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Abstract

Sparse methods for supervised learning aim at finding goedtipredictors from
as few variables as possible, i.e., with small cardinalftyheir supports. This
combinatorial selection problem is often turned into a @wptimization prob-
lem by replacing the cardinality function by its convex eoype (tightest convex
lower bound), in this case thg-norm. In this paper, we investigate more gen-
eral set-functions than the cardinality, that may incogpe@prior knowledge or
structural constraints which are common in many applicatimamely, we show
that for nondecreasing submodular set-functions, theesponding convex en-
velope can be obtained from its Lovasz extension, a commainit submodu-
lar analysis. This defines a family of polyhedral norms, fdrickh we provide
generic algorithmic tools (subgradients and proximal epes) and theoretical
results (conditions for support recovery or high-dimenaidnference). By se-
lecting specific submodular functions, we can give a newjmégation to known
norms, such as those based on rank-statistics or groupetsneith potentially
overlapping groups; we also define new norms, in particulesdhat can be used
as non-factorial priors for supervised learning.

1 Introduction

The concept of parsimony is central in many scientific domaln the context of statistics, signal
processing or machine learning, it takes the form of vagiavlfeature selection problems, and is
commonly used in two situations: First, to make the modehergrediction more interpretable or
cheaperto use, i.e., even if the underlying problem doeadhwit sparse solutions, one looks for the
best sparse approximation. Second, sparsity can also Hegiven prior knowledge that the model
should be sparse. In these two situations, reducing pansitedinding models with low cardinality
turns out to be limiting, and structured parsimony has eetegs a fruitful practical extension, with
applications to image processing, text processing or foaimatics (see, e.g., [1, 2, 3, 4, 5, 6, 7]
and Section 4). For example, in [4], structured sparsitysexito encode prior knowledge regarding
network relationship between genes, while in [6], it is ussdan alternative to structured non-
parametric Bayesian process based priors for topic models.

Most of the work based on convex optimization and the desigiedicated sparsity-inducing norms
has focused mainly on the specific allowed set of sparsitgpet [1, 2, 4, 6]: ifw € R? denotes the
predictor we aim to estimate, aSdpp(w) denotes its support, then these norms are designed so that
penalizing with these norms only leads to supports from argfamily of allowed patterns. In this
paper, we instead follow the approach of [8, 3] and consideciic penalty function$’(Supp(w))

of the support set, which go beyond the cardinality functart are not limited or designed to only
forbid certain sparsity patterns. As shown in Section G2sé may also lead to restricted sets of
supports but their interpretation in terms of explicit penalty on the support leads to additional



insights into the behavior of structured sparsity-indgaiorms (see, e.g., Section 4.1). While direct
greedy approaches (i.e., forward selection) to the proldesnconsidered in [8, 3], we provide
convex relaxations to the function— F'(Supp(w)), which extend the traditional link between the
£1-norm and the cardinality function.

This is done for a particular ensemble of set-functidhsiamelynondecreasing submodular func-
tions Submodular functions may be seen as the set-function &eguivof convex functions, and
exhibit many interesting properties that we review in Sec—see [9] for a tutorial on submodu-
lar analysis and [10, 11] for other applications to mach@aeing. This paper makes the following
contributions:

— We make explicit links between submodularity and sparsjtgtowing that the convex enve-
lope of the functionw — F(Supp(w)) on thel.-ball may be readily obtained from the Lovasz
extension of the submodular function (Section 3).

— We provide generic algorithmic tools, i.e., subgradiemis proximal operators (Section 5), as
well as theoretical guarantees, i.e., conditions for supeovery or high-dimensional inference
(Section 6), that extend classical results for th@orm and show that many norms may be tackled
by the exact same analysis and algorithms.

— By selecting specific submodular functions in Section 4, gever and give a new interpre-
tation to known norms, such as those based on rank-stat@tigrouped norms with potentially
overlapping groups [1, 2, 7], and we define new norms, in @aler ones that can be used as non-
factorial priors for supervised learning (Section 4). Thaee illustrated on simulation experiments
in Section 7, where they outperform related greedy appre=[3].

Notation. Forw € RP, Supp(w) C V = {1,...,p} denotes the support @b, defined as
Supp(w) = {j € V, w; # 0}. Forw € R? andq € [1, oc], we denote byjw||, thel,-norm ofw.
We denote byw| € RP the vector of absolute values of the components oMoreover, given a
vectorw and a matrix@, w4 and@ 44 are the corresponding subvector and submatrix ahd@).
Finally, forw € RP andA C V, w(A) = >, . , wx (this defines a modular set-function).

2 Review of submodular function theory

Throughout this paper, we considenandecreasing submoduléunction /' defined on the power
set2V of V = {1,...,p},i.e., such that:

VA,BCV, F(A)+ F(B) > F(AUB)+ F(ANB), (submodularity)
VA,BCV, ACB= F(A) < F(B). (monotonicity)

Moreover, we assume thdt(@) = 0. These set-functions are often referred topatymatroid
set-functiong12, 13]. Also, without loss of generality, we may assume thias strictly positive
on singletons, i.e., forak € V, F({k}) > 0. Indeed, ifF'({k¥}) = 0, then by submodularity and
monotonicity, ifA 3 k, F(A) = F(A\{k}) and thus we can simply considgh {%} instead ofl/.

Classical examples are the cardinality function (which ldd to the/;-norm) and, given a partition
of Vinto By U---U By, = V, the set-functio — F'(A) which is equal to the number of groups
By, ..., B, with non empty intersection witA (which will lead to the groupeth//,-norm [1, 14]).

Lovasz extension. Given any set-functiod’, one can define itsovasz extensiof: RY. — R, as
follows; givenw € R, we can order the componentswofin decreasing order;, > --- > w;, >
0, the valuef (w) is then defined as:

fw) =35y wi [F{n, - w}) = F({r, - - k=1 })]- 1)
The Lovasz extensioff is always piecewise-linear, and whéhis submodular, it is also convex
(see, e.g., [12, 9]). Moreover, for ale {0,1}?, f(6) = F(Supp(d)): f is indeed an extension
from vectors in{0, 1}? (which can be identified with indicator vectors of sets) fovattors inR”. .
Moreover, it turns out that minimizing' over subsets, i.e., minimizingover{0, 1}? is equivalent
to minimizing f over[0, 1]? [13].

Submodular polyhedron and greedy algorithm.  We denote byP the submodular poly-
hedron[12], defined as the set of € R such that for allA C V, s(4) < F(A), ie.,
P ={seR, VA CV, s(A) < F(A)}, where we use the notatiofA) = >, _, sx. One
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Figure 1: Polyhedral unit ball, for 4 different submodulané€tions (two variables), with different
stable inseparable sets leading to different sets of extgamts; changing values éf may make
some of the extreme points disappear. From left to right4d) = |A|'/2 (all possible extreme
points), F(A) = |A| (leading to the/;-norm), F(A) = min{|A|,1} (leading to the/,.-norm),
F(A) = $1{an{21£0} + l{aze) (leading to the structured norf(w) = 3 |wa| + [|w] o).

important result in submodular analysis is thatifis a nondecreasing submodular function, then
we have a representation pfas a maximum of linear functions [12, 9], i.e., for allc R”,

J(w) = max ws. @

Instead of solving a linear program witht 27 contraints, a solutios may then be obtained by the
following “greedy algorithm™. order the componentswfin decreasing ordew;, > --- > wj,,
and then take foralt € {1,...,p}, s;, = F({j1,....dx}) — F({J1, -, je—11})-

Stable sets. A set A is saidstableif it cannot be augmented without increasifgi.e., if for all
setsB D A, B # A= F(B) > F(A). If Fis strictly increasing (such as for the cardinality), then
all sets are stable. The set of stable sets is closed byeéctera [13], and will correspond to the set
of allowed sparsity patterns (see Section 6.2).

Separable sets.A set A is separable if we can find a partition dfinto A = B, U- - -U By, such that
F(A) = F(B1) +---+ F(By). AsetAis inseparable if it is not separable. As shown in [13], the
submodular polytop® has full dimensiomp as soon a#’ is strictly positive on all singletons, and its
faces are exactly the sets;, = 0} for k € V and{s(A4) = F'(A)} for stableandinseparable setd.

We denote by7 the set of such sets. This implies that= {s € Rf, VA € T,s(A) < F(A)}.
These stable inseparable sets will play a role when deasgrigxtreme points of unit balls of our
new norms (Section 3) and for deriving concentration inétieain Section 6.3. For the cardinality
function, stable and inseparable sets are singletons.

3 Definition and properties of structured norms

We define the functiof(w) = f(|w|), where|w| is the vector inR? composed of absolute values
of w and f the Lovasz extension df. We have the following properties (see proof in [15]), which
show that we indeed define a norm and that it is the desirecezaaiwelope:

Proposition 1 (Convex envelope, dual norm)Assume that the set-functidnis submodular, non-
decreasing, and strictly positive for all singletons. Defih: w — f(|w|). Then:

(i) 2 is a norm onR?,

(i) Q2 is the convex envelope of the functipnw — F(Supp(w)) on the unit/-ball,

llsalls

(iii) the dual norm (see, e.g., [16]) a2 is equal toQ2*(s) = maxacy “Pféﬂ)l = MAaxXAeT iay -

We provide examples of submodular set-functions and nonn$ection 4, where we go from set-
functions to norms, and vice-versa. From the definition efltbvasz extension in Eq. (1), we see
that(2 is a polyhedral norm (i.e., its unit ball is a polyhedron).eTtbllowing proposition gives the
set of extreme points of the unit ball (see proof in [15] andraples in Figure 1):

Proposition 2 (Extreme points of unit ball) The extreme points of the unit ball ¢t are the vec-
tors 14y, With s € {~1,0,1}?, Supp(s) = A and A a stable inseparable set.

This proposition shows, that depending on the number artiraity of the inseparable stable sets,
we can go fron2p (only singletons) t@” — 1 extreme points (all possible sign vectors). We show
in Figure 1 examples of balls for= 2, as well as sets of extreme points. These extreme points will
play a role in concentration inequalities derived in Setto
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Figure 2: Sequence and groups: (left) groups for contigpaitterns, (right) groups for penalizing
the number of jumps in the indicator vector sequence.
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Figure 3: Regularization path for a penalized least-squpreblem (black: variables that should
be active, red: variables that should be left out). Fromtiefight: /;-norm penalization (a wrong
variable is included with the correct ones), polyhedralnmdor rectangles in 2D, with zoom (all
variables come in together), mix of the two norms (corretigvéor).

4 Examples of nondecreasing submodular functions

We consider three main types of submodular functions witlettal applications to regularization

for supervised learning. Some existing norms are shown texbenples of our frameworks (Sec-

tion 4.1, Section 4.3), while other novel norms are designeah specific submodular functions

(Section 4.2). Other examples of submodular functionsairigular in terms of matroids and en-

tropies, may be found in [12, 10, 11] and could also lead teragting new norms. Note that set
covers, which are common examples of submodular functimnswibcases of set-functions defined
in Section 4.1 (see, e.g., [9]).

4.1 Norms defined with non-overlapping or overlapping grous

We consider grouped norms defined with potentially oveilagpmroups [1, 2], i.e.Q(w) =

> ccy Ad(G)|lwall- Whered is a nonnegative set-function (with potentiatly;) = 0 whenG
should not be considered in the norm). Itis a norm as soag¢)-oG = V and it corresponds
to the nondecreasing submodular functiopd) = 3" 4., d(G). In the case wheré,.-norms
are replaced bys-norms, [2] has shown that the set of allowed sparsity padtare intersections of
complements of group& with strictly positive weights. These sets happen to be gtetstable
sets for the corresponding submodular function; thus théyais provided in Section 6.2 extends the
result of [2] to the new case df,-norms. However, in our situation, we can give a reintegirein
through a submodular function that counts the number ofgithe supportl intersects groups~
with non zero weights. This goes beyond restricting the allowed sparsity patterns to stable
sets. We show later in this section some insights gainedibydmterpretation. We now give some
examples of norms, with various topologies of groups.

Hierarchical norms. Hierarchical norms defined on directed acyclic graphs [B] &orrespond
to the set-functiorf’( A) which is the cardinality of the union of ancestors of elerséntd. These
have been applied to bioinformatics [5], computer visiod topic models [6].

Norms defined on grids. If we assume that thg variables are organized in a 1D, 2D or 3D
grid, [2] considers norms based on overlapping groups hepiti stable sets equal to rectangular or
convex shapes, with applications in computer vision [14r &ample, for the groups defined in
the left side of Figure 2 (with unit weights), we hat& A) = p — 2 + range(A) if A # @ and
F(2) = 0 (the range of4 is equal tomax(A) — min(A4) + 1). From empty sets to non-empty sets,
there is a gap op — 1, which is larger than differences among non-empty setss TBads to the
undesired result, which has been already observed by [2[ddihg all variables in one step, rather
than gradually, when the regularization parameter deesciasa regularized optimization problem.
In order to counterbalance this effect, adding a constargdithe cardinality function has the effect
of making the first gap relatively smaller. This correspotodadding a constant times tlig-norm
and, as shown in Figure 3, solves the problem of having alhlsérs coming together. All patterns
are then allowed, but contiguous ones aneouraged rather than forced



Another interesting new norm may be defined from the grougsamight side of Figure 2. Indeed, it
corresponds to the functiafi(A) equal to|A| plus the number of intervals of. Note that this also
favors contiguous patterns but is not limited to selectirgingle interval (like the norm obtained
from groups in the left side of Figure 2). Note that it is to ltasted with the total variation
(a.k.a. fused Lasso penalty [18]), which is a relaxatiorhefmumber of jumps in a vectar rather
than in its support. In 2D or 3D, this extends to the notion efimeter and area, but we do not
pursue such extensions here.

4.2 Spectral functions of submatrices

Given a positive semidefinite matrgx € RP*? and a real-valued functiodnfromR ;. — R, one may
definetr[h(Q)] asd>_%_; h(X;) where)q, ..., ), are the (nonnegative) eigenvaluesp{19]. We
can thus define the set-functidi{ A) = tr h(Qa4) for A C V. The functiongi(\) = log(A+¢) for

t > 0 lead to submodular functions, as they correspond to ergsagfi Gaussian random variables
(see, e.g., [12, 9]). Thus, since fpie (0,1), A9 = L5R9T [*og(1 + \/t)t7'dt (see, e.g., [20]),
h(A\) = X for ¢ € (0,1] are positive linear combinations of functions that lead ¢adecreasing
submodular functions. Thus, they are also nondecreashmgadular functions, and, to the best of
our knowledge, provide novel examples of such functions.

In the context of supervised learning from a design matrix R™*?, we naturally us€) = X ' X.
If his linear, thenF(A) = tr X } X4 = >, . 4 X,| X) (WhereX 4 denotes the submatrix 6f with
columns inA) and we obtain a weighted cardinality function and henceamgtighted’;-norm,
which is afactorial prior, i.e., it is a sum of terms depending on each variable indegetty.

In a frequentist setting, the MallowS;, penalty [21] depends on the degrees of freedom, of the
form tr XXXA (XXXA + AI)~L. This is a non-factorial prior but unfortunately it does festd to

a submodular function. In a Bayesian context however, @ by [22] that penalties of the form
logdet(X } X4 + AI) (which lead to submodular functions) correspond to maitdikelihoods
associated to the set and have good behavior when used within a non-convex framievikhis
highlights the need for non-factorial priors which are $imear functions of the eigenvalues of
X 1 X 4, which is exactly what nondecreasing submodular functiosubmatrices are. We do not
pursue the extensive evaluation of non-factorial convexgin this paper but provide in simulations
examples with"(A) = tr(X | X 4)'/? (which is equal to the trace norm &f, [16]).

4.3 Functions of cardinality

For F'(A) = h(|A|) whereh is nondecreasing, such tha0) = 0 and concave, then, from Eq. (1),
Q(w) is defined from the rank statistics @b| € R, i.e., if jwq)| > |we)| = - > |wy)l,
thenQ(w) = -7 _ [h(k) — h(k — 1)]|w, |. This includes the sum of thelargest elements, and
might lead to interesting new norms for unstructured vaeiaklection but this is not pursued here.
However, the algorithms and analysis presented in SectardSection 6 apply to this case.

5 Convex analysis and optimization

In this section we provide algorithmic tools related to opgation problems based on the regular-
ization by our novel sparsity-inducing norms. Note thatsithese norms are polyhedral norms with
unit balls having potentially an exponential number of mes or faces, regular linear programming
toolboxes may not be used.

Subgradient. FromQ(w) = maxsep s' |w| and the greedy algoritnhpresented in Section 2,
one can easily get ipolynomial timeone subgradient as one of the maximizer$his allows to use
subgradient descent, with, as shown in Figure 4, slow cgerere compared to proximal methods.

Proximal operator. ~ Given regularized problems of the formin,,cg» L(w) + AQ(w), where

L is differentiable with Lipschitz-continuous gradieproximal method$iave been shown to be
particularly efficient first-order methods (see, e.g., ]23h this paper, we consider the methods
“ISTA’ and its accelerated variants “FISTA’ [23], which atempared in Figure 4.

The greedy algorithm to find extreme points of the submodptdyhedron should not be confused with
the greedy algorithm (e.g., forward selection) that we wardn Section 7.



To apply these methods, it suffices to be able to solve effigigproblems of the form:
mingers 3 )lw — 2|3 + AQ(w). In the case of thé,-norm, this reduces to soft thresholdingf
the following proposition (see proof in [15]) shows thatstig equivalent to a particular algorithm
for submodular function minimization, namely the minimumorm-point algorithm, which has no
complexity bound but is empirically faster than algorithwith such bounds [12]:

Proposition 3 (Proximal operator) Let = € RP and A > 0, minimizing 3 |lw — 2|3 + AQ(w)
is equivalent to finding the minimum of the submodular fumcl — AF(A) — |z|(A) with the
minimum-norm-point algorithm.

In [15], it is shown how a solution for one problem may be of¢ai from a solution to the other
problem. Moreover, any algorithm for minimizing submodulanctions allows to get directly the
support of the unique solution of the proximal problem arat thith a sequence of submodular
function minimizations, the full solution may also be obtd. Similar links between convex opti-
mization and minimization of submodular functions haverbeansidered (see, e.g., [24]). However,
these are dedicated symmetricsubmodular functions (such as the ones obtained from gnatsh c
and are thus not directly applicable to our situatiomonf-increasinggubmodular functions.

Finally, note that using the minimum-norm-point algoritteads to ayenericalgorithm that can be
applied toany submodular functiong’, and that it may be rather inefficient for simpler subcases
(e.g., thely /¢o.-norm, tree-structured groups [6], or general overlapgiroyps [7]).

6 Sparsity-inducing properties

In this section, we consider a fixed design matkixe R"*? andy € R™ a vector of random
responses. Giveh > 0, we define as a minimizer of the regularized least-squares cost:

mingerr 35 |y — Xwl|3 + AQ(w). 3)

We study the sparsity-inducing properties of solutions @f ), i.e., we determine in Section 6.2
which patterns are allowed and in Section 6.3 which suffictenditions lead to correct estimation.
Like recent analysis of sparsity-inducing norms [25], tmalgsis provided in this section relies
heavily on decomposability properties of our nofm

6.1 Decomposability

For a subset/ of V, we denote byF; : 27 — R therestriction of F to .J, defined forA c J
by F;(A) = F(A), and byF”’ : 27° — R the contractionof F by .J, defined forA c J¢ by
F/(A) = F(AUJ) — F(A). These two functions are submodular and nondecreasingasass’
is (see, e.g., [12]).

We denote by ; the norm orR” defined through the submodular functidip, and’ the pseudo-
norm defined orR”’* defined through’ (as shown in Proposition 4, it is a norm only whéris

a stable set). Note thé&t;. (a norm onJ¢) is in general different fronf2’/. MoreoverQ;(wy) is
actually equal t&2(w) wherew,; = w; andw . = 0, i.e., itis the restriction of2 to J.

We can now prove the following decomposition propertiesicwishow that under certain circum-
stances, we can decompose the nérion subsets and their complements:

Proposition 4 (Decomposition) Given.J C V andQ; and2’ defined as above, we have:
(i) Yw € RP, Q(w) = Q5(wy) + Q7 (wye),

(i) Vw € RP, if minje s |w;| = maxje e [wy|, thenQ(w) = Q(wy) + Q7 (wye),

(iii) Q7 is a norm onR’ if and only if J is a stable set.

6.2 Sparsity patterns

In this section, we do not make any assumptions regardingdhect specification of the linear
model. We show that with probability one, only stable supgets may be obtained (see proof in
[15]). For simplicity, we assume invertibility of " X, which forbids the high-dimensional situation
p = n'we consider in Section 6.3, but we could consider assumpsinilar to the ones used in [2].



Proposition 5 (Stable sparsity patterns)Assumey € R™ has an absolutely continuous density
with respect to the Lebesgue measure and fHatX is invertible. Then the minimizeb of Eq. (3)
is unique and, with probability one, its supp8ripp(w) is a stable set.

6.3 High-dimensional inference

We now assume that the linear model is well-specified andhextesults from [26] for sufficient
support recovery conditions and from [25] for estimatiomgistency. As seen in Proposition 4,
the norm(2 is decomposable and we use this property extensively inséition. We denote by
p(J) = mingc se %; by submodularity and monotonicity @, p(.J) is always between
zero and one, and, as soon/as stable it is strictly positive (for thé& -norm,p(.J) = 1). Moreover,
we denote by:(.J) = sup,,cr» 27(ws)/||ws||2, the equivalence constant between the n@rpand

the £-norm. We always have(.J) < |J|*/? maxgey F({k}) (with equality for the/;-norm).

The following propositions allow us to get back and extend-kmown results for the/;-norm, i.e.,
Propositions 6 and 8 extend results based on support rgceerditions [26]; while Propositions 7
and 8 extend results based on restricted eigenvalue conslitee, e.g., [25]). We can also get back
results for thel,/¢..-norm [14]. As shown in [15], proof techniques are similadare adapted
through the decomposition properties from Proposition 4.

Proposition 6 (Support recovery) Assume thay = Xw* + oe, wheres is a standard multivariate
normal vector. Let) = %XTX € RP*P, Denote byJ the smallest stable set containing the
supportSupp(w*) of w*. Definer = minj_,w;#o |w;| > 0, assumes = A\pin(Qss) > 0 and that

forn > 0, () [(Q,(Q;7Qs;))jese] < 1 —n. Then, ifA < 57y the minimizend is unique

and has support equal té, with probability larger thanl — 3P (*(z) > W) wherez is a
multivariate normal with covariance matri.

Proposition 7 (Consistency)Assume thay = Xw* + oe, wheree is a standard multivariate
normal vector. Let) = %XTX € RP*P, Denote by/ the smallest stable set containing the support

Supp(w*) of w*. Assume that for al\ such that)” (A ;c) < 3Q,(Ay), ATQA > k||A||3. Then
2 242

we haveQ(w — w*) < Qﬁff(‘?y’\ and || X — Xw*|3 < %, with probability larger than

1—P(Q*(2) > W) wherez is a multivariate normal with covariance matr.

Proposition 8 (Concentration inequalities) Let z be a normal variable with covariance matrix.

Let7 be the set of stable inseparable sets. TRg*(2) > ¢) < 3 124 exp (— %).

7 Experiments

We provide illustrations on toy examples of some of the itsquiesented in the paper. We consider
the regularized least-squares problem of Eq. (3), with daterated as follows: givenn, k, the
design matrixX € R™*? is a matrix of i.i.d. Gaussian components, normalized toehavit /--
norm columns. A sef of cardinalityk is chosen at random and the weights are sampled from a

standard multivariate Gaussian distribution arid = 0. We then takey = Xw* +n~?|| Xw* |2
wherese is a standard Gaussian vector (this corresponds to a unélsig-noise ratio).

Proximal methods vs. subgradient descent. For the submodular functiof'(A) = |A|'/? (a
simple submodular function beyond the cardinality) we camhree optimization algorithms de-
scribed in Section 5, subgradient descent and two proxine#thads, ISTA and its accelerated ver-
sion FISTA [23], forp = n = 1000, £ = 100 andX = 0.1. Other settings and other set-functions
would lead to similar results than the ones presented inr€igu FISTA is faster than ISTA, and
much faster than subgradient descent.

Relaxation of combinatorial optimization problem. We compare three strategies for solving
the combinatorial optimization problemin,cr» 5-|ly — Xwl||3 + AF(Supp(w)) with F(A) =
tr(X ) X4)'/2, the approach based on our sparsity-inducing norms, thpleingreedy (forward
selection) approach proposed in [8, 3], and by thresholtdiagrdinary least-squares estimate. For
all methods, we try all possible regularization parametéfs see in the right plots of Figure 4 that
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Figure 4: (Left) Comparison of iterative optimization atglboms (value of objective function vs. run-
ning time). (Mlddle/R|ght) Relaxation of combinatorialtopization problem, showing residual er-
ror 1|y — X||3 vs. penaltyF (Supp(w)): (middle) high-dimensional case (= 120, n = 20,
k= 40) (right) lower-dimensional case & 120, n = 120, k = 40).

P n k | submodular| ¢> vs. submod. ¢; vs. submod. greedy vs. submad.
120 120 80| 40.8+0.8 -26+05 0.6+ 0.0 21.8+:0.9
120 120 40| 35.9+0.8 244+0.4 0.3+ 0.0 15.8+1.0
120 120 20| 29.0+1.0 9.440.5 -0.1+0.0 6.7+ 0.9
120 120 10| 20.4+1.0 17.54+ 0.5 -0.24+0.0 -2.8+0.8
120 120 6 15.44+0.9 22.7+ 0.5 -0.24+0.0 -5.3+ 0.8
120 120 4 11.7+ 0.9 26.3+ 0.5 -0.1+0.0 -6.04+: 0.8
120 20 80| 46.8+2.1 -0.6+05 3.0+:0.9 229+ 2.3
120 20 40| 479+1.9 -0.3+£0.5 3.5+ 0.9 23.7+ 2.0
120 20 20| 49.4+2.0 0.44+0.5 2.24+0.8 235+ 2.1
120 20 10| 49.2+2.0 0.0+ 0.6 1.0+ 0.8 20.3+ 2.6
120 20 6 43,54+ 2.0 3.54+0.8 0.9+ 0.6 24.44- 3.0
120 20 4 41.04+ 2.1 48+0.7 -1.3+£ 0.5 25.1+ 3.5

Table 1: Normalized mean-square prediction erigk&n — Xw*||3/n (multiplied by 100) with
optimal regularization parameters (averaged over 50aa&qpins, with standard deviations divided
by v/50). The performance of the submodular method is shown, tHéareices from all methods to
this particular one are computed, and shown in bold whendhegignificantly greater than zero, as
measured by a paired t-test with level 5% (i.e., when the sidutar method is significantly better).

for hard cases (middle plot) convex optimization techngjperform better than other approaches,
while for easier cases with more observations (right plooes as well as greedy approaches.

Non factorial priors for variable selection. We now focus on the predictive performance and
compare our new norm with'(A) = tr(X | X 4)*/2, with greedy approaches [3] and to regulariza-
tion by ¢, or /5 norms. As shown in Table 1, the new norm based on non-fatfmi@s is more
robust than thé;-norm to lower number of observationsand to larger cardinality of suppakt

8 Conclusions

We have presented a family of sparsity-inducing norms agelét to incorporating prior knowl-
edge or structural constraints on the support of lineariptei. We have provided a set of com-
mon algorithms and theoretical results, as well as simariaton synthetic examples illustrating the
good behavior of these norms. Several avenues are wortktigagng: first, we could follow cur-
rent practice in sparse methods, e.g., by consideringectatlapted concave penalties to enhance
sparsity-inducing norms, or by extending some of the cotsdep norms of matrices, with potential
applications in matrix factorization or multi-task leangi(see, e.g., [27] for application of submod-
ular functions to dictionary learning). Second, links beén submodularity and sparsity could be
studied further, in particular by considering submodutdaxations of other combinatorial func-
tions, or studying links with other polyhedral norms suclitestotal variation, which are known to
be similarly associated with symmetric submodular setfions such as graph cuts [24].
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