definitions 2.2.1 and 2.2.2),
as well as a collision resistant hash function (see Definition 2.2.3). We now proceed with our
inner-product functional encryption construction.

Construction 3.3.5 (Inner-Product Functional Encryption secure against Chosen-Cipher-
text Attacks). Let us assume the existence of a tag-based inner-product functional encryption
scheme T BFE = (T BFE .Setup, T BFE .KeyDer, T BFE .Encrypt, T BFE .Decrypt), a strongly
unforgeable one-time signature OT S and a family of collision resistant hash functions (Hk)k∈K.
We define our secret key inner-product functional encryption scheme FE as follows:

• Setup(1κ, 1`) 7→ (pp,msk,mpk). On input security parameter κ and functionality
parameter `, samples (pp,msk,mpk) $← T BFE .Setup(1κ, 1`), a key k $← K, and outputs
public parameters pp′ = (pp, k), master secret key msk, and master public key mpk;

• KeyDer(pp′,msk,y) 7→ sky. On input public parameter pp, master secret key msk, and
key y ∈ R`, samples sky

$← T BFE .KeyDer(pp,msk,y) and outputs user secret key sky;

• Encrypt(pp′,mpk,x) 7→ ctx. On input public parameter pp, master public key mpk, and
plaintext x ∈ R`, samples (sk, vk) $← OT S.Setup(1κ), τ ← Hk(vk),
ctx

$← T BFE .Encrypt(pp, τ,mpk,x), and σ $← OT S.Sign(sk, ctx) and outputs cipher-
text ctx

′ = (ctx, vk, σ);

• Decrypt(pp′, sky, ctx
′) 7→ m or ⊥. On input public parameters pp, user secret key sky,

and ciphertext ctx
′, verifies that OT S.Verify(vk, ctx) and returns ⊥ if it fails. Otherwise,

computes τ ← Hk(vk) and m← FE .Decrypt(pp, τ, sky, ctx) and outputs message m.

Correctness. The correctness of FE directly follows from the correctness of T BFE and the
completeness of OT S.
Security. We have the following security theorem.

Theorem 3.3.6. Let T BFE, OT S, (Hk)k∈K, and FE be defined as in Construction 3.3.5.
If T BFE is IND-TBIPFE-CCA secure, OT S is strongly unforgeable, and (Hk)k∈K is collision
resistant, then FE is IND-IPFE-CCA secure.

Proof. If for any decryption query (y, (ctx, vk, σ)) made by the adversary A , H(vk) = H(vk∗)
for the challenge vk∗, and the check OT S.Verify(vk, ctx, σ) passes. Then either A found a
collision of the hash function (if vk 6= vk∗), or it did a forgery σ for the message ctx. Otherwise,
the security game of IND-TBIPFE-CCA security for T BFE ensures that the advantage of A
is negligible.

3.4 Function Hiding
Although inner-product functional encryption provides the best possible security for the
plaintext vector x, it doesn’t protect the key vector y at all. This however might be desirable
for many applications. For example, it prevents an adversary with many keys to learn the
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plaintext vector if it doesn’t know the actual key vectors associated with its user secret
keys. We call this property function hiding. In the following, we show that this property
cannot be met in the public key setting, because the adversary can learn the key vectors
by encrypting many different plaintexts and decrypting them with its keys. This is why
many works have studied the function hiding property in the secret key setting. Function
hiding has been previously studied in the case of functional encryption for larger class of
functions [BS15], where it is easy to use the functionality provided by the scheme in order to
hide the computation allowed by the key. In the particular case of inner-product functional
encryption, the first scheme was proposed by [BJK15], but was only reaching a weak form of
function hiding. This was later improved to reach the best possible security we can hope
for [DDM16; TAO16; KLM+16; KKS17]. All these constructions use the same underlying
ideas and require the use of pairings. In this work, we relax a bit the definition of function
hiding property to show what we can achieve with modular IPFE schemes without additional
assumptions, and show that it implies the standard function hiding security property if the
adversary only has access to a bounded number of key queries.

3.4.1 Function Hiding in the Public Key Setting
In this section, we first define the function hiding property in the public key setting be-
fore showing its impossibility. The intuition behind the definition is that we adapt the
IND-IPFE-CPA security experiment, but now the KeyDer procedure takes 2 inputs y0 and
y1, and it returns KeyDer(pp,msk,yb). Notice that the hidden bit is shared with the Encrypt
procedure.

Definition 3.4.1 (Function Hiding). For an inner-product functional encryption scheme
FE = (Setup,KeyDer,Encrypt,Decrypt) defined over R, we define function hiding via the
security game depicted on Figure 3.9: we define the advantage of an adversary A to be

Advfunction-hiding-ipfe
FE,κ (A ) =

∣∣∣2 · Pr[Expfunction-hiding-ipfe-b
FE,κ (A ) = 1]− 1

∣∣∣ .
Then we say that FE is function hiding if Advfunction-hiding-ipfe

FE,κ (A ) is negligible for all proba-
bilistic polynomial time A .

As usual, the event bad aims at removing queries that allows A to distinguish trivially
between b = 0 and b = 1. However, in this case, it won’t be enough, because the restriction
is only on the inputs to Encrypt, and A can computes Encrypt directly using mpk.

Theorem 3.4.2. No public key inner-product functional encryption scheme is function
hiding.

Proof. We exhibit an adversary A that guesses correctly b for any IPFE FE = (Setup,
KeyDer,Encrypt,Decrypt):

• A calls Initialize (κ, 1) to receive pp and mpk.

• A calls KeyDer(0, 1) to receive sk.

• A computes ct $← Encrypt(pp,mpk, 1) and learns b = Decrypt(pp, ct, sk).

Notice that A didn’t trigger bad because Vx is empty. So A completely breaks the function
hiding of FE .
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Game Expfunction-hiding-ipfe-b
FE,κ (A )

proc Initialize(κ, `)
(pp,msk,mpk) $← Setup(1κ, 1`)
Vy ← ∅
Vx ← ∅
Return (pp,mpk)
proc KeyDer(y0,y1)
Vy ← Vy ∪ {(y0,y1)}
sk $← KeyDer(pp,msk,yb)
Return sk

proc Encrypt(x0,x1)
Vx ← Vx ∪ {(x0,x1)}
ct $← Encrypt(pp,mpk,xb)
Return ct

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Figure 3.9: Game Expfunction-hiding-ipfe-b
FE,κ (A ) defines function hiding of FE . The event bad

corresponds to ∃(y0,y1) ∈ Vy, ∃(x0,x1) ∈ Vx, 〈x0,y0〉 6= 〈x1,y1〉.

Due to this impossibility result, in order to continue our discussion on function hiding, we
are forced to switch to the context of secret key inner-product funtional encryption.

3.4.2 Secret Key Inner-Product Functional Encryption

This setting is almost the same as the standard IPFE setting we discussed previously, the
only difference being that mpk doesn’t exist anymore, and Encrypt takes as input msk instead.
We start this section by the formal definition of secret key IPFE and the security model of
function hiding, before comparing this new tool with standard modular IPFE.

Definition 3.4.3 (Secret Key Inner-Product Functional Encryption). Formally, a secret
key inner-product functional encryption (secret key IPFE) scheme FE is defined with regard
to a some ring R, and consists of 4 probabilistic polynomial time algorithms:

• Setup(1κ, 1`) 7→ (pp,msk). On input security parameter κ and functionality parameter
` outputs public parameters pp and master secret key msk;

• KeyDer(pp,msk,y) 7→ sky. On input public parameter pp, master secret key msk, and
key y ∈ R`, outputs user secret key sky;

• Encrypt(pp,msk,x) 7→ ctx. On input public parameter pp, master secret key msk, and
plaintext x ∈ R`, outputs ciphertext ctx;

• Decrypt(pp, sky, ctx) 7→ m or ⊥. On input public parameters pp, user secret key sky,
and ciphertext ctx, outputs a message m ∈ R or an error symbol ⊥.

Correctness. As in the public key setting, we allow the Decrypt algorithm to output ⊥ if
〈x,y〉 is outside of a polynomial sized set P fixed at setup. We also denote the plaintext
spaceMx and the key spaceMy, and they may be smaller than the full ring R. Hence the
following correctness property:
An IPFE scheme is correct if for any x ∈ Mx,y ∈ My, (pp,msk) $← Setup(1κ, 1`),
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sky
$← KeyDer(pp,msk,y), ctx

$← Encrypt(pp,msk,x). Then if 〈x,y〉 ∈ P, it holds that
Decrypt(pp, sky, ctx) = 〈x,y〉.
Note that any IPFE scheme can be seen as a secret key IPFE scheme, by merging the

master public key and the master secret key, but not the other way around. The security that
we require for secret key IPFE is also stronger than what we ask in the public key setting.
For example, we cannot just prove security for one challenge message because the hybrid
argument presented in Section 3.1.2 doesn’t hold anymore. Hence the following function
hiding definition, which is similar to the one in the public key setting:

Definition 3.4.4 (Function Hiding). For a secret key inner-product functional encryption
scheme FE = (Setup,KeyDer,Encrypt,Decrypt) defined over R, we define function hiding via
the security game depicted on Figure 3.10: we define the advantage of an adversary A to be

Advfunction-hiding-ipfe
FE,κ (A ) =

∣∣∣2 · Pr[Expfunction-hiding-ipfe-b
FE,κ (A ) = 1]− 1

∣∣∣ .
Then we say that FE is function hiding if Advfunction-hiding-ipfe

FE,κ (A ) is negligible for all proba-
bilistic polynomial time A .

Game Expfunction-hiding-ipfe-b
FE,κ (A )

proc Initialize(κ, `)
(pp,msk) $← Setup(1κ, 1`)
Vy ← ∅
Vx ← ∅
Return pp
proc KeyDer(y0,y1)
Vy ← Vy ∪ {(y0,y1)}
sk $← KeyDer(pp,msk,yb)
Return sk

proc Encrypt(x0,x1)
Vx ← Vx ∪ {(x0,x1)}
ct $← Encrypt(pp,msk,xb)
Return ct

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Figure 3.10: Game Expfunction-hiding-ipfe-b
FE,κ (A ) defines function hiding of FE . The event bad

corresponds to ∃(y0,y1) ∈ Vy, ∃(x0,x1) ∈ Vx, 〈x0,y0〉 6= 〈x1,y1〉.

Remark 3.4.5. If a secret key IPFE scheme FE = (Setup,KeyDer,Encrypt,Decrypt) is
function hiding, then its dual FE ′ = (Setup,Encrypt,KeyDer,Decrypt), obtained by switching
plaintexts and keys is also function hiding, because of the symmetry in the definition. This
implies that FE ′ is IND-IPFE-CPA secure, which is a really strong property. In most appli-
cations, fewer user secret keys than ciphertexts are used, so the user secret keys shouldn’t
need the same security as the one provided to ciphertexts. It is with this idea in mind that we
now define the partial function hiding property, which means that the leakage obtained when
getting multiple user secret keys is equivalent to the linear relations between the keys.

3.4.3 Partial Function Hiding
For the remainder of this section, we will be focusing on secret key modular IPFE, that is
the case where R = Zp for some prime number p. Note that all known constructions of
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function hiding IPFE are modular (for small message space). As explained previously, we feel
that some applications don’t need as strong a security for secret keys as the function hiding
property. Notice that only learning the linear equations that the keys satisfy don’t allow the
adversary to learn the plaintext vector x of a ciphertext ctx even given user secret keys for `
independent unknown vectors (yi)i∈[`]. This is because in this scenario, the adversary only
learns x up to a change of basis, even if he has multiple ciphertexts.
Moreover, we observe that in some applications, no linearly dependent keys should be given,
or the linear combinations don’t really have a meaning. For example, if doing machine
learning using support vector machine, the elements are embeded as vectors x, and to classify
the elements, one simply separates them using another vector y: this separator defines two
sets S+ = {x : 〈x,y〉 ≥ 0} and S− = {x : 〈x,y〉 < 0}. In this case, adding two vectors y
doesn’t really have a meaning as a new separator. For example, if we have two separators
that learned to distinguish men from women, and children from adults, adding them doesn’t
give a separator that distinguishes young boys from grown up women.
We first give the formal definition of this security property, then we show how to obtain such
a security property from any public key modular IPFE, using an intermediate tool that we
call vector one-time pad, then we will show that partial function hiding implies full function
hiding against bounded collusions of adversaries.
We now define our notion of partial function hiding. The only difference with function

hiding resides in the definition of the event bad and thus, the set of queries the adversary is
allowed in the security game.

Definition 3.4.6 (Partial Function Hiding). For a secret key inner-product functional
encryption scheme FE = (Setup,KeyDer,Encrypt,Decrypt) defined over R, we define partial
function hiding via the security game depicted on Figure 3.11: we define the advantage of an
adversary A to be

Advpfh-ipfe
FE,κ (A ) =

∣∣∣2 · Pr[Exppfh-ipfe-b
FE,κ (A ) = 1]− 1

∣∣∣ .
Then we say that FE is partially function hiding if Advpfh-ipfe

FE,κ (A ) is negligible for all proba-
bilistic polynomial time A .

Notice that here we broke the symmetry between the secret keys and the ciphertexts. We
also show an equivalent definition of bad (the first part stays the same):

∃λ1, . . . , λj ∈ R, ∃(y1
0,y1

1), . . . , (yj0,y
j
1) ∈ Vy,

∑
k∈[j]

λkyk0 = 0 6=
∑
k∈[j]

λkyk1

⇐⇒ @M ∈ R`×` invertible s.t. ∀(y0,y1) ∈ Vy, y0 = My1

Remark 3.4.7. We note that any adversary A that triggers the event bad in this experiment
also triggers it in Expfunction-hiding-ipfe-b

FE,κ (A ). Thus, if a scheme is function hiding, then it is
also partially function hiding.

3.4.3.1 Vector One-Time Pad.

We now present our tool that we call Vector One-Time Pad. It is a toy secret key inner-
product functional encryption scheme that is secure as long as it is used only for one key and
one plaintext, like the well known one-time pad that is the way to information theoretically
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Game Exppfh-ipfe-b
FE,κ (A )

proc Initialize(κ, `)
(pp,msk) $← Setup(1κ, 1`)
Vy ← ∅
Vx ← ∅
Return pp
proc KeyDer(y0,y1)
Vy ← Vy ∪ {(y0,y1)}
sk $← KeyDer(pp,msk,yb)
Return sk

proc Encrypt(x0,x1)
Vx ← Vx ∪ {(x0,x1)}
ct $← Encrypt(pp,msk,xb)
Return ct

proc Finalize(b’)
if bad

then return false
Return (b′ = b)

Figure 3.11: Game Exppfh-ipfe-b
FE,κ (A ) defines function hiding of FE . The event bad corre-

sponds to ∃(y0,y1) ∈ Vy, ∃(x0,x1) ∈ Vx, 〈x0,y0〉 6= 〈x1,y1〉 ∨ ∃λ1, . . . , λj ∈
R, ∃(y1

0,y1
1), . . . , (yj0,y

j
1) ∈ Vy,

∑
k∈[j] λkyk0 = 0 6= ∑

k∈[j] λkyk1 .

hide a message with a key of same length. Here, the idea is to translate it to vectors by
multiplying the plaintext vector by a random invertible matrix B. Then, the key will be
multiplied by the transpose of the inverse B−t of B. Thus, these new vectors will totally hide
the plaintext and the key, while their inner-product will keep the same value. Now, looking
more closely at this scheme, the leakage coming from reusing the same matrix B for multiple
plaintexts (xi) will be exactly the linear relations between those vectors. And the same can
be said about the key vectors. So the total leakage is the linear relations between plaintexts
and keys, as well as the inner-product values between each pair of plaintext and key.

Construction 3.4.8 (Vector One-Time-Pad). We define our functional encryption scheme
for the inner-product functionality VOT P = (Setup,KeyDer,Encrypt,Decrypt) as follows:

• Setup(1κ, 1`) 7→ (pp,msk). On input security parameter κ and functionality parameter
`, samples a random invertible matrix B ∈ Z`p outputs public parameters pp = (p, `)
and master secret key msk = B;

• KeyDer(pp,msk,y) 7→ sky. On input public parameter pp, master secret key msk = B,
and key y ∈ Z`p, outputs user secret key sky = B−ty;

• Encrypt(pp,msk,x) 7→ ctx. On input public parameter pp, master secret key msk = B,
and plaintext x ∈ Z`p, outputs ciphertext ctx = Bx;

• Decrypt(pp, sky, ctx) 7→ m or ⊥. On input public parameters pp, user secret key sky,
and ciphertext ctx, outputs 〈ctx, sky〉.

Correctness. For any κ ∈ Z, ` ∈ Z, y ∈ Z`p, x ∈ Z`p, let (pp,msk) $← Setup(1κ, 1`),
sky ← KeyDer(pp,msk,y), ctx ← Encrypt(pp,msk,x). We have:

〈ctx, sky〉 = ctx
tsky = xtBtB−ty = 〈x,y〉.
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Remark 3.4.9. All known function hiding IPFE use the same underlying idea of using a
random invertible matrix to rerandomize plaintexts and keys. They do so by putting this
new vector in the exponent in a group where the discrete logarithm is hard to compute, thus
needing a pairing to compute the inner-product. This technique is also called dual pairing
vector spaces [OT08; OT09] This means that at the end of the decryption, a discrete logarithm
has to be computed. The plaintext space and the key space should be restricted because of this,
but it seems that this is inherent to all constructions based on the discrete logarithm problem.
Our way to proceed is to encrypt the resulting vectors with any modular IPFE, thus it could
be used with IPFE schemes that supports bigger message spaces. For example the schemes in
[ALS16] based on the DCR and LWE assumptions with stateful key derivations algorithms.
This is one of the reasons that makes this variant of function hiding appealing.

3.4.3.2 Generic Construction from Public Key Inner-Product Functional Encryption

We now present our generic construction from public key IPFE to partially function hiding
secret key IPFE. The partial function hiding property of the resulting scheme will be inherited
from the IND-IPFE-CPA security of the building block, and from the perfect security of the
vector one-time pad.

Construction 3.4.10 (Inner-Product Functional Encryption Partially Function Hiding). Let
us assume the existence of a modular IPFE scheme FE = (FE .Setup,FE .KeyDer,FE .Encrypt,
FE .Decrypt). We define our secret key IPFE scheme FE ′ as follows:

• Setup(1κ, 1`) 7→ (pp′,msk ′). On input security parameter κ and functionality pa-
rameter `, samples (pp,msk,mpk) $← FE .Setup(1κ, 1`), and a random invertible ma-
trix B

$← R`×`, and outputs public parameters pp′ = pp and master secret key
msk ′ = (mpk,msk,B);

• KeyDer(pp′,msk ′,y) 7→ sky
′. On input public parameter pp′, master secret key msk ′,

and key y ∈ R`, samples sky
$← FE .KeyDer(pp,msk,B−ty) and outputs user secret key

sky
′ = sky;

• Encrypt(pp′,msk ′,x) 7→ ctx
′. On input public parameter pp′, master secret key msk ′,

and plaintext x ∈ R`, samples ctx
$← FE .Encrypt(pp,mpk,Bx) and outputs ciphertext

ctx
′ = ctx;

• Decrypt(pp′, sky
′, ctx

′) 7→ m or ⊥. On input public parameters pp′, user secret key sky
′,

and ciphertext ctx
′, computes m← FE .Decrypt(pp, sky, ctx) and outputs message m.

Correctness. The correctness of FE ′ directly follows from the correctness of FE , because

〈Bx,B−ty〉 = xtBtB−ty = 〈x,y〉.

Security. If FE is IND-IPFE-CPA secure, then FE ′ is partially function hiding. More
precisely, we have the following theorem.
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Theorem 3.4.11. Let FE and FE ′ be defined as in Construction 3.4.10. If FE is
IND-IPFE-CPA secure, then FE ′ is partially function hiding. More precisely, for any adversary
A , there exists and adversary B which runs in roughly the same time as A and such that:

Advind-ipfe-cpa
FE,κ (B) = Advpfh-ipfe

FE ′,κ (A )

Proof. Unless the event bad is triggered by A , there exists an invertible matrix M ∈ R`×` such
that y0 = My1 for all key queries (y0,y1). Because the distribution of B is uniform, we can
multiply it by any invertible matrix without changing the view of the adversary. In particular,
B can take A ’s queries {(x0,x1)} and {(y0,y1)} and replace them by {Bx0,BM−tx1} and
{B−ty0 = B−tMy1} and use those queries in Expind-ipfe-cpa-b

FE,κ (B). The equality between their
advantages follow.

3.4.3.3 Function Hiding against Bounded Collusion.

In this section, we will compare our weakening on the function hiding with another intuitive
weakening: function hiding against bounded collusions. We show that any partially function
hiding IPFE scheme can be used to construct an IPFE scheme function hiding against
bounded collusion for any bound qy on the user secret key queries made by the adversary.
The idea is to concatenate a random vector at the end of each key vector before deriving the
user secret key. We also append zeros to each plaintext vector so that the inner-product will
cancel the uniform parts of the key. Those uniform vectors with correctly chosen length will be
linearly independent with high probability, in which case the event bad won’t be triggered, and
we can use the advarsary breaking the function hiding against bounded collusions property
in order to break the partial function hiding property.
We let PH denote a partial function hiding IPFE. We also let qy be a parameter that will be
used as a bound on the secret key queries.

Construction 3.4.12 (Inner-Product Functional Encryption Function Hiding against
Bounded Collusions). Let us assume the existence of a modular secret key IPFE scheme
FE = (FE .Setup,FE .KeyDer,FE .Encrypt,FE .Decrypt). We define a new secret key IPFE
scheme FE ′ as follows:

• Setup(1κ, 1`, 1qy) 7→ (pp,msk). On input security parameter κ and functionality param-
eter `, samples (pp,msk) $← FE .Setup(1κ, 1`+qy+1), and outputs public parameters pp
and master secret key msk;

• KeyDer(pp,msk,y) 7→ sky. On input public parameter pp, master secret key msk, and
key y ∈ R`, samples a random vector r $← Rqy+1, and sky

$← FE .KeyDer(pp,msk,
(y|r)), and outputs user secret key sky;

• Encrypt(pp,msk,x) 7→ ctx. On input public parameter pp, master secret key msk, and
plaintext x ∈ R`, samples ctx

$← FE .Encrypt(pp,msk, (x|0)) and outputs ciphertext
ctx;

• Decrypt(pp, sky, ctx) 7→ m or ⊥. On input public parameters pp, user secret key sky,
and ciphertext ctx, outputs FE .Decrypt(pp1, sky, ctx).
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Correctness. The correctness of FE ′ follows the one of FE by construction: for any
κ ∈ Z, ` ∈ Z, y ∈ R`, x ∈ R`, let (pp,msk) $← Setup(1κ, 1`), sky

$← KeyDer(pp,msk,y),
ctx

$← Encrypt(pp,msk,x). We have:

Decrypt(pp, sky, ctx) = FE .Decrypt(pp, sky, ctx) = 〈(x|0), (y|r)〉 = 〈x,y〉.

Security. We have the following security theorem:

Theorem 3.4.13. Let FE and FE ′ be defined as in Construction 3.4.12. If FE is partially
function hiding, then FE ′ is function hiding against bounded collusions. More precisely, for
any adversary A that makes at most qy queries to KeyDer, there exists an adversary B
which runs in roughly the same time as A and such that:

Advpfh-ipfe
FE,κ (B) = (1− 1

p
) · Advfunction-hiding-ipfe

FE ′,κ (A ).

We recall that p is the order of the message space.

Proof. Since the games are exactly the same, except the allowed queries, we only need to
look at the probabilities of the two events bad in Exppfh-ipfe-b

FE,κ (B) and Expfunction-hiding-ipfe-b
FE ′,κ (A )

that we will denote badFE and badFE ′ It is easy to see that if A triggers bad, then B also
does. That is, if a query is forbidden in the function hiding security game, then it is also
forbidden in the partial function hiding security game. We now assume without loss of
generality that A makes qy queries. Using an union bound, we can get the following bound
on the probability Pfail = 1− Pind that the vectors (ri)i∈[qy ] are linearly dependent:

Pfail ≤
qy∑
i=0

pi

pqy+1 ≤
1

pqy+1 ·
1− pqy
1− p ≤

1
p

Thus,
Pr[badFE ′ ] ≤ (1− 1

p
) · Pr[badFE ],

and the adversary B has advantage (1− 1
p) · Advfunction-hiding-ipfe

FE ′,κ (A ) against the security of
FE ′.

Remark 3.4.14. Even though we only look at bounded collusions, if an adversary makes
more queries, the IND-IPFE-CPA security will still protect the plaintexts, and the scheme will
still be partially function hiding. That is because we are using directly the previous scheme
that has these security properties against unbounded collusions that we inherit.
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Chapter 4
Generic Construction from Public Key
Encryption
The goal of this chapter is to generically build an inner-product functional encryption scheme
FE from a basic public key encryption scheme E . It combines the generic construction we
have done in [ABDP15b] and [ABCP16].
We start by explaining the ideas behind the construction, and the proof of security.
Afterwards, we will define additional properties that the public key encryption scheme must
have in order to continue with our construction: structural properties, but also homomorphic
properties and security properties.
Then, we construct s-IND-IPFE-CPA secure inner-product functional encryption, and prove
its correctness and security using the properties of E .
Finally, we construct directly IND-IPFE-CPA secure schemes without requiring the generic
techniques presented in Section 3.2.1, thus having a tighter reduction to the underlying
assumption, and we explain the downside of this construction: it requires bigger parameters,
which makes it slower, and sometimes rely on a stronger assumption, depending on the
underlying scheme.
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4.1 Overview

Before going into more details, we first give a high-level overview of the intuition behind
the construction, and the ideas behind the proof of security for the simpler s-IND-IPFE-CPA
security, as well as how to reach full IND-IPFE-CPA security.

Overview of the Construction. In order to build an inner-product functional encryption
scheme, the first observation is the following: in order to compute an inner-product between
two vectors x and y and knowing y, it is enough to do a weighted sum of the coordinates of
x. So intuitively, if x is encrypted with a homomorphically additive scheme, we could derive
an encryption of 〈x,y〉 using this property.
However, this is not enough for our purpose, because we need to give a key that decrypts this
new ciphertext. Moreover, we don’t want this key to allow decryption of any other ciphertext.
So, we need this additive homomorphism to change the secret key at the same time as
the plaintext. Usually, when dealing with additively homomorphic public key encryption
schemes, adding the ciphertexts usually adds up the plaintext as well as the randomness used
for encryption, which is good because usually, we want the key to stay the same, and the
randomness doesn’t really matter. Here we are going to use a dual approach: we will see the
randomness used to encrypt as a secret key, and the secret key as the encryption randomness.
So in the end, we encrypt each coordinate of the vector x under the same randomness, and
a different key. This will ensure that when adding the different parts of the ciphertext to
compute 〈x,y〉, the key will also be changed to 〈sk,y〉.

Selective Security. The trick that makes this construction secure against collusion is that
the leakage of information about the secret key is exactly the same as the leakage produced
by the functionality, so combining user secret keys yields exactly the same result as combining
results once decrypted. In fact, this means that our scheme supports key delegation as per
Definition 3.2.8.
The fact that our scheme allows to delegate user secret keys is very useful in order to prove
its selective security. Once the challenge vectors x∗0 and x∗1 are set, the adversary is only
allowed key queries y in the set (x∗1 − x∗0)⊥. This is crucial in the proof, because then all key
queries can be simulated only knowing a basis of this set, which is either a vector space in
the case of R = Zq, or a lattice in the case of R = Z. Then it is left to show that we can
simulate all the adversary’s view only using a challenge public key and ciphertext from the
public key encryption, plus the user secret keys for (x∗1 − x∗0)⊥.

Adaptive Security. In order to reach full adaptive security for our schemes, we use the
technique described in Section 3.2.1. However, this doesn’t directly apply to non-modular
IPFE schemes. In order to reach IND-IPFE-CPA security for all IPFE schemes, we use the
same technique of sampling a random vector t to hide the message which will be stored in
the master secret key. The downside is that we cannot use a uniform vector t in R` to mask
the plaintext x, so we have to sample t in a set superpolynomially bigger thanMx in order
to statistically hide x.
The underlying idea behind this transformation is to use a specific challenge message in the
proof: (t, 0) against (0, 0). In order for the proof to follow, we just require x + t to hide x,
Hence the choice ofMt.
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4.2 Additional Properties of Public Key Encryption

Even if our generic constructions can be instantiated using many known public key encryption
schemes, it doesn’t work with all of them. We require a few additional properties, structural
and homomorphic properties for the correctness of the inner-product functional encryption
as well as security properties in order to protect the vector against collusions.

4.2.1 Structural Properties

We now define the structure that we need on E , its secret and public keys, its plaintexts and
ciphertexts, and its Setup algorithm. These structural properties are mostly rewriting to
explicit the randomness sampled by the algorithms in order to present the homomorphic
properties we require more easily. The parameter τ that we introduce in the Setup algorithm
is useful for schemes that allows multiple public keys to correspond to the same underlying
secret key. For example, it will be useful for schemes based on the learning with error
assumption that we will use in Chapter 8, where the public key is noisy: a small error is
added to the correct computation to prevent adversaries to revert the secret key to public
key computation. In this case, τ could be the parameters that sets this error distribution.

• The secret keys are elements of a group (G,+, 0G), for which we use an additive
notation. We note that this group doesn’t have to be public, as our proof only requires
the operation + to be publicly available and efficiently computable.

• The public keys are elements of a group (H, ·, 1H), for which we use a multiplicative
notation.

• The message space is R or a subset of it. We require that the order of R is greater
than ‖x1 − x0‖2 for all (x0,x1) ∈M2

x.

• The ciphertexts can be splitted in two parts:
1. The first part ct0 corresponds to some commitment C(r) of the randomness r used

for the encryption.
2. The second part ct1 is the encryption E(pk, x; r) of the message x under public

key pk and randomness r. We require that this part is an element of a group
(I, ·, 1I) for which we use the multiplicative notation.

• The Setup can also be splitted in two parts:
1. SKGen(1κ) 7→ sk. On input the security parameter κ samples and returns a secret

key sk from the secret key space according to the same distribution induced by
Setup.

2. PKGen(sk, τ) 7→ pk. On input a secret key sk and parameters τ , generates a public
key pk corresponding to sk according to the distribution induced by τ . We will
omit τ when it is clear from the context.

Now that we defined the structure of E , we can define the homomorphic properties that we
will use in order to prove the correctness of our inner-product functional encryption scheme.
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4.2.2 Homomorphic Properties
In order for the decryption to be correct, we require two homomorphic properties. One on
the public and secret keys of the scheme, as well as one on the second part of the ciphertexts
E. The first one more or less states that PKGen is a group homomorphism from G to H. This
would be exact if the parameter τ wasn’t there. Instead, it states that a linear combination of
secret keys is functional with regard to the same linear combination of corresponding public
keys.

Definition 4.2.1 (Linear Key Homomorphism.). We say that a PKE has linear key homo-
morphism (LKH, for short) if the following is true: for any two secret keys sk1, sk2 ∈ G
and any y1, y2 ∈ Z, the component-wise G-linear combination formed by y1sk1 + y2sk2 can
be computed efficiently only using public parameters, the secret keys sk1 and sk2 and the
coefficients y1 and y2.
Moreover, this combination y1sk1 + y2sk2 also functions as a secret key for a public key that
can be computed as pky1

1 · pky2
2 , where pk1 (resp. pk2) is a public key corresponding to sk1

(resp. sk2): ∀x ∈Mx, (sk1, pk1), (sk2, pk2) $← Setup(1`), y1, y2 ∈ Z,

Decrypt(y1sk1 + y2sk2,Encrypt(pky1
1 · pky2

2 , x)) = x.

The second homomorphic property that we need for the correctness of our construction
states that the second part E of the Encrypt algorithm is a group homomorphism from
G×R to I for a fixed randomness r. That is, when multiplying two encryptions with same
randomness, both the plaintexts and the public key undergo the same linear combination.

Definition 4.2.2 (Linear Ciphertext Homomorphism under Shared Randomness.). We say
that a PKE has linear ciphertext homomorphism under shared randomness (LCH, for short)
if for any plaintexts x1, x2 ∈ Mx, any public keys pk1, pk2 ∈ H, and any randomness r, it
holds that

E(pk1, x1; r) · E(pk2, x2; r) = E(pk1 · pk2, x1 + x2; r).

Note the contrast with Definition 3.2.3: Here we fix the randomness, and both the public
key and message change: the public keys get multiplied whereas the messages get added. In
the previous case, the public key was fixed, while the messages were added. This is crucial
for the security of our scheme, because if we were not changing the public key, a secret key
allowing decryption would leak too much information about the plaintext. Our setting is
close to the one of multi-key fully homomorphic encryption [CM15; MW16; BP16; CO17],
which supports any computation on the ciphertexts, while the secret key used for decryption
changes during computation, or to the one of fully key-homomorphic ABE [BGG+14].

Remark 4.2.3. Combining both definitions, if a public key encryption scheme has both
linear key homomorphism and linear ciphertext homomorphism under shared randomness, it
is possible to encrypt two messages x1 and x2 using the same randomness and different public
keys pk1 and pk2 corresponding to sk1 and sk2, multiply the encryptions E(pk1, x1; r) and
E(pk2, x2; r) and decrypt it using sk1 + sk2 to recover x1 + x2. We note that the plaintexts
and the secret keys follow exactly the same computation.

We now move on to the definitions of the security properties we need beside s-IND-CPA
security for E . They closely follow the homomorphic properties defined previously, but are
not directly implied in the general case.
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4.2.3 Security Properties
In order to prove security of our inner-product functional encryption scheme, we need the
following two additional security properties on our public key encryption scheme. The first
one is closely related to the linear key homomorphism. Indeed, it states that it is hard to
distinguish between a public key that has been freshly generated by PKGen, and a key that
has been generated using the homomorphism described in Definition 4.2.1. Of course, for
noisy schemes such as lattice-based ones, the distribution will not exactly be the same, so we
allow the parameters τ used in the two different world to be different.

Definition 4.2.4 (`-Public-Key-Reproducibility.). For a public-key encryption scheme E we
define `-public-key-reproducibility via the security game depicted on Figure 4.1: we define
the advantage of an adversary A to be

Adv`-pk-rep
E,κ (A ) =

∣∣∣2 · Pr[Exp`-pk-rep-b
E,κ (A )]− 1

∣∣∣
Then, we say that E has `-public-key-reproducibility if there exists τ, τ ′, (τi)i∈[`] such that
Adv`-pk-rep

E,κ (A ) is negligible for all probabilistic polynomial time A .

Game Exp`-pk-rep-b
E,κ (A )

proc Initialize(κ,M)
(sk, (αi, ski)i∈[`])

$← D(1κ)
if b = 0

then (pki = E .PKGen(αisk + ski, τ))i∈[`]
else pk ← E .PKGen(sk, τ ′)

(pki ← pkαi · E .PKGen(ski, τi))i∈[`]
Return (pki, ski)i∈[`]

proc Finalize(b’)
Return (b′ = b)

Figure 4.1: Game Exp`-pk-rep-b
E,κ (A ) defines `-public-key-reproducibility of E . D samples tuples

of the form (sk, (αi, ski)i∈[`]) where sk and the ski’s are sampled from SKGen, and
the αi’s are inM.

The second additional security property on E is related to the linear ciphertext homo-
morphism under shared randomness. Basically, we want it to be hard for the adversary to
dinstinguish between a ciphertext generated by homomorphism, and a fresh ciphertext. But
in order to use the LCH property of Definition 4.2.2, we need to be able to generate second
parts of ciphertexts using only the first part C(r) of a ciphertext and secret keys sk.

Definition 4.2.5 (`-Ciphertext-Reproducibility.). For a public-key encryption scheme E we
define `-ciphertext-reproducibility via the security game depicted on Figure 4.2: we define
the advantage of an adversary A to be

Adv`-ct-rep
E,κ (A ) =

∣∣∣2 · Pr[Exp`-ct-rep-b
E,κ (A )]− 1

∣∣∣
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Then, we say that E has `-ciphertext-reproducibility if there exists τ ′, τi’s and algorithm E′
such that Adv`-ct-rep

E,κ (A ) is negligible for all probabilistic polynomial time A .

Game Exp`-ct-rep-b
E,κ (A )

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$← D(1κ)
(sk, pk) $← E .Setup(1κ)
(pki

$← E .PKGen(ski, τi))i∈[`]
ct0 ← E .C(r)
ct ← E .E(pk, a; r)
if b = 0

then cti ← ctαi · E .E(pki, xi; r)
else cti ← ctαi · E .E′(ski, xi, ct0, τi)

Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

Figure 4.2: Game Exp`-ct-rep-b
E,κ (A ) defines `-ciphertext-reproducibility of E . D samples tuples

of the form (a, (αi, xi, , ski)i∈[`]), where ski’s are sampled from SKGen, αi’s are
in M and a and the xi’s are in Mx. E′ is an algorithm that takes as input a
secret key in G, a message in R, a first part ciphertext C(r) for some r in the
randomness space, and the parameters needed to generate public keys, and output
a second part ciphertext.

We are now ready to show our construction of inner-product functional encryption.

4.3 Generic Selectively Secure Inner-Product Functional
Encryption

We will first define our IPFE scheme and show its correctness, then we start with a proof of
security in a simpler case, where the underlying public key encryption scheme has a property
that we call randomness reuse. And then we move on to the full proof of security.

4.3.1 Construction and Correctness

Our construction is very simple. The basic idea is to use ` independent key pairs to encrypt
individually the ` elements of the vector x, and use the homomorphic properties described in
Section 4.2.2 in order to compute and decrypt the inner-product with a given vector y.

Construction 4.3.1 (Selectively Secure Inner-Product Functional Encryption from Public
Key Encryption). Let E = (Setup,Encrypt,Decrypt) be a PKE scheme with the properties
defined previously, we define our inner-product functional encryption scheme FE = (Setup,
KeyDer,Encrypt,Decrypt) as follows.
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• Setup(1κ, 1`) 7→ (msk,mpk). On input security parameter κ and functionality parameter
`, generates ` independent key pairs

∀i ∈ [`], (ski, pki)
$← E .Setup(1κ)

sharing the same public parameters pp, and returns master secret key msk = (sk1,
. . . , sk`) and master public key mpk = (pk1, . . . , pk`);

• KeyDer(msk,y) 7→ sky. On input master secret key msk, and key y ∈ My, outputs
user secret key

sky ←
∑
i∈[`]

yiski;

• Encrypt(mpk,x) 7→ ctx. On input master public key mpk, and plaintext x ∈ Mx,
samples shared randomness r in the randomness space of E, and computes

ct0 ← E .C(r),
cti ← E .E(pki, xi; r),

and outputs ciphertext ctx = (ct0, (cti)i∈[`]);

• Decrypt(sky, ctx) 7→ m or ⊥. On input user secret key sky, and ciphertext ctx, returns
the output of

E .Decrypt(sky, (ct0,
∏
i∈[`]

ctyii )).

The correctness of our scheme directly follows from the homomorphic properties defined in
Section 4.2.2 and the correctness of the public key encryption scheme E .
Correctness. For all (mpk,msk) $← Setup(1κ, 1`), all y ∈ My and x ∈ Mx,
for sky

$← KeyDer(msk,y) and ct $← Encrypt(mpk,x), we have that

Decrypt(mpk, ct, sky) = E .Decrypt(sky, (ct0,
∏
i∈[`]

ctyii ))

= E .Decrypt(sky, (ct0,
∏
i∈[`]
E .E(pki, xi; r)yi))

= E .Decrypt(sky, (ct0, E .Encrypt(
∏
i∈[`]

pkyii ,
∑
i∈[`]

yixi; r)))

=
∑
i∈[`]

yixi .

by the LCH property. Finally, note that the decryption is allowed because (sky,
∏
i∈[`] pkyii )

is a valid key pair, due to the LKH property.

4.3.2 A Simpler Case: Randomness Reuse
As we want our constrution to be generic enough to encompass some lattice-based public key
encryption schemes as building block, the proof might seem a bit complicated because we
have to deal with a lot of approximate properties. However, in the special case where we
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have randomness reuse, which is basically the perfect version of ciphertext reproducibility,
there is a very simple and elegant proof.
Randomness reuse is also called reproducibility in [BBS03] and guarantees that it is secure to
reuse randomness when encrypting under several independent public keys. The idea was first
considered by [Kur02]. It is illustrated on Figure 4.3 and defined as follows.

Definition 4.3.2 (Randomness Reuse.). We say that a PKE has randomness reuse (RR, for
short) if E(pk, x; r) is efficiently computed given the triple (x, pk, r), or the triple (x, sk,C(r))
where sk is a secret key corresponding to pk.

sk, r

pk, r sk, ct0

ct1

PKGen C

E E′

Figure 4.3: Illustration for randomness reuse. There are two paths to compute the second
part of the ciphertext ct1. The left path is used in the real scheme: the encryption
randomness is used together with the public key. The right path is only used in
the proof: the encryption randomness is not needed, it is sufficient to have the
first part of the ciphertext ct0 = C(r) and the secret key.

This property is enough to replace both security properties defined in Section 4.2.3, hence
the following theorem.

Theorem 4.3.3. Let E be a public-key encryption scheme with the structural properties
defined in Section 4.2.1, and let FE be the functional encryption scheme for the inner-product
functionality obtained by applying Construction 4.3.1 to E. If E is s-IND-CPA, linear-key
homomorphic, linear-ciphertext homomorphic under shared randomness, and remains secure
under randomness-reuse then FE is s-IND-IPFE-CPA.

Remark 4.3.4. For our security proof to work, it must hold that ‖x1 − x0‖2 6= 0, where
x0,x1 are the challenge messages. The lower bound on the order of the message space ensures
exactly this. We note that in some cases, like the instantiation based on DDH, a direct proof
would avoid this issue.

Proof. To prove the security of our scheme we will show that the s-IND-IPFE-CPA game is
indistinguishable from a game where the challenge ciphertext encrypts a uniformly random
linear combination of the challenge messages whose coefficients sum up to one. Thus, the
challenge ciphertext decrypts to the expected values and information theoretically hides the
challenge bit.
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Given an adversary A that breaks the s-IND-IPFE-CPA security of our FE scheme with
non-negligible probability ε, we construct an adversary B that breaks the s-IND-CPA security
of the underlying PKE scheme E with comparable probability.

B starts by picking a random element a in the full message space of the underlying PKE E ,
and sends challenge messages 0 and a to the challenger C of PKE security game. C answers
by sending an encryption ct = (ct0, ct1) of either 0 or a and public key pk.

B then invokes A on input the security parameter and gets two different challenge messages
in output, namely (xi = (xi,1, . . . , xi,`))i∈{0,1} both in M .
Recall that, by the constraints of security game, the adversary can only issue secret key

queries for vectors y such that 〈x0,y〉 = 〈x1,y〉. Thus, we have that 〈y,x1−x0〉 = 0 meaning
that y is in the vector space defined by (x1 − x0)⊥.

Then, B generates the view for A in the following way:

Public Key. To generate master public key mpk, B does the following. First, B finds a basis
(z1, z2, . . . , z`−1) of (x1 − x0)⊥. Then we can write the canonical vectors in the basis
((x1 − x0), z1, z2, . . . , z`−1): for i ∈ [`], j ∈ [`− 1], there exist λi,j ∈ R and αi ∈ R such
that:

ei = αi(x1 − x0) +
∑

j∈[`−1]
λi,jzj . (4.1)

Then, for j ∈ [`− 1], B sets (pkzj , skzj ) = E .Setup(1κ), and for i ∈ [`],

γi =
∏

j∈[`−1]
pkλi,jzj and pki = pkαiγi.

Eventually, B invokes A on input mpk = (pki)i∈[`].
Notice that, B is implicitly setting ski = αisk +∑

j∈[`−1] λi,jskzj because of the LKH
property, where sk is the secret key corresponding to pk, which is unknown to B.

Challenge Ciphertext. B computes the challenge ciphertext ct∗ as follows. B randomly
picks b $← {0, 1}, computes E .E(γi, 0; r) from ct0 and ∑j∈[`−1] λi,jskzj and E .E(1H , xb,i;
r) from secret key 0G and ct0, by randomness reuse. B then sets

ct∗0 = ct0 and (ct∗i = ctαi1 · E .E(γi, 0; r) · E .E(1H , xb,i; r))i∈[`] ,

Then the algorithm returns the challenge ciphertext ct∗ = (ct∗0, (ct∗i )i∈[`]).

Secret Keys. To generate a secret key for vector y, B computes sky as

sky =
∑

j∈[`−1]

∑
i∈[`]

yiλi,j

 skzj

At the end of the simulation, if A correctly guesses b, then B returns 0 (B guesses that
C encrypted 0), else B returns 1 (B guesses that C encrypted a). This concludes the
description of adversary B.

It remains to verify that B correctly simulates A ’s environment.
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First see that the master public key is well distributed, because we are just applying a
change of basis to a well distributed master public key. Now it holds that αi = x1,i−x0,i

‖x1−x0‖2

because

x1,i − x0,i = 〈x1 − x0, ei〉
= αi‖x1 − x0‖2 +

∑
j∈[`−1]

λi,j〈x1 − x0, zj〉

= αi‖x1 − x0‖2 ,

where the ei are the vectors of the canonical basis.
To ensure that ‖x1 − x0‖2 is different from 0 modulo q, fixed the message space M =
{0, . . . , B − 1} ⊆ R, q needs to be set to be a prime larger then ` ·B2.
Now recall that a vector y satisfying the security game constraints is such that 〈y,x0〉 =
〈y,x1〉, so ∑

i∈[`]
yiαi =

∑
i∈[`]

yi
x1,i − x0,i
‖x1 − x0‖2

= 0

which in turn implies that a secret key sky for the vector y is distributed as

sky =
∑
i∈[`]

yiski =
∑
i∈[`]

yiαisk +
∑
i∈[`]

∑
j∈[`−1]

yiλi,jskzj

=
∑

j∈[`−1]

∑
i∈[`]

yiλi,j

 skzj

On the other hand, if A asks for a secret key for some vector y /∈ (x1 − x0)⊥, B would need
to know sk in order to generate a correct secret key for y.

Now, we have to analyze the following two cases, depending on which message was encrypted
by C in the challenge ciphertext:

1. C encrypted 0. Then, the challenge ciphertext ct∗ for message xb is distributed as

ct∗0 = ct0

and

ct∗i = E .E(pk, 0; r)αi · E .E(γi, xb,i; r)
= E .E(pki, xb,i; r) ,

thanks to the LCH property, and then as in the real game.
Thus, in this case, B generates a view identical to that A would see in the real
game. Hence, the advantage of B in this game is ε, the same advantage as A against
s-IND-IPFE-CPA of FE when 0 has been encrypted.

2. C encrypted a. First, in Equation 4.1, we have αi = (x1,i − x0,i)/‖x1 − x0‖2. Let us
analyze the distribution of the challenge ciphertext in this case. We have ct∗0 = ct0 and

ct∗i = E .E(pk, a; r)αi · E .E(γi, xb,i; r)
= E .E(pki, xb,i + αia; r)
= E .E(pki, x̂i; r),
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thanks to the LCH property, where x̂i is defined as follows:

x̂i = xb,i + αia = a

‖x1 − x0‖2
(x1,i − x0,i) + xb,i

= a

‖x1 − x0‖2
(x1,i − x0,i) + x0,i + b(x1,i − x0,i).

Let us set u = a/‖x1 − x0‖2 + b, which is a random value in the full message space
of E , given that a is random in the same space, then x̂i = ux1,i + (1 − u)x0,i. Then,
the challenge ciphertext is a valid ciphertext for the message x̂ = ux1 + (1 − u)x0,
which is a random linear combination of the vectors x0 and x1 whose coefficients sum
up to one, as expected. Notice that b is information theoretically hidden because the
distribution of u is independent from b. Hence, the advantage of B in this game is 0,
when a random non-zero a has been encrypted.

Eventually, this shows that ε is bounded by the best advantage one can get against
s-IND-IPFE-CPA of E . Hence, taking the maximal values, the best advantage one can
get against s-IND-IPFE-CPA of FE is bounded by the best advantage one can get against
s-IND-IPFE-CPA of E .

4.3.3 Security in the General Case

If the underlying PKE scheme does not support randomness-reuse defined in the previous
section then it is still possible to prove the security of Construction 4.3.1 using the security
properties defined in Section 4.2.3. We have the following security theorem, similar to
Theorem 4.3.3.

Theorem 4.3.5. Let E be a public-key encryption scheme with the structural properties
defined in Section 4.2.1, and let FE be the functional encryption scheme for the inner-
product functionality obtained by applying Construction 4.3.1 to E. If E is s-IND-CPA,
linear-key homomorphic, linear-ciphertext homomorphic under shared randomness, `-public-
key-reproducible, and `-ciphertext-reproducible then FE is s-IND-IPFE-CPA.

Proof. The proof strategy is essentially the same as that of Theorem 4.3.3. For increased
clarity and readability, we prove security via a sequence of hybrid experiments. We first
describe a sequence of hybrid games and then show indistinguishability between adjacent
hybrids, thus proving s-IND-IPFE-CPA security.

Hybrid H1: This is the s-IND-IPFE-CPA game.

proc Initialize(κ,x0,x1)
(msk,mpk) $← Setup(1κ)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
1sky

$← KeyDer(msk,y)
Return sky

proc Encrypt()
ct∗ $← Encrypt(mpk,xb)
Return ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)
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Hybrid H2: This is like H1 except that the master public key is generated by invoking the
algorithm H2.Setup defined as follows:

H2.Setup(1κ,x0,x1): The algorithm finds a basis (z1, z2, . . . , z`−1) of
(x1−x0)⊥. Then, the canonical vectors can be rewritten in this basis
as follows: for i ∈ [`], j ∈ [` − 1], there exist λi,j ∈ R and αi ∈ R
such that:

ei = αi
(x1 − x0)
||x1 − x0||2

+
∑

j∈[`−1]
λi,jzj .

Then, the algorithms samples sk ← E .SKGen(1κ) and, for j ∈ [`],
PKE secret key skzj ← E .SKGen(1κ). Finally, the algorithm sets:

ski = αi · sk +
∑

λi,jskzj , pki = E .PKGen(ski, τ) ,

where τ is the same used in the Setup algorithm. The algorithm
returns msk = (ski) and mpk = (pki)i∈[`] .

proc Initialize(κ,x0,x1)

(msk,mpk) $← H2.Setup(1κ,x0,x1)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt()
Ct∗ $← Encrypt(mpk,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Hybrid H3: This is like H2 except that the master public key is generated by invoking the
algorithm H3.Setup and the secret keys are generated by invoking the algorithm H3.KeyDer
which are defined as follows.
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H3.Setup(1κ,x0,x1): The algorithm finds a basis (z1, z2, . . . , z`−1) of
(x1−x0)⊥. Then, the canonical vectors can be rewritten in this basis
as follows: for i ∈ [`], j ∈ [` − 1], there exist λi,j ∈ R and αi ∈ R
such that:

ei = αi
(x1 − x0)
||x1 − x0||2

+
∑

j∈[`−1]
λi,jzj .

Then, the algorithms first samples sk $← E .SKGen(1κ) and pk $←
E .PKGen(sk, τ ′). Then, for j ∈ [` − 1], a PKE secret keys skzj ←
E .SKGen(1κ), sets ti = ∑

λi,jskzj , pkti ← E .PKGen(ti, τi) and com-
putes

pki = pkαi · pkti .

The algorithm returns mpk = (pki)i∈[`] and msk ′ = (pk, skzj ).

H3.KeyDer(msk ′,y): The algorithm computes secret key for vector y in
the following way: sky = ∑

i∈[`] yi · ti.

proc Initialize(κ,x0,x1)

(mpk,msk ′) $← H3.Setup(1κ,x0,x1)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← H3.KeyDer(msk ′, k)
Return sky

proc Encrypt()
Ct∗ $← Encrypt(mpk,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Hybrid H4: This is like H3 except that the challenge ciphertext is generated by invoking
the algorithm H4.Encrypt defined as follows:

H4.Encrypt(msk ′,x): The algorithm computes the ciphertext for x in the
following way:

ct0 = E .C(r) and
(
cti = E .E(pk, 0; r)αi · E .E(pkti , xi; r)

)
i∈[`] ,

where r is some randomness in the random space of E .

proc Initialize(κ,x0,x1)
(mpk,msk ′) $← H3.Setup(1κ,x0,x1)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← H3.KeyDer(msk ′, k)
Return sky

proc Encrypt()

Ct∗ $← H4.Encrypt(msk ′,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)
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Hybrid H5: This is like H4 except that the challenge ciphertext is generated by invoking
the algorithm H5.Encrypt defined as follows:

H5.Encrypt(msk ′, ct,x): Let ct = (ct0, ct1), then, the algorithm computes
the ciphertext for x in the following way:

ct ′0 = ct0 and
(
ct ′i = ctαi1 · E .E′(ti, xi, ct0; r̃)

)
i∈[`] ,

where r̃ is some randomness shared among all the invocation of E .E.

proc Initialize(κ,x0,x1)
(mpk,msk ′) $← H3.Setup(1κ,x0,x1)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← H3.KeyDer(msk ′, k)
Return sky

proc Encrypt()
ct = E .Encrypt(pk, 0)

Ct∗ $← H5.Encrypt(msk ′, ct,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Hybrid H6: This is like H5 except that ct encrypts a random value a ∈ Zp.

proc Initialize(κ,x0,x1)
(mpk,msk ′) $← H3.Setup(1κ,x0,x1)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← H3.KeyDer(msk ′, k)
Return sky

proc Encrypt()
ct = E .Encrypt(pk, a), a← Zp

Ct∗ $← H5.Encrypt(msk ′, ct,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

We now show that the relevant distinguishing probabilities between adjacent hybrids are
negli- gible, which completes the proof.

Indistinguishability of H1 and H2: The distribution of the master public key in both
the games is identically. This is because in H2 a simple change of basis is applied to a well
distributed master secret key and this change of basis can be computed due to the linear
key-homomorphism of E , that tells us that the ski’s as computed in H2 are valid secret keys
of E .
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Moreover, notice that, by our change of basis it holds that αi = x1,i − x0,i because

x1,i − x0,i = 〈x1 − x0, ei〉
= αi +

∑
j∈[`−1]

λi,j〈x1 − x0, zj〉

= αi .

Then, the change of basis implies that for all the vectors y = (y1, . . . , y`) satisfying the
security game constraints, meaning that y ∈ (x1−x0)⊥, it holds that ∑i∈[`] yi ·αi = 0. Thus,
to generate a well-distributed secret key for a y satisfying the security game constraints, sk
is not required.
Indistinguishability of H2 and H3: This holds under the `-public-key-reproducibility of
E for the distributionM induced by the challenge messages, defined as follows:

Mx0,x1(1κ): M finds a basis (z1, z2, . . . , z`−1) of (x1 − x0)⊥. Then, the canonical vectors
can be rewritten in this basis as follows: for i ∈ [`], j ∈ [`− 1], there exist λi,j ∈ R and
αi ∈ R such that:

ei = αi
(x1 − x0)
||x1 − x0||2

+
∑

j∈[`−1]
λi,jzj .

Then, M first samples sk $← E .SKGen(1κ), then, for j ∈ [` − 1], samples skzj ←
E .SKGen(1κ), sets ti = ∑

λi,jskzj and gives in output (sk, (αi, ti)i∈[`]).

For the sake of completeness, suppose that there exists and adversary A that distinguishes
with non-negligible advantage H2 from H3. Then, we can construct an adversary B that
uses A as a subroutine and breaks the `-public-key-reproducibility of E .

B does the following. B invokes A to gets the challenge messages x0,x1. Then, B
receives from the challenger of the `-public-key-reproducibility experiment values (pki, ti)i∈[`]
on input the security parameter and distribution Mx0,x1 . B sets master public key as
mpk = (pki)i∈[`] and gives it to A . Then B answers secret key queries by using the ti’s
which are enough to generate secret keys for vectors satisfying the security game constraints.
B generates the challenge ciphertext by using mpk and uses A ’s guess as its guess for the
`-public-key-reproducibility game.
Finally, notice that if B plays Exp`-pk-rep-0

E,κ (B) (resp. Exp`-pk-rep-1
E,κ (B)), then B perfectly

simulates H2 (resp. H3).
Indistinguishability of H3 and H4: By linear ciphertext-homomorphism of E , H3 = H4.
In fact, notice that in both the games pki = pkα · pkti , then it holds that

E .E(pkαi · pkti , xi; r) = E .E(pk, 0; r)αi · E .E(pkti , xi; r) .

Indistinguishability of H4 and H5: This holds under the `-ciphertext-reproducibility of
E for the distributionM, induced by the challenge messages, defined as follows:

Mx0,x1(1κ): M finds a basis (z1, z2, . . . , z`−1) of (x1 − x0)⊥. Then, the canonical vectors
can be rewritten in this basis as follows: for i ∈ [`], j ∈ [`− 1], there exist λi,j ∈ R and
αi ∈ R such that:

ei = αi
(x1 − x0)
||x1 − x0||2

+
∑

j∈[`−1]
λi,jzj .
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Then,M samples, for j ∈ [`− 1], secret keys skzj ← E .SKGen(1κ).
Finally,M, for i ∈ [`], sets ti = ∑

λi,jskzj and returns (0, (αi, xβ,i, skti)i∈[`]), where β
is random bit.

For the sake of completeness, suppose that there exists and adversary A that distinguishes
with non-negligible advantage H4 from H5. Then, we can construct an adversary B that
uses A as a subroutine and breaks the `-ciphertext-reproducibility of E .

B does the following. B invokes A to gets the challenge messages x0,x1. Then, B receives
from the challenger of the `-ciphertext-reproducibility values (pk, (αi, pkti , ti)i∈[`], ct0, (cti)i∈[`])
on input the security parameter and distribution Mx0,x1 . B sets master public key as
mpk = (pki = pkαi · pkti)i∈[`] and gives it to A . Then B answers secret key queries by using
the ti’s which are enough to generate secret keys for vectors satisfying the security game
constraints. B uses as challenge ciphertext (ct0, (cti)i∈[`]) and uses A ’s guess as its guess for
the `-ciphertext-reproducibility game.
Finally, notice that if B plays Exp`-ct-rep-0

E,κ (B) (resp. Exp`-ct-rep-1
E,κ (B)), then B perfectly

simulates H4 (resp. H5).
Indistinguishability of H5 and H6: The only difference between H5 and H6 is in the
message that ct encrypts. In H5, ct is an encryption of 0 and H5, it is an encryption of a for
a random a ∈ R. Moreover, notice that sk is never used. Therefore under the the IND-CPA
security of E , H5 is computational indistinguishable from H6.
Advantage of any adversary in H6. In this game, the challenge ciphertext is for message
x̂ = (x̂1, . . . , x̂`) defined as follows:

x̂i = xb,i + αia = a(x1,i − x0,i) + xb,i

= a(x1,i − x0,i) + x0,i + b(x1,i − x0,i).

Let us set u = a+ b, which is a random value in Zp, then x̂i = ux1,i + (1− u)x0,i. Then, the
challenge ciphertext is a valid ciphertext for the message x̂ = ux1 + (1 − u)x0, which is a
random linear combination of the vectors x0 and x1 whose coefficients sum up to one. Notice
that b is information theoretically hidden because the distribution of u is independent from b.
Hence, the advantage of any adversary in this game is 0.

4.4 Generic Adaptively Secure Inner-Product Functional
Encryption

Now that we constructed a selectively secure inner-product functional encryption scheme, we
want to improve it to reach full adaptive security against chosen-plaintext attacks. In the
case of modular IPFE schemes, one can use the generic Construction 3.2.4. However, we want
to stay as generic as possible and include the non-modular IPFE schemes to our framework.

4.4.1 Construction and Correctness
Our IND-IPFE-CPA secure scheme is very closely related to the two schemes of Construc-
tion 4.3.1 and Construction 3.2.4. It is essentially the latter construction applied to the
former, but instead of sampling uniform vectors t to mask the vector in the proof, we sample
it in some set T ⊂ Z. So the construction boils down to encrypting (x, 0) and decrypting
with key (y,−〈t,y〉) with the selectively secure scheme.
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Construction 4.4.1 (Adaptively Secure Inner-Product Functional Encryption from Public
Key Encryption). Let us consider a PKE scheme E = (Setup,Encrypt,Decrypt) with the
properties defined previously, we define our inner-product functional encryption scheme
FE = (Setup,KeyDer,Encrypt,Decrypt) as follow. We set T = {0, . . . , T}` in this case, where
T will be set according to the security properties needed. (T/Mx superpolynomial is needed
for security against polynomially bounded adversaries, T/Mx exponential provides security
against sub-exponetially bounded adversaries, where Mx is the biggest possible coordinate of
any vector inMx)

• Setup(1κ, 1`) 7→ (msk,mpk). On input security parameter κ and functionality parameter
`, generates ` independent secret keys

∀i ∈ [`], si $← E .SKGen(1κ),

and a key pair
(sk, pk) $← ESetup(1κ),

sharing the same public parameters pp, and

t $← T ,

and samples ` public keys corresponding to the secret keys ski = si + tisk

∀i ∈ [`], pki
$← E .PKGen(si + tisk),

and returns master secret key msk = (s1, . . . , s`, t) and master public key mpk =
(pk1, . . . , pk`, pk);

• KeyDer(msk,y) 7→ sky. On input master secret key msk, and key y ∈ My, outputs
user secret key

sky ← (
∑
i∈[`]

yisi,
∑
i∈[`]

yiti);

• Encrypt(mpk,x) 7→ ctx. On input master public key mpk, and plaintext x ∈ Mx,
samples shared randomness r in the randomness space of E, and computes

ct0 ← E .C(r), ct1 ← E .E(pk, 0; r),

∀i ∈ [`], ct2,i ← E .E(pki, xi; r),

and outputs ciphertext ctx = (ct0, ct1, (ct2,i)i∈[`]);

• Decrypt(sky, ctx) 7→ m or ⊥. On input user secret key sky, and ciphertext ctx, returns
the output of

E .Decrypt(sky,0, (ct0,
∏
i∈[`]

ctyi2,i · ct−sky,1
1 )).

Correctness. Once again, the correctness follows from the homomorphic properties of the
scheme E as well as its correctness. It is directly implied by the correctness of Construc-
tion 4.3.1 and Construction 3.2.4. It is easy to see that the plaintext computed by the
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homomorphic properties is the value of the inner product 〈x,y〉, while the key required for
decryption is ∑i∈[`] yi(si + tisk)−∑i∈[`] tisk = sky.
The main downside of this construction, is that T can be huge. This is a very slight

problem for efficiency, but it can become a problem in security too, because it impacts the
parameters we have to handle reproducibility for, and leads stronger assumption in the case
of lattice-based schemes for example.

4.4.2 Adaptive Security

The security of Construction 4.4.1 is the same as the security of Construction 4.3.1, except
that here we know exactly in advance the challenge vector to protect: 0 against (t, 1), as
shown in the proof of Theorem 3.2.5, and at the end, our choice of T ensures that x is
statistically hidden from the adversary.

Theorem 4.4.2. Let E be a public-key encryption scheme with the structural properties
defined in Section 4.2.1, and let FE be the functional encryption scheme for the inner-product
functionality obtained by applying Construction 4.4.1 to E. If E is s-IND-CPA, linear-
key homomorphic, linear-ciphertext homomorphic under shared randomness, `-public-key-
reproducible, and `-ciphertext-reproducible with coefficients αi ∈ T , then FE is IND-IPFE-CPA.

Proof. We prove security via a sequence of hybrid experiments, and then we show they are
indistinguishable. The techniques used to switch public keys and ciphertext values with
reproducibility properties closely follows the proof of Theorem 4.3.5.

Hybrid H1: This is the IND-IPFE-CPA game:

proc Initialize(κ)
(mpk,msk) $← Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)
Ct∗ $← Encrypt(mpk,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Hybrid H2: This is like H1 except that the master public key is generated by invoking the
algorithm H2.Setup defined as follows:

H2.Setup(1κ, 1`): The algorithm samples sk ← E .SKGen(1κ), for i ∈ [`],
PKE secret key si ← E .SKGen(1κ) and uniformly random scalar ti $← T .
Finally, the algorithm sets:

pk = E .PKGen(sk, τ) ski = si + ti · sk
pksi = E .PKGen(si, τi) pki = pkti · pksi

where τ is the same as used in the Setup algorithm, and τi is such that pksi ·
pkti is close to E .PKGen(ski). The algorithm returns mpk = (pk, (pki)i∈[`])
and msk = (si, ti)i∈[`].
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proc Initialize(κ)

(mpk,msk) $← H2.Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)
Ct∗ $← Encrypt(mpk,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Under the `-public-key-reproducibility of E , H1 and H2 are indistinguishable.

Hybrid H3: This is like H2 except that the challenge ciphertext is generated by invoking
the algorithm H3.Encrypt defined as follows:

H3.Encrypt(msk, pk,x): The algorithm computes the ciphertext for x in
the following way:

ct0 = E .C(r) ct1 = E .E(pk, 0; r) ct2,i = ctti1 · E .E(pksi , xi; r)
where r is some randomness in the random space of E .
proc Initialize(κ)
(mpk,msk) $← H2.Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)

Ct∗ $← H3.Encrypt(msk, pk,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

By linear ciphertext-homomorphism of E , H2 = H3.

Hybrid H4: This is like H3 except that the challenge ciphertext is generated by invoking
the algorithm H4.Encrypt defined as follows:

H4.Encrypt(msk,Ct,x): Let Ct = (ct0, ct1). Then, the algorithm computes
the ciphertext for x in the following way:

ct ′0 = ct0 ct ′1 = ct1 ct ′2,i = ctti1 · E .E′(si, xi, ct0; r̃)

where E .E′ is the alternative encryption algorithm defined in the `-
ciphertext-reproducibility game, r̃ is some randomness shared among all
the invocation of E .E′.
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proc Initialize(κ)
(mpk,msk) $← H2.Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)
Ct = E .E(pk, 0)

Ct∗ $← H4.Encrypt(msk,Ct,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Under the `-ciphertext-reproducibility of E , H3 and H4 are indistinguishable.

Hybrid H5: This is like H4 except that Ct encrypts 1.

proc Initialize(κ)
(mpk,msk) $← H2.Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)
Ct = E .E(pk, 1)

Ct∗ $← H4.Encrypt(msk,Ct,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Under the s-IND-CPA security of E , H4 and H5 are indistinguishable.

Hybrid H6: This is like H5 except that the challenge ciphertext is generated by invoking
the algorithm H6.Encrypt defined as follows:

H6.Encrypt(msk, pk,x): The algorithm computes the ciphertext for x in
the following way:

ct0 = E .C(r) ct1 = E .E(pk, 1; r) ct2,i = ctti1 · E .E(pksi , xi; r),
where r is some randomness in the random space of E .
proc Initialize(κ)
(mpk,msk) $← H2.Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)

Ct∗ $← H6.Encrypt(msk, pk,xb)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Under the `-ciphertext-reproducibility of E , H5 and H6 are indistinguishable.
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Hybrid H7: This is like H6 except that the challenge ciphertext is generated by invoking
the algorithm Encrypt.

proc Initialize(κ)
(mpk,msk) $← H2.Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)

Ct∗ $← Encrypt(mpk,xb + t)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

By linear ciphertext-homomorphism of E , H7 = H6.

Hybrid H8: This is like H7 except that the master public key is generated by invoking the
algorithm Setup.

proc Initialize(κ)

(mpk,msk) $← Setup(1κ, 1`)
V ← ∅
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)
Ct∗ $← Encrypt(mpk,xb + t)
Return Ct∗

proc Finalize(b’)
if ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

Under the `-public-key-reproducibility of E , H7 and H8 are indistinguishable.

Hybrid H9: This is like H8 except that the simulator guesses the value of x1 − x0 and
aborts if the guess is wrong.

proc Initialize(κ)
(mpk,msk) $← Setup(1κ, 1`)
V ← ∅
z $← {x1 − x0 : x0,x1 ∈Mx}
Return mpk
proc KeyDer(y)
V ← V ∪ {y}
sky

$← KeyDer(msk,y)
Return sky

proc Encrypt(x0,x1)
if x1 − x0 6= z:
then bad← true

Ct∗ $← Encrypt(mpk,xb + t)
Return Ct∗

proc Finalize(b’)
if bad ∨ ∃y ∈ V such that
〈x0,y〉 6= 〈x1,y〉
then return false

Return (b′ = b)

If the adversary has advantage ε in H9, then it has advantage |{x1 − x0 : x0,x1 ∈Mx}|ε in
H8.
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Advantage of any Adversary in H9. To analyze the advantage of an adversary in H9, let
us define Hybrids H9,0 and H9,2 be the games corresponding to H9 when b is fixed to 0 and 1
respectively. Then we construct H9,1 from H9,0 by replacing t by t′ and s by s′ defined as
follows:

t′ = t + z, s′i = si − zisk

The statistical distance betweenH9,1 andH9,0 is upper bounded by the probability Pr[t′ /∈ T ∨
s′ /∈ S]. If the secret key sk is chosen uniformly in a group, taking T /(2`M2

x) superpolynomial
in κ is sufficient for the security to hold. If instead the secret key sk is chosen uniformly
in an interval of N, say [S], we need to sample the si from [S′] instead, where S′/(2`MxS)
is superpolynomial in κ. We now conclude by noticing that H9,2 and H9,1 are perfectly
indistinguishable: if there is no abort and for any vector y satisfying the security game
constraints, i.e. 〈y,x0〉 = 〈y,x1〉, it holds that, since x0 + t = x1 + t′,∑

i∈[`]
yiti =

∑
i∈[`]

yit
′
i and

∑
i∈[`]

yisi =
∑
i∈[`]

yis
′
i.

We note that we had to guess the value of the challenge ciphertext, because otherwise,
the values of t′ and s′ wouldn’t be defined at the beginning of the experiment. This guess
only hinders the security in the last hybrid, on a statistical argument, so it doesn’t make the
underlying assumption weaker.

Remark 4.4.3. The only constraint we have on T is that it must be that for any two vectors
x0,x1 inMx, for any vector t in T , with overwhelming probability, t + x1−x0 or t−x1 + x0
is in T .
We conjecture that for Mx = {0, . . . ,Mx}` there exist a finite, non-empty set T for which
this probability is 1; meaning that for any two vectors x0,x1 inMx, for any vector t in T ,
either t + x1− x0 is in T , or t− x1 + x0 is in T . This set would be a discretized hypersphere
(integral points inside an hypersphere) in dimension ` whose radius would only depend on
Mx.
If this conjecture turned out to be true, our scheme wouldn’t require T to be superpolynomial
in the security parameter, resulting in a better assumption for the schemes presented in
Chapter 8.



Ch
ap

te
r5

Chapter 5
Generic Construction from Projective
Hash Functions
In this chapter, we present the construction of IND-IPFE-CCA secure IPFE schemes from
projective hash functions in our work [BBL17].
As a brief introduction, we first give an overview of the construction and explain the ideas
behind the proofs.
Then we will present our construction in two steps: first we construct an IND-IPFE-CPA
secure scheme, and then we upgrade it to an IND-IPFE-CCA secure scheme. For each step we
will present the properties that we require on the PHFs, before going on to the construction
and finally the proof of security.
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5.1 Overview
In order to reach security against chosen-ciphertext attacks, we give up a bit on the generality
of the framework and instead of using a public key encryption scheme as our building block,
we are going to use the stronger projective hash functions.
Before presenting our construction, we give a quick informal introduction to projective hash
functions and illustrate how to use them with a simple example. Then we will present the
ideas behind the construction of a IND-IPFE-CPA secure inner-product functional encryption
scheme, and how to improve it to reach IND-IPFE-CCA security.
Projective Hash Functions. Projective hash functions were defined by [CS02] in order to
construct public key encryption schemes secure against chosen-plaintext attacks and even
against chosen-ciphertext attacks. This concept has since found many other applications.
Notably in password authenticated key exchange as in [GL03; CHK+05; KV09; KM14], but
not only: [Kal05; ACP09; Wee12; BPV12; Wee16].

One of the most basic example use of projective hash functions is a zero knowledge proof of
knowledge of a witness of a word in some NP language. In this example, Bob wants to prove
to Alice that he knows a witness w that some word b is in a language. However, he does not
want to reveal his witness to Alice. Here is how to solve this problem using projective hash
functions as illustrated on Figure 5.1:

1. Alice calls the algorithm HashKg to create a hashing key hk.

2. Alice derives a projection key hp from her hashing key hk using ProjKg and sends it to
Bob.

3. Bob computes a hash h of the word b using the algorithm ProjHash with inputs the
witness w and the projection key hp. Then, Bob sends h to Alice

4. Alice computes the hash h’ of the word b using the algorithm Hash with inputs the
word b and the hashing key hk. She checks that h′ = h and is convinced that b is
indeed in the language.

Why is Alice convinced? This is illustrated on Figure 5.2: if b is not in the language, Bob
cannot know a witness w, and hence it is nearly impossible for him to guess correctly the
value of the hash h. So alice knows that if Bob gives her the correct hash, he must know a
witness, and thus b is in the language.
Why is this proof zero knowledge? Well, Bob only gave Alice a value she already knew, which
is computable with the knowledge of hk and b, so she doesn’t gain any additional knowledge
from this proof.
Overview of the Constructions. We note that the PHF could be used to construct a
public key encryption that could be generically transformed into an IPFE scheme using the
results from Chapter 4, but presenting the first construction helps giving intuition about how
we are using PHF to build IPFE schemes, and it also avoid more cumbersome notations.

The Figures 3.1 and 5.1 illustrate very well the parallel between inner-product functional
encryption and projective hash function. From these, it is easy to see the strategy to construct
the former using the latter as a building block, by mapping each node of the diagram to a
node on the other diagram. The secret key will be hashing keys, while the public key will be
projection keys. To encrypt, we will sample a word b together with a witness w, and use the
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bw
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HashProjHash

hkhp

h

Figure 5.1: A zero knowledge proof using projective hash functions. w is a witness that b is
in the language. In red is Alice’s view, and in blue is Bob’s view. Green means
that Alice and Bob check that they have the same value.

b

HashKg

ProjKg

Hash

hkhp

h

Figure 5.2: A zero knowledge proof using projective hash functions. b is not in the language.
In red is Alice’s view, and in blue is Bob’s view. Here Bob cannot guess the value
of h.

witness and the projection keys to derives hashes that will be used as a mask in order to
hide the plaintext. Then to decrypt, we remove the mask using the hashing keys to hash
the word b. As in Chapter 4, we will rely on additive homomorphism in order to ensure
correctness, as well as security against collusions of our scheme. This technique gives an
IND-IPFE-CPA secure IPFE scheme. This construction is simpler than the one from public
key encryption. However, it cannot be applied to lattice-based schemes, for which we only
know of approximate PHFs. We could maybe adapt the IND-IPFE-CPA secure scheme to
include these schemes, but this would make the notation cumbersome and the PHFs wouldn’t
meet the requirements to build IND-IPFE-CCA secure schemes.

In order to reach IND-IPFE-CCA security, we need to ensure that the adversary cannot learn
any information he shouldn’t using the decryption oracle. To prevent leakage of information,
our strategy is to ensure that ill-formed ciphertexts can be detected at decryption time. To
do this, we use a second PHF with more statistical properties in order to ensure that the
word is indeed inside the language, and that the adversary is not trying to get information
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about the hashing keys by decrypting ciphertext for words outside the language. We also
prevent malleability by using the technique already described in Section 3.3. In the end, our
scheme is really close to ` parallel repetitions of the Cramer-Shoup encryption scheme [CS98],
but instead of using a hash of the witness as a tag, we use the standard approach based on
one-time signatures because the former wouldn’t yield an IND-IPFE-CCA secure scheme in
our case.

Security Against Chosen-Plaintext Attacks. The strategy to prove IND-IPFE-CPA
security of our first scheme is not very far from the strategy used in Chapter 4 and the one
used in [ALS16]. The proof proceeds in two steps:

1. First, we replace the word of the challenge ciphertext to a word outside the language.
In order to generate the correct distribution for the ciphertext, we instead generate it
using the hashing keys instead of the projection keys.

2. The second step is to use statistical properties of the projective hash functions to argue
that the adversary cannot guess the challenge bit with non-negligible probability. The
strategy here is to switch the hashing key for another hashing key that gives the same
projection key, but a different hash for the word chosen in the challenge ciphertext.

In the second step, we will require to know the challenge messages, so we will guess them, as
done in complexity leveraging. However, here we only guess the vectors in the second part of
the proof, so the security loss doesn’t apply to the computational argument which is used in
the first step. In practice, this only impacts the size of the secret keys and doesn’t weaken
the hardness of the underlying assumption.

Security Against Chosen-Ciphertext Attacks. The core idea of our construction is
similar to the one used in the Cramer-Shoup encryption scheme [CS98; CS02]: adding a hash
value (from a 2-universal PHF) to ensure that the word b is in the language L, to our generic
IND-IPFE-CPA construction in Section 5.3. Then, at least information-theoretically, the hash
values hash(hki, b) used to decrypt a ciphertext could be computed using only the projection
keys hpi and do not leak any information about hki. We can then conclude using the same
ideas as in the IND-IPFE-CPA security proof of our generic construction.

However, this does not work directly, as checking a 2-universal hash value require to know
the corresponding hashing key hk†, and knowing this hashing key enables to fake these hash
values. In other words, with the naive scheme described previously, an attacker knowing a
secret key for any #”y could then generate a ciphertext with b /∈ L, but a valid 2-universal
hash values. This completely removes the usefulness of the 2-universal hash value.
Our new idea is the following: instead of using only one hash value, we use ` such values.

The secret key sk #”y only enables to check that a linear combination (with coefficient #”y ) of
these hash values is valid. This uses the key homomorphism property. Knowing sk #”y enables
to generate hash values that would be accepted by the decryption oracle with #”y , and knowing
sk #”y for multiple vectors #”y enables to generate hash values for any vector in the span of these
#”y . But intuitively, this is not really an issue, as if the attacker already knows sk #”y , calling the
decryption oracle for #”y is of no use to him, as he could decrypt the given ciphertext himself.
The proof however is more subtle and requires a careful design of hybrid games to deal with
adaptivity and the fact that we are working over a ring and not a field. In particular, we
cannot directly rely on the notion of span of vectors.
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5.2 IPFE-CPA Friendly Projective Hash Functions

In this section we present the properties required by our first projective hash function in order
to build an IND-IPFE-CPA secure inner-product functional encryption scheme that will be
later improved to IND-IPFE-CCA security. We first define 3 new properties on the projective
hash functions, that we will regroup under one property for the sake of readability later.

5.2.1 Key Homomorphism

For correctness of the IPFE we will need the following property. Like in the generic
construction from public key encryption, we use an additive homomorphism to compute
the result of the inner-product, while changing the key used for decryption. We give an
illustration of this property on Figure 5.3, and the formal definition below.

Definition 5.2.1 (Key Homomorphism [BJL16]). A projective hash function PHF = (hashkg,
projkg, hash, projhash) for a subset membership problem P is key-homomorphic, if it satisfies
the following additional properties:

1. the set K of hashing keys and the set Π of hash values are additive Abelian groups, with
polynomial time group operations;

2. for any instance Λ, and any word b ∈ X , the function hk ∈ K 7→ hash(hk, b) ∈ Π is
a group homomorphism, that is, hash(hk, b) + hash(hk′, b) = hash(hk + hk′, b), for any
hk, hk′ ∈ K.

We do not require K to be finite. For example, in the DCR construction in Chapter 7,
K = Z. However, we require that each group element of K and Π has a unique representation
as a bit-string.

# ”hk

〈 # ”hk, #”y 〉 #”h

〈 #”h , #”y 〉

〈·, #”y 〉

〈·, #”y 〉

Hash(·,b)

Hash(·,b)

Figure 5.3: Illustration of key homomorphism. We see that a linear combination of the
hashing keys gives the same linear combination of the hash values for any word.
This property is similar to the linear ciphertext homomorphism under shared
randomness of Section 4.2.2. Here the shared randomness is the word b.
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5.2.2 Projection Key Homomorphism
For our IND-IPFE-CCA secure construction, we do not only need key homomorphism, in the
security proof, we also need to simulate projection key, so we are going to require another
homomorphic property, projection key homomorphism. It is only required in Section 5.4.3
(for the CCA security), but we will introduce it already here to discuss some possible
simplifications of the next properties.

Definition 5.2.2 (Projection Key Homomorphism). A projective hash function PHF =
(hashkg, projkg, hash, projhash) for a subset membership problem P is projection-key-homomorphic
if it satisfies the following additional properties:

1. the set K of hashing keys and the set Khp of projection keys are additive Abelian groups,
with polynomial time group operations;

2. for any instance Λ, the function hk ∈ K 7→ projkg(hk) ∈ Khp is a group homomorphism,
that is, projkg(hk + hk′) = projkg(hk) + projkg(hk′), for any hk, hk′ ∈ K.

5.2.3 Strong Diversity
The second property we need for our PHFs is strong diversity. More precisely, we require that
for each b there exists a (not necessarily efficiently computable) hashing key hk⊥(b), such
that hk and hk + hk⊥(b) result in the same projection key, while the hash value of b under
the key hk⊥(b) is equal to g⊥, where g⊥ is a fixed efficiently computable group element.

Definition 5.2.3 (Strong diversity). A key-homomorphic projective hash function PHF =
(hashkg, projkg, hash, projhash) for a subset membership problem P is (hk⊥, g⊥,M⊥)-strongly
diverse for a function hk⊥ : L̄ → Π, an element g⊥ of Π, and a positive integer M⊥, if the
following properties are satisfied:

1. g⊥ and M⊥ can be efficiently computed from Λ;

2. the group element g⊥ has order M⊥,

3. for any hashing key hk ∈ K and any word b ∈ L̄:

projkg(hk + hk⊥(b)) = projkg(hk) , (5.1)
hash(hk⊥(b), b) = g⊥ . (5.2)

We do not require hk⊥ to be efficiently computable, as we are only using it to bound
statistical distance.

In what follows, we will use the following straightforward lemma.

Lemma 5.2.4. If a key-homomorphic PHF is also projection-key homomorphic, then Equa-
tion Equation (5.1) is true iff projkg(hk⊥(b)) = 0.

Relation with Diverse Groups. Diverse groups were introduced in [CS02] as a way
to construct PHFs. They can be seen as key-homomorphic projection-key-homomorphic
strongly diverse PHFs with the two following differences: L̄ = X \ L (instead of L̄ ⊆ X \ L),
and for any hk ∈ K and any b ∈ L̄, it is only required that hash(hk⊥(b), b) 6= 0 instead of
hash(hk⊥(b), b) = g⊥. Nevertheless, all the diverse groups we currently know of are also
strongly diverse for L̄ = X \ L.
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5.2.4 Translation Indistinguishability

We also require one last statistical property, translation indistinguishability. Informally it
says that translating the hashing key of the PHF by a small multiple of hk⊥(b) cannot be
detected with non-negligible probability. In the proof, we use this as a statistical argument
to conclude after using the computational assumption.

Definition 5.2.5 (Translation indistinguishability). A key-homomorphic projective hash
function PHF = (hashkg, projkg, hash, projhash) is (hk⊥,Mx, εti)-translation-indistinguishable
for a function hk⊥ : L̄ → Π, a positive integer Mx, and εti ∈ [0, 1], if for any integer
x ∈ {−Mx, . . . ,Mx} and for any b ∈ L̄,

∆(hashkg(Λ), hashkg(Λ) + x · hk⊥(b)) ≤ εti .

Important Particular Case: Key Uniformity. For many key-homomorphic PHFs, like
the ones based on DDH and MDDH that we are going to use in Chapter 6, the output
of hashkg is actually uniform over the group K. In this case, the PHF is automatically
(·, ·, 0)-translation-indistinguishable. More formally, we have the following lemma.

Lemma 5.2.6. Let PHF = (hashkg, projkg, hash, projhash) be a key-homomorphic PHF such
that the distribution of hashkg(Λ) is uniform over K. Let L̄ be a non-empty subset of X ,
hk⊥ be a function from L̄ to Π and Mx be a positive integer. Then PHF is (hk⊥,Mx, 0)-
translation-indistinguishable.

Proof. Both hashkg(Λ) and hashkg(Λ) + x · hk⊥(b) are uniform group elements in K.

5.2.5 IPFE-CPA Friendliness

In the following, we regroup all 3 properties we have defined under the IPFE-CPA friendliness
property.

Definition 5.2.7 (IPFE-CPA Friendliness). A projective hash function PHF = (hashkg,
projkg, hash, projhash) is (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly for a function hk⊥ from
L̄ to Π, an element g⊥ of Π, and two positive integers M⊥ and Mx, if it is key-homomorphic,
(hk⊥, g⊥,M⊥)-strongly diverse, and (hk⊥,Mx, εti)-translation-indistinguishable.

We are now ready to show our construction of inner-product functional encryption from
key homomorphic projective hash functions.

5.3 Inner-Product Functional Encryption Secure Against
Chosen-Plaintext Attacks

We now define our generic construction for IND-IPFE-CPA secure IPFEs. Intuitively, we use
` PHFs in parallel, that are combined during decryption in order to only reveal a linear
combination of the hashes, which implies that it only reveals this same linear combination
of the messages. This restriction is enforced by the key generation algorithm, which only
outputs linear combinations of the hashing keys.
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5.3.1 Construction and Correctness

We first give an informal illustration of the construction and its correctness via an illustration
on Figure 5.4. It is a very intuitive construction given the definitions of projective hash func-
tions and the key homomorphism property. Then, we explicit more formally the construction
and prove its correctness.

Setup

Encrypt KeyGen

Decrypt

# ”hp # ”hk#”x
#”y

( #”h + #”x ,b) 〈 # ”hk, #”y 〉

〈 #”h + #”x , #”y 〉 −Hash(〈 # ”hk, #”y 〉,b) = 〈 #”x , #”y 〉

Bob Alice

Figure 5.4: Construction of Inner-Product Functional Encryption from Key Homomorphic
Projective Hash Function. This illustration is a copy of Figure 3.1, replacing the
variables by their values in our construction. The correctness follows from the
key homomorphism and the correctness of the projective hash function.

We suppose that we have a (hk⊥, g⊥,M⊥, x, εti)-IPFE-CPA-friendly projective hash function
PHF = (hashkg, projkg, hash, projhash) for a subset membership problem P. Let R be the
ring Z or ZM⊥ , let ` be a positive integer parameter corresponding to the length of the
message and key vectors, and letMy andMx two subsets of R`. We always suppose ` to be
polynomial in the security parameter κ.

We suppose that the following condition is satisfied.

Condition 1. Using the above notation:

1. if R = ZM⊥, the order of any hashing key hk ∈ K divides M⊥;

2. My andMx are efficiently recognizable subsets of R`;

3. for any #”x ∈Mx and any i, xi ∈ {−Mx, . . . ,Mx};

4. there exists a polynomial time algorithm (in the security parameter κ) that given as
input ct #”y = 〈 #”y , #”x 〉 · g⊥ for #”y ∈My and #”x ∈Mx, can compute logg⊥ ct #”y = 〈 #”y , #”x 〉;

5. for any #”y ∈My and #”x ∈Mx, 〈 #”y , #”x 〉 is the same over R and over ZM⊥ (this condition
is trivial when R = ZM⊥).

The first subcondition implies that K is a R-module, which implies that, for any t ∈ R,
t · hk is well defined. The second subcondition enables KeyDer and Encrypt to check in
polynomial-time the validity of their arguments y and x respectively. The third subcondition
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is used in the proof to apply the (hk⊥,Mx, εti)-translation indistinguishability property. The
fourth subcondition ensures that decryption can be performed in polynomial time. The last
subcondition is similar as the condition in the “over Z constructions in [ALS16]. If R = ZM⊥ ,
then—as in [ALS16]—a simple way to guarantee that subconditions 3 and 5 hold is to assume
that |yi|, |xi| < (M⊥/`)1/2 for each #”y ∈ My, #”x ∈ Mx, and i ≤ `. The fourth subcondition
can potential restrict the values |yi| and |xi| even more. We are now ready to present our
scheme and to prove its correctness.
Construction 5.3.1 (Inner-Product Functional Encryption secure against Chosen-Plaintext
Attacks from Projective Hash Functions). Let P be a subset membership problem. Let
PHF = (hashkg, projkg, hash, projhash) be a (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly PHF.
We assume that Condition 1 is satisfied. We define our inner-product functional encryption
scheme FE as follows.

• Setup(1κ, 1`) 7→ (msk,mpk). On input security parameter κ and functionality parameter
`, samples Λ $← Iκ, sets pp = (κ, `,Λ), computes for all i in [`]

hki
$← hashkg(Λ) , hpi ← projkg(hki) ,

and returns master secret key msk = (pp, # ”hk) and master public key mpk = (pp, # ”

hp);

• KeyDer(msk, #”y ) 7→ sk #”y . On input master secret key msk, and key #”y ∈My, computes

hk #”y ← 〈 #”y ,
# ”hk〉 ,

and outputs user secret key sk #”y = hk #”y ;

• Encrypt(mpk, #”x ) 7→ ct #”x . On input master public key mpk, and plaintext #”x ∈ Mx,
samples a random pair (b, w) ∈ %, computes for all i in [`]

cti ← projhash(hpi, b, w) + xi · g⊥ ,

and outputs ciphertext ct #”x = (b, #”ct);

• Decrypt(sk #”y , ct #”x ) 7→ m or ⊥. On input user secret key sk #”y , and ciphertext ct #”x ,
computes

ct〈 #”x , #”y 〉 ← 〈 #”y ,
#”ct〉 − hash(hk #”y , b)

and returns logg⊥ ct〈 #”x , #”y 〉.

Correctness. The correctness of our construction follows from the correctness and key
homomorphism of the PHF, the fact that g⊥ has order M⊥, and from Condition 1, as follows:

〈 #”y ,
#”ct〉 =

∑̀
i=1

yi · (projhash(hpi, b, w) + xi · g⊥)

=
∑̀
i=1

yi · hash(hki, b) +
∑
i=1

yi · xi · g⊥

= hash(
∑̀
i=1

yi · hki, b) + 〈 #”y , #”x 〉 · g⊥ = hash(hk #”y , b) + 〈 #”y , #”x 〉 · g⊥ .

Now, because g⊥ has order M⊥, and thanks to Condition 1, one can extract 〈 #”y , #”x 〉 over R.
Since this equal to 〈 #”y , #”x 〉 over ZM⊥ , we get that the completeness holds.
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5.3.2 Security Against Chosen-Plaintext Attacks

Before stating our theorem, we first define the following set:

∆Mx := { #”x 1 − #”x 0| #”x 0,
#”x 1 ∈Mx} .

Its cardinality |∆Mx| is at most (4Mx + 1)`, as the cardinality ofMx is at most 2Mx + 1.
We have the following security theorem.

Theorem 5.3.2. Let P be a subset membership problem. Let PHF = (hashkg, projkg, hash,
projhash) be a (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly projective hash function and let FE
be the inner-product functional encryption scheme defined in Construction 5.3.1. We assume
that Condition 1 is satisfied. Then FE is adaptively IND-IPFE-CPA secure.

More precisely, if there exists an attacker A = AFE that has advantage εA in breaking the
IND-IPFE-CPA security of FE, then there exists an attacker B that runs in approximately
the same time and that has advantage εB in breaking the (L, L̄)-indistinguishability, such that

εA ≤ 2 · εB + ` · |∆Mx| · εti .

Before going into the proof, we make the following remark on the precise advantage of the
adversary in the reduction, and give a quick overview of the proof.

Remark 5.3.3. When εti 6= 0, there is an exponential loss in the security proof in the
term `|∆Mx|εti. This term comes from the fact that at one point we guess the value of
#”x 1− #”x 0. This is not complexity leveraging, as the reduction loss is with regards to a statistical
property. In particular, we do not need to rely on subexponential computational assumptions.
Concretely, in our instantiations with DCR, we just need to take this security loss into account
in the parameter M defining the bound on the size of the hashing key (see Chapter 7). This
approximately multiplies by log |∆Mx| the size of the secret keys which would be obtained if
this security loss was not taken into account.

We also remark that if we used a selective security notion, where the adversary announces
#”x 0 and #”x 1 before obtaining the public key, we would not lose the factor |∆Mx|. We could
then use classical complexity leveraging to go from this selective notion to the adaptive one we
are considering. But then, we would need to use sub-exponential (L, L̄)-indistinguishability (if
` is polynomial in the security parameter), and the size of the ciphertexts, of the secret and
public keys, and of the public parameters (and not just of the secret keys) would be multiplied
by |∆Mx|.

For a quick overview of the proof, we illustrate the strategy on Figure 5.5.
Let us now move to the formal proof of the theorem.

Proof. We process through a sequence of games Game0, . . . , Game4, at each game slightly
modifying FE . We denote by Win[Gamei] the probability that the adversary wins Gamei,
and by Adv[Gamei] = |2 ·Win[Gamei] − 1| its advantage. We then upper bound the ad-
vantage Adv[∆i] = |Win[Gamei]−Win[Gamei−1]| = |Adv[Gamei]− Adv[Gamei−1]|/2, that a
probabilistic polynomial time adversary can have in distinguishing between the games Gamei
and Gamei−1, together with the advantage Adv[Game4] that a probabilistic polynomial time
adversary can have in the final game.
Game0 corresponds to the actual IND-IPFE-CPA game. The challenge ciphertext is (b, #”ct).
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1.

Setup

Encrypt KeyGen

# ”hp # ”hk( #”x 0,
#”x 1) #”y

( #”h + #”x b,b) 〈 # ”hk, #”y 〉

2.

Setup

Encrypt KeyGen

# ”hp # ”hk( #”x 0,
#”x 1) #”y

( #”h + #”x b,b) 〈 # ”hk, #”y 〉

3.

Setup

Encrypt KeyGen

# ”hp # ”hk( #”x 0,
#”x 1) #”y

( #”h + #”x b,b) 〈 # ”hk, #”y 〉

Figure 5.5: Strategy for the proof of Theorem 5.3.2. The first experiment is the IND-IPFE-CPA
security game, then we present two other hybrids. In the first one, we change the
way to compute the challenge ciphertext. In the second one, we change the word
in the language. This last game is statistically unwinnable.

In Game1, we change the way of computing the ciphertext. More precisely, we now compute
cti as follows using hki instead of hpi and w:

cti ← hash(hki, b) + xig⊥ ,

which is perfectly indistinguishable thanks to the correctness of the PHF. Hence, Adv[∆1] = 0.
In Game2, we sample b from L̄ instead of from L. Clearly, we can construct an attacker

B that runs in approximately the same time as A such that Adv[∆2] ≤ εB, where B is the
advantage of B against (L, L̄)-indistinguishability.
In Game3, we pick a uniform random value x ∗ ∈ ∆Mx at the beginning and abort if

#”x 1 − #”x 0 6= x ∗ and make the adversary win with probability 1
2 in that case. As x ∗ is

completely independent of everything else,

Adv[Game2] = |∆Mx| · Adv[Game3] ,
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since:
Adv[Game3] = |2 ·Win[Game3]− 1|

=
∣∣∣∣2 · ( 1

|∆Mx|
·Win[Game2] + |∆Mx| − 1

|∆Mx|
· 1

2

)
− 1

∣∣∣∣
= 1
|∆Mx|

· |2 ·Win[Game2]− 1| = 1
|∆Mx|

· Adv[Game2] .

In Game4, we also abort if the adversary queries a vector #”y ∈My to the key oracle such
that 〈 #”y ,x ∗〉 6= 0. This game is perfectly indistinguishable from the previous one, as the
adversary cannot ask for a key for #”y ∈My such that 〈 #”y , #”x 0〉 6= 〈 #”y , #”x 1〉. Hence, Adv[∆4] = 0.

Let us now bound Adv[Game4]. For that purpose, let Game4,0 and Game4,2 be the games
corresponding to Game4 when b is fixed to 0 and 1 respectively. We have:

Adv[Game4] = |Pr[bA = 1 in Game4,2]− Pr[bA = 1 in Game4,0]| .
We then construct the game Game4,1 from Game4,0 by replacing # ”hk by # ”hk′ defined as follows:

# ”hk′ ← # ”hk + x ∗ · hk⊥(b) where hki
$← hashkg(Λ) for i = 1, . . . , ` .

By translation indistinguishability, we have:
|Pr[bA = 1 in Game4,1]− Pr[bA = 1 in Game4,0]| ≤ `εti .

We conclude by remarking that Game4,1 and Game4,2 are perfectly indistinguishable and
that:

Pr[bA = 1 in Game4,2] = Pr[bA = 1 in Game4,1] .
Indeed, in Game4,1, assuming no abort, we have x ∗ = #”x 1 − #”x 0 and for any allowed query #”y
to KeyDermsk :

projkg(hk′i) = projkg(hki)

cti = hashkg(Λ, hk′i, b) + x0,ig⊥ = hashkg(Λ, hki, b) + x∗i g⊥ + x0,ig⊥
= hashkg(Λ, hki, b) + x1,ig⊥

hk #”y = 〈 #”y ,
# ”hk′〉 = 〈 #”y ,

# ”hk〉+ 〈 #”y ,x ∗〉hk⊥(b)
= 〈 #”y ,

# ”hk〉 as 〈 #”y ,x ∗〉 = 〈 #”y , #”x 1〉 − 〈 #”y , #”x 0〉 = 0 .

Finally, putting everything together, we get
εA = Adv[Game0] ≤ 2Adv[∆1] + 2Adv[∆2] + |∆Mx| · Adv[Game4] ≤ 2εB + `|∆Mx|εti .

5.4 IPFE-CCA Friendly Projective Hash Functions
In order to achieve IND-IPFE-CCA security, we will require another kind of projective hash
functions: tag-based projective hash functions [ABP15]. In this section, we first define this
new tool, as well as the properties we need for our construction. As both a IPFE-CPA-
friendly PHF and a IPFE-CCA-friendly PHF are used in our constructions of IND-IPFE-CCA
inner-product functional encryption scheme in Section 5.5, we distinguish the two PHFs by
adding a dagger to all the symbols defining the latter PHF. Both PHFs will be used on the
same subset membership problem P.
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5.4.1 Tag-Based Projective Hash Function
A tag-based projective hash function [ABP15] is defined as a PHF, except that hash† and
projhash† take an additional input (in some efficiently recognizable set T ) called a tag τ .
We suppose that we can efficiently uniquely encode any 2κ-bit string as a tag τ , as a tag is
usually the output of a collision-resistant hash-function. In our constructions, T is ZM for
some large integer M . As for basic projective hash functions, we provide some intuition on
how to use tag-based PHFs using a diagram on Figure 5.6

1.

bw

HashKg

ProjKg

HashProjHash

hkhp

h

τ

2.

bww

HashKg

ProjKg

HashProjHash

hkhp

h’ h

τ ′ τ

Figure 5.6: Tag-Based Projective Hash Functions. On the first illustration, we see the
correctness property: if the same tag is used, then the same hash is derived.
On the second illustration, we see the property that will be useful to prove the
security against chosen-ciphertext attacks: if the tag is different, it is hard to
guess the correct hash value.

Definition 5.4.1 (Tag-based Projective Hash Function [ABP15]). Let P be a subset member-
ship problem, specifying an ensemble (I`)`≥0 of instance distributions. A tag-based projective
hash function for P is a tuple PHF† = (hashkg†, projkg†, hash†, projhash†) of four probabilistic
polynomial time algorithms:
• hashkg†(Λ) generates a hashing key hk† in a set K† for the instance Λ = Λ[X ,L,W, %],

• projkg†(hk†) (deterministically) derives from the hashing key hk† a projection key hp†

from the set Khp of possible projection keys,

• hash†(hk†, b, τ) (deterministically) computes the hash value H† (in some efficiently
recognizable set Π), of b ∈ X under hk† ∈ K†, for the tag τ ∈ T ,
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• projhash†(hp†, b, w, τ) (deterministically) computes the projected hash value pH† of b ∈ L
using a witness w ∈ W, for the tag τ ∈ T .

It has to satisfy the following correctness property:
• For any instance Λ, for any b ∈ X and w ∈ W, s.t. (b, w) ∈ %, for any hashing key

hk† ∈ K†, for any tag τ ∈ T , if hp† ← projkg†(hk†), then:

hash†(hk†, b, τ) = projhash†(hp†, b, w, τ) .

The notion of key homomorphism can be adapted to tag-based PHFs in a straightforward
way: it has to hold for any tag τ ∈ T .

In the sequel, we sometimes omit the term “tag-based” when it is clear from context.

5.4.2 2-Universality
We now recall the notion of 2-universality, first introduced by Cramer and Shoup in [CS02],
in order to ensure non-malleability. This will not be directly required by the tag-based PHF
we use in the construction, but by a slight modification on it that will be used during the
proof. It will ensure that decryption queries made by the adversary do not leak too much
information.
Definition 5.4.2 (2-universality). A key-homomorphic tag-based projective hash function
PHF† = (hashkg†, projkg†, hash†, projhash†) for a subset membership problem P is ε†2u-2-
universal if for any instance Λ, for any b ∈ X and b′ ∈ X \ L, for any distinct tags
τ, τ ′ ∈ T , for any hp† ∈ Khp, and for any H† ∈ Π, H̃† ∈ Π:

Pr
hk†

[
H† = hash†(hk†, b, τ) ∧ H′† = hash†(hk†, b′, τ ′) ∧ hp† = projkg†(hk†)

]
≤ ε†2u · Pr

hk†

[
H† = hash†(hk†, b, τ) ∧ hp† = projkg†(hk†)

]
,

where probabilities are taken over hk† $← hashkg†(Λ). The PHF is 2-universal if it is ε†2u(κ)-
2-universal for some negligible function ε†2u(κ).

In our generic construction, we will not require the PHF used in the construction to be
2-universal, but a variant of it where hashkg† is replaced by some other (not necessarily
polynomial time) algorithm.

5.4.3 Universal Translation Indistinguishability
We also need one last statistical property to conclude the proof, as in the IND-IPFE-CPA case:
universal translation indistinguishability. It is a strengthening of the previous translation
indistinguishability in the sense that the algorithm defining the translation has to be the
same for all words.
Definition 5.4.3 (Universal translation indistinguishability). A key-homomorphic tag-based
projective hash function PHF† = (hashkg†, projkg†, hash†, projhash†) is (hashkg′†,Mx, ε

†
uti)-

universally-translation-indistinguishable for a (not necessarily polynomial time) algorithm
hashkg′† taking as input Λ and outputting a hashing key hk† in some set K′∗† ⊆ K, and for a
positive integer Mx, if for any integer x such that |x| ≤Mx,

∆(hashkg†(Λ), hashkg†(Λ) + x · hashkg′†(Λ)) ≤ ε†uti .
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Important Particular Case: Key Uniformity. For many key-homomorphic tag-based
PHFs (i.e., the one based on the DDH assumption and its variants), the output of hashkg†
is actually uniform over the group K†. In this case, as for translation indistinguishability
(Lemma 5.2.6), the PHF is automatically (hashkg′†, ·, 0)-universally-translation-indistinguishable,
for hashkg′† = hashkg†. More formally, we have the following lemma.

Lemma 5.4.4. Let PHF† = (hashkg†, projkg†, hash†, projhash†) be a key-homomorphic tag-
based PHF such that the distribution of hashkg†(Λ) is uniform over K†. Let Mx be a positive
integer. Then PHF is (hashkg†,Mx, 0)-universally-translation-indistinguishable.

Proof. Both hashkg†(Λ) and hashkg†(Λ)+x·hashkg†(Λ) are uniform group elements in K†.

5.4.4 IPFE-CCA Friendliness
We now regroup the 3 properties we have just defined under the IPFE-CCA friendliness
property. It is used as a shorthand for the sake of readability and regroups projection key
homomorphism, universal translation indistinguishability, and 2-universality on a slight
modification of the PHF.

Definition 5.4.5 (IPFE-CCA Friendliness). A tag-based projective hash function PHF† =
(hashkg†, projkg†, hash†, projhash†) is (hashkg′†,Σ†, ε†2u,Mx, ε

†
uti)-IPFE-CCA-friendly for a

(not necessarily polynomial time) algorithm hashkg′† taking as input Λ and outputting a
hashing key hk† in some set K′∗† ⊆ K, and for a positive integer Mx, for a subset Σ† of Z,
and for a positive integer Mx, if PHF† is key-homomorphic, projection-key-homomorphic,
(hashkg′†,Mx, ε

†
uti)-universally-translation-indistinguishable and if for any t ∈ Σ†, the PHF

(t · hashkg′†, projkg†, hash†, projhash†) is ε†2u-2-universal, where the algorithm t · hashkg′† runs
hashkg′† and multiplies the output by t.

Important Particular Case: Key Uniformity.For many key-homomorphic PHFs, the
output of hashkg† is actually uniform over the group K†. In this case, we have the following
lemma which proves IPFE-CCA friendliness from 2-universality.

Lemma 5.4.6. Let PHF† = (hashkg†, projkg†, hash†, projhash†) be a ε†2u-2-universal tag-based
PHF such that the distribution of hashkg†(Λ) is uniform over K†. Then for any t ∈ Z,
(t · hashkg†, projkg†, hash†, projhash†) is ε†2u-2-universal.

Proof. Since hashkg†(Λ) is uniformly distributed, t · hashkg†(Λ) is as well, so both schemes
are equal.

2-universal tag-based PHFs can be constructed from diverse groups, as in [CS02]. All the
constructions in [CS02] are key-homomorphic and projection-key-homomorphic. And for
well-chosen parameters, they actually are IPFE-CCA-friendly.

5.5 Inner-Product Functional Encryption Secure Against
Chosen-Ciphertext Attacks

In this section, we show a construction of a IND-TBIPFE-CCA secure tag-based inner-product
functional encryption scheme. The concrete IND-IPFE-CCA secure inner-product functional
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encryption scheme can then be obtained by Construction 3.3.5. This construction is an
enhancement of the previous IND-IPFE-CPA secure scheme which uses also ` tag-based
projective hash functions in order to ensure the non-malleability of the scheme.

5.5.1 Construction and Correctness
As our construction is closely related to the previous one, and the intuition is about the
same, we first highlight the changes made to reach IND-IPFE-CCA security on Figure 5.7,
before formally presenting the construction and the proof of its correctness. The idea is that
the one-time signature prevents the use of the same tag for the challenge ciphertext, and a
ciphertext generated by the adversary. Then, the security of the tag-based IPFE will convey
to the tagless IPFE.

Encrypt

b

w

# ”hp

ProjHash

#”x
#”h + #”x

# ”hp’

#”h ’

ProjHash’

sk

vk

σ

OTS.KG
sign sign sign sign

Figure 5.7: Encrypt algorithm for our inner-product encryption scheme secure against chosen-
ciphertext attacks. We use a one-time signature and a tag-based projective hash
function to prevent malleability and detect ill-formed ciphertext and prevent
them from being decrypted.

Let us now define our construction of a IND-TBIPFE-CCA secure tag-based inner-product
functional encryption scheme.

We suppose that we have a (hk⊥, g⊥,M⊥, x, εti)-IPFE-CPA-friendly projective hash function
PHF = (hashkg, projkg, hash, projhash) and a (hashkg′†,Σ†, ε†2u,Mx, ε

†
uti)-IPFE-CCA-friendly

projective hash function PHF† = (hashkg†, projkg†, hash†, projhash†) for the subset membership
problem P. Let R be the ring Z or ZM⊥ , let ` be a positive integer parameter corresponding
to the length of the message and key vectors, and letMy andMx be two subsets of R`. We
always suppose ` to be polynomial in the security parameter κ.

We suppose that Condition 1 is satisfied, in addition to the following new condition.

Condition 2. Using the above notation:

1. if R = ZM⊥, the order of any hashing key hk ∈ K† divides M⊥; and

2. for any #”y ∈My and #”x ∈Mx, 〈 #”y , #”x 〉 ∈ Σ† ∪ {0} ⊆ R.

Construction 5.5.1 (Tag-Based Inner-Product Functional Encryption secure against Chosen–
Ciphertext Attacks from Projective Hash Functions). Let P be a subset membership problem.
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Let PHF = (hashkg, projkg, hash, projhash) be a (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly
PHF, and PHF† = (hashkg†, projkg†, hash†, projhash†) be a (hashkg′†,Σ†, ε†2u,Mx, ε

†
uti)-IPFE-

CCA-friendly tag-based PHF. We assume that Conditions 1 and 2 are satisfied. We define
our tag-based inner-product functional encryption scheme T BFE as follows.

• Setup(1κ, 1`) 7→ (msk,mpk). On input security parameter κ and functionality parameter
`, samples Λ $← Iκ, sets pp = (κ, `,Λ), computes for all i in [`]

hki
$← hashkg(Λ) , hpi ← projkg(hki) ,

hk†i
$← hashkg†(Λ) , hp†i ← projkg†(hk†i ) ,

and returns master secret key msk = (pp, # ”hk,
#   ”

hk†) and master public key mpk =
(pp, # ”

hp,
#   ”

hp†);

• KeyDer(msk, #”y ) 7→ sk #”y . On input master secret key msk, and key #”y ∈My, computes

hk #”y ← 〈 #”y ,
# ”hk〉 , hk†#”y ← 〈 #”y ,

# ”hk†〉 ,

and outputs user secret key sk #”y = (hk #”y , hk†#”y );

• Encrypt(τ,mpk, #”x ) 7→ ct #”x . On input master public key mpk, and plaintext #”x ∈ Mx,
samples a random pair (b, w) ∈ %, computes for all i in [`]

cti ← projhash(hpi, b, w) + xi · g⊥ , ct†i ← projhash†(hp†i , b, w, τ) ,

and outputs ciphertext ct #”x = (b, #”ct, #”ct †);

• Decrypt(τ, sk #”y , ct #”x ) 7→ m or ⊥. On input user secret key sk #”y , and ciphertext ct #”x ,
checks that

〈 #”y ,
#”ct †〉 = hash†(hk†#”y , b, τ)

and returns ⊥ if it fails, otherwise computes

ct〈 #”x , #”y 〉 ← 〈 #”y ,
#”ct〉 − hash(hk #”y , b)

and returns logg⊥ ct〈 #”x , #”y 〉.

Correctness. The correctness of our scheme follows from correctness and key homomorphism
of both PHF and PHF† and from the fact that g⊥ has order M⊥. The proof is similar to the
one for Theorem 5.3.2 with the additional remark:

〈 #”y ,
#”ct †〉 =

∑̀
i=1

#”y i · (projhash†(hp†i , b, w, τ)) =
∑̀
i=1

#”y i · hash†(hk†i , b, τ)

= hash†(
∑̀
i=1

#”y i · hk†i , b, τ) = hash†(hk†#”y , b, τ) .
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5.5.2 Security Against Chosen-Ciphertext Attacks

We have the following security theorem.

Theorem 5.5.2. Let P be a subset membership problem. Let PHF = (hashkg, projkg, hash,
projhash) be a (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly projective hash function, (hashkg′†,
Σ†, ε†2u,Mx, ε

†
uti)-IPFE-CCA-friendly tag-based projective hash function, and let T BFE be

the tag-based inner-product functional encryption scheme defined in Construction 5.5.1. We
assume that Conditions 1 and 2 are satisfied. Then T BFE is IND-TBIPFE-CCA secure.

More precisely, if there exists an adversary A = AT BFE that has advantage εA in breaking
the IND-TBIPFE-CCA security of T BFE, then there exists an attacker B that runs in approx-
imately the same time and that has advantage εB in breaking the (L, L̄)-indistinguishability,
such that

εA ≤ 2 · εB + ` · |∆Mx| · (εti + 2 · ε†uti) + 2 · qdec · |∆Mx| · ε†2u ,

where qdec is the number of queries to the decryption oracle.

Before proving the theorem, we one again give a remark on the precise advantage of the
adversary in the reduction.

Remark 5.5.3. In addition to the exponential loss ` · |∆Mx| · (εti + 2 ·ε†uti) similar to the one
for the generic IND-IPFE-CPA construction (Theorem 5.3.2), there is an addition exponential
loss in the security proof in the term 2qdec|∆Mx|ε†2u. We point out however that the resulting
requirement that |∆Mx|ε†2u is negligible in the security parameter can easily be achieved:
given a ε†2u-2-universal PHF, we can get a (ε†2u)ν-2-universal PHF, by repeating it ν-times
in parallel. This transformation preserves IPFE-CCA friendliness. We emphasize that the
resulting key and ciphertext sizes remain polynomial in the security parameter κ, and that we
do not rely on complexity leveraging nor subexponential assumptions (see Remark 5.3.3).

Furthermore, as for the IND-IPFE-CPA construction from translation-indistinguishable key-
homomorphic PHF in Section 5.3, if we only consider a selective version of IND-TBIPFE-CCA
security where the adversary announces #”x 0 and #”x 1 before receiving the public key, then we
would not have this factor |∆Mx|.

We now resume with the proof of the theorem.

Proof. We first give some intuition about the proof: let us analyze the decryption queries
made by the adversary A , to give some intuition. Let ( #”y ′j , τ

′
j , (b′j ,

#”ct ′j ,
#”ct ′†j )) be the jth

decryption query and let ( #”y 1, . . . ,
#”y ij ) be the key queries made before this decryption query.

We now split the analysis in two cases. Case #”y ′j ∈ Span( #”y 1, . . . ,
#”y ij ). (Span( #”y 1, . . . ,

#”y ij )
denotes the linear span of the vectors ( #”y 1, . . . ,

#”y ij )) In this case, A can derive the key for #”y j
and do the decryption anyway, so there is nothing to hide. Case #”y ′j /∈ span( #”y 1, . . . ,

#”y ij ).
In this case, we argue that if b′j /∈ L, then the decryption oracle will output ⊥ with probability
1− ε†univ: by definition of the 2-universality of PHF†, we have that conditioned on the value
of # ”

hp† and on the value of the challenge ciphertext (b, #”ct, #”ct †) if it was already generated:

Pr[hash†(hk†#”

y′j
, b′, τ ′) = 〈

#”

y′j ,
#”ct ′†〉] ≤ ε†univ.
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Unfortunately, the fact that the adversary can adaptively choose the vectors #”y i and #”y ′j in
particular makes the above intuition hard to directly translate into a formal valid proof. To
deal with adaptivity, we guess x ∗ = #”x 1 − #”x 0 before using 2-universality. That is why we
loose a factor ∆Mx in the security reduction.
Let us now do a formal proof by games. We use the same notation as in the proof of

Theorem5.3.2. The first four games are basically the same.
Game0 corresponds to the actual IND-TBIPFE-CCA scheme. The challenge ciphertext is

(b, #”ct, #”ct †).
In Game1, we change the way of computing the ciphertext. More precisely, we now compute

cti as follows using hki instead of hpi and w:

cti ← hash(hki, b) + xi · g⊥
ct†i ← hash†(hk†i , b, τ) ,

which is perfectly indistinguishable thanks to the correctness of the PHF. Hence, Adv[∆1] = 0.
In Game2, we sample b from L̄ instead of from L. We can construct an attacker B that

runs in approximately the same time as A such that Adv[∆2] ≤ εB, where B is the advantage
of B against (L, L̄)-indistinguishability.
In Game3, we pick a uniform random value x ∗ ∈ ∆Mx at the beginning and abort if

#”x 1 − #”x 0 6= x ∗ and make the adversary win with probability 1
2 in that case. As in the proof

of Theorem 5.3.2, we have

Adv[Game2] = |∆Mx| · Adv[Game3] .

In Game4, we also abort if the adversary queries a vector #”y ∈My to the key oracle such
that 〈 #”y ,x ∗〉 6= 0. This game is perfectly indistinguishable from the previous one, as the
adversary cannot ask for a key for #”y ∈My such that 〈 #”y , #”x 0〉 6= 〈 #”y , #”x 1〉. Hence, Adv[∆4] = 0.

In the proof of Theorem 5.3.2, we then proved that Adv[Game4] = 0 using strong diversity
and translation indistinguishability. But here, we cannot apply strong diversity directly, as
the hashing keys # ”hk are still used to answer the queries to the decryption oracle and too
much information might leak from there. To conclude the proof, we need more games.

In Game5, we sample the hashing keys hk†i as follows:

# ”hk† ← # ”hk′′† + x ∗ · hk′† with
{

hk′′†i
$← hashkg†(Λ) for i = 1, . . . , `;

hk′† $← hashkg′†(Λ) .

In the previous game, # ”hk† could be seen as being generated as # ”hk† ← # ”hk′′† Thanks to universal
translation indistinguishability of PHF†, using an hybrid argument, we have:

Adv[∆5] ≤ ` · ε†uti .

We remark that in Game5, by projection key homomorphism:
# ”

hp†i = projkg†(hk†i ) = projkg†( # ”hk′′†i ) + x∗i · projkg†(hk′†) .

Furthermore, for any vector #”y ∈ My such that 〈 #”y ,x ∗〉 = 0, the corresponding secret key
msk #”y = (pp, hk #”y , hk†#”y ) is such that:

hk†#”y = 〈 #”y ,
# ”hk†〉 = 〈 #”y ,

# ”hk′′†〉+ 〈 #”y ,x ∗〉 · hk′† = 〈 #”y ,
# ”hk′′†〉 .
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These keys therefore do not reveal any information about hk′†. We recall that the only places
we compute a key msk #”y are in response to a query to a key oracle or to the decryption oracle.
In the first case, if there is no abort, we always have 〈 #”y ,x ∗〉 = 0.

Furthermore, we remark that the vector #”ct † of the challenge ciphertext is such that:

ct†i = hash†(hk†i , b, τ) = hash†(hk′′†i , b, τ) + x∗i · hash†(hk′†, b, τ) ,

by key homomorphism. This means that the only information that the attacker sees about
hk′† comes from:

1. its projection key hp′† = projkg†(hk′†),

2. the keys msk #”y used by the decryption oracle on a query associated to a vector #”y ∈My

such that 〈 #”y ,x ∗〉 6= 0,

3. the hash value hash†(hk′†, b, τ) used to compute the challenge ciphertext.

In Game6, we change the decryption oracle as follows: on input query ( #”y ′j , τ
′
j , (b′j ,

#”
ct′j ,

#”ct ′†j )):

• if 〈 #”y ′j ,x ∗〉 = 0, it behaves as usual using # ”hk #”y ′j
= 〈 #”y ′j ,

# ”hk〉 and # ”hk†#”y ′j = 〈 #”y ′j ,
# ”hk†〉 to

decrypt the ciphertext (b′j ,
#”
ct′j ,

#”ct ′†j ) with the tag τ ′j ; we recall that this does not reveal
any information about hk′†;

• otherwise:
– if b′j ∈ L, it finds a witness w′j ,1 and checks that

〈 #”y ,
#”ct ′†j 〉 = projhash†(〈 #”y ′j ,

# ”

hp†〉, b′j , w′j , τ)

instead of checking that:

〈 #”y ,
#”ct ′†j 〉 = hash†(hk†#”y ′j , b

′
j , τ) .

This is perfectly indistinguishable by correctness of PHF† and shows that this does
not reveal any information about hk′† beyond hp′†;

– if b′j ∈ X \ L, then it rejects the ciphertext. This is statistically indistinguishable
thanks to the 2-universality.

This game is statistically indistinguishable from the previous one using an hybrid argument
changing the way the decryption oracle behaves query by query. We have: Adv[∆6] ≤
2 · qdec · ε†2u.

In Game7, we change again the decryption oracle as follows, on input query
( #”y ′j , τ

′
j , (b′j ,

#”ct ′j ,
#”ct ′†j )):

• if 〈 #”y ′j ,x ∗〉 = 0, it behaves as usual;

• otherwise:
1We recall that the reduction is statistical here.
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– if b′j ∈ L, it finds a witness w′j , it checks 〈 #”y ,
#”ct ′†j 〉 as before, but it now computes

ct #”x as follows:

ct #”x ← 〈 #”y ′j ,
#”ct ′j〉 − projhash(〈 #”y ′j ,

# ”

hp〉, b′j , w′j)

instead of
ct #”x ← 〈 #”y ′j ,

#”ct ′j〉 − hash(hk, b′j) ,

which is perfectly indistinguishable by correctness of PHF.
– if b′j ∈ X \ L, then it rejects the ciphertext as in the previous game.

We now remark that if we forget about the part #”ct † of all the ciphertexts, we are exactly as
in Game4 of the proof of Theorem 5.3.2. The only information the adversary learns about # ”hk
is 〈 #”y ,

# ”hk〉, for vectors #”y such that 〈 #”y ,x ∗〉 = 0 (if x ∗ was guessed correctly). We conclude as
in Theorem 5.3.2 that Adv[Game7] ≤ ` · εti.

The bound of the theorem follows.
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Chapter 6
Instantiations based on the Decisional
Diffie-Hellman Assumption
In this chapter, we instantiate the generic constructions presented from public key encryption
and from projective hash function with concrete constructions based on the decisional Diffie-
Hellman assumption.
We give 3 concrete instantiations of inner-product functional encryption that respectively
reach s-IND-IPFE-CPA security, IND-IPFE-CPA security and IND-IPFE-CCA security, and
compare their trade-offs between efficiency and security.
The main downside of this construction is that the decryption is expensive: it requires the
computation of a discrete logarithm in a group where it is in general hard. So the message
space has to be restricted. However, the schemes are conceptually simple and are modular.
The first construction is the original one that we proposed in [ABDP15b], while the two
others are taken from [BBL17].
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6.1 The Decisional Diffie Hellman Assumption and Subset
Membership Problem

In this section, we recall the decisional Diffie-Hellman (DDH) assumption and its generaliza-
tion to matrix decisional Diffie-Hellman assumption. Then we present the subset membership
problem whose indistinguishability is based on the DDH assumption which will be used
to construct key homomorphic projective hash functions and thus IND-IPFE-CCA secure
schemes.

6.1.1 The Decisional Diffie Hellman Assumption

The decisional Diffie-Hellman (DDH) assumption has been widely used in public key cryp-
tography since the original two party key exchange that introduced it [DH76] and the very
simple public key encryption scheme by ElGamal [ElG85] that we will use to construct an
inner-product functional encryption scheme. It is an assumption that can only hold in groups
where discrete logarithm are hard, and there are plenty of groups where it is believed to hold.
For example, it is used in elliptic curves-based cryptography that is deployed for the security
of the Internet.

The Decisional Diffie-Hellman Assumption. Let GroupGen be a probabilistic
polynomial-time algorithm that takes as input a security parameter 1κ, and outputs a triplet
(G, q, g) where G is a group of order q that is generated by g ∈ G, and q is a κ-bit prime number.
Then, the Decisional Diffie-Hellman (DDH) assumption states that the tuples (g, ga, gb, gab)
and (g, ga, gb, gc) are computationally indistinguishable, where (G, q, g)← GroupGen(1λ), and
a, b, c ∈ Zq are chosen independently and uniformly at random.

We also define the following subset membership problem that we will use for our projective
hash functions based on DDH.

DDH-Based Subset Membership Problem. Let G be an additive cyclic group of prime
order q, let X = G2, let L be the subgroup of X generated by g = (g1, g2)ᵀ ∈ G2, where gi
are random generators of G, and let L̄ = X \L. A witness w ∈ W = Zq for b ∈ L is such that
b = wg. In other words, we have W = Zq and % = {(w · g, w) : w ∈ Zq}. We set Λ = (G,g).
This defines a subset membership problem, whose (L, L̄)-indistinguishability property is

equivalent to the DDH assumption.

6.1.2 The Matrix Decisional Diffie-Hellman Assumption

For some interesting cryptographic cyclic groups, such as groups with a symmetric pairing, the
DDH assumption does not hold. That is why weaker assumptions, such as the decisional linear
assumption (DLIN, [BBS04]), have been considered. More recently, Escala et al. introduced
the Matrix Diffie-Hellman (MDDH ) assumption family [EHK+13] that generalizes DDH and
its weaker variants like DLIN. Let us recall the MDDH assumption families in the context of
subset membership problems.

MDDH-Based Subset Membership Problem.
Let G be a cyclic group of prime order q. Let D be a distribution of matrices in Gt×d with

d < t being two positive integers. Let g
$← D. Let X = Gt. Let L be the subgroup of X

generated by the columns of g and let L̄ = X \ L. A witness w ∈ W = Zdq for b ∈ L is such
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that b = g ·w. In other words, we have W = Zdq and % = {(g ·w, w) : w ∈ Zdq}. We set
Λ = (G,g).

This defines a subset membership problem, whose (L, L̄)-indistinguishability property
corresponds to the D-MDDH assumption.

When d = 1, t = 2, and D is the uniform distribution over vectors of two generators of G,
then we get back the DDH-based subset membership problem.

6.2 ElGamal Public Key Encryption Scheme
We now present the public key encryption scheme whose security is based on the DDH
assumption, and then we show that it satisfies the properties defined in Section 4.2.1.

6.2.1 Additively Homomorphic ElGamal

The standard ElGamal [ElG85] public key cryptosystem doesn’t directly satisfy the properties
that we need. However, as it is multiplicatively homomorphic, it is easy to transform it in a
way that satisfy our requirements: instead of directly encoding the message as a group element,
we chose a generator g and encode a message m as m · g. This transformed the multiplicative
homomorphism into an additive homomorphism, which is exactly what we wanted for our
construction. The downside is that now, the decryption requires the computation of a discrete
logarithm in base g. As the basis of the discrete logarithm is always the same, it is possible
to speed up the decryption process by having precomputed discrete logarithm tables, but
this still only allows decryption in a fixed polynomial-sized set.

We now recall the scheme with additive notation:

Construction 6.2.1 (Additive ElGamal Public Key Encryption). The additive ElGamal
public key encryption scheme E = (Setup,Encrypt,Decrypt) is defined as follows.

• Setup(1κ) 7→ (pp, sk, pk). On input security parameter κ samples (G, q, g) $←
GroupGen(1κ) and s

$← Zq, and outputs public parameters pp = (G, g), secret key
sk = s, and public key pk ← s · g;

• Encrypt(pp, pk,m) 7→ ct. On input public parameter pp, public key pk, and plaintext
m, samples r $← Zq, computes ct0 ← r · g and ct1 ← r · pk +m · g outputs ciphertext
ct = (ct0, ct1);

• Decrypt(pp, sk, ct) 7→ m or ⊥. On input public parameters pp, secret key sk, and
ciphertext ct, computes and returns m = logg(ct1 − sk · ct0) outputs a message m or an
error symbol ⊥.

Correctness. If the message belongs in a fixed polynomial range that allows the efficient
computation of the discrete logarithm logg(m · g), the correctness comes directly from the
fact that

s · r · g = r · s · g.
We recall that there exist generic algorithms to compute the discrete logarithm of an

element t · g⊥ in O(
√
|T |) group operations, when t is in an interval T ; and in O(T ) group

operations, when t is in an arbitrary subset of T ⊆ Zq.
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6.2.2 Additional Properties of the Additive ElGamal Public Key Encryption
Scheme

We now go through the additional properties defined in Section 4.2, and show that the
additive ElGamal encryption scheme defined in Construction 6.2.1 satisfies this properties.

Structure. Let q be a prime and G a group of order q where the DDH assumption is supposed
to be hard, and g a generator of G. Then, ElGamal’s secret key space is the group
(Zq,+, 0), public key space is the group (G,+, 0), and the message space is Zq. An
ElGamal ciphertext is of the form ct = (ct0 = r · g, ct1 = r · pk + m · g) as required.
Thus, C(r) = r · g and E(pk, x; r) = r · pk +m · g.

Linear Key Homomorphism. It is easy to see that for any two secret keys sk1, sk2 ∈ Zq and
any y1, y2 ∈ Zq, the component-wise linear combination formed by y1sk1 + y2sk2 can be
computed efficiently only using public parameters, the secret keys sk1 and sk2 and the
coefficients y1 and y2. And this combination y1sk1 + y2sk2 also functions as a secret
key to a public key that can be computed as y1 · pk1 + y2 · pk2 = (y1sk1 + y2sk2) · g,
where pk1 (resp. pk2) is a public key corresponding to sk1 (resp. sk2).

Linear Ciphertext Homomorphism under Shared Randomness. It holds that

E(pk1, x1; r) · E(pk2, x2; r) = r · sk1 · g + x1 · g + r · sk2 · g + x2 · g
= r · (sk1 + sk2) · g + (x1 + x2) · g
= E(pk1pk2, x1 + x2; r) .

Security. The ElGamal encryption scheme remains secure under randomness reuse. In fact,
it holds that

E(pk, x; r) = r · (sk · g) +m · g = sk · (r · g) +m · g

.

Thus, the simplified proof of security applies, hence the construction of two inner-product
functional encryption schemes, one being s-IND-IPFE-CPA secure, and the other one reaching
adaptive IND-IPFE-CPA security. We will present those schemes in Section 6.4.

6.3 Projective Hash Functions Based on the Decisional
Diffie-Hellman Assumptions

We are now ready to present the projective hash function that we will use to construct
inner-product functional encryption scheme. We start with the IPFE-CPA-friendly PHF,
and then present the IPFE-CCA-friendly one.

6.3.1 IPFE-CPA-Friendly Projective Hash Functions
In this section, we describe IPFE-CPA-friendly PHFs for the subset membership problems
described in Section 6.1.
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6.3.1.1 Based on Decisional Diffie-Hellman.

Let G be an additive cyclic group of prime order q, let X = G2, let L be the subgroup
of X generated by g = (g1, g2)ᵀ ∈ G2, where gi are random generators of G. A witness
w ∈ W = Zq for b ∈ L is such that b = w · g. We set Λ = (G,g).
We recall the PHF of Cramer and Shoup [CS01, Section 8.1.1] defined as follows:

• hashkg(Λ) outputs hk $← Z2
q = K ;

• projkg(hk) outputs hp← hkᵀ · g ∈ G;

• hash(hk,b) outputs H← hkᵀ · b ∈ G = Π;

• projhash(hp,b, w) outputs pH← hp · w ∈ G = Π.

Lemma 6.3.1. Using above notation, let g⊥ an arbitrary generator of G, M⊥ = q, Mx be a
positive integer, and εti = 0. For any b ∈ X \ L, let hk⊥(b) be defined as follows:

hk⊥(b) =
logg1 g⊥

logg1 b1 · logg1 g2 − logg1 b2
·
(

logg1 g2
−1

)
with b =

(
b1
b2

)
∈ G2 .

Then, the PHF described above is (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly.

Proof. We first remark that hk⊥(b) is well defined, as logg1 b1 · logg1 g2 6= logg1 b2 since b /∈ L.
Key Homomorphism is straightforward.
Strong Diversity. Since the space of projection keys is also a group and projkg is

a group homomorphism, we can use Lemma 5.2.4. Hence, we just need to prove that
projkg(hk⊥(b)) = 0 and hash(hk⊥(b),b) = g⊥. This follows from the following two facts:

projkg(hk⊥(b)) =
logg1 g⊥

logg1 b1 · logg1 g2 − logg1 b2
·
(
logg1 g2 −1

)
·
(
g1
g2

)
,

hash(hk⊥(b),b) =
logg1 g⊥

logg1 b1 · logg1 g2 − logg1 b2
·
(
logg1 g2 −1

)
·
(
b1
b2

)
.

Translation Indistinguishability follows from Lemma 5.2.6.

6.3.1.2 Based on Matrix Decisional Diffie-Hellman.

Let Λ = (G, g) be defined as in the MDDH subset membership of Section 6.1. We recall that
g ∈ Gt×d, X = Gt, L is the subgroup generated by the columns of g, and L̄ = X \ L. A
witness w ∈ W = Zdq for b ∈ L is such that b = g ·w.

We recall the PHF defined by Escala et al. in [EHK+13]:

• hashkg(Λ) outputs hk $← Ztq = K;

• projkg(hk) outputs hp← gᵀ · hk ∈ Gd;

• hash(hk,b) outputs H← hkᵀ · b ∈ G = Π;

• projhash(hp,b, w) outputs pH← hpᵀ ·w ∈ G = Π.

We can prove the following lemma similarly to Lemma 6.3.1:
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Lemma 6.3.2. Using above notation, let g⊥ an arbitrary generator of G, M⊥ = q, Mx be a
positive integer, and εti = 0. Let hk⊥(b) be an arbitrary vector satisfying hk⊥(b)ᵀ · g = 0 and
hk⊥(b)ᵀ · #”

b = g⊥, which exists as #”

b is not in the span of the columns of g. Then, the PHF
described above is (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly.

We skip the proof because is follows the previous one in a very straigthforward manner.
The two PHFs we have just described can thus easily be used to construct IND-IPFE-CPA

secure inner-product functional encryption schemes. We present the one based on DDH in
Section 6.4.

6.3.2 IPFE-CCA-Friendly Projective Hash Functions
In this section, we describe IPFE-CCA-friendly PHFs for the subset membership problems
described in Section 6.1.
DDH Based IPFE-CCA-Friendly PHF. Let G be a cyclic group of prime order q, let
X = G2, let L be the subgroup of X generated by g = (g1, g2)ᵀ ∈ G2, where gi are random
generators of G∗. A witness w ∈ W = Zq for b ∈ L is such that b = w ·g. We set Λ = (G,g).

We first recall the following 2-universal hash from [ABP15]:

• The tag set is T = Zq;

• hashkg†(Λ) outputs hk† $← Z4
q =: K;

• projkg†(hk†) outputs hp† ←
(
g 0
0 g

)ᵀ
· hk† ∈ G2 =: Khp;

• hash†(hk†,b, τ) outputs H† ← hk†ᵀ · ( b
τ ·b
) ∈ G =: Π;

• projhash†(hp†,b, w, τ) outputs pH† ← hp†ᵀ · ( w
τ ·w ) ∈ G = Π.

We have the following property.

Lemma 6.3.3. Using above notation, let hashkg′† = hashkg†, Σ† = Zq, ε†2u = 1/q, Mx be a
positive integer, and ε†uti = 0. Then, the PHF described above is a (hashkg′†,Σ†, ε†2u,Mx, ε

†
uti)-

IPFE-CCA-friendly.

Proof. Key Homomorphism is straightforward.
Projection Key Homomorphism is straightforward.
Universal Translation Indistinguishability follows from Lemma 5.4.4.
2-Universality. Assume that b =

(w1g1
w2g2

)
and b′ =

(
w′1g1
w′2g2

)
for w′1 6= w′2,

p1 := Pr
hk†

[H† = hash†(hk†,b, τ) ∧ H′† = hash†(hk†,b′, τ ′) ∧ hp† = projkg†(hk†)]

= Pr
hk†

[
H† = hk†ᵀ · ( b

τb

) ∧ H′† = hk†ᵀ ·
(

b′

τ ′b′

)
∧ hp† = hk†ᵀ ·

(
g 0
0 g

)]

= Pr
hk†

(H† H′† hp†1 hp†2
)

= hk†ᵀ ·

 w1g1 w′1g1 g1 0
w2g2 w′2g2 g2 0
τw1g1 τ ′w′1g1 0 g1
τw2g2 τ ′w′2g2 0 g2




= Pr
hk†

[(
logg1 H

† logg1 H
′† logg1 hp

†
1 logg1 hp

†
2

)
= hk†ᵀ ·M1

]
,
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where

M1 =

 w1 w′1 1 0
w2 logg1 g2 w′2 logg1 g2 logg1 g2 0

τw1 τ ′w′1 0 1
τw2 logg1 g2 τ ′w′2 logg1 g2 0 logg1 g2

 .

On the other hand,

p2 := Pr
hk†

[H† = hash†(hk†,b, τ) ∧ hp† = projkg†(hk†)]

= Pr
hk†

[
H† = hk†ᵀ · ( b

τb

) ∧ hp† = hk†ᵀ ·
(
g 0
0 g

)]
= Pr

hk†

[(
H† hp†1 hp†2

)
= hk†ᵀ ·

(
w1g1 g1 0
w2g2 g2 0
τw1g1 0 g1
τw2g2 0 g2

)]
= Pr

hk†

[(
logg1 H

† logg1 hp
†
1 logg1 hp

†
2

)
= logg1 hk†ᵀ ·M2

]
where

M2 =

 w1 1 0
w2 logg1 g2 logg1 g2 0

τw1 0 1
τw2 logg1 g2 0 logg1 g2

 .

The column span of M2 is included in the column span of M1, because M1 contains M2
as a submatrix. Moreover, the second column of M1 is not in the column span of M2, so
rank(M1) = rank(M2) + 1. Hence, p1 ≤ p2/q. The theorem follows from Lemma 5.4.6.

We use a slight extension of this PHF because we need an exponentially small security
parameter ε†2u, due our security reduction. The following PHF can be seen as repeating ν
times the PHF of Lemma 6.3.3:

• The tag set is T = Zq;

• hashkg†(Λ) outputs hk† $← Z4×ν
q =: K;

• projkg†(hk†) outputs hp† ←
(
g 0
0 g

)
· hk† ∈ G2×ν =: Khp;

• hash†(hk†,b, τ) outputs H† ← hk†ᵀ · ( b
τ ·b
) ∈ Gν =: Π;

• projhash†(hp†,b, w, τ) outputs pH† ← ( w
τ ·w )ᵀ · hp† ∈ Gν = Π.

This can be use to construct IND-IPFE-CCA inner-product functional encryption schemes
as showed by the following lemma.

Lemma 6.3.4. Using above notation, let hashkg′† = hashkg†, Σ† = Zq, ε†2u = 1/qν , Mx be a
positive integer, and ε†uti = 0. Then, the PHF described above is a (hashkg′†,Σ†, ε†2u,Mx, εti)-
IPFE-CCA-friendly.

Proof. Key Homomorphism is straightforward.
Projection Key Homomorphism is straightforward.
Universal Translation Indistinguishability follows from Lemma 5.4.4.
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2-Universality. As each 4-tuple of coordinates of hk† are generated independently,

Pr
[
H′† = hash†(hk†,b′, τ ′) ∧H† = hash†(hk†,b, τ) ∧ hp† = projkg†(hk†)

]
=

ν∏
i=1

Pr[H′† = hash†(hk†i ,b
′, τ ′) ∧ H†i = hash†(hk†i ,b, τ) ∧ hp†i = projkg†(hk†)]

≤
ν∏
i=1

1
q

Pr
[
H†i = hash†(hk†i ,b, τ) ∧ hp†i = projkg†(hk†)

]
= 1
qν

ν∏
i=1

Pr
[
H†i = hash†(hk†i ,b, τ) ∧ hp†i = projkg†(hk†)

]
= Pr

[
H† = hash†(hk†,b, τ) ∧ hp† = projkg†(hk†)

]
,

where (hashkg†, projkg†, hash†, projhash†) is the 1/q-2-universal PHF from Lemma 6.3.3.
The theorem follows from Lemma 5.4.6.

The resulting IND-TBIPFE-CCA secure scheme will be explicited in Section 6.4.

MDDH Based IPFE-CCA-Friendly PHF. The previous construction can be extended in
a straightforward way to any MDDH-based subset membership problem in a straightforward
way, similar to what is done for our IPFE-CPA-friendly construction in the previous subsection.

6.4 Inner-Product Functional Encryption Schemes Based on the
Decisional Diffie-Hellman Assumption

In this section, we present 3 inner-product functional encryption schemes based on the
decisional Diffie-Hellman assumption. The first one is the most simple, but it only reaches
s-IND-IPFE-CPA security. The second one is almost as efficient, adding 1 coordinate to the
vectors only, and reaches adaptive IND-IPFE-CPA security. The last one reaches IND-IPFE-CCA
security, but is more expensive: the public keys, secret keys, and ciphertexts are bigger than
in the two previous schemes. We illustrate the differences between the schemes in Table 6.1
and present the tradeoffs between security and efficiency. We see that the adaptive security
is almost for free, thus the second scheme should be prefered to the first one, which is still a
good textbook example of inner-product functional encryption. On the other hand, security
against active adversary is very expensive, and it should be considered with care if it is
required or not.

6.4.1 Scheme Secure Against Selective Chosen-Plaintext Attacks

This scheme can be obtained by plugging the ElGamal public key encryption scheme in
Construction 4.3.1. It is depicted on Figure 6.1 We recall that due to the constraint on the
decryption, we have to setMx andMy such that the result of the inner-product is not too
big in order to ensure correctness. Remember that we also needMx to be small enough for
the proof of security.
By using Theorem 4.3.3, we immediately get the following security theorem for our

construction.
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Security s-IND-IPFE-CPA IND-IPFE-CPA IND-TBIPFE-CCA
mpk ` ` 2`2 + 3`
msk ` 2` 4`2 + 6`
sk #”y 1 2 4`+ 6
ct #”x `+ 1 `+ 2 `2 + 2`+ 2

Table 6.1: Comparison of the three different DDH-based inner-product functional encryption
schemes. The sizes are represented as a number of group elements for the master
public keys and ciphertexts, while it is represented as the number of scalars in Zq
for master and user secret keys. We recall that in order to achieve IND-IPFE-CCA
security from the IND-TBIPFE-CCA secure scheme, we just need to add a one-time
signature to the ciphertext, and does not make the size of the keys grow.

• Let G be a cyclic group of prime order q, g⊥ a generator of G.

• Setup(1κ, 1`) 7→ (mpk,msk): Set pp = (κ, `,G, q, g⊥). For i = 1, . . . , `, set

si
$← Zq , hi ← si · g⊥ ∈ G .

Return msk = #”s ∈ Z`q and mpk = #”

h ∈ G`;

• KeyDer(msk, #”y ∈My) 7→ sk #”y : Return

sk #”y ← 〈 #”y , #”s 〉 ∈ Zq ;

• Encrypt(mpk, #”x ∈Mx) 7→ ct #”x : Pick r $← Zq and set

ct0 ← r · g⊥ ∈ G.

For i = 1, . . . , `, set

cti ← xi · g⊥ + r · hpi ∈ G .

Return ct #”x = (ct0,
#”ct ∈ G`);

• Decrypt(sk #”y , ct #”x ): Set

ct〈 #”x , #”y 〉 ← 〈 #”y ,
#”ct〉 − hkᵀ

#”y · b ∈ G.

Return logg⊥ ct〈 #”x , #”y 〉.

Figure 6.1: DDH-based inner-product functional encryption secure against selective chosen-
plaintext attacks
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Theorem 6.4.1. Under the DDH assumption in G, the scheme FE depicted on Figure 6.1
is s-IND-IPFE-CPA secure.

More precisely, if there exists an attacker A that has advantage εA in breaking the
s-IND-IPFE-CPA security of FE, then there exists an attacker B that runs in approximately
the same time and that has advantage εB in breaking the DDH assumption, such that εA ≤ εB
.

6.4.2 Scheme Secure Against Adaptive Chosen-Plaintext Attacks
The following scheme can be obtained in two different ways: plugging the ElGamal public
key encryption scheme into Construction 4.4.1, or plugging our key homomorphic projective
hash function based on DDH into Construction 5.3.1. It is depicted on Figure 6.2. To satisfy
Condition 1, we need to choose the efficiently recognizable subsets My and Mx of R` so
that the discrete logarithm of 〈 #”y , #”x 〉 · g⊥ ∈ G is efficient to compute, for any #”y ∈ My

and #”x ∈ Mx. This scheme can easily be extended to rely on any MDDH assumption by
using instead projective hash functions defined in Section 6.3.1.2, however we stick to the
instantiation based on DDH for simplicity.

• Let G be a cyclic group of prime order q, g⊥ a generator of G.

• Setup(1κ, 1`) 7→ (mpk,msk): Choose g
$← G2. Set pp = (κ, `,g). For i = 1, . . . , `, set

hki
$← Z2

q , hpi ← hkᵀ
i · g ∈ G .

Return msk = # ”hk ∈ (Z2
q)
` and mpk = # ”

hp ∈ G`.

• KeyDer(msk, #”y ∈ Z`q) 7→ sk #”y : Set

hk #”y ← 〈 #”y ,
# ”hk〉 ∈ Z2

q .

Return sk #”y = hk #”y ∈ Z2
q .

• Encrypt(mpk, #”x ∈ Z`q) 7→ ct #”x : Pick r $← Zq and set b← r · g ∈ G2.
For i = 1, . . . , `, set

cti ← xi · g⊥ + r · hpi ∈ G .

Return ct #”x = (b, #”ct ∈ G`).

• Decrypt(sk #”y , ct #”x ): Set

ct〈 #”x , #”y 〉 ← 〈 #”y ,
#”ct〉 − hkᵀ

#”y · b ∈ G.

Return logg⊥ ct〈 #”x , #”y 〉.

Figure 6.2: DDH-based inner-product functional encryption secure against chosen-plaintext
attacks
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This scheme corresponds to the DDH-based schemes of [ALS16] and [ABDP16]. Applying
Theorem 5.3.2 or Theorem 4.4.2, we immediately get the following security theorem.

Theorem 6.4.2. Under the DDH assumption in G, the scheme FE depicted on Figure 6.2
is IND-IPFE-CPA secure.

More precisely, if there exists an attacker A that has advantage εA in breaking the
IND-IPFE-CPA security of FE, then there exists an attacker B that runs in approximately the
same time and that has advantage εB in breaking the DDH assumption, such that εA ≤ 2 · εB
.

It is worth noting that the term ` · |∆Mx| · εti from Theorem 5.3.2 has disappeared because
of the key-uniformity.

6.4.3 Scheme Secure Against Chosen-Ciphertext Attacks
Let us now instantiate the framework for IND-TBIPFE-CCA secure tag-based inner-product
functional encryption schemes with the DDH-based IPFE-CPA-friendly PHF defined in Sec-
tion 6.3.1.1, and the DDH-based IPFE-CCA-friendly tag-based PHF defined in Section 6.3.2.
We set R = Zq and Mx = q (or any large enough integer). As for the IND-IPFE-CPA secure
scheme in the previous section, we need to choose the efficiently recognizable subsetsMy

andMx of R` so that the discrete logarithm of 〈 #”y , #”x 〉 · g⊥ ∈ G is efficient to compute, for
any #”y ∈ My and #”x ∈ Mx in order to satisfy Condition 2. The resulting construction is
depicted on Figure 6.3 and can be easily extended to use any MDDH-based PHF defined in
Section 6.3.2.

Applying Theorem 5.5.2, we immediately get the following security theorem.

Theorem 6.4.3. Under the DDH assumption in G, the scheme T BFE depicted on Figure 6.2
is IND-TBIPFE-CCA secure.

More precisely, if there exists an attacker A that has advantage εA in breaking the
IND-TBIPFE-CCA security of T BFE, then there exists an attacker B that runs in approxi-
mately the same time and that has advantage εB in breaking the DDH assumption, such that
εA ≤ 2 · εB + 2 · qdec · q`−ν .

In particular, setting ν = `+ 1, we have the following bound: εA ≤ 2 · εB + 2 · qdec
q . We

consider this setting of parameter for the comparison of the schemes.
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• Let G be a cyclic group of prime order q, g⊥ a generator of G.

• Setup(1κ, 1`) 7→ (mpk,msk): Choose g
$← G2. Set pp = (κ, `,g). For i = 1, . . . , `, set

hki
$← Z2

q , hpi ← hkᵀ
i · g ∈ G .

hk†i
$← Z4×ν

q , hp†i ←
(
g 0
0 g

)ᵀ
· hk†i ∈ G2×ν .

Return msk = ( # ”hk ∈ (Z2
q)
`
,

# ”hk† ∈ (Z4×ν
q )`) and mpk = ( # ”

hp ∈ G`,
#  ”

hp† ∈ (G2×ν)`).

• KeyDer(msk, #”y ∈ Z`q) 7→ sk #”y : Set

hk #”y ← 〈 #”y ,
# ”hk〉 ∈ Z2

q , hk†#”y ← 〈 #”y ,
# ”hk†〉 ∈ Z4×ν

q .

Return sk #”y = (hk #”y ∈ Z2
q , hk†#”y ∈ Z4×ν

q ).

• Encrypt(τ,mpk, #”x ∈ Z`q) 7→ ct #”x : Pick r $← Zq and set b← r · g ∈ G2.
For i = 1, . . . , `, set

cti ← xi · g⊥ + r · hpi ∈ G , ct †i ← hp†i · ( r
τ ·r ) ∈ Gν .

Return ct #”x = (b, #”ct ∈ G`,
#”ct † ∈ (Gν)`).

• Decrypt(τ, sk #”y , ct #”x ): Check that 〈 #”y ,
#”ct †〉 = hk†#”y

ᵀ · ( b
τ ·b
)
; return ⊥ if it fails.

Set
ct〈 #”x , #”y 〉 ← 〈 #”y ,

#”ct〉 − hkᵀ
#”y · b ∈ G.

Return logg⊥ ct〈 #”x , #”y 〉.

Figure 6.3: DDH-based tag-based inner-product functional encryption secure against chosen-
ciphertext attacks
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Chapter 7
Instantiations based on the Decisional
Composite Residuosity Assumption
In this chapter, we instantiate the generic constructions of inner-product functional encryption
from key-homomorphic projective hash functions with concrete constructions based on the
decisional composite residuosity assumption.
We present two non-modular IPFE schemes reaching respectively IND-IPFE-CPA security
(adaptive) and IND-TBIPFE-CCA security and compare their pros and cons in term of efficiency
and security.
These schemes solve the problem from which the schemes of Chapter 6 suffer: the decryption
is very efficient. However, the downside is that the scheme has bigger keys and ciphertexts,
because it cannot rely on elliptic curve cryptography, and requires huge integers to guarantee
security. The fact that some computations are done over the integers also makes it hard to
analyze the efficiency of the scheme. We also note that the schemes presented in this chapter
are non-modular, which is also another downside.
The constructions, and proofs that the projective hash functions verify the correct properties
are taken from our contribution [BBL17].
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7.1 The Decisional Composite Residuosity Assumption and
Subset Membership Problem

In this section, we recall the decisional composite residuosity (DCR) assumption and present a
subset membership problem whose indistinguishability can be reduced to the DCR assumption,
which will be used to construct key homomorphic projective hash functions and inner-product
functional encryption schemes.

7.1.1 The Decisional Composite Residuosity Assumption

The DCR assumption was introduced to build public key encryption schemes [Pai99]. It is
part of one of the two most important famillies of assumption for public key cryptography:
assumptions based on the hardness of factorization, that started with the RSA cryposys-
tem [RSA78]. Indeed, if it is easy to factor big numbers, then the DCR assumption does
not hold. However, we do not know any better attack on this assumption than factoring the
modulus and recover the two primes that compose it. As with all other assumptions based
on factoring, we will work in the ring ZN , where N is an RSA number, i.e., a product of
two big prime numbers. We need to be careful here because ZN is not a field as was Zq in
Chapter 6. However, it is very hard to find a number that do not have an inverse, in fact, it
is as hard as finding the two prime factors of N .

The Decisional Composite Residuosity Assumption. Let N = pq be a product of
two λ-bit random safe primes p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are also primes
and where λ is a function of the security parameter κ. The decisional composite residuosity
assumption states that z and yN are computationally indistinguishable, where z and y are
chosen uniformly at random from ZN2 and the exponentiation is done modulu N2.

We won’t directly use this assumption but an assumption which is equivalent for our subset
membership problem.

7.1.2 Subset Membership Problem Based on the Decisional Composite
Residuosity Assumption

In order to improve the efficiency of our scheme, we will work in the ring ZNs+1 for some
integer s instead of the ring ZN2 . This change was introduced by Damgård and Jurik [DJ01]
to improve the asymptotic efficiency of the Pailler encryption scheme. Everything behaves
the same way, but instead of having a message space of size N , we have message space N s,
while still having an overhead of log(N) bits for security reasons.

The second change we make in order to have a better inner-product functional encryption
scheme at the end is using the group of signed quadratic residues [FS97; HK09; HKS13].
Basically, we change the group law in order to ensure that we are only dealing with quadratic
numbers, and that it is efficient to check if a number is a square. This isn’t the case when
taking numbers in ZN , in fact it is even a cryptographic assumption: the quadratic residuosity
(QR) assumption that is used for example to build public key encryption schemes [GM82;
GM84].
Using only squares ensures that the smallest subgroup of our field has a big order, because
we removed both subgroup of order 2. Hence, when an element is uniform in a subgroup
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chosen by the adversary, it is still statistically impossible to guess its value beforehand.

Signed Quadratic Residues. Let N = pq be a product of two λ-bit random safe primes
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are also primes and where λ is a function
of the security parameter κ and let N ′ = p′q′. The order of the group Z∗N of invertible
elements in ZN is φ(N) = 4N ′ (here, φ is Euler’s totient function). We denote by JN the
subgroup of Z∗N order 2N ′ of elements from Z∗N with Jacobi symbol 1. We also denote by
QRN = {x : ∃y ∈ ZN , x = y2[N ]} the subgroup of JN of order N ′ of quadratic residues
modulo N . As N is a Blum integer (since p and q are both safe primes), −1 ∈ JN \QRN ,
because it is not a square modulo p nor modulo q.
We now write the elements of ZN as {−N−1

2 , . . . , N−1
2 }, and we define the group of signed

quadratic residues modulo N

QR+
N = {|x| : x ∈ QRN},

where the group operation ◦ is defined through |x| ◦ |y| = |xy|. As for any x ∈ QRN ,
−x ∈ JN \ QRN , |QR+

N | = |QRN | = 1
2 |JN |, so QR+

N = J+
N , where J+

N = {|x| : x ∈ JN} =
JN/ ± 1. In particular, since the jacobi symbol of an element is efficiently computable, it
is easy to verify if an element is in QR+

N or not. We are now ready to define our subset
membership problem.
DCR-Based Subset Membership Problem. Let N = pq be a product of two λ-bit
random safe primes p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are also primes and
where λ is a function of the security parameter κ, and let N ′ = p′q′. Let s ≥ 1 be
an integer parameter. Let us write Z∗Ns+1

∼= GNs ⊕ GN ′ ⊕ G2 ⊕ T , where ∼= denotes
group isomorphism, ⊕ is the direct sum or Cartesian product, Gi are cyclic groups of
order i, and T is the order-2 cyclic group generated by −1 mod N s+1. As previously,
let us represent the elements of ZNs+1 as {−(N s+1 − 1)/2, . . . , (N s+1 − 1)/2}. We define
G = X = {|x| : ∃y ∈ Z∗Ns+1 s.t. x = y2} = JNs+1 ∩ {1, . . . , (N s+1 − 1)/2} ∼= GNs ⊕GN ′ . We
will use additive notation for G in order to have notation closer to the ones used for the
generic constructions: g1 + g2 = |g1g2|. Let g be a random generator of L ∼= GN ′ , that is a
subgroup of X ; g can be thought of as a random 2N s-th residue. A witness w ∈ W = Z for
b ∈ L is such that b = w · g. Finally, let g⊥ be an arbitrary generator of the cyclic group
GNs (for example g⊥ = 1 +N ∈ ZNs+1 , where + here is the additive law of ZNs+1) and let
L̄ = L+ g⊥. We set Λ = (N, s, g, g⊥).
One cannot sample uniform witnesses as W = Z is infinite. We cannot set W = ZN ′ , as

computing N ′ from Λ = (N, s, g) requires to factor N . Instead, we sample witnesses uniformly
from SN := {0, . . . , bN/4c − 1}. Clearly, the statistical distance ∆(U(ZN ′), U(SN )) =
1− p′q′/(pq/4) = (2p′ + 2q′ + 1)/(pq) < 2(p+ q)/(pq) < 4/ spf(N). From this distribution
over W , we can derive distributions over %, L, and L̄ = L+ g⊥. The two latter distributions
are statistically close to uniform.

This setting defines a subset membership problem, whose (L, L̄)-indistinguishability prop-
erty can be proven under the decisional composite residuosity assumption. More precisely,
we consider the DCR assumption for moduli that are product of safe primes; the DCR
assumption then basically states that in the case s = 1, no probabilistic polynomial time
adversary can distinguish between uniform elements of L and X . We note that the original
assumption actually does not restrict the the elements to be of Jacobi symbol 1 nor square,
but doing this restriction yields an equivalent assumption, since we can multiply element
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of Jacobi symbol -1 by an arbitrary N s-residue of Jacobi symbol -1, and as we are using
the group of signed quadratic residues, we can go from a non square element to a square by
multiplying it by -1. This is a classical variant of DCR, which is equivalent to the original
DCR assumption [Pai99], assuming that safe primes are sufficiently dense (see, e.g., [CS02]).
We have the following lemma, following [DJ01]:

Lemma 7.1.1. If the DCR assumption holds, the above subset membership problem is (L, L̄)-
indistinguishable. More precisely, if there exists an adversary A that has advantage εA in
breaking (L, L̄)-indistinguishability, then there exists an attacker B that runs in approximately
the same time and that has advantage εB in breaking DCR, such that εA ≤ 2s ·εB +8/ spf(N).

Proof. We use an hybrid proof as in [DJ01] using s hybrids. The term 8/ spf(N) comes from
the statistical distance between our distribution over X and L and the uniform distribution.

7.2 Projective Hash Functions Based on the Decisional
Composite Residuosity Assumptions

We are now ready to present the projective hash function that we will use to construct
inner-product functional encryption scheme. We start with the IPFE-CPA-friendly PHF,
and then present the IPFE-CCA-friendly one.

7.2.1 IPFE-CPA-Friendly Projective Hash Function

We now define our IPFE-CPA-friendly projective hash function based on the DCR subset
membership problem. It is a generalization of the PHF of Cramer and Shoup based on
DCR in [CS02] Let Λ = (N, s, g, g⊥) be defined as in Section 7.1.2. We have: G = X =
JNs+1 ∩ {1, . . . , (N s+1 − 1)/2} ∼= GNs ⊕ GN ′ , L = GN ′ , and L̄ = L + g⊥. The element
g is a generator of L, while g⊥ is a generator of GNs . We recall that we use additive
notation for the group G: g1 + g2 = |g1g2|, where elements of ZNs+1 are represented as
{−(N s+1 − 1)/2, . . . , (N s+1 − 1)/2}.

We define the DCR-based PHF as follows:

• hashkg(Λ) outputs hk $← {0, . . . , bMN s+1/4c} =: K∗ ⊆ Z =: K, where M is a positive
integer and is a parameter of the scheme;

• projkg(hk) outputs hp← hk · g ∈ G;

• hash(hk, b) outputs H← hk · b ∈ G =: Π;

• projhash(hp, b, w) outputs pH← hp · w ∈ G = Π.

When M = 2, this PHF corresponds to the one of Cramer and Shoup in [CS02].
We insist on the fact that the set of hashing keys is K = Z so that it is a group. However,

hashkg only samples a hashing key from a finite subset K∗ of K.
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Lemma 7.2.1. Using above notation, let M⊥ = N s, Mx be a positive integer, and εti =
Mx/M . Let hk⊥ be defined as follows:

hk⊥(b) = N ′ · (N ′−1 mod N s) (< N ′N s < N s+1/4) .

Then, the PHF described above is (hk⊥, g⊥,M⊥,Mx, εti)-IPFE-CPA-friendly.

Proof. Key homomorphism and strong diversity are proven similarly as in the DDH case,
while translation indistinguishability follows from Lemma 2.1.2.

Key Homomorphism is straightforward.
Strong Diversity. Assume b ∈ L̄ = L+ g⊥, write b = wg + g⊥ for w ∈ ZN ′ . Since the

space of projection keys is also a group and projkg is a group homomorphism, we can use
Lemma 5.2.4. Hence, we just need to prove that projkg(hk⊥(b)) = 0 and hash(hk⊥(b), b) = g⊥.
The first equality follows from the facts that

projkg(hk⊥(b)) = hk⊥(b) · g = N ′ · (N ′−1 mod N s) · g

and that g has order N ′. For the second equality, we remark that

hash(hk⊥(b), b) = hk⊥(b) · b = N ′ · (N ′−1 mod N s) · w · g +N ′ · (N ′−1 mod N s) · g⊥ .

Since g has order N ′, as before N ′ · (N ′−1 mod N s) · w · g = 0. Furthermore, since g⊥ has
order N s,

N ′ · (N ′−1 mod N s) · g⊥ = (N ′ ·N ′−1 mod N s) · g⊥ = g⊥ .

Translation Indistinguishability. For any x ∈ {−Mx, . . . ,Mx}, we have

∆(hashkg(Λ), hashkg(Λ) + x · hk⊥(b)) = |x · hk⊥(b)|
|K∗|

≤ Mx ·N ′N s

MN s+1/4 <
MxN/4
MN/4 = Mx

M
= εti .

This concludes the proof.

Interestingly, because of our choice of L̄, hk⊥(b) does not depend on b. Note also that for
M < Mx/εti, this PHF is still key-homomorphic and strongly diverse, but might lack the
translation indistinguishability property that is necessary for our application.

7.2.2 IPFE-CCA-Friendly Projective Hash Function
We now define our IPFE-CCA-friendly projective hash function based on the DCR subset
membership problem. As for the DDH-based IPFE-CCA-friendly projective hash function of
Section 6.3.2, we use a PHF that is basically ν copies in parallel of a 2-universal PHF based
on DCR.
Once again, let Λ = (N, s, g, g⊥) be defined as in Section 7.1.2. We have: G = X =

JNs+1 ∩ {1, . . . , (N s+1 − 1)/2} ∼= GNs ⊕ GN ′ , L = GN ′ , and L̄ = L + g⊥. The element
g is a generator of L, while g⊥ is a generator of GNs . We recall that we use additive
notation for the group G: g1 + g2 = |g1g2|, where elements of ZNs+1 are represented as
{−(N s+1 − 1)/2, . . . , (N s+1 − 1)/2}.

We define a PHF as follows:
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• The tag set is T = {0, . . . , bN/2c} ⊆ ZN ′

• hashkg†(Λ) outputs hk† $← {0, . . . , bνM †N s+1/2c}2×ν =: K∗ ⊆ Z2×ν =: K, where M †
is a positive integer and is a parameter of the scheme;

• projkg†(hk†) outputs hp† ←
(
g 0
0 g

)ᵀ
· hk† ∈ G2×ν =: Khp;

• hash†(hk†, b, τ) outputs H† ← hk†ᵀ · ( b
τ ·b
) ∈ Gν =: Π;

• projhash†(hp†, b, w, τ) outputs pH† ← hp†ᵀ · ( w
τ ·w ) ∈ Gν = Π.

We have the following property.
Lemma 7.2.2. Using above notation, Σ† = {−N s + 1, . . . , N s − 1} \ {0}, ε†2u = 1/ spf(N)ν ,
Mx be a positive integer, and ε†uti = Mx/M

†. Define in addition the following algorithm:

• hashkg′†(Λ) output hk† $← Z2×ν
N ′Ns = K∗†.

Then, the PHF described above is a (hashkg′†,Σ†, ε†2u,Mx, ε
†
uti)-IPFE-CCA-friendly.

Proof. Key Homomorphism is straightforward.
Projection Key Homomorphism is straightforward.
Universal Translation Indistinguishability. We recall the following classical lemma.

Lemma 7.2.3. Let (A1, . . . , Ak) and (B1, . . . , Bk) be two tuples of k independent distributions.
Let A (resp. B) be the product distribution of (A1, . . . , Ak) (resp. (B1, . . . , Bk)), i.e., the
distributions of tuples (x1, . . . , xk) where xi is distributed according to Ai (resp. Bi), for
i = 1, . . . , k. Then:

∆(A,B) ≤
k∑
i=1

∆(Ai, Bi) .

Using this fact, for any x ∈ {−Mx, . . . ,Mx} and any hk† $← hashkg′†(Λ), we have

∆(hashkg(Λ), hashkg(Λ) + x · hk)

≤
2∑
i=1

ν∑
j=1

∆({0, . . . , bνM †N s+1/2c}, x · hki,j + {0, . . . , bνM †N s+1/2c})

=
2∑
i=1

ν∑
j=1

|x · hki,j |
|K∗| ≤ 2ν · Mx ·N ′N s

νM †N s+1/2 <
Mx

M †
= ε†uti .

Therefore:
∆(hashkg(Λ), hashkg(Λ) + x · hk) < ε†uti .

2-Universality. As for the case of DDH, we first study the 2-universality of the simple
scheme which will be repeated ν times. Then we will conclude using the same argument, that
is the parallel repetitions are independent. For the simple scheme, notice that conditioning
on projkg†(hk†) fixes the values of hk†1 and hk†2 modulo N ′, the order of g. So hk†1 and hk†2
are uniform in a coset of the subgroup of order N s. Conditioning on hash†(hk†, b, τ) fixes a
relation between hk†1 and hk†2 modulo N s depending on τ . However, as τ ′ 6= τ , this relation
does not fix the value of hash†(hk†, b′, τ ′), and the most likely value still has probability at
most spf(N).

We are now ready to present our inner-product functional encryption schemes.
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7.3 Inner-Product Functional Encryption Schemes Based on the
Decisional Composite Residuosity Assumption

In this section, we present the two schemes secure under the DCR assumption obtained by plug-
ging the PHFs described in the previous section in Construction 5.3.1 and Construction 5.5.1.
The first one reaches IND-IPFE-CPA security, the second one is an IND-TBIPFE-CCA secure
tag-based IPFE scheme. The most interesting part about these construction is that they fix
the biggest problem of the schemes based on the DDH assumption: the decryption is efficient.
On the other hand, the schemes are non-modular, which is not as general as we would like.
We recall however that [ALS16] presented a way to convert non-modular IPFE schemes into
modular IPFE schemes, the only cost being that the key generation algorithm have to be
stateful and remember up to ` different queries, which is still a reasonably low cost. We
provide a comparison of those two schemes in Table 7.1, where we present the trade-offs
between security and efficiency.

Security IND-IPFE-CPA
mpk `(s log(N)− 1)
msk `(log(M) + s log(N)− 2)
sk #”y log(`) log(My)(log(M) + s log(N)− 2)
ct #”x (`+ 1)(s log(N)− 1)

Security IND-TBIPFE-CCA
mpk `(2ν + 1)(s log(N)− 1)
msk ` log(M) + (ν + 1)`(s log(N)− 1) + 2`ν(log(M †) + log(ν))
sk #”y log(`) log(My)(log(M) + log(M †) + log(ν) + 2s log(N)− 3)
ct #”x (ν`+ `+ 1)(s log(N)− 1)

Table 7.1: Comparison of the two different DCR-based inner-product functional encryption
schemes. The sizes are represented as a number of bits, since some elements
are in Z. We recall that in order to achieve IND-IPFE-CCA security from the
IND-TBIPFE-CCA secure scheme, we just need to add a one-time signature to the
ciphertext, and does not make the size of the keys grow.

7.3.1 Scheme Secure Against Chosen-Plaintext Attacks

Before presenting the scheme, let us first discuss the choice of parameters. We set R = Z.
Contrary the DDH-based instantiation, the discrete logarithm problem in the subgroup
generated by g⊥ is easy: given t · g⊥, we can always efficiently recover t. However, to satisfy
Condition 1, we need to chooseMy andMx so that for any #”y ∈My and #”x ∈Mx, 〈 #”y , #”x 〉
is the same modulo M⊥ = N s and over the integers.

There are many ways to choose the parameters to satisfy this condition. We propose one
possible way here.

Example 7.3.1 (Example of parameters for our DCR-based instantiation). Let My and Mx
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be positive integers such that 2MyMx + 1 ≤M⊥ = N s. We set:

My := { #”y ∈ Z` : ‖ #”y ‖ ≤My} , Mx := { #”x ∈ Z` : ‖ #”x‖ ≤Mx} ,
M := ` · 2κ ·Mx · |∆Mx| ≤ ` · 2κ ·Mx · (4 ·Mx)` ,

where ‖.‖ denotes the Euclidean norm, so that |〈 #”y , #”x 〉| ≤MyMx (when the inner-product is
over the integers). For the last inequality, we use the rough inequality |∆Mx| ≤ (4 ·Mx)`.

Then, we fix My and Mx so that 2MyMx + 1 ≤M⊥. And we choose M so that Mx/M is
negligible.

We are now ready to present our DCR-based IND-IPFE-CPA secure IPFE scheme, depicted
on Figure 7.1. To make the scheme look mroe familiar, we use the multiplicative notation for
G: g1g2 = |g1g2| where elements are represented in {−Ns−1

2 , . . . , N
s−1
2 }.

• LetN = pq be a product of two λ-bit random safe primes. We suppose that Condition 1
is satisfied. Let u $← Z∗Ns+1 , g← u2Ns , and g⊥ ← 1 +N .

• Setup(1κ, 1`) 7→ (mpk,msk): Set pp = (κ, `,N, g). For i = 1, . . . , `, set

hki
$← {0, . . . , bMN s+1/4c} ∈ Z , hpi ← ghki ∈ G .

Return msk = hk ∈ Z` and mpk = hp ∈ G`.

• KeyDer(msk, #”y ∈My) 7→ sk #”y : Set

hk #”y ← 〈 #”y ,
# ”hk〉 ∈ Z ,

where the computation is done over Z. Return msk #”y = hk #”y ∈ Z.

• Encrypt(mpk, #”x ∈ Mx) 7→ ct #”x : Sample r $← {0, . . . , bN/4c} and set b← gr. Return
(msk,mpk). For i = 1, . . . , `, set

cti ← (1 +N)xi · hpri ∈ G .

Return ct #”x = (b, #”ct ∈ G`).

• Decrypt(sk #”y , ct #”x ): Set

ct〈 #”x , #”y 〉 ←
∏̀
i=1

ctyii /b
hk #”y .

Return ct〈 #”x , #”y 〉−1
N mod N s (using the representation in {− bN s/2c , . . . , bN s/2c}).

Figure 7.1: DCR-based inner-product functional encryption secure against chosen-plaintext
attacks

Note that the sizes of our secret keys is slightly larger than those of [ALS16], due to our
security reduction. In order to have better parameters, they do a more precise analysis of
the computational entropy contained in the secret key and show that it is enough to hide
the challenge vector. On the other hand, their scheme requires to sample discrete Gaussian
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whereas we only need uniform values. Moreover, our scheme is length-flexible in the same
sense as the cryptosystems of [DJ01; DJ03]. Namely, by fixing the parameter s ∈ Z+, one can
obtain bigger or smaller sets Mx and My, which is not possible with the scheme presented
by [ALS16]. Larger s however makes the scheme less efficient.
Applying Theorem 5.3.2 and Lemma 7.1.1, we immediately get the following security

theorem.

Theorem 7.3.2. Under the DCR assumption, the scheme FE depicted on Figure 7.1 is
IND-IPFE-CPA secure.
More precisely, if there exists an attacker A that has advantage εA in breaking the

IND-IPFE-CPA security of FE, then there exists an attacker B that runs in approximately
the same time and that has advantage εB in breaking the DCR assumption, such that
εA ≤ 4s · εB + 16/ spf(N) + ` · |∆Mx| ·Mx/M .

Using parameters from Example 7.3.1, we have the following security bound: εA ≤
4s · εB + 16/ spf(N) + 2−κ. Although there is an exponential loss in the security reduction
of Theorem 5.3.2, we emphasize that there is no exponential loss using these parameters:
the security loss is compensated by these well-chosen parameters. Most importantly, all the
algorithms of the resulting scheme run in polynomial time (in the security parameter κ)1

and the reduction to DCR is polynomial time. There is no complexity leveraging and we do
not require subexponential assumption nor exponential-size keys or ciphertexts.

We also note that we could directly have another inner-product functional encryption
scheme that is IND-IPFE-CPA secure by instantiating Construction 4.4.1 with the public key
encryption scheme from [CS03] or [BCP03], but the resulting construction would have worse
parameters than our construction from projective hash functions. These schemes are similar
to the ElGamal public key encryption scheme, but in a composite group, which means that
the message can be embeded in a subgroup where the discrete logarithm is easy to solve, as
in our case with the construction from PHF.

7.3.2 Scheme Secure Against Chosen-Ciphertext Attacks

Let us now instantiate the framework for IND-TBIPFE-CCA secure tag-based inner-product
functional encryption schemes with the DCR-based IPFE-CPA-friendly PHF defined in
Section 7.2.1, and the DCR-based IPFE-CCA-friendly tag-based PHF defined in Section 7.2.2.
We use the same parameters as for the IND-IPFE-CPA secure scheme in the previous section.
We recall that we use here the multiplicative notation for G: g1g2 = |g1g2| where elements
are represented in {−Ns−1

2 , . . . , N
s−1
2 }. The resulting scheme is depicted on Figure 7.2.

Applying Theorem 5.5.2 and Lemma 7.1.1, we immediately get the following security
theorem.

Theorem 7.3.3. Under the DCR assumption, the scheme T BFE depicted in Figure 7.2 is
IND-TBIPFE-CCA.
More precisely, if there exists an attacker A that has advantage εA in breaking the

IND-TBIPFE-CCA security of T BFE, then there exists an attacker B that runs in approxi-
mately the same time and that has advantage εB in breaking the DCR assumption, such that
εA ≤ 4s · εB + 16/ spf(N) + ` · |∆Mx| ·Mx · (1/M + 2/M †) + 2 · qdec · |∆Mx|/2ν .

1We recall that the length ` of the vectors is assumed to be polynomial in κ.



106 Chapter 7 Instantiations based on the Decisional Composite Residuosity Assumption

• LetN = pq be a product of two λ-bit random safe primes. We suppose that Condition 1
is satisfied. Let u $← Z∗Ns+1 , g← u2Ns , and g⊥ ← 1 +N .

• Setup(1κ, 1`) 7→ (mpk,msk): Set pp = (κ, `,N, g). For i = 1, . . . , `, j = 1, 2, and
k = 1, . . . , ν, set

hki
$← {0, . . . , bMN s+1/4c} ∈ Z , hpi ← ghki ∈ G ,

hk†k,i,j
$← {0, . . . ,

⌊
νM †N s+1/2

⌋
} ∈ Z , hp†k,i,j ← ghk†

k,i,j ∈ G .

Return msk = (hk ∈ Z`, # ”hk† ∈ (Z2×ν)`) and mpk = (hp ∈ G`,
#  ”

hp† ∈ (G2×ν)`).

• KeyDer(msk, #”y ∈My) 7→ sk #”y : Set

hk #”y ← 〈 #”y ,
# ”hk〉 ∈ Z , hk†#”y ← 〈 #”y ,

# ”hk†〉 ∈ Z2×ν ,

where the computation is done over Z. Return msk #”y = (hk #”y ∈ Z, hk†#”y ∈ Z2×ν).

• Encrypt(τ,mpk, #”x ∈Mx) 7→ ct #”x : Sample r $← {0, . . . , bN/4c} and set b← gr. Return
(msk,mpk). For i = 1, . . . , ` and k = 1, . . . , ν, set

cti ← (1 +N)xi · hpri ∈ G , ct †k,i = gr·hp
†
i,k,1+r·τ ·hp†

i,k,2 ∈ G .

Return ct #”x = (b, #”ct ∈ G`,
#”ct † ∈ (Gν)`).

• Decrypt(τ, sk #”y , ct #”x ): Check that ∑`
i=1 yi · ct†i,k = bhk†#”y ,1,k+τ ·hk†#”y ,2,k for k = 1, . . . , ν;

return ⊥ if any check fails.
Set

ct〈 #”x , #”y 〉 ←
∏̀
i=1

ctyii /b
hk #”y .

Return ct〈 #”x , #”y 〉−1
N mod N s (using the representation in {− bN s/2c , . . . , bN s/2c}).

Figure 7.2: DCR-based tag-based inner-product functional encryption secure against chosen-
ciphertext attacks

Using parameters from Example 7.3.1 and setting ν ≥ logspf(N)(2 · qdec · |∆Mx|) =
O(poly(κ)), we have the following security bound: εA ≤ 4s · εB + 16/ spf(N) + 4 · 2−κ. We
note that in general, for security reasons, spf(N) has to be a really big integer. In this case,
one think of ν as a really small constant, i.e., 1, 2, or 3 to be really safe, depending on the
message space wanted, and on the number of queries the adversary could potentially make.
Similarly to what happens in our DCR-based IND-IPFE-CPA secure instantiation in Sec-

tion 7.3.1, although there is an exponential loss in the security reduction of Theorem 5.5.2,
we emphasize that there is no exponential loss using these parameters: the security loss is
compensated by these well-chosen parameters.
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Chapter 8
Instantiations based on the Learning
With Errors Assumption
In this chapter, we instantiate the two generic constructions of inner-product functional
encryption from public key encryption with a lattice-based public key encryption scheme.
As usual with lattice-based cryptography, or noise-based cryptography, the analysis of the
scheme is more complicated than in the two previous case of schemes based on the hardness
of the discrete logarithm or on the hardness of the factorization.
We give 2 concrete instantiations that reach respectively s-IND-IPFE-CPA and IND-IPFE-CPA
security, and compare their trade-offs between efficiency and security, and even between
security and security: the scheme that reaches the stronger notion of security uses a stronger
assumption (that is less likely to hold).
These schemes have the advantage of being resistant against quantum attacks, and have
efficient decryption, however, they are non-modular. They were first presented in our
papers [ABDP15b] (details are only found in the full version [ABDP15a]) and [ABCP16].
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8.1 The Learning With Errors Assumption

In this section, we recall the learning with errors (LWE) assumption and discuss its pros and
cons.

8.1.1 The Learning With Errors Assumption

A quantum computer would improve efficiency of many known and used algorithms. This
includes the algorithms that factors big numbers and find discrete logarithm. These problems
becoming efficiently solvable would be a huge issue for public key cryptography, as most of
the public key crypto is based on the hardness of either discrete logarithm or factorization.
Recently, a lot of work is being put in trying to find alternative encryption schemes that
would be easily implemented on classical computer, but would remain secure even if someone
tries to break it with a quantum computer. The most trendy assumption in this case is the
learning with errors assumption [Reg05]. Informally, it states that giving noisy inner-products
with random vectors completely hide a secret vector s and looks uniformly random. This
easily yields a secret key encryption scheme that is directly converted into a public key
encryption scheme using its additive homomorphic properties. Its hardness is related to
lattice problems, hence the nickname of lattice-based cryptography. Those problems have
been studied for years, which is comforting for a cryptographic assumption. However, a lot
of recent works tend to improve the attacks against lattice-based cryptography, in particular
when the parameters are overstretched. Let us first define this assumption, before discussing
its parameters.

Learning With Errors. Let n, q be integer parameters. For any noise distribution χ on
Zq, and vector s ∈ Znq , the oracle LWEq,n,χ(s) samples a fresh random n-dimensional vector
a← Znq , as well as noise e← χ, and returns (a, 〈a, s〉+ e). The LWE assumption states that
LWEq,n,χ(s) is computationally indistinguishable from the uniform distribution on Zq.

We would like to point out that in this assumption, the distribution (either LWE distribution
or uniform distribution) is given as an oracle, and can be called any polynomial number
of times. This is why some works prefer the notation with matrices and vectors. Some
formulations also work in the torus T = R/Z of reals modulo 1. This in fact is equivalent to
considering different noise distributions. In this work, we will focus on the noise distribution
χσ, a discrete Gaussian over Z centered on 0 with standard deviation σ.

It makes no doubt that the assumption has now been adopted as a standard, and has been
use to create encryption schemes [Reg05], key exchanges [DXL12; Pei14; ADPS15; ADPS16],
identity-based encryption [ABB10a], bi-deniable encryption [OPW11], and even the first
instances of fully homomorphic encryption [BV11a; GSW13] (The very first construction of
FHE [Gen09] is not based on LWE, but on a similar assumption), which allows to compute
on encrypted data without learning anything about it.

8.1.2 Hardness Evidences

Since its introduction in machine learning, this problem has seen a lot of interest as a
cryptographic assumption. There are two main reasons to this success: the LWE assumption
allowed the construction of primitives that have been the holy grail of cryptography for
decades: fully homomorphic encryption; the second reason is because it is believed to be
hard to solve for quantum computers. Let us first talk about the general hardness of LWE,
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and then talk about the importance of the parameters and their impact on the hardness of
the assumption.

Reductions from Lattice Problems. Regev showed in [Reg05] that there is a quantum
reduction from the approximate shortest vector problem (GAP-SVP), a lattice problem
believed to be hard, even for quantum computers, to LWE that is preserving the dimension n
if the standard deviation σ is greater than 2

√
n. Following that reductions, several works tried

to dequantize the reduction, like the one of Peikert [Pei09] and more recently a fully classical
reduction has been proven in [BLP+13]. Unfortunately, this reduction is not dimension
preserving, making this result incomparable to Regev’s one.

Modulus-to-Noise Ratio. When measuring the hardness of LWE, the two main parameters
to consider are the dimension n of the vectors, and the modulus-to-noise ratio q/σ. The
higher the dimension is, the harder it is to distinguish between the LWEq,n,χ(s) distribution,
and the uniform distribution. Usually, the dimension n = O(κ) is of the same order of
magnitude as the security parameter κ. On the other hand, increasing the modulus-to-noise
ratio q/σ decreases the difficulty of the problem. This is why in general it is better to aim at
having a polynomial ratio q/σ = O(poly(κ)). Moreover, while there is no known attacks on
using a superpolynomial modulus-to-noise ratio, there is less evidences of its hardness.

8.2 Public Key Encryption Schemes Secure under the Learning
With Error Assumption

In this section, we present a variant of the original public key encryption scheme presented
in [Reg05] and show that it can be used to instantiate Construction 4.3.1 and Construc-
tion 4.4.1. We also discuss the choice of parameters needed for the needed properties to be
verified.

8.2.1 Regev Public Key Encryption Scheme

Choosing the Parameters. As in [PW08; KTX08], we use encryptions of messages in
Zp instead of bits in the case of the original encryption scheme. We let the message space
be M = {0, . . . ,Mx} ⊆ Zp for some integer Mx, n be an integer related to the security
parameter, p be the modulus of the message space (for the IPFE schemes, we will require
that p > `MxMy, which is big enough for the inner-product t not wrap around the modulus),
q > p be the modulus for the ciphertext and keys. Our public keys and ciphertexts consist of
matrices and vectors over Zq. For every v ∈ Zp (i.e., one entry of a message vector), define the
“center” for v as t(v) = v ·

⌊
q
p

⌋
∈ Zq. Let χσ denote an integer gaussian distribution over Zq

with standard deviation σ: χσ(x) = ρσ(x)
ρσ(Z) . Let m = m(n), and σ = σ(n) and σ′ = σ′(n) be

positive real Gaussian parameters. The following relations between parameters are required
for correctness and security of the public key encryption scheme:

1. m > (1 + ε)(n+ 1) log q;

2. σq > 2
√
n;

3. q
2p > σ

√
2mκ.
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The first one is needed to extract the computational entropy contained in the randomness of
the encryption with the leftover hash lemma and is used in the security proof.
The second one is required for the hardness of the underlying LWE assumption.
And the last one is required for correctness, to ensure that the noise doesn’t alter the message.
Other conditions are required for the additional properties. We will state those conditions
when proving that the schemes satisfy the property, and we will recall all needed conditions
when showing the concrete IPFE constructions. All operations are performed over Zq.

Construction 8.2.1 (Regev PKE Scheme). We recall the Regev public-key encryption
scheme E = (Setup,Encrypt,Decrypt):

• Setup(1κ) 7→ (pp, sk, pk). On input security parameter κ samples A
$← Zm×nq , s $← Znq ,

and e $← χmσ , computes pk ← As+e ∈ Zmq , and outputs public parameters pp = (A, χσ),
secret key sk = s, and public key pk;

• Encrypt(pp, pk,m) 7→ ct. On input public parameter pp, public key pk, and plaintext
m, samples r $← {0, 1}m, computes

ct0 ← Aᵀr ∈ Znq , ct1 ← 〈pk, r〉+ t(x) ∈ Zq ,

where t(x) = x · bq/pc ∈ Zq, and outputs ciphertext ct = (ct0, ct1);

• Decrypt(pp, sk, ct) 7→ m or ⊥. On input public parameters pp, secret key sk, and
ciphertext ct computes

d = ct1 − 〈ct0, s〉,

and returns the plaintext x ∈ M , where x is such that d − t(x) ∈ Zq is closest to 0
mod q.

We note that the scheme might be slightly optimized by sampling r from {−1, 0, 1}m
instead of {0, 1}m, increasing the computational entropy of a ciphertext without increasing
the noise at decryption time, but we prefer to keep the latter set for simplicity and to stay
closer to the original scheme.

Correctness. In the decryption algorithm, d = t(x) + 〈e, vecr〉, which means that the
algorithm is correct if 〈e, r〉 is smaller than q

2p . 〈e, r〉 is a sum of m discrete Gaussians with
standard deviation σ so it is subgaussian with standard deviation at most σ

√
m, and hence

has magnitude less than σ
√

2mκ with overwhelming probability. Our setting of parameters
thus ensures that the decryption is correct.

8.2.2 Additional Properties of Regev Public Key Encryption Scheme

We now go through the additional properties defined in Section 4.2, and show that the Regev
encryption scheme defined in Construction 8.2.1 satisfies these properties.

Structure. As required, we can split up the Setup algoritm into two parts:
• SKGen(1κ) on input the security parameter and samples s from Znq and outputs

sk = s;
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• PKGen(sk, τ) on input secret key s, parameters τ , and samples e $← χmσ and
computes pk ← As + e ∈ Zmq . Then the algorithm outputs pk.
Notice that, if τ describes an error distribution then e is sampled from this latter
distribution.

As can we do with the Encrypt algorithm:
• C(r) on input a random vector r ∈ {0, 1}m outputs ct0 ← Aᵀr;
• E(pk, x; r) on input public key pk, message x and random vector r, returns

ct1 ← 〈pk, r〉+ t(x).

Semantic Security. Proof of the semantic security of this encryption scheme can be found
in [Reg05]. It relies on the LWE assumption and on the leftover hash lemma, which
is a statistical argument. It proceeds in two steps with a hybrid argument: first, we
replace the public key by a uniformly random vector. This is indistinguishable from
the security game thanks to the LWE assumption. Then we replace the ciphertext by a
uniform vector. This is statistically indistinguishable thanks to the leftover hash lemma.
Then we conclude by observing that the view is now independent of the challenge bit.

Linear Key Homomorphism. The first property comes from the fact that secret keys are
elements uniformly sampled from the group Znq , so the secret key space is stable under
addition. Moreover, ∑αisi is a correct secret key for ∑αi(Asi + ei) as long as ∑αiei
remains small, which is true for small values of αi. This is taken into account in
our setting of parameters. The scheme will remain correct as long as σ′ verifies the
correctness condition, where σ′ = σ‖ #”α‖ is a bound on the standard deviation of the
new error term.

Linear Ciphertext Homomorphism under Shared Randomness. It is easy to verify that:

〈pk1, r〉+ t(x1) + 〈pk2, r〉+ t(x2) = 〈pk1 + pk2, r〉+ t(x1 + x2),

by the definition of the function t.

`-Public-Key Reproducibility. To show that scheme of Construction 8.2.1 has
`-public-key-reproducibility, for any fixed constant `, it is sufficient to show that there
are error distributions with standard deviations σ, σ′, (σi)i∈[`] such that Exp`-pk-rep-0

E,κ (A )
is indistinguishable from Exp`-pk-rep-1

E,κ (A ). The idea is that when taking a discrete
Gaussian error e and multiplying it by a vector #”α , we obtain ` correlated Gaussians,
so in order to obtain a spherical Gaussian distribution in the end, we add correctly
correlated errors in order to unskew the distribution. However, we can only increase
the noise by adding something, so we require that the final error distribution used in
the scheme has standard deviation σ ≥ (1 +B

√
`)σ′, where B is a bound on the size of

each αi and σ′ is the standard deviation of the error in the LWE assumption.
Theorem 8.2.2. Construction 8.2.1 has `-public-key-reproducibility in a statistical
sense.

Proof. Let τ be the description of an error distribution with standard deviation σ,
and τ ′ an error distribution with standard deviation σ′. A simple calculation show
that the covariance of e · #”α is σ′2 #”α #”αᵀ. Hence the choice of τi to unskew the Gaussian
distribution. Let {τi}i∈[`] describe sampling ` errors with covariance matrix

√
Σ, where
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Σ = σ2I` − σ′2 #”α #”αᵀ, where #”α = (α1, . . . , α`). Notice that Σ is positive semi-definite if
σ > σ′(1 +B

√
`) because αi is smaller than B for any i.

Finally, let β =
(
I`

#”α
)
and Σ′ =

(
Σ 0
0 σ′2

)
, where I` is the identity matrix.

Then, If b = 0, the errors appearing in pki come from the distribution χσI` . If b = 1,
the errors appearing in pki come from the distribution βχ√Σ′ .

We show that these two distribution are statistically close if σ > σ′(1 + B
√
`). Let

us set β′ =
(

I`
#”α

#”µᵀ 1 + #”µᵀ #”α

)
for some #”µ . Let Σ0 = β′

√
Σ′(β′

√
Σ′)ᵀ be of the target

form
(
σ2I` 0

0 γ02

)
. If Σ0 has this form, it means that β′

√
Σ′ gives us ` uncorrelated

errors distributed as χσ and another error distributed as χγ0 which we can drop because
it is not correlated to the other. Then ∀z, ε← χ√Σ′

Pr(βε = z) =
∑
s

Pr
(
β′ε =

(
z

#”µᵀz + s

))

=
∑
s

Pr
(
ε = β′−1

(
z

#”µᵀz + s

))

∝
∑
s

ρ√Σ′

(
β′−1

(
z

#”µᵀz + s

))

∝
∑
s

ρβ′
√

Σ′

((
z

#”µᵀz + s

))
by Lemma 2.4.5

∝
∑
s

ρ√Σ0
(z)ργ0( #”µᵀz + s)

∝ ρ√Σ0
(z)ργ0( #”µᵀz + Z)

∝ νρ√Σ0
(z) where ν ∈

[1− ε
1 + ε

, 1
]

as long as γ0 >
√

ln(2`(1+1/ε))
π by Lemma 2.4.6 and Corollary 2.4.3

`-Ciphertext Reproducibility. We show that the scheme of Construction 8.2.1 has
`-ciphertext-reproducibility for any fixed constant ` as long as m ≥ (n+ `+ 1) log q +
2 log 1

ε + Ω(1), by taking error distributions with standard deviations σ′, (σi)i∈[`] as
chosen for the `-public-key-reproducibility, and by the following alternative encryption
algorithm

E′((si, ei), xi, ct0; r′) = 〈si, ct0〉+ 〈ei, r′〉+ t(xi) .

as required. This is enough to show that Exp`-ct-rep-0
E,κ (A ) is indistinguishable from

Exp`-ct-rep-1
E,κ (A ).

Theorem 8.2.3. Under the LWE assumption, Construction 8.2.1 has `-ciphertext-
reproducibility.

Proof. We prove the theorem via a sequence of hybrid experiments.

Hybrid H1: This is the Exp`-ct-rep-0
E,M,κ (A ), with the algorithms unfold.



Ch
ap

te
r8

8.2 Public Key Encryption Schemes Secure under the Learning With Error Assumption113

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$←M(1λ)
sk $← Znq , e← χmσ′ , pk = Ask + e
pki = Aski + ei, for ei ← χmσi
r $← {0, 1}m
ct0 = Aᵀr, ct = E(pk, a; r)
cti = αict + E(pki, xi; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

Hybrid H2: This is like H1 except that pk is taken uniformly random in Zmq .

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$←M(1λ)
pk $← Zmq

pki = Aski + ei, for ei ← χmσi
r $← {0, 1}m
ct0 = Aᵀr, ct = E(pk, a; r)
cti = αict + E(pki, xi; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

The hardness of LWE guarantees that pk looks pseudo-random to the adversary.
Moreover notice that sk is never used.

Hybrid H3: This is like H2 except that the ciphertext is computed with E′ instead of
E.

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$←M(1λ)
pk $← Zmq
pki = Aski + ei, for ei ← χmσi
r $← {0, 1}m
ct0 = Aᵀr, ct = E(pk, a; r)
cti = αict+ E′((ski, ei), xi, ct0; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

Notice that E′((ski, ei), xi, ct0; r) = E(pki, xi; r) since ct0 = Aᵀr.

Hybrid H4: This is like H3 except that ct0 and 〈pk, r〉 are replaced with uniformly
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random values.

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$←M(1λ)
pk $← Zmq , u

$← Zq
pki = Aski + ei, for ei ← χmσi
r $← {0, 1}m

ct0
$← Zmq , ct = u+ t(a)

cti = αict + E′((ski, ei), xi, ct0; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

Let us define the following random variables:

• X is the random variable that takes uniform values of the form (A ∈ Zm×nq ,b ∈
Znq ).

• W is the random variable that takes uniform values of the form r ∈ {0, 1}m.
• I is the random variable that takes values of the form (〈e1, r〉, . . . , 〈e`, r〉), where

ei ← χm, r ∈ {0, 1}m.
Then, by Lemma 2.4.7, we have that H̃∞(W |I) ≥ H∞(W ) − (` − 1) log q = m −
(`− 1) log q. Now, notice that HX(W ) = H(A,b)(r) = (Aᵀr, 〈b, r〉) is a universal hash
function and by applying the generalized leftover hash lemma (Lemma 2.4.8), we have
that:

∆((HX(W ), X, I), (U,X, I)) ≤ 1
2

√
2−H̃∞(W |I)qn+1 .

Then, if m ≥ (n+ `+ 1) log q + 2 log 1
ε + Ω(1), the statistical distance between the two

views is at most ε.

Hybrid H5: This is like H4 except that r is replaced by another random value r′.

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$←M(1λ)
pk $← Zmq , u

$← Zq
pki = Aski + ei, for ei ← χmσi

r′ $← {0, 1}m

ct0
$← Zmq , ct = u+ t(a)

cti = αict+ E′((ski, ei), xi, ct0; r′)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

These are exactly the same distribution as r is used nowhere else.
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Hybrid H6: This is like H5 except that ct0 is generated as Aᵀr and u is replaced by
〈pk, r〉.

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$←M(1λ)
pk $← Zmq

pki = Aski + ei, for ei ← χmσi

r $← {0, 1}m, r′ $← {0, 1}m

ct0 = Aᵀr, ct = E(pk, a; r)
cti = αict + E′((ski, ei), xi, ct0; r′)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

The change from H6 to H5 is the same as the change from H3 to H4, except that no
information about r is leaked. So Lemma 2.4.7 gives us that the statistical distance
between the two views is at most ε.

Hybrid H7: This is the Exp`-ct-rep-1
E,M,κ (A ).

proc Initialize(κ,M)
(a, (αi, xi, ski)i∈[`])

$←M(1λ)
sk $← Znq , e← χmσ′ , pk = Ask + e

pki = Aski + ei, for ei ← χmσi
r $← {0, 1}m, r′ $← {0, 1}m
ct0 = Aᵀr, ct = E(pk, a; r)
cti = αict + E′((ski, ei), xi, ct0; r′)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b’)
Return (b′ = b)

Once again, the hardness of LWE guarantees that pk looks pseudo-random to the
adversary.

We would like to note that reusing the same randomness for different public keys for
packing messages was already shown to be secure in [PVW08], but the requirements
we made in the generic constructions are stronger.

We are now ready to use this encryption scheme to construct inner-product functional
encryption schemes.
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8.3 Inner-Product Functional Encryption Schemes Based on the
Learning With Errors Assumption

In this section, we present the two schemes secure under the LWE assumption obtained
by plugging Regev public key encryption scheme described in the previous section in Con-
struction 4.3.1 and Construction 4.4.1. The first one reaches selective security against
chosen-plaintext attacks, while the second one reaches adaptive security. The price to pay for
adaptivity in this case is a bit heavy, because we need to rely on a stronger assumption where
the ratio between the modulus and the standard deviation of the error is superpolynomial.
We would like to point out that for the case of adaptive security, [ALS16] reaches better
parameter than us and can use a polynomial modulus-to-noise ratio at the price of the
genericity of the framework. The main difference between their construction and ours is
that they base their IPFE scheme on the Dual Regev public key encryption scheme, which
is the same as the one we presented, but interverting the roles of the secret key and the
encryption randomness. Then, they use a more subtle statistical argument to conclude their
proof, instead of our argument that switches secret keys to change the challenge message.
As the constructions presented in Section 7.3, our two IPFE schemes secure under the LWE
assumption have efficient decryption, unlike the schemes of Section 6.4, but suffer the same
downside: they are non-modular. We provide a comparison of those two schemes in Table 8.1,
where we present the trade-offs they offer between security and efficiency.
We note that no construction from projective hash functions is given in this chapter. The main
reason is because we don’t currently know how to build PHFs with the required properties
for reaching IND-IPFE-CCA security. There have been some proposition of projective hash
functions from LWE [KV09; BCDP13] that we might be able to use to construct adaptive
IND-IPFE-CPA secure scheme, but we felt that the construction from public key encryption
was conceptually simpler. The complexity of building PHFs based on lattices already shows
up when trying to define a language for your words: the set of ciphertexts that are output by
encrypting 0 is different to the set of ciphertexts that decrypts to 0. That is because the
decryption must be correct for all ciphertexts returned by encrypt, and adding a really small
noise to this ciphertext shouldn’t change the decryption value.

8.3.1 Scheme Selectively Secure Against Chosen-Plaintext Attacks
The first scheme is the less secure one. However, it has a pretty good efficiency compared to
other schemes that are based on lattices, like fully homomorphic encryption or attribute-based
encryption. All operations used are pretty fast, the main downside for the efficiency is that
the vectors and matrices can be huge depending on the choice of parameters. If the message
space needs to be big, we recommend using schemes based on the DCR assumption, because
the message space is set by the security parameter and is very big. One noticeable advantage
of this scheme compared to those based on other assumptions is that it is resistant against
quantum attacks. We assume that the conditions required are verified:

1. m ≥ (n+ `+ 1) log q + 2 log 1
ε + Ω(1) ;

2. σ ≥ (1 +Mx

√
`)σ′ ;

3. σ′q > 2
√
n ;

4. p > `MxMy ;
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Security Conditions on the parameters

s-IND-IPFE-CPA

1. m ≥ (n+ `+ 1) log q + 2 log 1
ε + Ω(1) ;

2. σ ≥ (1 +Mx

√
`)σ′ ;

3. σ′q > 2
√
n ;

4. p > `MxMy ;
5. q

2p > σMy

√
2`mκ .

IND-IPFE-CPA

1. m ≥ (n+ `+ 2) log q + 2 log 1
ε + Ω(1) ;

2. T = Mx · κω(1) ;

3. σ ≥ (1 + T
√
`)σ′ ;

4. γ0 >
√

ln(2`(1+1/ε))
π ;

5. σ′q > 2
√
n ;

6. p > `MxMy ;

7. q
2p > σM2

y `
√

2mκ .

Security s-IND-IPFE-CPA IND-IPFE-CPA
mpk m` m`

msk n` (n+ 1)`
sk #”y n n+ 1
ct #”x n+ ` n+ `+ 1

Table 8.1: Comparison of the two different LWE-based inner-product functional encryption
schemes. The sizes are given as number of elements in Zq. We note that the second
element of the secret key for the IND-IPFE-CPA secure scheme is conceptually an
integer, but we count it as 1 element in Zq since it is smaller than q with our
setting of parameters.

5. q
2p > σMy

√
2`mκ .

Our s-IND-IPFE-CPA secure inner-product functional encryption scheme based on LWE is
depicted on Figure 8.1.
Correctness. The proof of correctness follows the same path as the one for the basic public
key encryption scheme. This time, the final error has standard deviation at most σMy

√
m`.

The correctness then follows from the setting of parameters.

Remark 8.3.1 (Optimization of the message space.). It is possible to gain some efficiency
and reduce the parameters size by reducing the bound My on each coordinate of the key
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• Let n,m, p, q be integer parameters and σ a positive real parameter such that they
verify the conditions required. Let A

$← Zm×nq be a uniformly random matrix.

• Setup(1κ, 1`) 7→ (mpk,msk): Set pp = (κ, `, n,m, p, q,A). For i = 1, . . . , `, set

(si, ei) $← Znq × χmσ , bi ← Asi + ei ∈ Zmq .

Return msk = (si)i∈[`] and mpk = (bi)i∈[`];

• KeyDer(msk,y ∈My) 7→ sk #”y : Return

sky ←
∑
i∈[`]

yisi ∈ Znq ;

• Encrypt(mpk,x ∈Mx) 7→ ctx: Pick r $← {0, 1}m and set

ct0 ← Aᵀr ∈ Znq .

For i = 1, . . . , `, set

cti ← bᵀ
i r + t(xi) ∈ Zq ,

where t(v) = v · bq/pc ∈ Zq. Return ctx = (ct0, (cti)i∈[`]);

• Decrypt(sky, ctx): Set

ct〈x,y〉 ←
∑
i∈[`]

yicti − ctᵀ0sky ∈ Zq.

Return the plaintext m, where m is such that d− t(m) ∈ Zq is closest to 0 mod q.

Figure 8.1: LWE-based inner-product functional encryption secure against selective chosen-
plaintext attacks

vectors y. In order to achieve this, we decompose each coordinate of y in binary and for each
coordinate of x we encrypt it multiplied by each of the powers of two. Then the inner-product
will reconstruct y and the scheme will be correct. This makes ` grow by logMy and decreases
My to 1, which greatly improves on the correctness condition, allowing us to use better
parameters.
A bit more formally, the new scheme consists in writing yi = ∑

j∈{0,...,γ} 2jyi,j for each
coordinate yi of y, where γ = logMy, and use the IPFE schemes replacing vectors:

y 7→ (yi,j)i∈`,j∈{0,...,γ} , x 7→ (2jxi)i∈`,j∈{0,...,γ} .

It is easy to see that
∑
i∈`,j∈{0,...,γ} yi,j2jxi = ∑

i∈`,j∈{0,...,γ} yixi = 〈x,y〉.

Security.
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By using Theorem 4.3.3, we immediately get the following security theorem for our
construction.

Theorem 8.3.2. Under the LWE assumption with parameters n, q, σ′, the scheme FE
depicted on Figure 8.1 is s-IND-IPFE-CPA secure.

More precisely, if there exists an attacker A that has advantage εA in breaking the
s-IND-IPFE-CPA security of FE, then there exists an attacker B that runs in approximately
the same time and that has advantage εB in breaking the LWE assumption, such that εA ≤ εB
.

8.3.2 Scheme Adaptively Secure Against Chosen-Plaintext Attacks
Our second scheme reaches adaptive security, which usually is a hard problem when dealing
with lattice-based cryptography, because of the noisy nature of the schemes. It is more
costly than the previous scheme that was only selectively secure, but if adaptive security is a
necessity, it is still more efficient than using the previous scheme and increasing the security
paramater to do complexity leveraging. We assume that the conditions required are verified:

1. m ≥ (n+ `+ 2) log q + 2 log 1
ε + Ω(1) ;

2. T = Mx · κω(1) ;

3. σ ≥ (1 + T
√
`)σ′ ;

4. γ0 >
√

ln(2`(1+1/ε))
π ;

5. σ′q > 2
√
n ;

6. p > `MxMy ;

7. q
2p > σM2

y `
√

2mκ .

Our IND-IPFE-CPA secure inner-product functional encryption scheme based on LWE is
depicted on Figure 8.2.
Correctness. The proof of correctness follows the same path as the one for the basic
public key encryption scheme. This time, the final error has standard deviation at most
σMy

√
m`+ σ′`TMy, which is less than σM2

y `
√
m because of the relation between σ and σ′.

The correctness then follows from the setting of parameters.

Remark 8.3.1 still applies in this case, giving the same improvements with the same
construction.
Security.
By using Theorem 4.4.2, we immediately get the following security theorem for our

construction.

Theorem 8.3.3. Under the LWE assumption with parameters n, q, σ′, the scheme FE
depicted on Figure 8.2 is IND-IPFE-CPA secure.

More precisely, if there exists an attacker A that has advantage εA in breaking the
IND-IPFE-CPA security of FE, then there exists an attacker B that runs in approximately the
same time and that has advantage εB in breaking the LWE assumption, such that εA ≤ εB .
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• Let n,m, p, q be integer parameters and σ a positive real parameter such that they
verify the conditions required. Let A

$← Zm×nq be a uniformly random matrix.

• Setup(1κ, 1`) 7→ (mpk,msk): Set pp = (κ, `, n,m, p, q,A), and sample

(s0, e0) $← Znq × χmγ0 , b0 ← As0 + e0 ∈ Zmq .

For i = 1, . . . , `, set

(ti, si, ei) $← {0, . . . , T} × Znq × χmσ , bi ← A(ti · s0 + si) + ei ∈ Zmq .

Return msk = (si, ti)i∈[`] and mpk = (b0,bi)i∈[`];

• KeyDer(msk,y ∈My) 7→ sk #”y : Set

sy ←
∑
i∈[`]

yisi ∈ Znq , ty ←
∑
i∈[`]

yiti ∈ Z .

Return sky = (sy, ty)

• Encrypt(mpk,x ∈Mx) 7→ ctx: Pick r $← {0, 1}m and set

ct0 ← Aᵀr ∈ Znq , ct1 ← bᵀ
0r ∈ Zq .

For i = 1, . . . , `, set

ct2,i ← bᵀ
i r + t(xi) ∈ Zq ,

where t(v) = v · bq/pc ∈ Zq. Return ctx = (ct0, ct1, (ct2,i)i∈[`]);

• Decrypt(sky, ctx): Set

ct〈x,y〉 ←
∑
i∈[`]

yict2,i − tyct1 − ctᵀ0sky ∈ Zq.

Return the plaintext m, where m is such that d− t(m) ∈ Zq is closest to 0 mod q.

Figure 8.2: LWE-based inner-product functional encryption secure against adaptive chosen-
plaintext attacks
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Chapter 9
Conclusion and Open Questions

9.1 Conclusion

In this thesis, we introduced the notion of inner-product functional encryption (IPFE) which
is the simplest non-trivial example of functional encryption that allows partial decryption
of the plaintext. IPFE finds many theoretical and practical applications, and can be built
efficiently from standard assumption.

We analyzed the different notions of security for IPFE, and showed how to generically
build a partial function hiding secret key IPFE scheme from a standard public key modular
IPFE scheme. This result can find some nice direct applications, and can also be used to
build a secret key IPFE that is function hiding against bounded collusions of adversaries.

We presented 4 generic constructions based on 2 different albeit similar frameworks: con-
structions from public key encryption and from projective hash functions. The first framework
is a bit more general as it encompasses some lattice-based IPFE schemes, while the second
is more powerful as it allows the construction of schemes secure against chosen-ciphertext
attacks, at the cost of efficiency.

We proposed 3 instantiations based on the decisional Diffie-Hellman assumption. All
of them suffer the same drawback of having inefficient decryption restricting its input to
polynomial size. However, the schemes are very efficient and simple, and compute modular
inner-products. One of the schemes is secure against chosen-ciphertext attacks.

We also proposed 2 instantiations based on the decisional composite residuosity in order
to avoid the problem of inefficient decryption. The sizes of the ciphertexts are larger than
the constructions based on DDH, but the message space is flexible, and these schemes have
very good asymptotical efficiency for very large message spaces. One of these schemes is
also secure against chosen-ciphertext attacks, with a lower incremental cost than the scheme
based on DDH.

Lastly, we proposed 2 instantiations based on the learning with errors assumptions. Those
also avoid the problem of inefficient decryption, but the security against adaptive adversary
is costly compared to the schemes based on the other assumptions. However, this scheme

— 121 —
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is really interesting because it is resistant against attacks from quantum computers, and it
might be used in conjunction with other lattice-based tools in order to create more powerful
primitives.

9.2 Open Questions
Here, I give a few open problems and directions that might be interesting for future works.
The first question is also the most obvious.

Question 9.1. Can we build a modular inner-product functional encryption with efficient
decryption and stateless algorithms?

This would combine the best of all possible worlds. But interestingly enough, all our
constructions have some drawbacks that cannot make them fit the nice definition of IPFE.

Question 9.2. Can we build an inner-product functional encryption secure against chosen-
ciphertext attacks under the learning with errors assumption?

As noted previously, attempts at building projective hash functions from lattices don’t give
primitives powerful enough to build CCA secure schemes. However, there are some instances
of lattice-based CCA schemes using different approaches.

Question 9.3. Can we build a secret key function hiding inner-product functional encryption
without pairings?

Or, more generally:

Question 9.4. How far can we go, only using the decisional Diffie-Hellman assumption?

This approach is different than the one that tries to build functional encryption for all
circuits: instead of picking a problem and trying to solve it at all cost, we take one tool and
see what we can get from it. Our work is partly based on this question. Partial function
hiding is another example of trying to squeeze every drop we can out of the simplest standard
assumptions.

Question 9.5. How expressive can we make functional encryption using standard assump-
tions?

We know that using pairings, we can increase the range of possibilities to bilinear functions,
or function hiding, or multi-inputs. On the other hand, recent works show that it is plausible
that multilinear map with a degree slightly bigger than 2 would imply functional encryption
for all circuits, and indistinguishability obfuscation. So it would seem like we’ve reached
the maximum we can without reaching functional encryption for all circuits. There is still
room for improvement, for example one could try and build functional encryption for some
randomized functionality.
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Notation
General Mathematical Notations
N The set of natural numbers
Z The set of integers
R The set of reals
log The base-2 logarithm
ln The natural logarithm
[n] The numbers from 1 to n
#”x ,x A (column) vector
A A matrix
〈·, ·〉 The inner-product operation
| #”x | The size of a vector
|S| The cardinality of a set
∆ The statistical distance
∝ Is proportional to
o,O, ω,Ω Asymptotic notations
A ,B, · · · Algorithms, adversaries
General Cryptographic Notations
κ The security parameter
pk A public key
sk A secret key
ct A ciphertext
mpk A master public key
msk A master secret key
sky A user secret key
Notations Specific to Chapter 5
P A subset membership problem
L An NP language
b A word
w A witness
hk A hashing key
hp A projection key
H A hash
Notations Specific to Chapter 6
q a prime number
G A cyclic group
g A generator
Notations Specific to Chapter 7
p, q Safe primes
N Product of safe primes
spf(N) Smallest prime factor of N(
a
N

)
Jacobi symbol of a

JN Elements of Jacobi symbol 1
QRN Squares of Z∗N
QR∗N The group of signed quadratic residues
Notations Specific to Chapter 8
Λ A lattice
ηε(Λ) The smoothing parameter of Λ
ρ The Gaussian function
χ A noise distribution
σ A Gaussian parameter
χσ A discrete Gaussian distribution



Abbreviations

Primitives
PKE Public Key Encryption
FE Functional Encryption
IPFE Inner-Product Functional Encryption
TBIPFE Tag-Based Inner-Product Functional Encryption
PHF Projective Hash Function
OTS One-Time Signature
CRH Collision Resistant Hash Function
Security Notions
s-IND-CPA Indistinguishability under Selective Chosen-Plaintext Attacks

(for PKE schemes)
s-IND-IPFE-CPA Indistinguishability under Selective Chosen-Plaintext Attacks

(for IPFE schemes)
IND-IPFE-CPA Indistinguishability under Chosen-Plaintext Attacks

(for IPFE schemes)
IND-IPFE-CCA Indistinguishability under Chosen-Ciphertext Attacks

(for IPFE schemes)
IND-TBIPFE-CCA Indistinguishability under Chosen-Ciphertext Attacks

(for TBIPFE schemes)
SIM Simulation Security
NA-SIM Non-Adaptive Simulation Security
Assumptions
DDH Decisional Diffie-Hellman
MDDH Matrix Decisional Diffie-Hellman
DCR Decisional Composite Residuosity
LWE Learning With Errors
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Résumé
Le chiffrement fonctionnel est une technique émer-
gente en cryptographie dans laquelle une autorité
toute puissante est capable de distribuer des clés
permettant d’effectuer des calculs sur des données
chiffrées de manière contrôlée. La mode dans ce do-
maine est de construire des schémas qui sont aussi ex-
pressifs que possible, c’est-à-dire du chiffrement fonc-
tionnel qui permet l’évaluation de n’importe quel cir-
cuit. Ces contributions délaissent souvent l’efficacité
ainsi que la sécurité. Elles reposent sur des hypothèses
fortes, très peu étudiées, et aucune construction n’est
proche d’être pratique.
Le but de cette thèse est d’attaquer ce défi sous un
autre angle: nous essayons de construire des schémas
de chiffrement fonctionnel les plus expressifs que nous
le pouvons en se basant sur des hypothèses standards,
tout en conservant la simplicité et l’efficacité des con-
structions.
C’est pourquoi nous introduisons la notion de
chiffrement fonctionnel pour l’évaluation de produits
scalaires, où les messages sont des vecteurs ~x, et
l’autorité peut transmettre des clés correspondants à
des vecteurs ~y qui permettent l’évaluation du produit
scalaire 〈~x, ~y〉. Cette fonctionnalité possède immédi-
atement des applications directes, et peut aussi être
utilisé dans d’autres constructions plus théoriques, le
produit scalaire étant une opération couramment util-
isée.
Enfin, nous présentons deux structures génériques
pour construire des schémas de chiffrement fonction-
nels pour le produit scalaire, ainsi que des instanci-
ations concrètes dont la sécurité repose sur des hy-
pothèses standards. Nous comparons aussi les avan-
tages et inconvénients de chacune d’entre elles.

Mots Clés
cryptographie, chiffrement fonctionnel, produit
scalaire, sécurité prouvée, constructions génériques,
projective hash functions.

Abstract
Functional encryption is an emerging framework in
which a master authority can distribute keys that al-
low some computation over encrypted data in a con-
trolled manner. The trend on this topic is to try
to build schemes that are as expressive possible, i.e.,
functional encryption that supports any circuit evalu-
ation. These results are at the cost of efficiency and
security. They rely on recent, not very well studied
assumptions, and no construction is close to being
practical.
The goal of this thesis is to attack this challenge from
a different angle: we try to build the most expressive
functional encryption scheme we can get from stan-
dard assumption, while keeping the constructions sim-
ple and efficient.
To this end, we introduce the notion of functional en-
cryption for inner-product evaluations, where plain-
texts are vectors ~x, and the trusted authority delivers
keys for vectors ~y that allow the evaluation of the
inner-product 〈~x, ~y〉. This functionality already offers
some direct applications, and it can also be used for
theoretical constructions, as inner-product is a widely
used operation.
Finally, we present two generic frameworks to con-
struct inner-product functional encryption schemes,
as well as some concrete instantiations whose secu-
rity relies on standard assumptions. We also compare
their pros and cons.

Keywords
cryptography, functional encryption, inner-product,
provable security, generic constructions, projective
hash functions.
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