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Structured sparse methods for matrix factorization
Outline

e Learning problems on matrices

e Sparse methods for matrices
— Sparse principal component analysis
— Dictionary learning

e Structured sparse PCA

— Sparsity-inducing norms and overlapping groups
— Structure on dictionary elements
— Structure on decomposition coefficients



Learning on matrices - Collaborative filtering

e Given ny “movies’ x € X and ny “customers” y € Y,
e predict the “rating” z(x,y) € Z of customer y for movie x

e Training data: large nx X ny incomplete matrix Z that describes the
known ratings of some customers for some movies

e Goal: complete the matrix.
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Learning on matrices - Image denoising
e Simultaneously denoise all patches of a given image

e Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009b)




Learning on matrices - Source separation

e Single microphone (Benaroya et al., 2006; Févotte et al., 2009)
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Learning on matrices - Multi-task learning

e k linear prediction tasks on same covariates x € R?

— k weight vectors w,; € RP

— Joint matrix of predictors W = (w1, ..., w}) € RP*K
e Classical applications

— Transfer learning

— Multi-category classification (one task per class) (Amit et al., 2007)
e Share parameters between tasks

— Joint variable or feature selection (Obozinski et al., 2009; Pontil
et al., 2007)



Learning on matrices - Dimension reduction

e Given data matrix X = (x/,...,x ') ¢ R"*P

— Principal component analysis: | x; ~ Dq;
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Sparsity in machine learning

e Assumption: y = w ' x + &, with w € R? sparse

— Proxy for interpretability

— Allow high-dimensional inference: | logp = O(n)

e Sparsity and convexity (/1-norm regularization):

min L(w) + ||w]||;

wERP




Two types of sparsity for matrices M € R"*?
| - Directly on the elements of M

e Many zero elements: M,;; =0

M

e Many zero rows (or columns): (M;1,...,M;,) =0
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Two types of sparsity for matrices M € R"*?
Il - Through a factorization of M = UV

e Matrix M =UV', U € R"™** and V € RP**

e Low rank: m small
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e Sparse decomposition: U sparse

M U V'




Structured sparse matrix factorizations

e Matrix M = UVT, U € R"** and V € RPXF

e Structure on U and/or V

— Low-rank: U and V have few columns

— Dictionary learning / sparse PCA: U has many zeros

— Clustering (k-means): U € {0,1}"*™, Ul =1

— Pointwise positivity: non negative matrix factorization (NMF)
— Specific patterns of zeros

— etc.

e Many applications

e Many open questions

— Algorithms, identifiability, etc.



Sparse principal component analysis

e Given data X = (x,...,%x)) € RP*", two views of PCA:
1 n

— Analysis view: find the projection d € R? of maximum variance
(with deflation to obtain more components)

— Synthesis view: find the basis d;,...,d; such that all x; have
low reconstruction error when decomposed on this basis

e For regular PCA, the two views are equivalent



Sparse principal component analysis

e Given data X = (x,...,x)) € RPX", two views of PCA:
1 n

— Analysis view: find the projection d € R? of maximum variance
(with deflation to obtain more components)

— Synthesis view: find the basis di,...,d; such that all x; have
low reconstruction error when decomposed on this basis

e For regular PCA, the two views are equivalent

e Sparse extensions

— Interpretability
— High-dimensional inference
— Two views are differents
* For analysis view, see d'Aspremont, Bach, and El Ghaoui (2008);
Journée, Nesterov, Richtérik, and Sepulchre (2010)



Sparse principal component analysis
Synthesis view

e Find d;,...,d; € RP sparse so that

n
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— Look for A = (a1, ..., ) € RF*™and D = (dy,...,d;) € RP*k
such that D is sparse and [|X — DA% is small



Sparse principal component analysis
Synthesis view

e Find dy,...,d; € R? sparse so that
k
- D _(e);d
j=1

— Look for A = (atq, ..., ) € RF*?and D = (dy,...,d;) € RPXF
such that D is sparse and [|X — DA% is small

n
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e Sparse formulation (Witten et al., 2009; Bach et al., 2008)

— Penalize/constrain d; by the ¢1-norm for sparsity
— Penalize/constrain «; by the Eg-norm to avoid trivial solutions

mmZHXZ Da’LH2+)‘ZHdJH1 s.t. Vi, |lal]2 <



Sparse PCA vs. dictionary learning

e Sparse PCA: x; ~ D«;, D sparse
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Sparse PCA vs. dictionary learning

e Sparse PCA: x; ~ D«;, D sparse
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Structured matrix factorizations (Bach et al., 2008)

mmZHXZ DaZH2—|—>\ZHdJH*St Vi, [leille <

mmzuxz DaZHQHZHazH st Vi, lld 1. <1

e Optimization by alternating minimization (non-convex)
e o decomposition coefficients (or “code”), d; dictionary elements

e Two related/equivalent problems:

— Sparse PCA = sparse dictionary (¢;-norm on d;)

— Dictionary learning = sparse decompositions (/1-norm on «;)
(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al.,
2007)



Dictionary learning for image denoising
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Dictionary learning for image denoising

e Solving the denoising problem (Elad and Aharon, 2006)

— Extract all overlapping 8 x 8 patches x; € R%
— Form the matrix X = (x; T) e R7x64

X1 yeee, X,
— Solve a matrix factorization problem:
min ||X — DA|% = mmz |x; — Da||2

where A is sparse, and D is the dictionary

— Each patch is decomposed into x; = Da;

— Average the reconstruction Da; of each patch x; to reconstruct a
full-sized image

e The number of patches n is large (= number of pixels)



Online optimization for dictionary learning

n

min ZHXi_DaiH%+)\HaiH1

AcERFX" DeD 1

DE={DeR* st. Vj=1,....k |[/d;|l2 <1}
e Classical optimization alternates between D and A

e Good results, but very slow !



Online optimization for dictionary learning

min ZHXZ Day||5 + Allew]|s
AcREXn DeD %

DE={DeR* st. Vj=1,... k |[/d;|l2<1}.
e Classical optimization alternates between D and A.

e Good results, but very slow !

e Online learning (Mairal, Bach, Ponce, and Sapiro, 2009a) can
— handle potentially infinite datasets

— adapt to dynamic training sets

e Simultaneous sparse coding (Mairal et al., 2009b)

— Links with NL-means (Buades et al., 2008)



Denoising result
(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009b)




Denoising result
(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009b)




What does the dictionary D look like?
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Inpainting a 12-Mpixel photograph
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Inpainting a 12-Mpixel photograph




Inpainting a 12-Mpixel photograph




Inpainting a 12-Mpixel photograph




Structured sparse methods for matrix factorization
Outline

e Learning problems on matrices

e Sparse methods for matrices
— Sparse principal component analysis
— Dictionary learning

e Structured sparse PCA

— Sparsity-inducing norms and overlapping groups
— Structure on dictionary elements
— Structure on decomposition coefficients



Sparsity-inducing norms

data fitting term

Inin Fla) + A g(e)

sparsity-inducing norm

e Standard approach to enforce sparsity in learning procedures:

— Regularizing by a sparsity-inducing norm
— Set some «;'s to zero, depending on regularization param. A > 0

e The most popular choice for :

— f-norm: lall; = 300 oy
— For the square loss, Lasso (Tibshirani, 1996), basis pursuit (Chen

et al., 2001)
— However, the £1-norm encodes poor information, just cardinality



Sparsity-inducing norms

e Another popular choice for v:

— The #1-f5 norm,

N llacl, = Y (S @)%, with G a partition of {1,....p}

GeG GeG jea

— The /1-¢5 norm sets to zero groups of non-overlapping variables
(as opposed to single variables for the #; -norm)
— For the square loss, group Lasso (Yuan and Lin, 2006)



Sparsity-inducing norms

e Another popular choice for v:

— The #1-f5 norm,

Y llacl, = Y (S @)%, with G a partition of {1,...,p}

GEG GeG jeG

— The /1-f5 norm sets to zero groups of non-overlapping variables
(as opposed to single variables for the /1 -norm)
— For the square loss, group Lasso (Yuan and Lin, 2006)

e However, the /-5 norm encodes fixed/static prior information,
requires to know in advance how to group the variables

e \What happens if the set of groups G is not a partition anymore?



Structured Sparsity
(Jenatton, Audibert, and Bach, 2009a)

e When penalizing by the ¢1-/5 norm,

S llacll, =Y (> a2

GEG GeG jeG

— The /1 norm induces sparsity at the group level:
* Some a's are set to zero
— Inside the groups, the /5 norm does not promote sparsity



Structured Sparsity
(Jenatton, Audibert, and Bach, 2009a)

e When penalizing by the ¢1-/5 norm,

Sllacll, =Y (> a2

GEG GeG jeG

— The /1 norm induces sparsity at the group level:
* Some a's are set to zero
— Inside the groups, the /5 norm does not promote sparsity

e Intuitively, the zero pattern of w is given by

{7€l,....,p}; a;j =0} = UG for some G' C G
GeG’

This intuition is actually true and can be formalized



Examples of set of groups G (1/3)

e Selection of contiguous patterns on a sequence, p = 6

-

— (& is the set of blue groups

— Any union of blue groups set to zero leads to the selection of a
contiguous pattern



Examples of set of groups G (2/3)

e Selection of rectangles on a 2-D grids, p = 25

— G is the set of blue/green groups (with their not displayed
complements)

— Any union of blue/green groups set to zero leads to the selection
of a rectangle



Examples of set of groups G (3/3)

e Selection of diamond-shaped patterns on a 2-D grids, p = 25.
— It is possible to extend such settings to 3-D space, or more complex
topologies




Relationship bewteen G and Zero Patterns
(Jenatton, Audibert, and Bach, 2009a)

e (G — Zero patterns:

— by generating the union-closure of GG

e Zero patterns — G:

— Design groups G from any union-closed set of zero patterns
— Design groups GG from any intersection-closed set of non-zero
patterns



Sparse Structured PCA
(Jenatton, Obozinski, and Bach, 2009b)

e Learning sparse and structured dictionary elements:

n p
miﬁnZHXi—DaiH%—I—Azw(dj) s.t. Vi, |laglls < 1

e Structure of the dictionary elements determined by the choice of G
(and thus )

e Efficient learning procedures through “n-tricks”

. . 1 5
— Reweighted /5 Z |lvallo = min 5 Z {HyGHQ +ng}

>0.GEG
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Application to face databases (1/3)
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raw data (unstructured) NMF

e NMF obtains partially local features



Application to face databases (2/3)
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(unstructured) sparse PCA  Structured sparse PCA

e Enforce selection of convex nonzero patterns = robustness to
occlusion



Application to face databases (2/3)

(unstructured) sparse PCA  Structured sparse PCA

e Enforce selection of convex nonzero patterns =- robustness to
occlusion



Application to face databases (3/3)

e Quantitative performance evaluation on classification task

45

''''' raw data
~—=PCA
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Dictionary learning vs. sparse structured PCA
Exchange roles of D and A

e Sparse structured PCA (sparse and structured dictionary elements):

min Ix; — Daylls + XY (d;) s.t. Vi, |laglls < 1.
ip, 3 - Darli 13

e Dictionary learning with structured sparsity for a:

min ZHX, Doy + Mp(a) s.t. V3, [|di]l2 < 1.



Hierarchical dictionary learning
(Jenatton, Mairal, Obozinski, and Bach, 2010)

not on dictionary D)

e Structure on codes « (

where groups G in

2_cea llacll

G are equal to set of descendants of some nodes in a tree

e Hierarchical penalization: ¥ ()

oo VSN EN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B B W g,
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e Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)



Hierarchical dictionary learning
Efficient optimization

min > % — Dayl3 + Mp(a) st Vi, [|djll2 < 1.
A R Xn -
DERPX’“ =1

e Minimization with respect to «; : regularized least-squares

— Many algorithms dedicated to the /1-norm ¥ () = ||a]|;

e Proximal methods : first-order methods with optimal convergence
rate (Nesterov, 2007; Beck and Teboulle, 2009)

— Requires solving many times minqere 3/ly — a3 + M\ ()

e [ree-structured regularization : Efficient linear time algorithm
based on primal-dual decomposition (Jenatton et al., 2010)



Hierarchical dictionary learning
Application to image denoising

e Reconstruction of 100,000 8 x 8 natural images patches

— Remove randomly subsampled pixels
— Reconstruct with matrix factorization and structured sparsity

noisel 50 % 60 % 70 % 80 % 90 %
flat |19.3 4 0.1]26.8 £ 0.1|36.7 + 0.1{50.6 4 0.0{72.1 £ 0.0
tree |18.6 == 0.1|25.7 = 0.1|135.0 = 0.148.0 = 0.0{65.9 == 0.3

80

701

60

50

1 2 3 4 5 6 7 8 9 1011 12 13 14







Hierarchical dictionary learning
Modelling of text corpora

e Each document is modelled through word counts
e Low-rank matrix factorization of word-document matrix

e Probabilistic topic models (Blei et al., 2003)

— Similar structures based on non parametric Bayesian methods (Blei
et al., 2004)

— Can we achieve similar performance with simple matrix
factorization formulation?



Hierarchical dictionary learning
Modelling of text corpora

e Each document is modelled through word counts
e Low-rank matrix factorization of word-document matrix

e Probabilistic topic models (Blei et al., 2003)

— Similar structures based on non parametric Bayesian methods (Blei
et al., 2004)

— Can we achieve similar performance with simple matrix
factorization formulation?

e Experiments:

— Qualitative: NIPS abstracts (1714 documents, 8274 words)
— Quantitative: newsgroup articles (1425 documents, 13312 words)



Modelling of text corpora - Dictionary tree
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Modelling of text corpora

e Comparison on predicting newsgroup article subjects:

100

Bl PCA + SVM
B NMF + SVM
| |LDA + SVM
I SpDL + SVM
B SpHDL + SVM
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Conclusion

e Structured matrix factorization has many applications

— Machine learning
— Image/signal processing
— Extensions to other tasks

e Algorithmic issues
— Large datasets
— Structured sparsity and convex optimization

e [ heoretical issues

— Identifiability of structures and features
— Improved predictive performance
— Other approaches to sparsity and structure



Ongoing Work - Digital Zooming




Digital Zooming (Couzinie-Devy et al., 2010)




Digital Zooming (Couzinie-Devy et al., 2010)




Digital Zooming (Couzinie-Devy et al., 2010)




Ongoing Work - Task-driven dictionaries
inverse half-toning (Mairal et al., 2010)
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Ongoing Work - Task-driven dictionaries
inverse half-toning (Mairal et al., 2010)




Ongoing Work - Inverse half-toning
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Ongoing Work - Inverse half-toning




Ongoing Work - Inverse half-toning
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Ongoing Work - Inverse half-toning
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