
Foundations and Trends R© in Machine Learning
Vol. XX, No. XX (2013) 1–232
c© 2013 F. Bach

DOI: 10.1561/XXXXXXXXXX

Learning with Submodular Functions:

A Convex Optimization Perspective

Francis Bach
INRIA - Ecole Normale Supérieure, Paris, France

francis.bach@ens.fr

Contents

1 Introduction 2

2 Definitions 7

2.1 Equivalent definitions of submodularity 8
2.2 Associated polyhedra . 12
2.3 Polymatroids (non-decreasing submodular functions) . . . 13

3 Lovász Extension 17

3.1 Definition . 18
3.2 Greedy algorithm . 24
3.3 Links between submodularity and convexity 28

4 Properties of Associated Polyhedra 31

4.1 Support functions . 31
4.2 Facial structure∗ . 34
4.3 Positive and symmetric submodular polyhedra∗ 41

5 Convex Relaxation of Submodular Penalties 45

5.1 Convex and concave closures of set-functions 46
5.2 Structured sparsity . 47
5.3 Convex relaxation of combinatorial penalty 49
5.4 ℓq-relaxations of submodular penalties∗ 57

ii

iii

5.5 Shaping level sets∗ . 63

6 Examples and Applications of Submodularity 69

6.1 Cardinality-based functions 69
6.2 Cut functions . 71
6.3 Set covers . 79
6.4 Flows . 86
6.5 Entropies . 89
6.6 Spectral functions of submatrices 94
6.7 Best subset selection . 95
6.8 Matroids . 97

7 Non-smooth Convex Optimization 100

7.1 Assumptions . 101
7.2 Projected subgradient descent 105
7.3 Ellipsoid method . 106
7.4 Kelley’s method . 108
7.5 Analytic center cutting planes 110
7.6 Mirror descent/conditional gradient 111
7.7 Bundle and simplicial methods 114
7.8 Dual simplicial method 117
7.9 Proximal methods . 119
7.10 Simplex algorithm for linear programming 122
7.11 Active-set methods for quadratic programming 124
7.12 Active set algorithms for least-squares problems∗ 126

8 Separable Optimization Problems: Analysis 131

8.1 Optimality conditions for base polyhedra 132
8.2 Equivalence with submodular function minimization 133
8.3 Quadratic optimization problems 137
8.4 Separable problems on other polyhedra∗ 139

9 Separable Optimization Problems: Algorithms 144

9.1 Divide-and-conquer algorithm for proximal problems 145
9.2 Iterative algorithms - Exact minimization 148
9.3 Iterative algorithms - Approximate minimization 151

iv

9.4 Extensions . 153

10 Submodular Function Minimization 157

10.1 Minimizers of submodular functions 159
10.2 Combinatorial algorithms 161
10.3 Minimizing symmetric posimodular functions 162
10.4 Ellipsoid method . 162
10.5 Simplex method for submodular function minimization . . 163
10.6 Analytic center cutting planes 165
10.7 Minimum-norm point algorithm 166
10.8 Approximate minimization through convex optimization . . 167
10.9 Using special structure 172

11 Other Submodular Optimization Problems 174

11.1 Maximization with cardinality constraints 174
11.2 General submodular function maximization 176
11.3 Difference of submodular functions∗ 179

12 Experiments 182

12.1 Submodular function minimization 182
12.2 Separable optimization problems 186
12.3 Regularized least-squares estimation 188
12.4 Graph-based structured sparsity 192

13 Conclusion 195

Appendices 198

A Review of Convex Analysis and Optimization 199

A.1 Convex analysis . 199
A.2 Max-flow min-cut theorem 206
A.3 Pool-adjacent-violators algorithm 208

B Operations that Preserve Submodularity 210

Abstract

Submodular functions are relevant to machine learning for at least two
reasons: (1) some problems may be expressed directly as the optimiza-
tion of submodular functions and (2) the Lovász extension of submod-
ular functions provides a useful set of regularization functions for su-
pervised and unsupervised learning. In this monograph, we present the
theory of submodular functions from a convex analysis perspective,
presenting tight links between certain polyhedra, combinatorial opti-
mization and convex optimization problems. In particular, we show how
submodular function minimization is equivalent to solving a wide vari-
ety of convex optimization problems. This allows the derivation of new
efficient algorithms for approximate and exact submodular function
minimization with theoretical guarantees and good practical perfor-
mance. By listing many examples of submodular functions, we review
various applications to machine learning, such as clustering, experi-
mental design, sensor placement, graphical model structure learning
or subset selection, as well as a family of structured sparsity-inducing
norms that can be derived and used from submodular functions.

1

Introduction

Many combinatorial optimization problems may be cast as the min-
imization of a set-function, that is a function defined on the set of
subsets of a given base set V . Equivalently, they may be defined as
functions on the vertices of the hyper-cube, i.e, {0, 1}p where p is
the cardinality of the base set V—they are then often referred to as
pseudo-boolean functions [27]. Among these set-functions, submodular
functions play an important role, similar to convex functions on vector
spaces, as many functions that occur in practical problems turn out
to be submodular functions or slight modifications thereof, with ap-
plications in many areas areas of computer science and applied math-
ematics, such as machine learning [125, 157, 117, 124], computer vi-
sion [31, 96], operations research [98, 182], electrical networks [162]
or economics [203]. Since submodular functions may be minimized ex-
actly, and maximized approximately with some guarantees, in polyno-
mial time, they readily lead to efficient algorithms for all the numerous
problems they apply to. They are also appear in several areas of theo-
retical computer science, such as matroid theory [189].

However, the interest for submodular functions is not limited to dis-
crete optimization problems. Indeed, the rich structure of submodular

2

3

functions and their link with convex analysis through the Lovász exten-
sion [135] and the various associated polytopes makes them particularly
adapted to problems beyond combinatorial optimization, namely as
regularizers in signal processing and machine learning problems [38, 7].
Indeed, many continuous optimization problems exhibit an underlying
discrete structure (e.g., based on chains, trees or more general graphs),
and submodular functions provide an efficient and versatile tool to cap-
ture such combinatorial structures.

In this monograph, the theory of submodular functions is presented
in a self-contained way, with all results proved from first principles
of convex analysis common in machine learning, rather than relying
on combinatorial optimization and traditional theoretical computer
science concepts such as matroids or flows (see, e.g., [72] for a ref-
erence book on such approaches). Moreover, the algorithms that we
present are based on traditional convex optimization algorithms such
as the simplex method for linear programming, active set method for
quadratic programming, ellipsoid method, cutting planes, and condi-
tional gradient. These will be presented in details, in particular in the
context of submodular function minimization and its various continu-
ous extensions. A good knowledge of convex analysis is assumed (see,
e.g., [30, 28]) and a short review of important concepts is presented in
Appendix A—for more details, see, e.g., [95, 30, 28, 185].

Monograph outline. The monograph is organized in several chapters,
which are summarized below (in the table of contents, sections that can
be skipped in a first reading are marked with a star∗):

(1) Definitions: In Chapter 2, we give the different definitions of sub-
modular functions and of the associated polyhedra, in particular,
the base polyhedron and the submodular polyhedron. They are cru-
cial in submodular analysis as many algorithms and models may be
expressed naturally using these polyhedra.

(2) Lovász extension: In Chapter 3, we define the Lovász extension as
an extension from a function defined on {0, 1}p to a function defined
on [0, 1]p (and then R

p), and give its main properties. In particular

4 Introduction

we present key results in submodular analysis: the Lovász extension
is convex if and only if the set-function is submodular; moreover,
minimizing the submodular set-function F is equivalent to minimiz-
ing the Lovász extension on [0, 1]p. This implies notably that sub-
modular function minimization may be solved in polynomial time.
Finally, the link between the Lovász extension and the submodular
polyhedra through the so-called “greedy algorithm” is established:
the Lovász extension is the support function of the base polyhedron
and may be computed in closed form.

(3) Polyhedra: Associated polyhedra are further studied in Chapter 4,
where support functions and the associated maximizers of linear
functions are computed. We also detail the facial structure of such
polyhedra, which will be useful when related to the sparsity-inducing
properties of the Lovász extension in Chapter 5.

(4) Convex relaxation of submodular penalties: While submodu-
lar functions may be used directly (for minimization of maximization
of set-functions), we show in Chapter 5 how they may be used to pe-
nalize supports or level sets of vectors. The resulting mixed combi-
natorial/continuous optimization problems may be naturally relaxed
into convex optimization problems using the Lovász extension.

(5) Examples: In Chapter 6, we present classical examples of submodu-
lar functions, together with several applications in machine learning,
in particular, cuts, set covers, network flows, entropies, spectral func-
tions and matroids.

(6) Non-smooth convex optimization: In Chapter 7, we review
classical iterative algorithms adapted to the minimization of non-
smooth polyhedral functions, such as subgradient, ellipsoid, simpli-
cial, cutting-planes, active-set, and conditional gradient methods. A
particular attention is put on providing when applicable primal/dual
interpretations to these algorithms.

(7) Separable optimization - Analysis: In Chapter 8, we consider
separable optimization problems regularized by the Lovász extension
w 7→ f(w), i.e., problems of the form minw∈Rp

∑
k∈V ψk(wk) + f(w),

5

and show how this is equivalent to a sequence of submodular function
minimization problems. This is a key theoretical link between com-
binatorial and convex optimization problems related to submodular
functions, that will be used in later chapters.

(8) Separable optimization - Algorithms: In Chapter 9, we present
two sets of algorithms for separable optimization problems. The first
algorithm is an exact algorithm which relies on the availability of
an efficient submodular function minimization algorithm, while the
second set of algorithms are based on existing iterative algorithms
for convex optimization, some of which come with online and offline
theoretical guarantees. We consider active-set methods (“min-norm-
point” algorithm) and conditional gradient methods.

(9) Submodular function minimization: In Chapter 10, we present
various approaches to submodular function minimization. We
present briefly the combinatorial algorithms for exact submodular
function minimization, and focus in more depth on the use of spe-
cific convex optimization problems, which can be solved iteratively to
obtain approximate or exact solutions for submodular function min-
imization, with sometimes theoretical guarantees and approximate
optimality certificates. We consider the subgradient method, the el-
lipsoid method, the simplex algorithm and analytic center cutting
planes. We also show how the separable optimization problems from
Chapters 8 and 9 may be used for submodular function minimiza-
tion. These methods are then empirically compared in Chapter 12.

(10) Submodular optimization problems: In Chapter 11, we present
other combinatorial optimization problems which can be partially
solved using submodular analysis, such as submodular function max-
imization and the optimization of differences of submodular func-
tions, and relate these to non-convex optimization problems on the
submodular polyhedra. While these problems typically cannot be
solved in polynomial time, many algorithms come with approxima-
tion guarantees based on submodularity.

(11) Experiments: In Chapter 12, we provide illustrations of the opti-

6 Introduction

mization algorithms described earlier, for submodular function min-
imization, as well as for convex optimization problems (separable or
not). The Matlab code for all these experiments may be found at
http://www.di.ens.fr/~fbach/submodular/.

In Appendix A, we review relevant notions from convex analysis
(such as Fenchel duality, dual norms, gauge functions, and polar sets),
while in Appendix B, we present several results related to submodular
functions, such as operations that preserve submodularity.

Several books and monograph articles already exist on the same
topic and the material presented in this monograph rely on those [72,
162, 126]. However, in order to present the material in the simplest way,
ideas from related research papers have also been used, and a stronger
emphasis is put on convex analysis and optimization.

Notations. We consider the set V = {1, . . . , p}, and its power set 2V ,
composed of the 2p subsets of V . Given a vector s ∈ R

p, s also denotes
the modular set-function defined as s(A) =

∑
k∈A sk. Moreover, A ⊆ B

means that A is a subset of B, potentially equal to B. We denote by
|A| the cardinality of the set A, and, for A ⊆ V = {1, . . . , p}, 1A ∈ R

p

denotes the indicator vector of the set A. If w ∈ R
p, and α ∈ R, then

{w > α} (resp. {w > α}) denotes the subset of V = {1, . . . , p} defined
as {k ∈ V, wk > α} (resp. {k ∈ V, wk > α}), which we refer to as
the weak (resp. strong) α-sup-level sets of w. Similarly if v ∈ R

p, we
denote {w > v} = {k ∈ V, wk > vk}.

For q ∈ [1,+∞], we denote by ‖w‖q the ℓq-norm of w, defined as

‖w‖q =
(∑

k∈V |wk|q
)1/q for q ∈ [1,∞) and ‖w‖∞ = maxk∈V |wk|.

Finally, we denote by R+ the set of non-negative real numbers, by R
∗

the set of non-zero real numbers, and by R
∗
+ the set of strictly positive

real numbers.

http://www.di.ens.fr/~fbach/submodular/

2

Definitions

Throughout this monograph, we consider V = {1, . . . , p}, p > 0 and
its power set (i.e., set of all subsets) 2V , which is of cardinality 2p.
We also consider a real-valued set-function F : 2V → R such that
F (∅) = 0. As opposed to the common convention with convex functions
(see Appendix A), we do not allow infinite values for the function F .

The field of submodular analysis takes its roots in matroid theory,
and submodular functions were first seen as extensions of rank functions
of matroids (see [63] and §6.8) and their analysis strongly linked with
special convex polyhedra which we define in §2.2. After the links with
convex analysis were established [63, 135], submodularity appeared as
a central concept in combinatorial optimization. Like convexity, many
models in science and engineering and in particular in machine learn-
ing involve submodularity (see Chapter 6 for many examples). Like
convexity, submodularity is usually enough to derive general theories
and generic algorithms (but of course some special cases are still of im-
portance, such as min-cut/max-flow problems), which have attractive
theoretical and practical properties. Finally, like convexity, there are
many areas where submodular functions play a central but somewhat
hidden role in combinatorial and convex optimization. For example, in

7

8 Definitions

Chapter 5, we show how many problems in convex optimization involv-
ing discrete structured turns out be cast as submodular optimization
problems, which then immediately lead to efficient algorithms.

In §2.1, we provide the definition of submodularity and its equiv-
alent characterizations. While submodularity may appear rather ab-
stract, it turns out it come up naturally in many examples. In this
chapter, we will only review a few classical examples which will help
illustrate our various results. For an extensive list of examples, see
Chapter 6. In §2.2, we define two polyhedra traditionally associated
with a submodular function, while in §2.3, we consider non-decreasing
submodular functions, often referred to as polymatroid rank functions.

2.1 Equivalent definitions of submodularity

Submodular functions may be defined through several equivalent prop-
erties, which we now present. Additive measures are the first examples
of set-functions, the cardinality being the simplest example. A well
known property of the cardinality is that for any two sets A,B ⊆ V ,
then |A| + |B| = |A ∪B| + |A ∩B|, which extends to all additive mea-
sures. A function is submodular if and only if the previous equality is
only an inequality for all subsets A and B of V :

Definition 2.1. (Submodular function) A set-function F : 2V →
R is submodular if and only if, for all subsets A,B ⊆ V , we have:
F (A) + F (B) > F (A ∪B) + F (A ∩B).

Note that if a function is submodular and such that F (∅) = 0
(which we will always assume), for any two disjoint sets A,B ⊆ V , then
F (A ∪ B) 6 F (A) + F (B), i.e., submodularity implies sub-additivity
(but the converse is not true).

As seen earlier, the simplest example of a submodular function is
the cardinality (i.e., F (A) = |A| where |A| is the number of elements
of A), which is both submodular and supermodular (i.e., its opposite
A 7→ −F (A) is submodular). It turns out that only additive measures
have this property of being modular.

Proposition 2.1 (Modular function). A set-function F : 2V → R such

2.1. Equivalent definitions of submodularity 9

that F (∅) = 0 is modular (i.e., both submodular and supermodular)
if and only if there exists s ∈ R

p such that F (A) =
∑
k∈A sk.

Proof. For a given s ∈ R
p, A 7→ ∑

k∈A sk is an additive measure and
is thus submodular. If F is submodular and supermodular, then it
is both sub-additive and super-additive. This implies that F (A) =∑
k∈A F ({k}) for all A ⊆ V , which defines a vector s ∈ R

p with
sk = F ({k}), such that F (A) =

∑
k∈A sk.

From now on, from a vector s ∈ R
p, we denote by s the modular

set-function defined as s(A) =
∑
k∈A sk = s⊤1A, where 1A ∈ R

p is the
indicator vector of the set A. Modular functions essentially play for
set-functions the same role as linear functions for continuous functions.

Operations that preserve submodularity. From Def. 2.1, it is clear
that the set of submodular functions is closed under linear combination
and multiplication by a positive scalar (like convex functions).

Moreover, like convex functions, several notions of restrictions and
extensions may be defined for submodular functions (proofs immedi-
ately follow from Def. 2.1):

– Extension: given a set B ⊆ V , and a submodular function G :
2B → R, then the function F : 2V → R defined as F (A) = G(B ∩A)
is submodular.

– Restriction: given a set B ⊆ V , and a submodular function G :
2V → R, then the function F : 2B → R defined as F (A) = G(A) is
submodular.

– Contraction: given a set B ⊆ V , and a submodular function G :
2V → R, then the function F : 2V \B → R defined as F (A) = G(A ∪
B −G(B) is submodular (and such that G(∅) = 0).

More operations that preserve submodularity are defined in Ap-
pendix B, in particular partial minimization (like for convex functions).
Note however, that in general the pointwise minimum or pointwise max-
imum of submodular functions are not submodular (properties which
would be true for respectively concave and convex functions).

10 Definitions

Proving submodularity. Checking the condition in Def. 2.1 is not al-
ways easy in practice; it turns out that it can be restricted to only
certain sets A and B, which we now present.

The following proposition shows that a submodular has the “dimin-
ishing return” property, and that this is sufficient to be submodular.
Thus, submodular functions may be seen as a discrete analog to concave

functions. However, as shown in Chapter 3, in terms of optimization
they behave more like convex functions (e.g., efficient minimization,
duality theory, links with the convex Lovász extension).

Proposition 2.2. (Definition with first-order differences) The set-
function F is submodular if and only if for all A,B ⊆ V and k ∈ V ,
such that A ⊆ B and k /∈ B, we have

F (A ∪ {k}) − F (A) > F (B ∪ {k}) − F (B).

Proof. Let A ⊆ B, and k /∈ B; we have F (A ∪ {k}) − F (A) − F (B ∪
{k})+F (B) = F (C)+F (D)−F (C∪D)−F (C∩D) with C = A∪{k}
and D = B, which shows that the condition is necessary. To prove the
opposite, we assume that the first-order difference condition is satisfied;
one can first show that ifA ⊆ B and C∩B = ∅, then F (A∪C)−F (A) >
F (B∪C)−F (B) (this can be obtained by summing the m inequalities
F (A ∪ {c1, . . . , ck}) − F (A ∪ {c1, . . . , ck−1}) > F (B ∪ {c1, . . . , ck}) −
F (B ∪ {c1, . . . , ck−1}) where C = {c1, . . . , cm}).

Then, for any X,Y ⊆ V , take A = X ∩ Y , C = X\Y and B = Y

(which implies A∪C = X and B∪C = X∪Y) to obtain F (X)+F (Y) >
F (X ∪Y)+F (X ∩Y), which shows that the condition is sufficient.

The following proposition gives the tightest condition for submod-
ularity (easiest to show in practice).

Proposition 2.3. (Definition with second-order differences) The
set-function F is submodular if and only if for all A ⊆ V and j, k ∈
V \A, we have F (A ∪ {k}) − F (A) > F (A ∪ {j, k}) − F (A ∪ {j}).

Proof. This condition is weaker than the one from the previous propo-
sition (as it corresponds to taking B = A ∪ {j}). To prove that
it is still sufficient, consider A ⊆ V , B = A ∪ {b1, . . . , bs}, and

2.1. Equivalent definitions of submodularity 11

k ∈ V \B. We can apply the second-order difference condition to sub-
sets A ∪ {b1, . . . , bs−1}, j = bs, and sum the m inequalities F (A ∪
{b1, . . . , bs−1} ∪ {k}) − F (A ∪ {b1, . . . , bs−1}) > F (A ∪ {b1, . . . , bs} ∪
{k}) − F (A ∪ {b1, . . . , bs}), for s ∈ {1, . . . ,m}, to obtain the condition
in Prop. 2.2.

Note that the set of submodular functions is itself a conic poly-
hedron with the facets defined in Prop. 2.3. In order to show that a
given set-function is submodular, there are several possibilities: (a) use
Prop. 2.3 directly, (b) use the Lovász extension (see Chapter 3) and
show that it is convex, (c) cast the function as a special case from
Chapter 6 (typically a cut or a flow), or (d) use known operations on
submodular functions presented in Appendix B.

Beyond modular functions, we will consider as running examples for
the first chapters of this monograph the following submodular functions
(which will be studied further in Chapter 6):

– Indicator function of non-empty sets: we consider the function
F : 2V → R such that F (A) = 0 if A = ∅ and F (A) = 1 otherwise.
By Prop. 2.2 or Prop. 2.3, this function is obviously submodular (the
gain of adding any element is always zero, except when adding to
the empty set, and thus the returns are indeed diminishing). Note
that this function may be written compactly as F (A) = min{|A|, 1}
or F (A) = 1|A|>0 = 1A 6=∅. Generalizations to all cardinality-based
functions will be studied in §6.1.

– Counting elements in a partitions: Given a partition of V into m
sets G1, . . . , Gm, then the function F that counts for a set A the num-
ber of elements in the partition which intersects A is submodular. It
may be written as F (A) =

∑m
j=1 min{|A ∩Gj |, 1} (submodularity is

then immediate from the previous example and the restriction prop-
erties outlined previously). Generalizations to all set covers will be
studied in §6.3.

– Cuts: given an undirected graph G = (V,E) with vertex set V ,
then the cut function for the set A ⊆ V is defined as the number
of edges between vertices in A and vertices in V \A, i.e., F (A) =

12 Definitions

∑
(u,v)∈E |(1A)u − (1A)v|. For each (u, v) ∈ E, then the function

|(1A)u − (1A)v| = 2 min{|A ∩ {u, v}|, 1} − |A ∩ {u, v}| is submod-
ular (because of operations that preserve submodularity), thus as a
sum of submodular functions, it is submodular.

2.2 Associated polyhedra

We now define specific polyhedra in R
p. These play a crucial role in

submodular analysis, as most results and algorithms in this monograph
may be interpreted or proved using such polyhedra.

Definition 2.2. (Submodular and base polyhedra) Let F be a
submodular function such that F (∅) = 0. The submodular polyhedron
P (F) and the base polyhedron B(F) are defined as:

P (F) = {s ∈ R
p, ∀A ⊆ V, s(A) 6 F (A)}

B(F) = {s ∈ R
p, s(V) = F (V), ∀A ⊆ V, s(A) 6 F (A)}

= P (F) ∩ {s(V) = F (V)}.

These polyhedra are defined as the intersection of hyperplanes
{s ∈ R

p, s(A) 6 F (A)} = {s ∈ R
p, s⊤1A 6 f(A)} = {s 6 t},

whose normals are indicator vectors 1A of subsets A of V . As shown in
the following proposition, the submodular polyhedron P (F) has non-
empty interior and is unbounded. Note that the other polyhedron (the
base polyhedron) will be shown to be non-empty and bounded as a
consequence of Prop. 3.2. It has empty interior since it is included in
the subspace s(V) = F (V).

For a modular function F : A 7→ t(A) for t ∈ R
p, then P (F) = {s ∈

R
p,∀k ∈ V, sk 6 tk}, and it thus isomorphic (up to translation) to

the negative orthant. However, for a more general function, P (F) may
have more extreme points; see Figure 2.1 for canonical examples with
p = 2 and p = 3.

Proposition 2.4. (Properties of submodular polyhedron) Let F
be a submodular function such that F (∅) = 0. If s ∈ P (F), then for
all t ∈ R

p, such that t 6 s (i.e., ∀k ∈ V, tk 6 sk), we have t ∈ P (F).
Moreover, P (F) has non-empty interior.

2.3. Polymatroids (non-decreasing submodular functions) 13

2s

s1

s1 2s

s1

2s

B(F)
=

+ =

= F({2})

F({1,2})

F({1})

P(F)

3s

s2

s1

P(F)

B(F)

Figure 2.1: Submodular polyhedron P (F) and base polyhedron B(F) for p = 2
(left) and p = 3 (right), for a non-decreasing submodular function (for which B(F) ⊆
R

p
+, see Prop. 4.8).

Proof. The first part is trivial, since t 6 s implies that for all A ⊆ V ,
t(A) 6 s(A). For the second part, given the previous property, we only
need to show that P (F) is non-empty, which is true since the constant
vector equal to minA⊆V, A 6=∅

F (A)
|A| belongs to P (F).

2.3 Polymatroids (non-decreasing submodular functions)

When the submodular function F is also non-decreasing, i.e., when
for A,B ⊆ V , A ⊆ B ⇒ F (A) 6 F (B), then the function is often
referred to as a polymatroid rank function (see related matroid rank
functions in §6.8). For these functions, as shown in Chapter 4, the
base polyhedron happens to be included in the positive orthant (the
submodular function from Figure 2.1 is thus non-decreasing).

Although, the study of polymatroids may seem too restrictive as
many submodular functions of interest are not non-decreasing (such as
cuts), polymatroids were historically introduced as the generalization of
matroids (which we study in §6.8). Moreover, any submodular function
may be transformed to a non-decreasing function by adding a modular
function:

14 Definitions

Proposition 2.5. (Transformation to non-decreasing functions)

Let F be a submodular function such that F (∅) = 0. Let s ∈ R
p

defined through sk = F (V) − F (V \{k}) for k ∈ V . The function G :
A 7→ F (A) − s(A) is then submodular and non-decreasing.

Proof. Submodularity is immediate since A 7→ −s(A) is submodular
and adding two submodular functions preserves submodularity. Let
A ⊆ V and k ∈ V \A. We have:

G(A ∪ {k}) −G(A)

= F (A ∪ {k}) − F (A) − F (V) + F (V \{k})

= F (A ∪ {k}) − F (A) − F ((V \{k}) ∪ {k}) + F (V \{k}),

which is non-negative since A ⊆ V \{k} (because of Prop. 2.2). This
implies that G is non-decreasing.

The joint properties of submodularity and monotonicity gives rise
to a compact characterization of polymatroids [166], which we now
describe:

Proposition 2.6. (Characterization of polymatroids) Let F by a
set-function such that F (∅) = 0. For any A ⊆ V , define for j ∈ V ,
ρj(A) = F (A∪ {j}) − F (A) the gain of adding element j to the set A.
The function F is a polymatroid rank function (i.e., submodular and
non-decreasing) if and only if for all A,B ⊆ V ,

F (B) 6 F (A) +
∑

j∈B\A
ρj(A). (2.1)

Proof. If Eq. (2.1) is true, then, if B ⊆ A, B\A = ∅, and thus F (B) 6
F (A), which implies monotonicity. We can then apply Eq. (2.1) to A
and B = A ∪ {j, k} to obtain the condition in Prop. 2.3, hence the
submodularity.

We now assume that F is non-decreasing and submodular. For any
two subsets A and B of V , if we enumerate the set B\A as {b1, . . . , bs},

2.3. Polymatroids (non-decreasing submodular functions) 15

s

s

2

1

Figure 2.2: Positive submodular polyhedron P+(F) for p = 2 (left) and p = 3
(right), for a non-decreasing submodular function.

s

s

2

1

Figure 2.3: Symmetric submodular polyhedron |P |(F) for p = 2 (left) and p = 3
(right), for a non-decreasing submodular function.

we have

F (B) 6 F (B ∪A) =
s∑

i=1

{
F (A ∪ {b1, . . . , bi}) − F (A ∪ {b1, . . . , bi−1})

}

6

s∑

i=1

ρbi
(A)) =

∑

j∈B\A
ρj(A),

which is exactly Eq. (2.1).

The last proposition notably shows that each submodular function
is upper-bounded by a constant plus a modular function, and these
upper-bounds may be enforced to be tight at any given A ⊆ V . This will
be contrasted in §5.1 to the other property shown later that modular
lower-bounds also exist (Prop. 3.2).

Associated polyhedra. For polymatroids, we will consider in this
monograph two other polyhedra: the positive submodular polyhedron,

16 Definitions

which we now define by considering the positive part of the submodular
polyhedron (sometimes called the independence polyhedron), and then
its symmetrized version, which we refer to as the symmetric submodu-
lar polyhedron. See examples in two and three dimensions in Figure 2.2
and Figure 2.3.

Definition 2.3. (Positive submodular polyhedron) Let F be a
non-decreasing submodular function such that F (∅) = 0. The posi-
tive submodular polyhedron P+(F) is defined as:

P+(F) = {s ∈ R
p
+, ∀A ⊆ V, s(A) 6 F (A)} = R

p
+ ∩ P (F).

The positive submodular polyhedron is the intersection of the sub-
modular polyhedron P (F) with the positive orthant (see Figure 2.2).
Note that if F is not non-decreasing, we may still define the posi-
tive submodular polyhedron, which is then equal to the submodular
polyhedron P (G) associated with the monotone version G of F , i.e.,
G(A) = minB⊇A F (B) (see Appendix B for more details).

Definition 2.4. (Symmetric submodular polyhedron) Let F be
a non-decreasing submodular function such that F (∅) = 0. The sub-
modular polyhedron |P |(F) is defined as:

|P |(F) = {s ∈ R
p, ∀A ⊆ V, |s|(A) 6 F (A)} = {s ∈ R

p, |s| ∈ P (F)}.

For the cardinality function F : A 7→ |A|, |P |(F) is exactly the
ℓ∞-ball, while for the function A 7→ min{|A|, 1}, |P |(F) is exactly the
ℓ1-ball. More generally, this polyhedron will turn out to be the unit
ball of the dual norm of the norm defined in §5.2 (see more details and
figures in §5.2).

3

Lovász Extension

We first consider a set-function F such that F (∅) = 0, which may not

be submodular. Every element of the power set 2V may be associated to
a vertex of the hypercube {0, 1}p. Namely, a set A ⊆ V may be uniquely
identified to the indicator vector 1A (see Figure 3.1 and Figure 3.2).

The Lovász extension [135], which is often referred to as the Cho-
quet integral in decision theory [46, 146], allows the extension of a
set-function defined on the vertices of the hypercube {0, 1}p, to the full
hypercube [0, 1]p (and in fact also to the entire space R

p). As shown in
this section, the Lovász extension is obtained by cutting the hypercube
in p! simplices and defining the Lovász extension by linear interpolation
of the values at the vertices of these simplices.

The Lovász extension, which we define in §3.1, allows to draw links
between submodular set-functions and regular convex functions, and
transfer known results from convex analysis, such as duality. In partic-
ular, we prove in this chapter, two key results of submodular analysis
and its relationship to convex analysis, namely, (a) that the Lovász
extension is the support function of the base polyhedron, with a di-
rect relationship through the “greedy algorithm” [63] (§3.2), and (b)
that a set-function is submodular if and only if its Lovász extension is

17

18 Lovász Extension

w >w2 1

w >w21

w2

w1

(1, 1)~{1, 2}

(1, 0)~{1}

(0, 1)~{2}

(0,0)~{ }

Figure 3.1: Equivalence between sets and vertices of the hypercube: every subset
A of V may be identified to a vertex of the hypercube, i.e., elements of {0, 1}p,
namely the indicator vector 1A of the set A. Illustration in two dimensions (p = 2).
The hypercube is divided in two parts (two possible orderings of w1 and w2).

convex [135] (§3.3), with additional links between convex optimization
and submodular function minimization.

While there are many additional results relating submodularity and
convexity through the analysis of properties of the polyhedra defined
in §2.2, these two results are the main building blocks of all the re-
sults presented in this monograph (for additional results, see Chapter 4
and [72]). In particular, in Chapter 5, we show how the Lovász exten-
sion may be used in convex continuous problems arising as convex re-
laxations of problems having mixed combinatorial/discrete structures.

3.1 Definition

We now define the Lovász extension of any set-function (not necessarily
submodular). For several alternative representations and first proper-
ties, see Prop. 3.1.

Definition 3.1. (Lovász extension) Given a set-function F such that
F (∅) = 0, the Lovász extension f : Rp → R is defined as follows; for
w ∈ R

p, order the components in decreasing order wj1 > · · · > wjp ,
where (j1, . . . , jp) is a permutation, and define f(w) through any of the

3.1. Definition 19

following equivalent equations:

f(w) =
p∑

k=1

wjk

[
F ({j1, . . . , jk}) − F ({j1, . . . , jk−1})

]
, (3.1)

f(w) =
p−1∑

k=1

F ({j1, . . . , jk})(wjk
− wjk+1

) + F (V)wjp , (3.2)

f(w) =
∫ +∞

min{w1,...,wp}
F ({w > z})dz + F (V) min{w1, . . . , wp}, (3.3)

f(w) =
∫ +∞

0
F ({w > z})dz +

∫ 0

−∞
[F ({w > z}) − F (V)]dz. (3.4)

Proof. To prove that we actually define a function, one needs to prove
that the definitions are independent of the potentially non unique
ordering wj1 > · · · > wjp , which is trivial from the last formula-
tions in Eq. (3.3) and Eq. (3.4). The first and second formulations
in Eq. (3.1) and Eq. (3.2) are equivalent (by integration by parts, or
Abel summation formula). To show equivalence with Eq. (3.3), one
may notice that z 7→ F ({w > z}) is piecewise constant, with value
zero for z > wj1 = max{w1, . . . , wp}, and equal to F ({j1, . . . , jk})
for z ∈ (wjk+1

, wjk
), k = {1, . . . , p − 1}, and equal to F (V) for

z < wjp = min{w1, . . . , wp}. What happens at break points is irrele-
vant for integration. Note that in Eq. (3.3), we may replace the integral
∫+∞

min{w1,...,wp} by
∫max{w1,...,wp}

min{w1,...,wp} .

To prove Eq. (3.4) from Eq. (3.3), notice that for α 6

min{0, w1, . . . , wp}, Eq. (3.3) leads to

f(w) =
∫ +∞

α
F ({w > z})dz −

∫ min{w1,...,wp}

α
F ({w > z})dz

+F (V) min{w1, . . . , wp}

=
∫ +∞

α
F ({w > z})dz −

∫ min{w1,...,wp}

α
F (V)dz

+
∫ min{w1,...,wp}

0
F (V)dz

=
∫ +∞

α
F ({w > z})dz −

∫ 0

α
F (V)dz,

and we get the result by letting α tend to −∞. Note also that in
Eq. (3.4) the integrands are equal to zero for z large enough.

20 Lovász Extension

Modular functions. For modular functions F : A 7→ s(A), with s ∈
R
p, the Lovász extension is the linear function w 7→ w⊤s (as can be

seem from Eq. (3.1)), hence the importance of modular functions within
submodular analysis, comparable to the relationship between linear and
convex functions.

Two-dimensional problems. For p = 2, we may give several repre-
sentations of the Lovász extension of a set-function F . Indeed, from
Eq. (3.1), we obtain

f(w) =
{ F ({1})w1 + [F ({1, 2}) − F ({1})]w2 if w1 > w2

F ({2})w2 + [F ({1, 2}) − F ({2})]w1 if w2 > w1,

which can be written compactly into two different forms:

f(w) = F ({1})w1 + F ({2})w2 (3.5)

−[F ({1}) + F ({2}) − F ({1, 2})] min{w1, w2}

=
1
2

[F ({1}) + F ({2}) − F ({1, 2})] · |w1 − w2|

+
1
2

[F ({1}) − F ({2}) + F ({1, 2})] · w1

+
1
2

[−F ({1}) + F ({2}) + F ({1, 2})] · w2.

This allows an illustration of various propositions in this section (in
particular Prop. 3.1). See also Figure 3.3 for an illustration. Note that
for the cut in the complete graph with two nodes, we have F ({1, 2}) = 0
and F ({1}) = F ({2}) = 1, leading to f(w) = |w1 − w2|.

Examples. We have seen that for modular functions F : A 7→ s(A),
then f(w) = s⊤w. For the function A 7→ min{|A|, 1} = 1|A|6=∅,
then from Eq. (3.1), we have f(w) = maxk∈V wk. For the function
F : A 7→ ∑m

j=1 min{|A∩Gj |, 1}, that counts elements in a partition, we
have f(w) =

∑m
j=1 maxk∈Gj

wk, which can be obtained directly from
Eq. (3.1), or by combining Lovász extensions of sums of set-functions
(see property (a) in Prop. 3.1). For cuts, by combining the results for
two-dimensional functions, we obtain f(w) =

∑
(u,v)∈E |wu − wv|.

3.1. Definition 21

1

w2

w3

(0, 0, 1)~{3}

(1, 1, 0)~{1, 2}

(0, 1, 1)~{2, 3}

(0, 0, 0)~{ } (1, 1, 1)~{1, 2, 3}

(0, 1, 0)~{2}
(1, 0, 0)~{1}

(1, 0, 1)~{1, 3}

w

w3

w1

w2

w >w >w3 2 1

w >w >w2 1 3

w >w >w2 3 1

w >w >w1 2 3

w >w >w1 3 2

w >w >w1 23

Figure 3.2: Equivalence between sets and vertices of the hypercube: every subset A

of V may be identified to a vertex of the hypercube, i.e., elements of {0, 1}p, namely
the indicator vector 1A of the set A. Top: Illustration in three dimensions (p = 3).
Bottom: The hypercube is divided in six parts (three possible orderings of w1, w2

and w3).

22 Lovász Extension

The following proposition details classical properties of the Choquet
integral/Lovász extension. In particular, property (f) below implies that
the Lovász extension is equal to the original set-function on {0, 1}p
(which can canonically be identified to 2V), and hence is indeed an
extension of F . See an illustration in Figure 3.3 for p = 2.

Proposition 3.1. (Properties of Lovász extension) Let F be any
set-function such that F (∅) = 0. We have:
(a) if F and G are set-functions with Lovász extensions f and g, then
f + g is the Lovász extension of F + G, and for all λ ∈ R, λf is the
Lovász extension of λF ,
(b) for w ∈ R

p
+, f(w) =

∫ +∞
0 F ({w > z})dz,

(c) if F (V) = 0, for all w ∈ R
p, f(w) =

∫+∞
−∞ F ({w > z})dz,

(d) for all w ∈ R
p and α ∈ R, f(w + α1V) = f(w) + αF (V),

(e) the Lovász extension f is positively homogeneous,
(f) for all A ⊆ V , F (A) = f(1A),
(g) if F is symmetric (i.e., ∀A ⊆ V, F (A) = F (V \A)), then f is even,
(h) if V = A1 ∪ · · · ∪ Am is a partition of V , and w =

∑m
i=1 vi1Ai

(i.e., w is constant on each set Ai), with v1 > · · · > vm, then f(w) =∑m−1
i=1 (vi − vi+1)F (A1 ∪ · · · ∪Ai) + vmF (V),

(i) if w ∈ [0, 1]p, f(w) is the expectation of F ({w > x}) for x a random
variable with uniform distribution in [0, 1].

Proof. Properties (a), (b) and (c) are immediate from Eq. (3.4) and
Eq. (3.2). Properties (d), (e) and (f) are straightforward from Eq. (3.2).
If F is symmetric, then F (V) = F (∅) = 0, and thus f(−w) =∫+∞

−∞ F ({−w > z})dz =
∫+∞

−∞ F ({w 6 −z})dz =
∫+∞

−∞ F ({w 6 z})dz =∫+∞
−∞ F ({w > z})dz = f(w) (because we may replace strict inequalities

by weak inequalities without changing the integral), i.e., f is even. In
addition, property (h) is a direct consequence of Eq. (3.2).

Finally, to prove property (i), we simply use property (b) and no-
tice that since all components of w are less than one, then f(w) =∫ 1

0 F ({w > z})dz, which leads to the desired result.

Note that when the function is a cut function (see §6.2), then the
Lovász extension is related to the total variation and property (c) is

3.1. Definition 23

w1

w >w2 1

1 2w >w

w2

(0,1)/F({2})

f(w)=1

(1,0)/F({1})0

(1,1)/F({1,2})

Figure 3.3: Lovász extension for V = {1, 2}: the function is piecewise affine, with
different slopes for w1 > w2, with values F ({1})w1 + [F ({1, 2}) − F ({1})]w2, and
for w1 6 w2, with values F ({2})w2 + [F ({1, 2}) − F ({2})]w1. The level set {w ∈
R

2, f(w) = 1} is displayed in blue, together with points of the form 1
F (A)

1A. In this

example, F ({2}) = 2, F ({1}) = F ({1, 2}) = 1.

often referred to as the co-area formula (see [38] and references therein,
as well as §6.2).

Linear interpolation on simplices. One may view the definition in
Def. 3.1 in a geometric way. We can cut the set [0, 1]p in p! polytopes,
as shown in Figure 3.1 and the the bottom plot of Figure 3.2. These
small polytopes are parameterized by one of the p! permutations of p
elements, i.e., one of the orderings {j1, . . . , jp}, and are defined as the
set of w ∈ [0, 1]p such that wj1 > · · · > wjp . For a given ordering,
the corresponding convex set is the convex hull of the p+1 indicator
vectors of sets Ak = {j1, . . . , jk}, for k ∈ {0, . . . , p} (with the convention
that A0 = ∅), and any w in this polytope may be written as w =∑p−1
k=1(wjk

− wjk+1
)1{j1,...,jk} + wjp1V + (1 − wj1) × 0 (which is indeed

a convex combination), and thus, the definition of f(w) in Eq. (3.2)
corresponds exactly to a linear interpolation of the values at the vertices
of the polytope {w ∈ [0, 1]p, wj1 > · · · > wjp}.

Decomposition into modular plus non-negative function. Given any
submodular function G and an element t of the base polyhedron B(G)
defined in Def. 2.2, then the function F = G−t is also submodular, and
is such that F is always non-negative and F (V) = 0. Thus G may be
(non uniquely because there are many choices for t ∈ B(F) as shown in

24 Lovász Extension

w > w >w1 2

1w > w >w3 2

32w > w >w1

13w > w >w2

2w > w >w1 3

21w =w

w =w1 3
32w =w

12w > w >w3

(0,1,1)/F({2,3})

(0,0,1)/F({3})

(1,0,1)/F({1,3})

(1,0,0)/F({1})

(1,1,0)/F({1,2})

(0,1,0)/F({2})

3

(0,1,0)/2

(0,0,1)

(0,1,1)
(1,0,1)/2

(1,0,0)

(1,1,0)

Figure 3.4: Top: Polyhedral level set of f (projected on the set w⊤1V = 0), for 2
different submodular symmetric functions of three variables. The various extreme
points cut the space into polygons where the ordering of the components is fixed.
Left: F (A) = 1|A|∈{1,2} (which is a symmetrized version of A 7→ min{|A|, 1}), leading
to f(w) = maxk∈{1,2,3} wk − mink∈{1,2,3} wk (all possible extreme points); note
that the polygon need not be symmetric in general. Right: one-dimensional total
variation on three nodes, i.e., F (A) = |11∈A − 12∈A| + |12∈A − 13∈A|, leading to
f(w) = |w1 − w2| + |w2 − w3|.

§3.2) decomposed as the sum of a modular function t and a submodular
function F which is always non-negative and such that F (V) = 0. Such
functions F have interesting Lovász extensions. Indeed, for all w ∈ R

p,
f(w) > 0 and f(w + α1V) = f(w). Thus in order to represent the
level set {w ∈ R

p, f(w) = 1} (which we will denote {f(w) = 1}), we
only need to project onto a subspace orthogonal to 1V . In Figure 3.4, we
consider a function F which is symmetric (which implies that F (V) = 0
and F is non-negative, see more details in §10.3). See also §5.5 for the
sparsity-inducing properties of such Lovász extensions.

3.2 Greedy algorithm

The next result relates the Lovász extension with the support function1

of the submodular polyhedron P (F) or the base polyhedron B(F),
which are defined in Def. 2.2. This is the basis for many of the theo-

1The support function of a convex set K is obtained by maximizing linear func-
tions w⊤s over s ∈ K, which leads to a convex function of w; see definition in
Appendix A.

3.2. Greedy algorithm 25

retical results and algorithms related to submodular functions. Using
convex duality, it shows that maximizing a linear function with non-
negative coefficients on the submodular polyhedron may be obtained
in closed form, by the so-called “greedy algorithm” (see [135, 63] and
§6.8 for an intuitive explanation of this denomination in the context
of matroids), and the optimal value is equal to the value f(w) of the
Lovász extension. Note that otherwise, solving a linear programming
problem with 2p−1 constraints would then be required. This applies to
the submodular polyhedron P (F) and to the base polyhedron B(F);
note the different assumption regarding the positivity of the compo-
nents of w. See also Prop. 4.2 for a characterization of all maximizers
and Prop. 3.4 for similar results for the positive submodular polyhe-
dron P+(F) and Prop. 3.5 for the symmetric submodular polyhedron
|P |(F).

Proposition 3.2. (Greedy algorithm for submodular and base

polyhedra) Let F be a submodular function such that F (∅) = 0.
Let w ∈ R

p, with components ordered in decreasing order, i.e., wj1 >

· · · > wjp and define sjk
= F ({j1, . . . , jk}) − F ({j1, . . . , jk−1}). Then

s ∈ B(F) and,
(a) if w ∈ R

p
+, s is a maximizer of maxs∈P (F)w

⊤s; moreover
maxs∈P (F)w

⊤s = f(w),
(b) s is a maximizer of maxs∈B(F) w

⊤s, and maxs∈B(F) w
⊤s = f(w).

Proof. Let w ∈ R
p
+. By convex strong duality (which applies because

P (F) has non empty interior from Prop. 2.4), we have, by introducing
Lagrange multipliers λA ∈ R+ for the constraints s(A) 6 F (A), A ⊆ V ,
the following pair of convex optimization problems dual to each other:

max
s∈P (F)

w⊤s = max
s∈Rp

min
λA>0,A⊆V

{
w⊤s−

∑

A⊆V
λA[s(A) − F (A)]

}
(3.6)

= min
λA>0,A⊆V

max
s∈Rp

{
w⊤s−

∑

A⊆V
λA[s(A) − F (A)]

}

= min
λA>0,A⊆V

max
s∈Rp

{ ∑

A⊆V
λAF (A) +

p∑

k=1

sk
(
wk −

∑

A∋k
λA
)}

= min
λA>0,A⊆V

∑

A⊆V
λAF (A) such that ∀k ∈ V, wk =

∑

A∋k
λA.

26 Lovász Extension

In the last equality, maximizing with respect to each sk ∈ R a linear
function of sk introduces the constraint that this linear function has
to be zero (otherwise the maximum is equal to +∞). If we take the
(primal) candidate solution s obtained from the greedy algorithm, we
have f(w) = w⊤s from Eq. (3.1). We now show that s is feasible (i.e.,
in P (F)), as a consequence of the submodularity of F . Indeed, without
loss of generality, we assume that jk = k for all k ∈ {1, . . . , p}. We have
for any set A:

s(A) = s⊤1A =
p∑

k=1

(1A)ksk

=
p∑

k=1

(1A)k
[
F ({1, . . . , k}) − F ({1, . . . , k−1})

]
by definition of s,

6

p∑

k=1

(1A)k
[
F (A ∩ {1, . . . , k}) − F (A ∩ {1, . . . , k−1})

]

by submodularity,

=
p∑

k=1

[
F (A ∩ {1, . . . , k}) − F (A ∩ {1, . . . , k−1})

]

= F (A) by telescoping the sums.

Moreover, we can define dual variables λ{j1,...,jk} = wjk
− wjk+1

for
k ∈ {1, . . . , p−1} and λV = wjp with all other λA’s equal to zero. Then
they are all non negative (notably because w > 0), and satisfy the
constraint ∀k ∈ V, wk =

∑
A∋k λA. Finally, the dual cost function has

also value f(w) (from Eq. (3.2)). Thus by strong duality (which holds,
because P (F) has a non-empty interior), s is an optimal solution, hence
property (a). Note that the maximizer s is not unique in general (see
Prop. 4.2 for a description of the set of solutions).

In order to show (b), we consider w ∈ R
p (not necessarily with non-

negative components); we follow the same proof technique and replace
P (F) by B(F), by simply dropping the constraint λV > 0 in Eq. (3.6)
(which makes our choice λV = wjp feasible, which could have been a
problem since w is not assumed to have nonnegative components). Since
the solution obtained by the greedy algorithm satisfies s(V) = F (V),
we get a pair of primal-dual solutions, hence the optimality.

Given the previous proposition that provides a maximizer of linear

3.2. Greedy algorithm 27

functions over B(F), we obtain a list of all extreme points of B(F).
Note that this also shows that B(F) is a polytope (i.e., it is a compact
polyhedron).

Proposition 3.3. (Extreme points of B(F)) The set of extreme
points is the set of vectors s obtained as the result of the greedy algo-
rithm from Prop. 3.2, for all possible orderings of components of w.

Proof. Let K denote the finite set described above. From Prop. 3.2,
maxs∈K w⊤s = maxs∈B(F) w

⊤s. We thus only need to show that for
any element of K, there exists w ∈ R

p such that the minimizer w
is unique. For any ordering j1, · · · , jp, we can simply take any w ∈
R
p such that wj1 > · · · > wjp. In the proof of Prop. 3.2, we may

compute the difference between the primal objective value and the dual
objective values, which is equal to

∑p
k=1(wjk

−wjk+1
)
[
F ({j1, . . . , jk})−

s({j1, . . . , jk})
]
; it is equal to zero if and only if s is the result of the

greedy algorithm for this ordering.

Note that there are at most p! extreme points, and often less as
several orderings may lead to the same vector s ∈ B(F).

We end this section, by simply stating the greedy algorithm for
the symmetric and positive submodular polyhedron, whose proofs are
similar to the proof of Prop. 3.2 (we define the sign of a as +1 if a > 0,
and −1 if a < 0, and zero otherwise; |w| denotes the vector composed
of the absolute values of the components of w). See also Prop. 4.9 and
Prop. 4.10 for a characterization of all maximizers of linear functions.

Proposition 3.4. (Greedy algorithm for positive submodular

polyhedron) Let F be a submodular function such that F (∅) = 0
and F is non-decreasing. Let w ∈ R

p. A maximizer of maxs∈P+(F)w
⊤s

may be obtained by the following algorithm: order the components
of w, as wj1 > · · · > wjp and define sjk

= [F ({j1, . . . , jk}) −
F ({j1, . . . , jk−1})] if wjk

> 0, and zero otherwise. Moreover, for all
w ∈ R

p, maxs∈P+(F) w
⊤s = f(w+).

Proposition 3.5. (Greedy algorithm for symmetric submodular

polyhedron) Let F be a submodular function such that F (∅) = 0
and F is non-decreasing. Let w ∈ R

p. A maximizer of maxs∈|P |(F)w
⊤s

28 Lovász Extension

may be obtained by the following algorithm: order the components of
|w|, as |wj1 | > · · · > |wjp | and define sjk

= sign(wjk
)[F ({j1, . . . , jk}) −

F ({j1, . . . , jk−1})]. Moreover, for all w ∈ R
p, maxs∈|P |(F)w

⊤s = f(|w|).

3.3 Links between submodularity and convexity

The next proposition draws precise links between convexity and sub-
modularity, by showing that a set-function F is submodular if and only
if its Lovász extension f is convex [135]. This is further developed in
Prop. 3.7 where it is shown that, when F is submodular, minimizing
F on 2V (which is equivalent to minimizing f on {0, 1}p since f is an
extension of F) and minimizing f on [0, 1]p are equivalent.

Proposition 3.6. (Convexity and submodularity) A set-function
F is submodular if and only if its Lovász extension f is convex.

Proof. We first assume that f is convex. Let A,B ⊆ V . The vector
1A∪B + 1A∩B = 1A + 1B has components equal to 0 (on V \(A∪B)), 2
(on A∩B) and 1 (on A∆B = (A\B)∪(B\A)). Therefore, from property
(b) of Prop. 3.1, f(1A∪B +1A∩B) =

∫ 2
0 F (1{w>z})dz =

∫ 1
0 F (A∪B)dz+

∫ 2
1 F (A ∩ B)dz = F (A ∪ B) + F (A ∩ B). Since f is convex, then by

homogeneity, f(1A + 1B) 6 f(1A) + f(1B), which is equal to F (A) +
F (B), and thus F is submodular.

If we now assume that F is submodular, then by Prop. 3.2, for all
w ∈ R

p, f(w) is a maximum of linear functions, thus, it is convex on
R
p.

The next proposition completes Prop. 3.6 by showing that mini-
mizing the Lovász extension on [0, 1]p is equivalent to minimizing it on
{0, 1}p, and hence to minimizing the set-function F on 2V (when F is
submodular).

Proposition 3.7. (Minimization of submodular functions) Let
F be a submodular function and f its Lovász extension; then
minA⊆V F (A) = minw∈{0,1}p f(w) = minw∈[0,1]p f(w). Moreover, the
set of minimizers of f(w) on [0, 1]p is the convex hull of minimizers of
f on {0, 1}p.

3.3. Links between submodularity and convexity 29

Proof. Because f is an extension from {0, 1}p to [0, 1]p (property (f)
from Prop. 3.1), we must have minA⊆V F (A) = minw∈{0,1}p f(w) >

minw∈[0,1]p f(w). To prove the reverse inequality, we may represent
w ∈ [0, 1]p uniquely through its constant sets and their corresponding
values; that is, there exists a unique partition A1, . . . , Am of V where
w is constant on each Ai (equal to vi) and (vi) is a strictly decreasing
sequence (i.e., v1 > · · · > vm). From property (h) of Prop. 3.1, we have

f(w) =
m−1∑

i=1

(vi − vi+1)F (A1 ∪ · · · ∪Ai) + vmF (V)

>

m−1∑

i=1

(vi − vi+1) min
A⊆V

F (A) + vm min
A⊆V

F (A)

= v1 min
A⊆V

F (A) > min
A⊆V

F (A),

where the last inequality is obtained from v1 6 1 and minA⊆V F (A) 6
F (∅) = 0. This implies that minw∈[0,1]p f(w) > minA⊆V F (A).

There is equality in the previous sequence of inequalities, if and
only if (a) for all i ∈ {1, . . . ,m− 1}, F (A1 ∪ · · · ∪Ai) = minA⊆V F (A),
(b) vm(F (V) − minA⊆V F (A)) = 0, and (c) (v1 − 1) minA⊆V F (A) = 0.
Moreover, we have

w =
m−1∑

j=1

(vj − vj+1)1A1∪···∪Aj + vm1V + (1 − v1)1∅.

Thus, w is the convex hull of the indicator vectors of the sets A1 ∪
· · · ∪ Aj, for j ∈ {1, . . . ,m − 1}, of 1V (if vm > 0, i.e., from (b), if V
is a minimizer of F), and of 0 = 1∅ (if vm < 1, i.e., from (c), if ∅ is
a minimizer of F). Therefore, any minimizer w is in the convex hull
of indicator vectors of minimizers A of F . The converse is true by the
convexity of the Lovász extension f .

See Chapter 10 for more details on submodular function minimiza-
tion and the structure of minimizers.

Lovász extension for convex relaxations. Given that the Lovász ex-
tension f of a submodular function is convex, it is natural to study its
behavior when used within a convex estimation framework. In Chap-

30 Lovász Extension

ter 5, we show that it corresponds to the convex relaxation of imposing
some structure on supports or level sets of the vector to be estimated.

4

Properties of Associated Polyhedra

We now study in more details submodular and base polyhedra defined
in §2.2, as well as the symmetric and positive submodular polyhedra
defined in §2.3 for non-decreasing functions. We first review in §4.1
that the support functions may be computed by the greedy algorithm,
but now characterize the set of maximizers of linear functions, from
which we deduce a detailed facial structure of the base polytope B(F)
in §4.2. We then study the positive submodular polyhedron P+(F) and
the symmetric submodular polyhedron |P |(F) in §4.3.

The results presented in this chapter are key to understanding pre-
cisely the sparsity-inducing effect of the Lovász extension, which we
present in details in Chapter 5. Note that §4.2 and §4.3 may be skipped
in a first reading.

4.1 Support functions

The next proposition completes Prop. 3.2 by computing the full support
function of P (F) (see [30, 28] and Appendix A for definitions of support
functions), i.e., computing maxs∈P (F)w

⊤s for all possible w ∈ R
p (with

positive and/or negative coefficients). Note the different behaviors for

31

32 Properties of Associated Polyhedra

B(F) and P (F).

Proposition 4.1. (Support functions of associated polyhedra)

Let F be a submodular function such that F (∅) = 0. We have:
(a) for all w ∈ R

p, maxs∈B(F) w
⊤s = f(w),

(b) if w ∈ R
p
+, maxs∈P (F)w

⊤s = f(w),
(c) if there exists j such that wj < 0, then sups∈P (F)w

⊤s = +∞.

Proof. The only statement left to prove beyond Prop. 3.2 is (c): we just
need to notice that, for j such that wj < 0, we can define s(λ) = s0 −
λδj ∈ P (F) for λ → +∞ and s0 ∈ P (F) and that w⊤s(λ) → +∞.

The next proposition shows necessary and sufficient conditions for
optimality in the definition of support functions. Note that Prop. 3.2
gave one example obtained from the greedy algorithm, and that we can
now characterize all maximizers. Moreover, note that the maximizer is
unique only when w has distinct values, and otherwise, the ordering of
the components of w is not unique, and hence, the greedy algorithm
may have multiple outputs (and all convex combinations of these are
also solutions, and are in fact exactly all solutions, as discussed below
the proof of Prop. 4.2). The following proposition essentially shows
what is exactly needed for s ∈ B(F) to be a maximizer. In particular,
this is done by showing that for some sets A ⊆ V , we must have s(A) =
F (A); such sets are often said tight for s ∈ B(F). This proposition is
key to deriving optimality conditions for the separable optimization
problems that we consider in Chapter 8 and Chapter 9.

Proposition 4.2. (Maximizers of the support function of sub-

modular and base polyhedra) Let F be a submodular function such
that F (∅) = 0. Let w ∈ R

p, with unique values v1 > · · · > vm, taken
at sets A1, . . . , Am (i.e., V = A1 ∪ · · · ∪Am and ∀i ∈ {1, . . . ,m}, ∀k ∈
Ai, wk = vi). Then,
(a) if w ∈ (R∗

+)p (i.e., with strictly positive components, that is, vm >

0), s is optimal for maxs∈P (F)w
⊤s if and only if for all i = 1, . . . ,m,

s(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai),
(b) if vm = 0, s is optimal for maxs∈P (F)w

⊤s if and only if for all
i = 1, . . . ,m− 1, s(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai),

4.1. Support functions 33

(c) s is optimal for maxs∈B(F) w
⊤s if and only if for all i = 1, . . . ,m,

s(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai).

Proof. We first prove (a). Let Bi = A1 ∪ · · · ∪ Ai, for i = 1, . . . ,m.
From the optimization problems defined in the proof of Prop. 3.2, let
λV = vm > 0, and λBi = vi − vi+1 > 0 for i < m, with all other λA’s,
A ⊆ V , equal to zero. Such λ is optimal because the dual function is
equal to the primal objective f(w).

Let s ∈ P (F). We have:

∑

A⊆V
λAF (A) = vmF (V) +

m−1∑

i=1

F (Bi)(vi − vi+1) by definition of λ,

= vm(F (V) − s(V)) +
m−1∑

i=1

[F (Bi) − s(Bi)](vi − vi+1)

+vms(V) +
m−1∑

i=1

s(Bi)(vi − vi+1)

> vms(V) +
m−1∑

i=1

s(Bi)(vi − vi+1) = s⊤w.

The last inequality is made possible by the conditions vm > 0 and
vi > vi+1. Thus s is optimal, if and only if the primal objective value
s⊤w is equal to the optimal dual objective value

∑
A⊆V λAF (A), and

thus, if and only if there is equality in all above inequalities, that is, if
and only if S(Bi) = F (Bi) for all i ∈ {1, . . . ,m}.

The proof for (b) follows the same arguments, except that we do
not need to ensure that s(V) = F (V), since vm = 0. Similarly, for (c),
where s(V) = F (V) is always satisfied for s ∈ B(F), hence we do not
need vm > 0.

Note that the previous may be rephrased as follows. An element
s ∈ R

p is a maximizer of the linear function w⊤s over these polyhedra
if and only if certain level sets of w are tight for s (all sup-level sets for
B(F), all the ones corresponding to positive values for P (F)).

Given w with constant sets A1, . . . , Am, then the greedy algorithm
may be run with d =

∏m
j=1 |Aj |! possible orderings, as the only con-

straint is that the elements of Aj are considered before the elements

34 Properties of Associated Polyhedra

of Aj+1 leaving |Aj |! possibilities within each set Aj , j ∈ {1, . . . ,m}.
This leads to as most as many extreme points (note that the corre-
sponding extreme points of B(F) may be equal). Since, by Prop. 3.3,
all extreme points of B(F) are obtained by the greedy algorithm, the
set of maximizers defined above is the convex hull of the d potential
bases defined by the greedy algorithm, i.e., these are extreme points of
the corresponding face of B(F) (see §4.2 for a detailed analysis of the
facial structure of B(F)).

4.2 Facial structure∗

In this section, we describe the facial structure of the base polyhedron.
We first review the relevant concepts for convex polytopes.

Face lattice of a convex polytope. We quickly review the main con-
cepts related to convex polytopes. For more details, see [86]. A convex
polytope is the convex hull of a finite number of points. It may be
also seen as the intersection of finitely many half-spaces (such intersec-
tions are referred to as polyhedra and are called polytopes if they are
bounded).

Faces of a polytope are sets of maximizers of w⊤s for certain
w ∈ R

p. Faces are convex sets whose affine hulls are intersections of
the hyperplanes defining the half-spaces from the intersection of half-
space representation. The dimension of a face is the dimension of its
affine hull. The (p−1)-dimensional faces are often referred to as facets,
while zero-dimensional faces are its vertices. A natural order may be
defined on the set of faces, namely the inclusion order between the sets
of hyperplanes defining the face. With this order, the set of faces is
a distributive lattice [58], with appropriate notions of “join” (unique
smallest face that contains the two faces) and “meet” (intersection of
the two faces).

Dual polytope. We now assume that we consider a polytope with
zero in its interior (this can be done by projecting it onto its affine hull
and translating it appropriately). The dual polytope of C is the polar

4.2. Facial structure∗ 35

s =F({3})
31s +s =F({1,3})

1s =F({1})
2s

1s

3s

2s =F({2})

32s +s =F({2,3})

21s +s =F({1,2})

3

w > w >w1 2

1w > w >w3 2

32w > w >w1

13w > w >w2

2w > w >w1 3

21w =w

w =w1 3
32w =w

12w > w >w3

(0,1,1)/F({2,3})

(0,0,1)/F({3})

(1,0,1)/F({1,3})

(1,0,0)/F({1})

(1,1,0)/F({1,2})

(0,1,0)/F({2})

3

Figure 4.1: (Top) representation of B(F) for F (A) = 1|A|∈{1,2} and p = 3 (pro-
jected onto the set s(V) = F (V)). (Bottom) associated dual polytope, which is the
1-sublevel set of f (projected on the hyperplane w⊤1V = 0).

set C◦ of the polytope C, defined as C◦ = {w ∈ R
p, ∀s ∈ C, s⊤w 6 1}

(see Appendix A for further details). It turns out that faces of C◦ are
in bijection with the faces of C, with vertices of C mapped to facets of
C◦ and vice-versa. If C is represented as the convex hull of points si,
i ∈ {1, . . . ,m}, then the polar of C is defined through the intersection
of the half-space {w ∈ R

p, s⊤
i w 6 1}, for i = 1, . . . ,m. Analyses

and algorithms related to polytopes may always be defined or looked
through their dual polytopes. In our situation, we will consider three
polytopes: (a) the base polyhedron, B(F), which is included in the
hyperplane {s ∈ R

p, s(V) = F (V)}, for which the dual polytope is
the set {w, f(w) 6 1, w⊤1V = 0} (see an example in Figure 4.1), (b)
the positive submodular polyhedron P+(F), and (c) the symmetric
submodular polytope |P |(F), whose dual polytope is the unit ball of
the norm Ω∞ defined in §5.2 (see Figure 4.2 for examples).

36 Properties of Associated Polyhedra

s +s =F({1,2})

2

1

s

s

2

1

21

s =F({1})

s =F({2})

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

Figure 4.2: (Left) symmetric submodular polyhedron |P |(F) with its facets.
(Right) dual polytope. As shown in §5.3, this will be the set of w ∈ R

p such that
f(|w|) 6 1.

Separable sets. In order to study the facial structure, the notion of
separable sets is needed; when a set is separable, then the submodular
function will decompose a the sum of two submodular functions defined
on disjoint subsets. Moreover, any subset A of V may be decomposed
uniquely as the disjoint union of inseparable subsets.

Definition 4.1. (Inseparable set) Let F be a submodular function
such that F (∅) = 0. A set A ⊆ V is said separable if and only there is
a set B ⊆ A, such that B 6= ∅, B 6= A and F (A) = F (B) + F (A\B).
If A is not separable, A is said inseparable.

Proposition 4.3. (Inseparable sets and function decomposition)

Assume V is a separable set for the submodular function F , i.e., such
that F (V) = F (A) +F (V \A) for a non-trivial subset A of V . Then for
all B ⊆ V , F (B) = F (B ∩A) + F (B ∩ (V \A)).

Proof. If s ∈ B(F), then we have F (A) > s(A) = s(V) − s(V \A) >

F (V)−F (V \A) = F (A). This implies that s(A) = F (A) and thus that
B(F) can be factorized as B(FA)×B(FA) where FA is the restriction of
F to A and FA the contraction of F on A (see definition and properties
in Appendix B). Indeed, if s ∈ B(F), then sA ∈ B(FA) because s(A) =
F (A), and sV \A ∈ B(FA), because for B ⊆ V \A, sV \A(B) = s(B) =
s(A∪B) − s(A) 6 F (A∪B) −F (A). Similarly, if s ∈ B(FA) ×B(FA),
then for all set B ⊆ V , s(B) = s(A∩B)+S((V \A)∩B) 6 F (A∩B)+
F (A ∪ B) − F (A) 6 F (B) by submodularity, and s(A) = F (A). This
shows that f(w) = fA(wA) + fA(wV \A).

4.2. Facial structure∗ 37

Given B ⊆ V , we apply the last statement to w = 1B and w =
1B∩(V \A), to get F (B) = F (A ∩ B) + F (A ∪ B) − F (A) and F (B ∩
(V \A)) = 0+F (A∪B)−F (A). We obtain the desired result by taking
the difference between the last two equalities.

Proposition 4.4. (Decomposition into inseparable sets) Let F be
a submodular function such that F (∅) = 0. V may be decomposed
uniquely as the disjoint union of non-empty inseparable subsets Ai,
i = 1, . . . ,m, such that for all B ⊆ V , F (B) =

∑m
i=1 F (Ai ∩B).

Proof. The existence of such a decomposition is straightforward while
the decomposition of F (B) may be obtained from recursive applications
of Prop. 4.3. Given two such decompositions V =

⋃m
i=1 Ai =

⋃s
j=1Bi

of V , then from Prop. 4.3, we have for all j, F (Bj) =
∑m
i=1 F (Ai ∩Bj),

which implies that the inseparable set Bj has to be exactly one of the
set Ai, i = 1, . . . ,m. This implies the unicity.

Note that by applying the previous proposition to the restriction of
F on any set A, any set A may be decomposed uniquely as the disjoint
union of inseparable sets.

Among the submodular functions we have considered so far, mod-
ular functions of course lead to the decomposition of V into a union of
singletons. Moreover, for a partition V = A1∪· · ·∪Am, and the function
that counts elements in a partitions, i.e., F (A) =

∑m
j=1 min{|A∩Gj |, 1},

the decomposition of V is, as expected, V = A1 ∪ · · · ∪Am.
Finally, the notion of inseparable sets allows to give a representation

of the submodular polyhedron P (F) as the intersection of a potentially
smaller number of half-hyperplanes.

Proposition 4.5. (Minimal representation of P (F)) If we denote
by K the set of inseparable subsets of V . Then, P (F) = {s ∈ R

p, ∀A ∈
K, s(A) 6 F (A)}.

Proof. Assume s ∈ {s ∈ R
p, ∀A ∈ K, s(A) 6 F (A)}, and let B ⊆ V ;

by Prop. 4.4, B can be decomposed into a disjoint union A1 ∪ · · · ∪Am
of inseparable sets. Then s(B) =

∑m
i=1 s(Ai) 6

∑m
i=1 F (Ai) = F (B),

hence s ∈ P (F). Note that a consequence of Prop. 4.7, will be that

38 Properties of Associated Polyhedra

this set K is the smallest set such that P (F) is the intersection of the
hyperplanes defined by A ∈ K.

Faces of the base polyhedron. Given the Prop. 4.2 that provides
the maximizers of maxs∈B(F) w

⊤s, we may now give necessary and
sufficient conditions for characterizing faces of the base polyhedron.
We first characterize when the base polyhedron B(F) has non-empty
interior within the subspace {s(V) = F (V)}.

Proposition 4.6. (Full-dimensional base polyhedron) Let F be a
submodular function such that F (∅) = 0. The base polyhedron has
non-empty interior in {s(V) = F (V)} if and only if V is inseparable.

Proof. If V is separable into A and V \A, then, by submodularity of F ,
for all s ∈ B(F), we have F (V) = s(V) = s(A) + s(V \A) 6 F (A) +
F (V \A) = F (V), which impies that s(A) = F (A) (and also F (V \A) =
s(V \A)). Therefore the base polyhedron is included in the intersection
of two distinct affine hyperplanes, i.e., B(F) does not have non-empty
interior in {s(V) = F (V)}.

To prove the opposite statement, we proceed by contradiction. Since
B(F) is defined through supporting hyperplanes, it has non-empty
interior in {s(V) = F (V)} if it is not contained in any of the sup-
porting hyperplanes. We thus now assume that B(F) is included in
{s(A) = F (A)}, for A a non-empty strict subset of V . Then, follow-
ing the same reasoning than in the proof of Prop. 4.3, B(F) can be
factorized as B(FA) × B(FA) where FA is the restriction of F to A

and FA the contraction of F on A (see definition and properties in
Appendix B).

This implies that f(w) = fA(wA) + fA(wV \A), which implies that
F (V) = F (A)+F (V \A), when applied to w = 1V \A, i.e., V is separable.

We can now detail the facial structure of the base polyhedron, which
will be dual to the one of the polyhedron defined by {w ∈ R

p, f(w) 6
1, w⊤1V = 0} (i.e., the sub-level set of the Lovász extension projected
on a subspace of dimension p − 1). As the base polyhedron B(F) is a
polytope in dimension p−1 (because it is bounded and contained in the

4.2. Facial structure∗ 39

affine hyperplane {s(V) = F (V)}), one can define its set of faces. As
described earlier, faces are the intersections of the polyhedron B(F)
with any of its supporting hyperplanes. Supporting hyperplanes are
themselves defined as the hyperplanes {s(A) = F (A)} for A ⊆ V .
From Prop. 4.2, faces are obtained as the intersection of B(F) with
s(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai) for a partition V = A1 ∪ · · · ∪Am.
Together with Prop. 4.6, we can now provide a characterization of the
faces of B(F). See more details on the facial structure of B(F) in [72].

Since the facial structure is invariant by translation, as done at the
end of §3.1, we may translate B(F) by a certain vector t ∈ B(F), so
that F may be taken to be non-negative and such that F (V) = 0,
which we now assume.

Proposition 4.7. (Faces of the base polyhedron) Let A1 ∪· · ·∪Am
be a partition of V , such that for all j ∈ {1, . . . ,m}, Aj is inseparable
for the function Gj : D 7→ F (A1 ∪ · · · ∪Aj−1 ∪D) −F (A1 ∪ · · · ∪Aj−1)
defined on subsets of Aj. The set of bases s ∈ B(F) such that for
all j ∈ {1, . . . ,m}, s(A1 ∪ · · · ∪ Ai) = F (A1 ∪ · · · ∪ Ai) is a face of
B(F) with non-empty interior in the intersection of the m hyperplanes
(i.e., the affine hull of the face is exactly the intersection of these m
hyperplanes). Moreover, all faces of B(F) may be obtained this way.

Proof. From Prop. 4.2, all faces may be obtained with supporting hy-
perplanes of the form s(A1∪· · ·∪Ai) = F (A1∪· · ·∪Ai), i = 1, . . . ,m, for
a certain partition V = A1 ∪· · ·∪Am. Hovever, among these partitions,
only some of them will lead to an affine hull of full dimension m. From
Prop. 4.6 applied to the submodular function Gj , this only happens if
Gj has no separable sets. Note that the corresponding face is then ex-
actly equal to the product of base polyhedra B(G1)×· · ·×B(Gm).

Note that in the previous proposition, several ordered partitions
may lead to the exact same face. The maximal number of full-
dimensional faces of B(F) is always less than 2p − 2 (number of non-
trivial subsets of V), but this number may be reduced in general (see
examples in Figure 3.4 for the cut function). Moreover, the number of
extreme points may also be large, e.g., p! for the submodular function
A 7→ −|A|2 (leading to the permutohedron [72]).

40 Properties of Associated Polyhedra

Dual polytope of B(F). We now assume that F (V) = 0, and that
for all non-trivial subsets A of V , F (A) > 0. This implies that V is
inseparable for F , and thus, by Prop. 4.6, that B(F) has non-empty
relative interior in {s(V) = 0}. We thus have a polytope with non-
empty interior in a space of dimension p − 1. We may compute the
support function of the polytope in this low-dimensional space. For
any w ∈ R

p such that w⊤1V = 0, then sups∈B(F) s
⊤w = f(w). Thus,

the dual polytope is the set of elements w such that w⊤1V = 0 and the
support function is less than one, i.e., U = {w ∈ R

p, f(w) 6 1, w⊤1V =
0}.

The faces of U are obtained from the faces of B(F) through the
relationship defined in Prop. 4.2: that is, given a face of B(F), and
all the partitions of Prop. 4.7 which lead to it, the corresponding face
of U is the closure of the union of all w that satisfies the level set
constraints imposed by the different ordered partitions. As shown in [8],
the different ordered partitions all share the same elements but with a
different order, thus inducing a set of partial constraints between the
ordering of the m values w is allowed to take.

An important aspect is that the separability criterion in Prop. 4.7
forbids some level sets from being characteristic of a face. For example,
for cuts in an undirected graph, we will show in §5.5 that all level
sets within a face must be connected components of the graph. When
the Lovász extension is used as a constraint for a smooth optimization
problem, the solution has to be in one of the faces. Moreover, within this
face, all other affine constraints are very unlikely to happen, unless the
smooth function has some specific directions of zero gradient (unlikely
with random data, for some sharper statements, see [8]). Thus, when
using the Lovász extension as a regularizer, only certain level sets are
likely to happen, and in the context of cut functions, only connected
sets are allowed, which is one of the justifications behind using the total
variation (see more details in §5.5).

4.3. Positive and symmetric submodular polyhedra∗ 41

4.3 Positive and symmetric submodular polyhedra∗

In this section, we extend the previous results to the positive and
symmetric submodular polyhedra, which were defined in §2.3 for non-
decreasing submodular functions. We start with a characterization of
such non-decreasing function through the inclusion of the base polyhe-
dron to the postive orthant.

Proposition 4.8. (Base polyhedron and polymatroids) Let F be
a submodular function such that F (∅) = 0. The function F is non-
decreasing, if and only if the base polyhedron is included in the positive
orthant R

p
+.

Proof. A simple proof uses the representation of the Lovász exten-
sion as the the support function of B(F). Indeed, from Prop. 3.2, we
get mins∈B(F) sk = − maxs∈B(F)(−1{k})⊤s = −f(−1{k}) = F (V) −
F (V \{k}). Thus, B(F) ⊆ R

p
+ if and only if for all k ∈ V , F (V) −

F (V \{k}) > 0. Since, by submodularity, for all A ⊆ V and k /∈ A,
F (A ∪ {k}) − F (A) > F (V) − F (V \{k}), B(F) ⊆ R

p
+ if and only if F

is non-decreasing.

We now assume that the function F is non-decreasing, and consider
the positive and symmetric submodular polyhedra P+(F) and |P |(F).
These two polyhedra are compact and are thus polytopes. Moreover,
|P |(F) is the unit ball of the dual norm Ω∗

∞ defined in §5.2. This poly-
tope is polar to the unit ball of Ω∞, and it it thus of interest to char-
acterize the facial structure of the symmetric submodular polyhedron1

|P |(F).
We first derive the same proposition than Prop. 4.2 for the positive

and symmetric submodular polyhedra. For w ∈ R
p, w+ denotes the

p-dimensional vector with components (wk)+ = max{wk, 0}, and |w|
denotes the p-dimensional vector with components |wk|.

Proposition 4.9. (Maximizers of the support function of posi-

tive submodular polyhedron) Let F be a non-decreasing submodu-

1The facial structure of the positive submodular polyhedron P+(F) will not be
covered in this monograph but results are similar to B(F). We will only provide
maximizers of linear functions in Prop. 4.9.

42 Properties of Associated Polyhedra

lar function such that F (∅) = 0. Let w ∈ R
p. Then maxs∈P+(F)w

⊤s =
f(w+). Moreover, if w has unique values v1 > · · · > vm, taken at sets
A1, . . . , Am. Then s is optimal for f(w+) = maxs∈P+(F) w

⊤s if and
only if (a) for all i ∈ {1, . . . ,m} such that vi > 0, s(A1 ∪ · · · ∪ Ai) =
F (A1 ∪ · · · ∪Ai), and (b) for all k ∈ V such that wk < 0, then sk = 0.

Proof. The proof follows the same arguments than for Prop. 4.2. Let d
be the largest integer such that vd > 0. We have, with Bi = A1∪· · ·∪Ai:

f(w+) = vdF (Bd) +
d−1∑

i=1

F (Bi)(vi − vi+1)

= vd(F (Bd) − s(Bd)) +
d−1∑

i=1

[F (Bi) − s(Bi)](vi − vi+1)

+vds(Bd) +
d−1∑

i=1

s(Bi)(vi − vi+1)

> vds(Bd) +
m−1∑

i=1

s(Bi)(vi − vi+1) = s⊤w+ > s⊤w.

We have equality if and only if the components of sk are zero as soon
as the corresponding component of wk is strictly negative (condition
(b)), and F (Bi) − s(Bi) = 0 for all i ∈ {1, . . . , d − 1} (condition (a)).
This proves the desired result.

Proposition 4.10. (Maximizers of the support function of sym-

metric submodular polyhedron) Let F be a non-decreasing sub-
modular function such that F (∅) = 0. Let w ∈ R

p, with unique
values for |w|, v1 > · · · > vm, taken at sets A1, . . . , Am. Then
maxs∈|P |(F)w

⊤s = f(|w|). Moreover s is optimal for maxs∈|P |(F)w
⊤s if

and only if for all i such that vi > 0 (i.e., for all i ∈ {1, . . . ,m} except
potentially the last one) |s|(A1 ∪ · · · ∪ Ai) = F (A1 ∪ · · · ∪ Ai), and w

and s have the same signs, i.e., for all k ∈ V , wksk > 0.

Proof. We have maxs∈|P |(F)w
⊤s = maxt∈P+(F)|w|⊤t, where a solution

s may be obtained from a solution t as long as |s| = t and w ◦ s > 0.
Thus, we may apply Prop. 4.9, by noticing that the condition (b) is not
applicable because |w| ∈ R

p
+. Note that the value of sk when wk = 0 is

irrelevant (as long as s ∈ B(F)).

4.3. Positive and symmetric submodular polyhedra∗ 43

Before describing the facial structure of |P |(F), we need the no-
tion of stable sets, which are sets which cannot be augmented without
strictly increasing the values of F .

Definition 4.2. (Stable sets) A set A ⊆ V is said stable for a sub-
modular function F , if A ⊆ B and A 6= B implies that F (A) < F (B).

We can now derive a characterization of the faces of |P |(F) (a
similar proposition holds for P+(F)).

Proposition 4.11. (Faces of the symmetric submodular polyhe-

dron) Let C be a stable set and let A1 ∪ · · · ∪ Am be a partition of
C, such that for all j ∈ {1, . . . ,m}, Aj is inseparable for the function
Gj : D 7→ F (A1 ∪ · · · ∪ Aj−1 ∪ D) − F (A1 ∪ · · · ∪ Aj−1) defined on
subsets of Aj , and ε ∈ {−1, 1}C . The set of s ∈ |P |(F) such that for
all j ∈ {1, . . . ,m}, (ε ◦ s)(A1 ∪ · · · ∪ Ai) = F (A1 ∪ · · · ∪ Ai) is a face
of |P |(F) with non-empty interior in the intersection of the m hyper-
planes. Moreover, all faces of |P |(F) may be obtained this way.

Proof. The proof follows the same structure than for Prop. 4.7, but by
applying Prop. 4.10 instead of Prop. 4.2. We consider w ∈ R

p, with
support C, which we decompose into C = A1 ∪ · · · ∪ Am following
the decreasing sequence of constant sets of |w|. Denote by ε the sign
vector of w. Following Prop. 4.10, the set of maximizers of s⊤w over
s ∈ |P |(F) are such that s ∈ |P |(F) and (s◦ε)(A1 ∪· · ·∪Am) = F (A1 ∪
· · · ∪Am). The set of maximizers in then isomorphic to the product of
all εGj ◦B(Gi) and |P |(FC) where FC : D 7→ F (C ∪D) − F (C) is the
contraction of F on C. The face has non-empty relative interior, if and
only if, (a) all εGj ◦B(Gi) have non relative empty-interior (hence the
condition of inseparability) and (b) |P |(FC) has non-empty interior.
Condition (b) above is equivalent to the function wC 7→ fC(|wV \C |)
being a norm. This is equivalent to fC(|wV \C |) = 0 ⇔ wV \C = 0.
Since f is non-decreasing with respect to each of its components, this
is equivalent to fC(1{k}) > 0 for all k ∈ V \C. Given the extension
property of fC , this in turn is equivalent to F (C∪{k})−F (C) > 0, for
all k ∈ V \C, i.e., since F is submodular, F (D) > F (C) for all subsets
D strictly containing C, i.e., C is stable. See also Prop. 5.2 for similar
arguments regarding norms.

44 Properties of Associated Polyhedra

The last proposition will have interesting consequences for the use
of submodular functions for defining sparsity-inducing norms in §5.3.
Indeed, the faces of the unit-ball of Ω∞ are dual to the ones of the dual
ball of Ω∗

∞ (which is exactly |P |(F)). As a consequence of Prop. 4.10,
the set C in Prop. 4.11 corresponds to the non-zero elements of w in a
face of the unit-ball of Ω∞. This implies that all faces of the unit ball
of Ω∞ will only impose non-zero patterns which are stable sets. See a
more precise statement in §5.2.

Stable inseparable sets. We end the description of the structure
of |P |(F) by noting that among the 2p − 1 constraints of the form
‖sA‖1 6 F (A) defining it, we may restrict the sets A to be stable and in-
separable. Indeed, if ‖sA‖1 6 F (A) for all stable and inseparable sets A,
then if a set B is not stable, then we may consider the smallest enclosing
stable set (these are stable by intersection, hence the possibility of defin-
ing such a smallest enclosing stable set) C, and we have ‖sB‖1 6 ‖sC‖1,
and F (B) = F (C), which implies ‖sB‖1 6 F (B). We thus need to show
that ‖sC‖1 6 F (C) only for stable sets C. If the set C is separable
into C = D1 ∪ · · · ∪Dm, where all Di, i = 1, . . . ,m are separable (from
Prop. 4.4), they must all be stable (otherwise C would not be), and thus
we have ‖sC‖1 = ‖sD1‖1+· · ·+‖sDm‖1 6 F (D1)+· · ·+F (Dm) = F (C).

For F (A) = |A|, then |P |(F) is the ℓ∞-ball, with all singletons
being the stable inseparable sets. For F (A) = min{|A|, 1} = 1|A|6=∅,
then |P |(F) is the ℓ1-ball and V is the only stable inseparable set. See
also Figure 5.2, and Figure 5.3 in §5.3.

5

Convex Relaxation of Submodular Penalties

In this chapter, we show how submodular functions and their Lovász
extensions are intimately related to various relaxations of combinatorial
optimization problems, or problems with a joint discrete and continuous
structure.

In particular, we present in §5.1 the theory of convex and concave
closures of set-functions: these can be defined for any set-functions
and allow convex reformulations of the minimization and maximiza-
tion of set-functions. It turns out that for submodular functions, the
convex closure is exactly the Lovász extension, which can be computed
in closed form, which is typically not the case for non-submodular set-
functions.

In §5.2, we introduce the concept of structured sparsity, which cor-
responds to situations where a vector w has to be estimated, typically
a signal or the linear representation of a prediction, and structural as-
sumptions are imposed on w. In §5.3 and §5.4, we consider imposing
that w has many zero components, but with the additional constraint
that some supports are favored. A submodular function will encode
that desired behavior. In §5.5, we consider a similar approach, but on
the level sets of w.

45

46 Convex Relaxation of Submodular Penalties

5.1 Convex and concave closures of set-functions

Given any set-function F : 2V → R such that F (∅) = 0, we may define
the convex closure of of F as the largest function f : Rp → R ∪ {+∞}
so that (a) f is convex and (b) for all A ⊆ V , f(1A) 6 F (A).

Computation by Fenchel bi-conjugation. In this section, given a non-
convex function g, we will consider several times the task of computing
its convex envelope f , i.e., its largest convex lower-bound. As explained
in Appendix A, a systematic way to obtain f is to compute the Fenchel
bi-conjugate.

We thus consider the function g so that g(1A) = F (A) for all A ⊆ V ,
and g(w) = +∞ for any other w which is not an indicator function of
a set A ⊆ V (i.e., w /∈ {0, 1}p). We have for s ∈ R

p:

g∗(s) = sup
w∈Rp

w⊤s− g(w) = sup
w=1A, A⊆V

w⊤s− g(w)

= max
A⊆V

s(A) − F (A),

leading to, for any w ∈ R
p,

f(w) = g∗∗(w) = sup
s∈Rp

w⊤s− g∗(s)

= sup
s∈Rp

{
min
A⊆V

FA) − s(A) + w⊤s
}

= sup
s∈Rp

min
λ>0,

∑
A⊆V

λA=1

∑

A⊆V
λA[F (A) − s(A)] + w⊤s

= min
λ>0,

∑
A⊆V

λA=1
sup
s∈Rp

∑

A⊆V
λA[F (A) − s(A)] + w⊤s

= min
λ>0,

∑
A⊆V

λA=1

∑

A⊆V
λAF (A) such that w =

∑

A⊆V
λA1A.

This implies that the domain of f is [0, 1]p (i.e., f(w) = +∞ for w /∈
[0, 1]p). Moreover, since the vectors 1A, for A ⊆ V are extreme points of
[0, 1]p, for any B ⊆ V , the only way to express 1B as a combination of
indicator vectors 1A is by having λB = 1 and all other values λA equal
to zero. Thus f(1B) = F (B). That is, the convex closure is always
tight at each 1A, and f is an extension of F from {0, 1}p to [0, 1]p. This
property is independent from submodularity.

5.2. Structured sparsity 47

Minimization of set-functions. We may relate the minimization of F
to the minimization of its convex closure:

min
A⊆V

F (A) = min
w∈{0,1}p

f(w)

> min
w∈[0,1]p

f(w)

= min
w∈[0,1]p

min
λ>0,

∑
A⊆V

λA=1

∑

A⊆V
λAF (A)

such that w =
∑

A⊆V
λA1A,

= min
w∈[0,1]p

min
λ>0,

∑
A⊆V

λA=1

∑

A⊆V
λAF (A)

> min
A⊆V

F (A),

which implies that minimizing the convex closure of F on [0, 1]p is
equivalent to minimizing F on 2V . See an illustration in Figure 5.1.

For submodular functions, it simply turns out that the convex clo-
sure is equal to the Lovász extension. Hence, it is computable in closed
form and amenable to optimization. This fact is in fact exactly shown
in the proof of Prop. 3.2.

Concave closure. The concave closure is defined in a similar way,
and can be seen to be the opposite of the convex closure of −F .
Note that it cannot be computed in general as this would mean that
there are polynomial-time algorithms for submodular function maxi-
mization [34]. However, following Prop. 2.6 and its discussion in §2.3,
one can always find “constant plus modular” upper-bounds which are
tight at any given vertex of the hypercube (but this cannot be done at
any interior point in general).

5.2 Structured sparsity

The concept of parsimony is central in many scientific domains. In the
context of statistics, signal processing or machine learning, it takes the
form of variable or feature selection problems.

In a supervised learning problem, we aim to predict n responses yi ∈
R, from n observations xi ∈ R

p, for i ∈ {1, . . . , n}. In this monograph,

48 Convex Relaxation of Submodular Penalties

(1,1)
1

w2(0,0)

(1,0)

(0,1)

w
(1,1)

1

w2(0,0)

(1,0)

(0,1)

w

Figure 5.1: Closures of set-functions: (left) convex closure, (right) concave clo-
sure. For a submodular function, the convex closure is the Lovász extension, which
happens to be positively homogeneous.

we focus on linear predictors of the form f(x) = w⊤x, where w ∈
R
p (for extensions to non-linear predictions, see [5, 6] and references

therein). We consider estimators obtained by the following regularized
empirical risk minimization formulation:

min
w∈Rp

1
n

n∑

i=1

ℓ(yi, w⊤xi) + λΩ(w), (5.1)

where ℓ(y, ŷ) is a loss between a prediction ŷ and the true response
y, and Ω is a regularizer (often a norm). Typically, the quadratic loss
ℓ(y, ŷ) = 1

2(y − ŷ)2 is used for regression problems and the logistic loss
ℓ(y, ŷ) = log(1 + exp(−yŷ)) is used for binary classification problems
where y ∈ {−1, 1} (see, e.g., [192] and [91] for more complete descrip-
tions of loss functions).

In order to promote sparsity, i.e., to have zeros in the components
of w, the ℓ1-norm is commonly used and, in a least-squares regression
framework is referred to as the Lasso [201] in statistics and as basis
pursuit [43] in signal processing.

Sparse models are commonly used in two situations: First, to make
the model or the prediction more interpretable or cheaper to use, i.e.,
even if the underlying problem might not admit sparse solutions, one
looks for the best sparse approximation. Second, sparsity can also be
used given prior knowledge that the model should be sparse. In these
two situations, reducing parsimony to finding models with low cardinal-
ity of their support turns out to be limiting, and structured parsimony
has emerged as a fruitful practical extension, with applications to im-

5.3. Convex relaxation of combinatorial penalty 49

age processing, text processing, bioinformatics or audio processing (see,
e.g., [213, 111, 103, 107, 119, 113, 142, 131], a review in [11, 12] and
Chapter 6 for various examples).

For vectors in w ∈ R
p, two main types of sparse structures have

emerged. The prior which is imposed on a vector w is that w should have
either many zeros or many components which are equal to each other.
In the former case, structured sparsity aims at enforcing or favoring
special sets of patterns of non-zeros, i.e., for the support set Supp(w) =
{w 6= 0} = {k ∈ V, wk 6= 0}. Favoring certain supports may be
achieved by adding a penalty to the optimization formulation (such
as empirical risk minimization), i.e., choosing for Ω(w) in Eq. (5.1),
a function of the support of w. In §5.3, we show how for submodular
functions, the resulting non-continuous problem may be relaxed into
a convex optimization problem involving the Lovász extension. In the
latter case, structured sparsity aims at enforcing or favoring special
sublevel sets {w > α} = {k ∈ V, wk > α} or constant sets {w =
α} = {k ∈ V, wk = α}, for certain α ∈ R. Again, specific level sets
may be obtained by adding a penalty that is a function of level sets.
Convex relaxation approaches are explored in §5.5, for non-negative
submodular functions such that F (V) = 0.

5.3 Convex relaxation of combinatorial penalty

Most of the work based on convex optimization and the design of ded-
icated sparsity-inducing norms has focused mainly on the specific al-
lowed set of sparsity patterns [213, 111, 107, 113]: if w ∈ R

p denotes the
predictor we aim to estimate, and Supp(w) denotes its support, then
these norms are designed so that penalizing with these norms only leads
to supports from a given family of allowed patterns. We can instead
follow the direct approach of [92, 103] and consider specific penalty
functions F (Supp(w)) of the support set Supp(w) = {j ∈ V, wj 6= 0},
which go beyond the cardinality function, but are not limited or de-
signed to only forbid certain sparsity patterns. As first shown in [7],
for non-decreasing submodular functions, these may also lead to re-
stricted sets of supports but their interpretation in terms of an explicit

50 Convex Relaxation of Submodular Penalties

penalty on the support leads to additional insights into the behavior of
structured sparsity-inducing norms.

We are thus interested in an optimization problem of the form

min
w∈Rp

1
n

n∑

i=1

ℓ(yi, w⊤xi) + F (Supp(w)).

While direct greedy approaches (i.e., forward selection) to the problem
are considered in [92, 103], submodular analysis may be brought to bear
to provide convex relaxations to the function w 7→ F (Supp(w)), which
extend the traditional link between the ℓ1-norm and the cardinality
function.

Proposition 5.1. (Convex relaxation of functions defined

through supports) Let F be a non-decreasing submodular function.
The function Ω∞ : w 7→ f(|w|) is the convex envelope (tightest convex
lower bound) of the function w 7→ F (Supp(w)) on the unit ℓ∞-ball
[−1, 1]p.

Proof. We use the notation |w| to denote the p-dimensional vector
composed of the absolute values of the components of w. We de-
note by g∗ the Fenchel conjugate (see definition in Appendix A) of
g : w 7→ F (Supp(w)) on the domain {w ∈ R

p, ‖w‖∞ 6 1} = [−1, 1]p,
and g∗∗ its bidual [30]. We only need to show that the Fenchel bidual
is equal to the function w 7→ f(|w|). In order to compute the Fenchel
duals, we are going to premultiply vectors w ∈ R

p by an indicator vec-
tor δ ∈ {0, 1}p so that if w has no zero components, then g(w ◦ δ) is
equal to F applied to the support of δ, i.e., since f is an extension of
F , equal to f(δ) (for vectors a, b ∈ R

p, we denote by a ◦ b the vector
obtained by elementwise multiplication of a and b).

By definition of the Fenchel conjugacy and of g, we have :

g∗(s) = sup
w∈[−1,1]p

w⊤s− g(w)

= max
δ∈{0,1}p

sup
w∈([−1,1]\{0})p

(δ ◦ w)⊤s− f(δ).

5.3. Convex relaxation of combinatorial penalty 51

Moreover, by using separability,

= max
δ∈{0,1}p

p∑

j=1

sup
wj∈[−1,1]\{0}

wjδjsj − f(δ)

= max
δ∈{0,1}p

δ⊤|s| − f(δ) by maximizing out w,

= max
δ∈[0,1]p

δ⊤|s| − f(δ) because of Prop. 3.7.

Note that the assumption of submodularity is key to applying Prop. 3.7
(i.e., equivalence between maximization on the vertices and on the full
hypercube).

Thus, for all w such that ‖w‖∞ 6 1,

g∗∗(w) = max
s∈Rp

s⊤w − g∗(s)

= max
s∈Rp

min
δ∈[0,1]p

s⊤w − δ⊤|s| + f(δ).

By strong convex duality (which applies because Slater’s condition [30]
is satisfied), we can invert the “min” and “max” operations and get:

g∗∗(w) = min
δ∈[0,1]p

max
s∈Rp

s⊤w − δ⊤|s| + f(δ)

= min
δ∈[0,1]p

max
s∈Rp

p∑

j=1

{
sjwj − δj |sj|

}
+ f(δ).

We can then maximize in closed form with respect to to each sj ∈ R

to obtain the extra constraint |wj | 6 δj , i.e.:

g∗∗(w) = min
δ∈[0,1]p, δ>|w|

f(δ).

Since F is assumed non-decreasing, the Lovász extension f is non-
decreasing with respect to each of its components, which implies that
minδ∈[0,1]p, δ>|w| f(δ) = f(|w|), which leads to the desired result. Note
that an alternative proof may be found in §5.4.

The previous proposition provides a relationship between combi-
natorial optimization problems—involving functions of the form w 7→
F (Supp(w))—and convex optimization problems involving the Lovász
extension. A desirable behavior of a convex relaxation is that some of

52 Convex Relaxation of Submodular Penalties

the properties of the original problem are preserved. In this monograph,
we will focus mostly on the allowed set of sparsity patterns (see below).
For more details about theroretical guarantees and applications of sub-
modular functions to structured sparsity, see [7, 8]. In Chapter 6, we
consider several examples of submodular functions and present when
appropriate how they translate to sparsity-inducing norms.

Lasso and group Lasso as special cases. For the cardinality function
F (A) = |A|, we have f(w) = w⊤1V and thus Ω∞(w) = ‖w‖1 and we
recover the ℓ1-norm, and the classical result that the ℓ1-norm ‖w‖1 is
the convex envelope of the ℓ0-pseudo-norm ‖w‖0 = |Supp(w)|.

For the function F (A) = min{|A|, 1}, then we have f(w) =
max{w1, . . . , wp} and thus Ω∞(w) = ‖w‖∞. This norm is not sparsity-
promoting and this is intuively natural since the set-function it corre-
sponds to is constant for all non-empty sets.

We now consider the set-function counting elements in a partitions,
i.e., we assume that V is partitioned into m sets G1, . . . , Gm, the func-
tion F that counts for a set A the number of elements in the partition
which intersects A may be written as F (A) =

∑m
j=1 min{|A ∩ Gj |, 1}

and the norm as Ω∞(w) =
∑m
j=1 ‖wGj ‖∞. This is the usual ℓ1/ℓ∞-

norm, a certain form of grouped penalty [165, 209]. It is known to
enforce sparsity at the group level, i.e., variables within a group are
selected or discarded simultaneously. This is intuitively natural (and
will be made more precise below) given the associated set-function,
which, once a variable in a group is selected, does not add extra cost
to selecting other variables from the same group.

Structured sparsity-inducing norms and dual balls. We now study
in more details the properties of the function Ω∞ : w 7→ f(|w|) defined
above through a relaxation argument. We first give conditions under
which it is a norm, and derive the dual norm.

Proposition 5.2. (Norm and dual norm) Let F be a submodular
function such that F (∅) = 0 and F is non-decreasing. The function
Ω∞ : w 7→ f(|w|) is a norm if and only if the values of F on all
singletons is strictly positive. Then, the dual norm is equal to Ω∗

∞(s) =

5.3. Convex relaxation of combinatorial penalty 53

maxA⊆V, A 6=∅

|s|(A)
F (A) = maxA⊆V, A 6=∅

‖sA‖1

F (A) .

Proof. If Ω∞ is a norm, then for all k ∈ V , F ({k}) = Ω∞(1{k}) > 0.
Let us now assume that all the values of F on all singletons is strictly
positive. The positive homogeneity of Ω∞ is a consequence of property
(e) of Prop. 3.1, while the triangle inequality is a consequence of the
convexity of f . Since F is non-decreasing, for all A ⊆ V such that
A 6= ∅, F (A) > mink∈V F ({k}) > 0. From property (b) of Prop. 3.1,
for any w ∈ R

p, if Ω∞(w) = 0, then for all z > 0, F ({|w| > z}) = 0,
which implies that {|w| > z} = ∅, i.e., w = 0. Thus Ω∞ is a norm.

We can compute the dual norm by noticing that for all w ∈ R
p,

Ω∞(w) = sup
s∈P (F)

s⊤|w| = sup
s∈|P |(F)

s⊤w.

This implies that the unit ball of dual norm is the symmetric submodu-
lar polyhedron. Since |P |(F) = {s ∈ R

p, ∀A ⊆ V, ‖sA‖1 6 F (A)}, this
implies that the dual norm is equal to Ω∗

∞(s) = maxA⊆V, A 6=∅

|s|(A)
F (A) =

maxA⊆V, A 6=∅

‖sA‖1

F (A) (see Appendix A for more details on polar sets and
dual norms).

The dual norm can be computed efficiently from a sequence of
submodular function minimizations (see §9.4). Moreover, it may be
written as Ω∗

∞(s) = maxw∈{−1,0,1}p
w⊤s

F (Supp(w)) . Thus, the dual ball
|P |(F) = {s ∈ R

p, Ω∗
∞(s) 6 1} is naturally characterized by half

planes of the form w⊤s 6 F (Supp(w)) for w ∈ {−1, 0, 1}p. Thus, the
unit ball of Ω∞ is the convex hull of the vectors 1

F (Supp(w))w for the
same vectors w ∈ {−1, 0, 1}p. See Figure 5.2 for examples for p = 2
and Figure 5.3 for examples with p = 3.

A particular feature of the unit ball of Ω∞ is that it has faces which
are composed of vectors with many zeros, leading to structured sparsity
and specific sets of zeros, as shown below. However, as can be seen in
Figures 5.2 and 5.3, there are additional extreme points and faces where
many of the components of |w| are equal (e.g., the corners of the ℓ∞-
ball). This is due to the fact that the Lovász extension is piecewise
linear with different linear parts when the orderings of components of
w are changing. In §5.4, we show how the extra clustering behavior
may be corrected by removing ℓ∞-effects, by the appropriate use of

54 Convex Relaxation of Submodular Penalties

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

s +s =F({1,2})

2

1

s

s

2

1

21

s =F({1})

s =F({2})

Figure 5.2: Polyhedral unit ball of Ω∞ (top) with the associated dual unit ball
(bottom), for 4 different submodular functions (two variables), with different sets of
extreme points; changing values of F may make some of the extreme points disappear
(see the notion of stable sets in §4.3). From left to right: F (A) = |A|1/2 (all possible
extreme points), F (A) = |A| (leading to the ℓ1-norm), F (A) = min{|A|, 1} (leading
to the ℓ∞-norm), F (A) = 1

2
1{A∩{2}6=∅} + 1{A6=∅} (leading to the structured norm

Ω∞(w) = 1
2
|w2| + ‖w‖∞). Extreme points of the primal balls correspond to full-

dimensional faces of the dual ball, and vice-versa.

ℓq-norms q ∈ (1,∞). In §5.5 however, we show how this clustering
sparsity-inducing effect may be used to design regularization terms that
enforces specific level sets for a vector w.

Sparsity-inducing properties. We now study and characterize which
supports can be obtained when regularizing with the norm Ω∞. Ideally,
we would like the same behavior than w 7→ F (Supp(w)), that is, when
this function is used to regularize a continuous objective function, then
a stable set is always a solution of the problem, as augmenting unstable
sets does not increase the value of F , but can only increase the minimal
value of the continuous objective function because of an extra variable
to optimize upon. It turns out that the same property holds for Ω∞ for
certain optimization problems.

Proposition 5.3. (Stable sparsity patterns) Assume F is submod-
ular and non-decreasing. Assume y ∈ R

n has an absolutely continuous

5.3. Convex relaxation of combinatorial penalty 55

w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω∞(w) = ‖w‖∞

F (A) = |A|1/2

all possible extreme
points

F (A) = 1{A∩{3}6=∅} + 1{A∩{1,2}6=∅}

Ω∞(w) = |w13 + ‖w{1,2}‖∞

F (A) = 1{A∩{1,2,3}6=∅}

+1{A∩{2,3}6=∅} + 1{A∩{2}6=∅}

Ω∞(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w2|

Figure 5.3: Unit balls for structured sparsity-inducing norms, with the correspond-
ing submodular functions and the associated norm.

56 Convex Relaxation of Submodular Penalties

density with respect to the Lebesgue measure and that X⊤X ∈ R
p×p

is invertible. Then the minimizer ŵ of 1
2n‖y−Xw‖2

2 + Ω∞(w) is unique
and, with probability one, its support Supp(ŵ) is a stable set.

Proof. We provide a proof that use Prop. 4.10 that characterizes max-
imizers of s⊤w over s ∈ |P |(F). For an alternative proof based on
convex duality, see [7]. Following the proof of Prop. 4.11, any w ∈ R

p,
with support C, can be decomposed into C = A1 ∪ · · · ∪Am following
the strictly decreasing sequence of constant sets of |w|. Denote by ε the
sign vector of w. Given w, the support C, the constant sets Ai, and the
sign vector are uniquely defined.

The optimality condition for our optimization problem is the ex-
istence of s ∈ |P |(F) such that 1

nX
⊤Xw − 1

nX
⊤y + s = 0 and s is

a maximizer of s⊤w over s ∈ |P |(F). Thus, if the unique solution w

has support C, and ordered constant sets (Ai)i=1,...,m and sign vec-
tor ε, then, from Prop. 4.10, there exists v1 > · · · > vm, such that
w =

∑m
i=1 vi1Ai , and

1
n
X⊤Xw − 1

n
X⊤y + s = 0

∀i ∈ {1, . . . ,m}, (ε ◦ s)(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai).

Without loss of generality, we assume that εC > 0. Denoting by X̃ the
matrix in R

n×m with columns X1Ai , then we have X̃⊤X̃v − X̃⊤y +
n∆ = 0, where ∆j = F (A1 ∪ · · · ∪Aj) − F (A1 ∪ · · · ∪Aj−1), and thus
v = (X̃⊤X̃)−1X̃⊤y − n(X̃⊤X̃)−1∆. For any k ∈ V \C, we have

sk =
1
n
X⊤
k y − 1

n
X⊤
k X̃v

=
1
n
X⊤
k y − 1

n
X⊤
k X̃(X̃⊤X̃)−1X̃⊤y +X⊤

k X̃(X̃⊤X̃)−1∆.

For any k ∈ V \C, since X has full column-rank, the vector Xk −
X̃(X̃⊤X̃)−1X̃⊤Xk is not equal to zero (as this is the orthogonal pro-
jection of the column Xk on the orthogonal of the columns of X̃). If we
further assume that C is not stable, following the same reasoning than
for the proof of Prop. 4.11, there exists k such that sk = 0. This implies
that there exists a non zero vector c and a real number d, chosen from
a finite set, such that c⊤y = d. Thus, since y ∈ R

n has an absolutely

5.4. ℓq-relaxations of submodular penalties∗ 57

continuous density with respect to the Lebesgue measure, the support
of w is not stable with probability zero.

For simplicity, we have assumed invertibility of X⊤X, which forbids
the high-dimensional situation p > n, but we could extend to the type
of assumptions used in [111] or to more general smooth losses. The last
proposition shows that we get almost surely stable sparsity patterns;
in [7], in context where the data y are generated as sparse linear combi-
nations of columns of X with additional noise, sufficient conditions for
the recovery of the support are derived, potentially in high-dimensional
settings where p is larger than n, extending the classical results for the
Lasso [214, 164], and the group Lasso [165].

Optimization for regularized risk minimization. Given the represen-
tation of Ω∞ as the maximum of linear functions from Prop. 3.5, i.e.,
Ω∞(w) = maxs∈|P |(F)w

⊤s, we can easily obtain a subgradient of Ω∞
as any maximizer s, thus allowing the use of subgradient descent tech-
niques (see §7.2). However, these methods typically require many iter-
ations, with a convergence rate of O(t−1/2) after t iterations1. Given
the structure of our norms, more efficient methods are available: we
describe in §7.9 proximal methods, which generalizes soft-thresholding
algorithms for the ℓ1-norm and grouped ℓ1-norm, and can use efficiently
the combinatorial structure of the norms, with convergence rates of the
form O(t−2).

5.4 ℓq-relaxations of submodular penalties∗

As can be seen in Figure 5.2 and Figure 5.3, there are some extra
effects due to additional extreme points away from sparsity-inducing
corners. Another illustration of the same issue may be obtained for
F (A) =

∑m
i=1 min{|Ai|, 1}, which leads to the so-called ℓ1/ℓ∞-norm,

which may have some undesired effects when used as a regularizer [165].
In this section, our goal is to design a convex relaxation framework so

1By convergence rate, we mean the function values after t iterations minus the
optimal value of the minimization problem.

58 Convex Relaxation of Submodular Penalties

that the corresponding norm for the example above is the ℓ1/ℓq-norm,
for q ∈ (1,∞).

We thus consider q ∈ (1,+∞) and r ∈ (1,+∞) such that 1/q +
1/r = 1. It is well known that the ℓq-norm and the ℓr-norm are dual
to each other. In this section, we assume that F is a non-decreasing
function such that F ({k}) > 0 for all k ∈ V (not always necessarily
submodular).

Following [175], we consider a function g : Rp → R that penalizes
both supports and ℓq-norm on the supports, i.e.,

g(w) =
1
q

‖w‖qq +
1
r
F (Supp(w)).

Note that when q tends to infinity, this function tends to F (Supp(w))
restricted to the ℓ∞-ball (i.e., equal to +∞ outside of the ℓ∞-ball),
whose convex envelope is Ω∞. The next proposition applies to all q ∈
(1,+∞) and even when F is not submodular.

Proposition 5.4. (convex relaxation of ℓq-norm based penalty)

Let F be a non-decreasing function such that F ({k}) > 0 for all k ∈ V .
The tightest convex homogeneous lower-bound of g : w 7→ 1

q‖w‖qq +
1
pF (Supp(w)) is a norm, denoted Ωq, such that its dual norm is equal
to, for s ∈ R

p,

Ω∗
q(s) = sup

A⊆V, A 6=∅

‖sA‖r
F (A)1/r

. (5.2)

Proof. We first show that Ω∗
q defined in Eq. (5.2) is a norm. It is imme-

diately finite, positively homogeneous and convex; if Ω∗(s) = 0, then
‖sV ‖r = 0, and thus s = 0; thus Ω∗

q is a norm. We denote by Ωq its
dual norm.

In order to find the tightest convex homogeneous lower bound of
a convex function g, it suffices to (a) first compute the homogeneized
version of g, i.e., h defined as h(w) = infλ>0

g(λw)
λ , and (b) compute its

Fenchel bi-dual [185]. In this particular case, we have, for w ∈ R
p:

h(w) = inf
λ>0

1
q

‖w‖qqλq−1 +
1
r
F (Supp(w))λ−1.

Minimizing with respect to λ may be done by setting to zero the
derivative of this convex function of λ, leading to 1

q‖w‖qq(q − 1)λq−2 −

5.4. ℓq-relaxations of submodular penalties∗ 59

1
rF (Supp(w))λ−2 = 0, i.e., λ =

(1
r
F (Supp(w))

1
q

‖w‖q
q(q−1)

)1/q, and an optimal value

of

h(w) = ‖w‖qF (Supp(w))1/r .

We then have, for s ∈ R
p,

h∗(s) = sup
w∈Rp

s⊤w − ‖w‖qF (Supp(w))1/r

= max
A⊆V

sup
w∈Rp, Supp(w)=A

s⊤w − ‖w‖qF (A)1/r

= max
A⊆V

{
0 if ‖sA‖rr 6 F (A),
+∞ otherwise.

Thus h∗(s) = 0 if Ω∗
q(s) 6 1 and +∞ otherwise. Thus the Fenchel-

conjugate of h is the indicator function of the ball of the norm Ω∗
q

(which is a norm as shown above); this implies that h = Ωq (and hence
it is a norm).

Note that for a submodular function, as detailed at the end of §4.3,
only stable inseparable sets may be kept in the definition of Ω∗

q in
Eq. (5.2). Moreover, by taking a limit when q tends to +∞, we recover
the norm Ω∞ from §5.3.

While the convex relaxation is defined through its dual norm, we
can give a variational primal formulation for submodular functions.
It corresponds to usual reweighted squared-ℓ2 formulations for certain
norms referred to as subquadratic [11], a classical example being the
ℓ1-norm equal to ‖w‖1 = infη>0

1
2

∑
k∈V

|wk|2
ηk

+ 1
2η

⊤1V . These represen-
tations may be used within alternative optimization frameworks (for
more details, see [11] and references therein).

Proposition 5.5. (variational formulation of Ωq) Let F be a non-
decreasing submodular function such that F ({k}) > 0 for all k ∈ V .
The norm defined in Prop. 5.4 satisfies for w ∈ R

p,

Ω∗
q(w) = inf

η>0

1
q

∑

k∈V

|wk|q

ηq−1
k

+
1
r
f(η), (5.3)

using the usual convention that that |wk|q
ηq−1

k

is equal to zero as soon as

wk = 0, and equal to +∞ if wk 6= 0 and ηk = 0.

60 Convex Relaxation of Submodular Penalties

(1,1)/ 2F({1,2})(0,1)/ F({2})

(1,0)/ F({1})

1

s

s

2

1s =F({1})

s =F({2})

21s +s =F({1,2})

2
2 2

Figure 5.4: Polyhedral unit ball of Ω2 (top) with the associated dual unit ball
(bottom), for 4 different submodular functions (two variables), with different sets of
extreme points; changing values of F may make some of the extreme points disappear
(see the notion of stable sets in §4.3). From left to right: F (A) = |A|1/2 (all possible
extreme points), F (A) = |A| (leading to the ℓ1-norm), F (A) = min{|A|, 1} (leading
to the ℓ2-norm), F (A) = 1

2
1{A∩{2}6=∅} + 1{A6=∅}.

Proof. We have, for any w ∈ R
p, by definition of dual norms:

Ωq(w) = sup
s∈Rp

w⊤s such that ∀A ⊆ V, ‖sA‖rr 6 F (A)

= sup
s∈R

p
+

|w|⊤s such that ∀A ⊆ V, ‖sA‖rr 6 F (A)

= sup
t∈R

p
+

∑

k∈V
|wk|t1/rk such that ∀A ⊆ V, t(A) 6 F (A)

= sup
t∈P+(F)

∑

k∈V
|wk|t1/rk ,

using the change of variable tk = srk, k ∈ V . We can now use the

identity |wk|t1/rk = infηk>0
ηktk
r + |wk|q

qηq−1
k

(with solution ηk = |wk|t−1/q
k),

to get Ωq(w) = sup
t∈P+(F)

inf
η>0

∑

k∈V

{
ηktk
r

+
|wk|q
qηq−1
k

}
, which is equal to

infη>0
1
q

∑
k∈V

|wk|q
ηq−1

k

+ 1
rf(η) using Prop. 3.2.

Note that a similar result holds for any set-function for an appro-
priately defined function f . However, such f cannot be computed in
closed form in general (see [175] for more details).

5.4. ℓq-relaxations of submodular penalties∗ 61

In §12.4, we provide simulation experiments to show benefits of ℓ2-
relaxations over ℓ∞-relaxations, when the extra clustering behavior is
not desired.

Lasso and group Lasso as special cases. For the cardinality function
F (A) = |A|, we have Ω∗

q(s) = ‖s‖∞ and thus Ωq(w) = ‖w‖1, for all
values of q, and we recover the ℓ1-norm. This shows an interesting result
that the ℓ1-norm is the homogeneous convex envelope of the sum of the
ℓ0-pseudo-norm ‖w‖0 = |Supp(w)| and an ℓq-norm, i.e., it has a joint
effect of sparsity-promotion and regularization.

For the function F (A) = min{|A|, 1}, then we have f(w) =
max{w1, . . . , wp} and thus Ωq(w) = ‖w‖q . For q > 1, this norm is not
sparsity-promoting and this is intuively natural since the set-function
it corresponds to is constant for all non-empty sets.

We now consider the set-function counting elements in a partitions,
i.e., we assume that V is partitioned into m sets G1, . . . , Gm, the func-
tion F that counts for a set A the number of elements in the partition
which intersects A may be written as F (A) =

∑m
j=1 min{|A ∩ Gj |, 1}

and the norm as Ωq(w) =
∑m
j=1 ‖wGj ‖q, which was our original goal.

Latent formulations and primal unit balls. The dual norm Ω∗
q(s)

is a maximum of the 2p − 1 functions gA(s) = F (A)−1/r‖sA‖r =
maxw∈KA

w⊤s, for A a non-empty subset of V , where KA = {w ∈
R
p, ‖w‖qF (A)1/r 6 1, Supp(w) ⊆ A

}
is an ℓq-ball restricted to the

support A.
This implies that

Ω∗
q(s) = max

w∈
⋃

A⊆V
KA

w⊤s.

This in turn implies that the unit ball of Ωq is the convex hull of the
union of all sets KA. This provides an additional way of constructing
the unit primal balls. See illustrations in Figure 5.4 for p = 2 and q = 2,
and in Figure 5.5 for p = 3 and q = 2.

Moreover, we have, for any w ∈ R
p, Ωq(w) 6 1 if and only if w may

be decomposed as
w =

∑

A⊆V
λAv

A,

62 Convex Relaxation of Submodular Penalties

where Supp(vA) = A and ‖vA‖qF (A)1/r 6 1. This implies that

Ωq(w) = min
w=
∑

A⊆V
vA, Supp(vA)⊆A

∑

A⊆V
F (A)1/r‖vA‖q,

i.e., we have a general instance of a latent group Lasso (for more details,
see [107, 175]).

Sparsity-inducing properties. As seen above, the unit ball of Ωq may
be seen as a convex hull of ℓq-balls restricted to any possible supports.
Some of this supports will lead to singularities, some will not. While
formal statements like Prop. 5.3 could be made (see, e.g., [111, 175]),
we only give here informal arguments justifying why the only stable
supports corresponds to stable sets, with no other singularities (in par-
ticular, there are no extra clustering effects).

Consider q ∈ (1,∞) and w ∈ R
p, with support C. We study the set

of maximizers of s⊤w such that Ω∗
q(s) 6 1: s may be obtained by max-

imizing
∑
k∈V |wk|t1/rk with respect to t ∈ P+(f) and choosing sk such

that skwk > 0 and |sk| = t
1/r
k . Since

∑
k∈V |wk|t1/rk =

∑
k∈C |wk|t1/rk ,

tV \C is not appearing in the objective function, and this objective func-
tion is strictly increasing with respect to each tk; thus, solutions t must
satisfy tC ∈ B(FC)∩R

C
+ and tV \C ∈ P+(FC), where FC and FC are the

restriction and contraction of F on C. Moreover, tC is the maximizer
of a strictly convex function (when r > 1), and hence is unique. The
discussion above may be summarized as follows: the maximizers s are
uniquely defined on the support C, while they are equal (up to their
signs) to component-wise powers of elements of P+(FC). This implies
that (a) Ωq is differentiable at any w with no zero components (i.e.,
lack of singularities away from zeros), and that (b), with arguments
similar than in the proof of Prop. 5.3, stable sets are the only patterns
that can be attained (requiring however the use of the implicit function
theorem, like in [111]).

Computation of norm and optimization. While Ω∞ may be com-
puted in closed form, this is not the case for q < +∞. In §9.4, we
present a divide-and-conquer algorithms for computing Ωq. We also

5.5. Shaping level sets∗ 63

F (A) = 1{A∩{3}6=∅} + 1{A∩{1,2}6=∅}

Ω2(w) = |w3| + ‖w{1,2}‖2

F (A) = |A|1/2

all possible extreme points

F (A) = 1{A∩{1,2,3}6=∅}

+1{A∩{2,3}6=∅} + 1{A∩{2}6=∅}

Figure 5.5: Unit balls for structured sparsity-inducing norms, with the correspond-
ing submodular functions and the associated norm, for ℓ2-relaxations. For each ex-
ample, we plot on the left side the sets KA defined in §5.4 as well as the convex
hulls of their unions in green (on the right side).

show in that section, how the proximal operator may be computed
from a sequence of submodular function minimizations, thus allowing
the use of proximal methods presented in Chapter 8.

5.5 Shaping level sets∗

For a non-decreasing submodular function F , we have defined in §5.3 a
norm Ω∞(w) = f(|w|), that essentially allows the definition of a prior
knowledge on supports of predictors w. Since this norm was creating
extra-behavior (i.e., clustering of the components of |w|), we designed a
new norm in §5.4 which does not have these problems. In this section,
we take the opposite approach and leverage the fact that when using
the Lovász extension as a regularizer, then some of the components
of w will be equal.

64 Convex Relaxation of Submodular Penalties

We now consider a submodular function F such that F (∅) =
F (V) = 0. This includes (a) cuts in graphs and (b) functions of the
cardinality A 7→ h(|A|) for h concave such that h(0) = h(p) = 0. We
now show that using the Lovász extension as a regularizer corresponds
to a convex relaxation of a function of all level sets of w. Note that from
property (d) of Prop. 3.1, f(w+α1V) = f(w), and it is thus natural to
consider in the next proposition a convex set invariant by translation
by constants times 1V .

Proposition 5.6. (Convex envelope for level sets) The Lovász
extension f(w) is the convex envelope of the function w 7→
maxα∈R F ({w > α}) on the set [0, 1]p +R1V = {w ∈ R

p, maxk∈V wk −
mink∈V wk 6 1}.

Proof. For any w ∈ R
p, level sets of w are characterized by a partition

(A1, . . . , Am) of V so that w is constant on each Aj , with value vj , j =
1, . . . ,m, and so that (vj) is a strictly decreasing sequence. We can now
decompose the minimization with respect to w using these partitions
(Aj) and the values (tj). The level sets of w are then A1 ∪ · · · ∪ Aj ,
j ∈ {1, . . . ,m}.

In order to compute the convex envelope, as already done in the
proofs of Prop. 5.1 and Prop. 5.4, we simply need to compute twice the
Fenchel conjugate of the function we want to find the envelope of.

Let s ∈ R
p; we consider the function g : w 7→ maxα∈R F ({w > α}),

and we compute its Fenchel conjugate on [0, 1]p + R1V :

g∗(s) = max
w∈[0,1]p+R1V

w⊤s− g(w),

= max
(A1,...,Am) partition

{
max

t1>···>tm, t1−tm61

m∑

j=1

tjs(Aj)

− max
j∈{1,...,m}

F (A1 ∪ · · · ∪Aj)
}
.

5.5. Shaping level sets∗ 65

By integration by parts, g∗(s) is then equal to

= max
(A1,...,Am) partition

{
max

t1>···>tm, t1−tm61

m−1∑

j=1

(tj − tj+1)s(A1 ∪ · · · ∪Aj)

+tms(V) − max
j∈{1,...,m}

F (A1 ∪ · · · ∪Aj)
}

= Is(V)=0(s) + max
(A1,...,Am) partition

{
max

j∈{1,...,m−1}
s(A1 ∪ · · · ∪Aj)

− max
j∈{1,...,m}

F (A1 ∪ · · · ∪Aj)
}
,

= Is(V)=0(s) + max
(A1,...,Am) partition

{
max

j∈{1,...,m−1}
s(A1 ∪ · · · ∪Aj)

− max
j∈{1,...,m−1}

F (A1 ∪ · · · ∪Aj)
}
,

where Is(V)=0 is the indicator function of the set {s(V) = 0}
(with values 0 or +∞). Note that maxj∈{1,...,m} F (A1 ∪ · · · ∪ Aj) =
maxj∈{1,...,m−1} F (A1 ∪ · · · ∪Aj) because F (V) = 0.

Let h(s) = Is(V)=0(s) + maxA⊆V {s(A) − F (A)}. We clearly
have g∗(s) > h(s), because we take a maximum over a larger
set (consider m = 2 and the partition (A,V \A)). Moreover, for
all partitions (A1, . . . , Am), if s(V) = 0, maxj∈{1,...,m−1} s(A1 ∪
· · · ∪ Aj) 6 maxj∈{1,...,m−1}

{
h(s) + F (A1 ∪ · · · ∪ Aj)

}
= h(s) +

maxj∈{1,...,m−1} F (A1 ∪· · ·∪Aj), which implies that g∗(s) 6 h(s). Thus
g∗(s) = h(s).

Moreover, we have, since f is invariant by adding constants (prop-
erty (d) of Prop. 3.1) and f is submodular,

max
w∈[0,1]p+R1V

w⊤s− f(w) = Is(V)=0(s) + max
w∈[0,1]p

{w⊤s− f(w)}

= Is(V)=0(s) + max
A⊆V

{s(A) − F (A)} = h(s),

where we have used the fact that minimizing a submodular function is
equivalent to minimizing its Lovász extension on the unit hypercube.
Thus f and g have the same Fenchel conjugates. The result follows from
the convexity of f , using the fact the convex envelope is the Fenchel
bi-conjugate [30, 28].

66 Convex Relaxation of Submodular Penalties

Alternatively, to end the proof, we could have computed

max
s(V)=0

w⊤s− max
A⊆V

{s(A) − F (A)} = max
s(V)=0

w⊤s− min
v∈[0,1]p

{s⊤v − f(v)}

= min
v∈[0,1]p, v=w+α1V

f(v) = f(w).

Thus, when using the Lovász extension directly for symmetric sub-
modular functions, then the effect is on all sub-level sets {w 6 α} and
not only on the support {w 6= 0}.

Sparsity-inducing properties. While the facial structure of the sym-
metric submodular polyhedron |P |(F) was key to analyzing the regu-
larization properties for shaping supports, the base polyhedron B(F)
is the proper polyhedron to consider.

From now on, we assume that the set-function F is submodular,
has strictly non-negative values for all non trivial subsets of V . Then,
the set U = {w ∈ R

p, f(w) 6 1, w⊤1p = 0} is a polytope dual to the
base polyhedron. A face of the base polyhedron (and hence, by convex
strong duality), a face of the polytope U , is characterized by a partition
of V defined by disjoint sets A1, . . . , Am. These corresponds to faces of
U such that w is constant on each set Ai, and the corresponding values
are ordered. From Prop. 4.7, the face has non-empty interior only if
Aj is inseparable for the function Gj : B 7→ F (A1 ∪ · · · ∪ Aj−1 ∪ B) −
F (A1 ∪ · · · ∪Aj−1) defined on subsets of Aj . This property alone shows
that some arrangements of level sets cannot be attained robustly, which
leads to interesting behaviors, as we now show for two examples.

Cuts. When F is the cut in an undirected graph, then a necessary
condition for Aj to be inseparable for the function Gj : D 7→ F (A1 ∪
· · ·∪Aj−1∪D)−F (A1∪· · ·∪Aj−1) defined on subsets of Aj, is that Aj is
a connected set in the original graph2. Thus, the regularization by the
Lovász extension (often referred to as the total variation) only allows

2Since cuts are second-order polynomial functions of indicator vectors, contrac-
tions are also of this form, and the quadratic part is the same than for the cut in
the corresponding subgraph.

5.5. Shaping level sets∗ 67

constant sets which are connected in the graph, which is the traditional
reason behind using such penalties. In §6.2, we also consider the cases
of directed graphs, leading to isotonic regression problems.

Cardinality-based functions. As will be shown in §6.1, concave func-
tions of the cardinality are submodular. Thus, if h : [0, p] → R is
concave and such that h(0) = h(p) = 0, then F : A 7→ h(|A|) has
levet-set shaping properties. Since F only depends on the cardinality,
and is thus invariant by reordering of the variables, the only potential
constraints is on the size of level sets.

The Lovász extension depends on the order statistics of w, i.e., if
wj1 > · · · > wjp , then f(w) =

∑p−1
k=1 h(k)(wjk

− wjk+1
). While these

examples do not provide significantly different behaviors for the non-
decreasing submodular functions explored by [7] (i.e., in terms of sup-

port), they lead to interesting behaviors here in terms of level sets, i.e.,
they will make the components w cluster together in specific ways (by
constraining the sizes of the clusters). Indeed, allowed constant sets A
are such that A is inseparable for the function C 7→ h(|B∪C|)−h(|B|)
(where B ⊆ V is the set of components with higher values than the
ones in A). As can be shown from a simple convexity argument, this
imposes that the concave function h is not linear on [|B|, |B|+|A|]. We
consider the following examples; in Figure 5.6, we show regularization
paths, i.e., the set of minimizers of w 7→ 1

2‖w − z‖2
2 + λf(w) when λ

varies.

– F (A) = |A| · |V \A|, leading to f(w) =
∑p
i,j=1 |wi−wj|. This function

can thus be also seen as the cut in the fully connected graph. All
patterns of level sets are allowed as the function h is strongly concave
(see left plot of Figure 5.6). This function has been extended in [134,
99] by considering situations where each wj is a vector, instead of
a scalar, and replacing the absolute value |wi − wj | by any norm
‖wi − wj‖, leading to convex formulations for clustering.

– F (A) = 1 if A 6= ∅ and A 6= V , and 0 otherwise, leading to f(w) =
maxi,j |wi − wj|. Here, the function h is linear between 1 and p,
and thus between the level sets with smallest and largest values, no

68 Convex Relaxation of Submodular Penalties

0 0.01 0.02 0.03
−10

−5

0

5

10

w
ei

gh
ts

λ
0 1 2 3

−10

−5

0

5

10

w
ei

gh
ts

λ
0 0.2 0.4

−10

−5

0

5

10

w
ei

gh
ts

λ

Figure 5.6: Piecewise linear regularization paths of the minimization of w 7→ 1
2
‖w−

z‖2
2 + λf(w), for different functions of cardinality. From left to right: quadratic

function (all level sets allowed), second example in §6.1 (two large level sets at
the top and bottom), piecewise linear with two pieces (a single large level set in
the middle). Note that in all these particular cases the regularization paths for
orthogonal designs are agglomerative, while for general designs, they would still be
piecewise affine but not agglomerative. For more details, see [8].

constant sets are allowed; hence, there are two large level sets at
the top and bottom, all the rest of the variables are in-between and
separated (Figure 5.6, middle plot).

– F (A) = max{|A|, |V \A|}. This function is piecewise affine, with only
one kink, thus only one level set of cardinality greater than one
(in the middle) is possible, which is observed in Figure 5.6 (right
plot). This may have applications to multivariate outlier detection
by considering extensions similar to [99].

6

Examples and Applications of Submodularity

We now present classical examples of submodular functions. For each of
these, we also describe the corresponding Lovász extensions, and, when
appropriate, the associated submodular polyhedra. We also present ap-
plications to machine learning, either through formulations as combina-
torial optimization problems of through the regularization properties of
the Lovász extension—in Chapter 5, we have defined several sparsity-
inducing norms based on the Lovász extension, namely Ω∞ and Ωq, for
q ∈ (1,+∞). We are by no means exhaustive and other applications
may be found in facility location [50, 51, 1], game theory [66], document
summarization [132], social networks [118], or clustering [159].

Note that in Appendix B, we present several operations that pre-
serve submodularity (such as symmetrization and partial minimiza-
tion), which can be applied to any of the functions presented in this
chapter, thus defining new functions.

6.1 Cardinality-based functions

We consider functions that depend only on s(A) for a certain s ∈ R
p
+.

If s = 1V , these are functions of the cardinality. The next proposi-

69

70 Examples and Applications of Submodularity

tion shows that only concave functions lead to submodular functions,
which is consistent with the diminishing return property from Chap-
ter 2 (Prop. 2.2).

Proposition 6.1. (Submodularity of cardinality-based set-

functions) If s ∈ R
p
+ and g : R+ → R is a concave function, then

F : A 7→ g(s(A)) is submodular. If F : A 7→ g(s(A)) is submodular for
all s ∈ R

p
+, then g is concave.

Proof. The function F : A 7→ g(s(A)) is submodular if and only if for
all A ⊆ V and j, k ∈ V \A: g(s(A) + sk) − g(s(A)) > g(s(A) + sk +
sj) − g(s(A) + sj). If g is concave and a > 0, t 7→ g(a + t) − g(t) is
non-increasing, hence the first result. Moreover, if t 7→ g(a + t) − g(t)
is non-increasing for all a > 0, then g is concave, hence the second
result.

Proposition 6.2. (Lovász extension of cardinality-based set-

functions) Let s ∈ R
p
+ and g : R+ → R be a concave function

such that g(0) = 0, the Lovász extension of the submodular function
F : A 7→ g(s(A)) is equal to (with the same notation than Prop. 3.1
that jk is the index of the k-the largest component of w):

f(w) =
p∑

k=1

wjk
[g(sj1 + · · · + sjk

) − g(sj1 + · · · + sjk−1
)].

If s = 1V , i.e., F (A) = g(|A|), then f(w) =
∑p
k=1wjk

[g(k) − g(k − 1)].

Thus, for functions of the cardinality (for which s = 1V), the Lovász
extension is thus a linear combination of order statistics (i.e., r-th
largest component of w, for r ∈ {1, . . . , p}).

Application to machine learning. When minimizing set-functions,
considering g(s(A)) instead of s(A) does not make a significant dif-
ference. However, it does in terms of the Lovász extension as outlined
at the end of §5.5: using the Lovász extension for regularization en-
courages components of w to be equal, and hence provides a convex
prior for clustering or outlier detection, depending on the choice of the
concave function g (see more details in [8, 99]).

6.2. Cut functions 71

Some special cases of non-decreasing functions are of interest, such
as F (A) = |A|, for which f(w) = w⊤1V and Ωq is the ℓ1-norm for
all q ∈ (1,+∞], and F (A) = 1|A|>0 = min{|A|, 1} for which f(w) =
maxk∈V wk and Ωq is the ℓq-norm. When restricted to subsets of V
and then linearly combined, we obtain set covers defined in §6.3. Other
interesting examples of combinations of functions of restricted weighted
cardinality functions may be found in [196, 121].

6.2 Cut functions

Given a set of (non necessarily symmetric) weights d : V × V → R+,
we define the cut as

F (A) = d(A,V \A) =
∑

k∈A, j∈V \A
d(k, j),

where we denote d(B,C) =
∑
k∈B, j∈C d(k, j) for any two sets B,C.

We give several proofs of submodularity for cut functions.

Direct proof of submodularity. For a cut function and disjoint subsets
A,B,C, we always have (see [54] for more details):

F (A ∪B ∪ C) = F (A ∪B) + F (A ∪ C) + F (B ∪ C)

−F (A) − F (B) − F (C) + F (∅), (6.1)

F (A ∪B) = d(A ∪B, (A ∪B)c) = d(A,Ac ∩Bc) + d(B,Ac ∩Bc)

6 d(A,Ac) + d(B,Bc) = F (A) + F (B),

where we denote Ac = V \A. This implies that F is sub-additive. We
then have, for any sets A,B ⊆ V :

F (A ∪B) = F ([A ∩B] ∪ [A\B] ∪ [B\A])

= F ([A ∩B] ∪ [A\B]) + F ([A ∩B] ∪ [B\A]) + F ([A\B] ∪ [B\A])

−F (A ∩B) − F (A\B) − F (B\A) + F (∅) using Eq. (6.1).

By expanding all terms, we obtain that F (A ∪B) is equal to

= F (A) + F (B) + F (A∆B) − F (A ∩B) − F (A\B) − F (B\A)

= F (A) + F (B) − F (A ∩B) + [F (A∆B) − F (A\B) − F (B\A)]

6 F (A) + F (B) − F (A ∩B), by sub-additivity,

72 Examples and Applications of Submodularity

Figure 6.1: Left: chain graphs. Right: two-dimensional grid with 4-connectivity.
The cut in these undirected graphs lead to Lovász extensions which are certain
versions of total variations, which enforce level sets of w to be connected with respect
to the graph.

which shows submodularity.

Lovász extension. The cut function is equal to F (A) =∑
k∈V, j∈V d(k, j)(1A)k

[
1−(1A)j

]
and it is thus the positive linear com-

bination of the functions Gkj : A 7→ (1A)k
[
1− (1A)j

]
. The function Gkj

is the extension to V of a function G̃kj defined only on the power set
of {j, k}, where G̃kj({k}) = 1 and all other values are equal to zero.
Thus from Eq. (3.5) in Chapter 3, G̃kj(wk, wj) = wk − min{wk, wj} =
(wk − wj)+. Thus, the Lovász extension of F is equal to

f(w) =
∑

k,j∈V
d(k, j)(wk − wj)+,

(which is convex and thus provides an alternative proof of submodu-
larity owing to Prop. 3.6).

If the weight function d is symmetric, then the submodular function
is also symmetric, i.e., for all A ⊆ V , F (A) = F (V \A), and the Lovász
extension is even (from Prop. 3.1). When d takes values in {0, 1} then
we obtain the cut function in an undirected graph and the Lovász
extension is often referred to as the total variation (see below).

Total variation and piecewise constant signals. Given an undirected
graph G = (V,E), the total variation is the Lovász extension associated
to the cut-function corresponding to this graph. For example for the
chain graph (left plot in Figure 6.1), we have f(w) =

∑p−1
i=1 |wi+1 −wi|.

6.2. Cut functions 73

As shown in §5.5, used as a regularizer, it leads to vectors w which
are piecewise constant with respect to the graph, i.e., the constant
sets are almost surely connected subsets of the graph. This property
is the main reason for its wide-spread use in signal processing (see,
e.g., [179, 37, 38]), machine learning and statistics [202]. For example,
for a chain graph, the total variation is commonly used to perform
change-point detection, i.e., to approximate a one-dimensional signal
by a piecewise constant one (see, e.g., [90]). We perform experiments
with this example in §12.4, where we relate it to related concepts.
In Figure 6.5, we show an example of application of total variation
denoising in two dimensions.

Isotonic regression. Consider p real numbers z1, . . . , zp. The goal of
isotonic regression is to find p other real number w1, . . . , wp, so that (a)
w is close to z (typically in squared ℓ2-norm), and (b) the components
of w satisfy some pre-defined order constraints, i.e., given a subset
E ⊆ V × V , we want to enforce that for all (i, j) ∈ E, then wi > wj.

Isotonic regression has several applications in machine learning and
statistics, where these monotonic constraints are relevant, for example
in genetics [138], biology [176], medicine [186], statistics [17] and mul-
tidimensional scaling for psychology applications [128]. See an example
for the linear ordering in Figure 6.2.

The set of constraints may be put into a directed graph. For general
sets of constraints, several algorithms that run in O(p2) have been de-
signed. In this section, we show how it can be reformulated through the
regularization by the Lovász extension of a submodular function, thus
bringing to bear the submodular machinery (in particular algorithms
from Chapter 9).

Let F (A) be the cut function in the graph G = (V,E). Its Lovász
extension is equal to f(w) =

∑
(i,j)∈E(wi − wj)+, and thus w ∈ R

p

satisfies the order constraints if and only if f(w) = 0. Given that
f(w) > 0 for all w ∈ R

p, then the problem is equivalent to minimizing
1
2‖w−z‖2

2+λf(w) for λ large enough1. See §9.1 for an efficient algorithm

1More precisely, if the directed graph G = (V, E) is strongly connected (see,
e.g., [49]), then F (A) > 0 for all non-trivial subset A of V . Let w be the solution of

74 Examples and Applications of Submodularity

10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

input z
output w

Figure 6.2: Isotonic regression with chain constraints. The output of isotonic re-
gression is always monotonic, and potentially has long plateaux.

based on a general divide-and-conquer strategy for separable optimiza-
tion on the base polyhedron (see also [137] for an alternative description
and empirical comparisons to alternative approaches). This algorithm
will be obtained as a sequence of p min-cut/max-flow problems and is
valid for all set of ordering contraints. When the constraints form a
chain, i.e., we are trying to minimize 1

2‖w − x‖2
2 such that wt > wt+1

for t ∈ {1, . . . , p − 1}, a simple algorithm called the “pool adjacent vi-
olators” algorithm may be used with a cost of O(p). Following [25], we
present it in Appendix A.3 and show how it relates to a dual active-set
algorithm. Note that the chain ordering is intimately related to sub-
modular function since the Lovász extension is linear for vectors with a
fixed ordering, and that the pool adjacent violators algorithm will allow
us in Chapter 9 to improve on existing convex optimization problems
involving the Lovász extension.

Extensions. Note that cut functions can be extended to cuts in hyper-
graphs, which may have interesting applications in computer vision [31].

the isotonic regression problem, which satisfies |wj −zj | 6 maxk∈V zk−mink∈V zk. It
is optimal for the λ-regularized problem as soon as λ−1(z − w) ∈ B(F). A sufficient

condition is that λ > (maxk∈V zk − mink∈V zk) maxA⊆V, A6=V, A6=0
|A|

F (A)
.

6.2. Cut functions 75

Moreover, directed cuts (i.e., when d(k, j) and d(j, k) may be different)
may be interesting to favor increasing or decreasing jumps along the
edges of the graph (such as for isotonic regression).

Interpretation in terms of quadratic functions of indicator variables.

For undirected graphs (i.e., for which the function d is symmetric), we
may rewrite the cut as follows:

F (A)=
1
2

p∑

k=1

p∑

j=1

d(k, j)|(1A)k − (1A)j |=
1
2

p∑

k=1

p∑

j=1

d(k, j)|(1A)k − (1A)j|2,

because |(1A)k − (1A)j | ∈ {0, 1}. This leads to

F (A)=
1
2

p∑

k=1

p∑

j=1

(1A)k(1A)j
[
1j=k

p∑

i=1

d(i, k) − d(j, k)
]
=

1
2

1⊤
AQ1A,

with Q the square matrix of size p defined as Qij = δi=j
∑p
k=1 dik −

dij (Q is the Laplacian of the graph [47]); see §12.4 for experiments
relating total variation to the quadratic function defined from the graph
Laplacian. It turns out that a sum of linear and quadratic functions
of 1A is submodular only in this situation.

Proposition 6.3. (Submodularity of quadratic functions) Let
Q ∈ R

p×p and q ∈ R
p. Then the function F : A 7→ q⊤1A + 1

21⊤
AQ1A

is submodular if and only if all off-diagonal elements of Q are non-
positive.

Proof. Since cuts are submodular, the previous developments show that
the condition is sufficient. It is necessary by simply considering the
inequality 0 6 F ({i}) + F ({j}) − F ({i, j}) = qi + 1

2Qii + qj + 1
2Qjj −

[qi + qj + 1
2Qii + 1

2Qjj +Qij] = −Qij.

Regular functions and robust total variation. By partial minimiza-
tion, we obtain so-called regular functions [31, 38]. Given our base set
V , some extra vertices (in a set W disjoint from V) are added and a
(potentially weighted) graph is defined on the vertex set V ∪ W , and
the cut in this graph is denoted by G. We then define a set-function F

76 Examples and Applications of Submodularity

on V as F (A) = minB⊆W G(A∪B), which is submodular because par-
tial minimization preserves submodularity (Prop. B.3). Such regular
functions are useful for two reasons: (a) they define new set-functions,
as done below, and (b) they lead to efficient reformulations of existing
functions through cuts, with efficient dedicated algorithms for mini-
mization.

One new class of set-functions are “noisy cut functions”: for a given
weight function d : W×W → R+, where each node in W is uniquely as-
sociated to a node in V , we consider the submodular function obtained
as the minimum cut adapted toA in the augmented graph (see top-right
plot of Figure 6.3): F (A) = minB⊆W

∑
k∈B, j∈W\B d(k, j) + λ|A∆B|,

where A∆B = (A\B) ∪ (B\A) is the symmetric difference between the
sets A and B. This allows for robust versions of cuts, where some gaps
may be tolerated; indeed, compared to having directly a small cut for
A, B needs to have a small cut and to be close to A, thus allowing
some elements to be removed or added to A in order to lower the cut
(see more details in [8]). Note that this extension from cuts to noisy
cuts is similar to the extension from Markov chains to hidden Markov
models [205]. For a detailed study of the expressive power of functions
expressible in terms of graph cuts, see, e.g., [215, 39].

Efficient algorithms. The class of cut functions, and more generally
regular functions, is particularly interesting, because it leads to a fam-
ily of submodular functions for which dedicated fast algorithms exist.
Indeed, minimizing the cut functions or the partially minimized cut,
plus a modular function defined by z ∈ R

p, may be done with a min-
cut/max-flow algorithm (see, e.g., [49] and Appendix A.2 for the proof
of equivalence based on linear programming duality). Indeed, follow-
ing [31, 38], we add two nodes to the graph, a source s and a sink t.
All original edges have non-negative capacities d(k, j), while, the edge
that links the source s to the node k ∈ V has capacity (zk)+ and the
edge that links the node k ∈ V to the sink t has weight −(zk)− (see
bottom line of Figure 6.3). Finding a minimum cut or maximum flow
in this graph leads to a minimizer of F − z.

In terms of running-time complexity, several algorithmic frame-

6.2. Cut functions 77

V

W

t s

t s

Figure 6.3: Top: directed graph (left) and undirected corresponding to regular
functions (which can be obtained from cuts by partial minimization; a set A ⊆ V is
displayed in red, with a set B ⊆ W with small cut but one more element than A, see
text in §6.2 for details). Bottom: graphs corresponding to the min-cut formulation
for minimizing the submodular function above plus a modular function (see text for
details).

works lead to polynomial-time algorithm: for example, with p vertices
and m edges, “push-relabel” algorithms [79] may reach a worst-case
complexity of O(p2m1/2). See also [44].

For proximal methods (i.e., the total variation denoising problem),
such as defined in Eq. (8.4) (Chapter 8), we have z = ψ(α) and we need
to solve an instance of a parametric max-flow problem, which may be
done using efficient dedicated algorithms with worst-case complexity
which is only a constant factor greater than a single max-flow prob-
lem [74, 4, 96, 38]. See also §10.2 for generic algorithms based on a
sequence of submodular function minimizations.

Applications to machine learning. Finding minimum cuts in undi-
rected graphs such as two-dimensional grids or extensions thereof in
more than two dimensions has become an important tool in computer
vision for image segmentation, where it is commonly referred to as

78 Examples and Applications of Submodularity

Figure 6.4: Semi-supervised image segmentation with weighted graph cuts. (left)
noisy image with supervision (red and blue strips), (right) segmentation obtained by
minimizing a cut subject to the labelling constraints, with a weighted graph whose
weight between two pixels is a decreasing function of their distance in the image
and the magnitude of the difference of pixel intensities.

Figure 6.5: Image denoising with total variation in two dimensions, i.e., the Lovász
extension of the cut-function in the two-dimensional grid (right plot of Figure 6.1):
(left) noisy image, (right) denoised image with piecewise constant level sets, obtained
by minimization of 1

2
‖w − z‖2

2 + f(w); see corresponding algorithms in Chapter 9.

6.3. Set covers 79

graph cut techniques (see an example in Figure 6.4 and, e.g., [122] and
references therein). In this context, several extensions have been consid-
ered, such as multi-way cuts, where exact optimization is in general not
possible anymore, and a sequence of binary graph cuts is used to find
an approximate minimum (note that in certain cases where labels are
ordered, an exact formulation is possible [105, 55, 97]). See also [160] for
a specific multi-way extension based on different submodular functions.

The Lovász extension of cuts in an undirected graph, often referred
to as the total variation, has now become a classical regularizer in sig-
nal processing and machine learning: given a graph, it will encourages
solutions to be piecewise-constant according to the graph [100, 99]. See
§5.5 for a formal description of the sparsity-inducing properties of the
Lovász extension; for chain graphs, we obtain usual piecewise constant
vectors, and the have many applications in sequential problems (see,
e.g., [90, 202, 140, 38] and references therein). Note that in this context,
separable optimization problems considered in Chapter 8 are heavily
used and that algorithms presented in Chapter 9 provide unified and
efficient algorithms for all these situations.

The sparsity-inducing behavior is to be contrasted with a penalty
of the form

∑p
i,j=1 dij(wi − wj)2, a quantity often referred to as the

graph Laplacian [47], which enforces that the weight vector is smooth

with respect to the graph (as opposed to piecewise constant). See §12.4
for empirical comparisons.

6.3 Set covers

Given a non-negative set-function D : 2V → R+, then we can define a
set-function F through

F (A) =
∑

G⊆V, G∩A 6=∅

D(G) =
∑

G⊆V
D(G) min{1, |A ∩G|}, (6.2)

with Lovász extensionf(w) =
∑
G⊆V D(G) maxk∈Gwk.

The submodularity and the Lovász extension can be obtained using
linearity and the fact that the Lovász extension of A 7→ 1G∩A 6=∅ =
min{|A|, 1} is w 7→ maxk∈Gwk. In the context of structured sparsity-
inducing norms (see §5.2), these correspond to penalties of the form

80 Examples and Applications of Submodularity

Ω∞ : w 7→ f(|w|) =
∑
G⊆V D(G)‖wG‖∞, thus leading to (potentially

overlapping) group Lasso formulations (see, e.g., [213, 111, 103, 107,
119, 113, 142]). For example, when D(G) = 1 for elements of a given
partition, and zero otherwise, then F (A) counts the number of elements
of the partition with non-empty intersection with A, a function which
we have used as a running example throughout this monograph. This
leads to the classical non-overlapping grouped ℓ1/ℓ∞-norm.

However, for q ∈ (1,∞), then, as discussed in [175], the norm Ωq is
not equal to

∑
G⊆V D(G)‖wG‖q, unless the groups such that D(G) > 0

form a partition. As shown in [175] where the two norms are compared,
the norm Ωq avoids the overcounting effect of the overlapping group
Lasso formulations, which tends to penalize too much the amplitude of
variables present in multiple groups.

Möbius inversion. Note that any set-function F may be written as

F (A) =
∑

G⊆V, G∩A 6=∅

D(G) =
∑

G⊆V
D(G) −

∑

G⊆V \A
D(G),

i.e., F (V) − F (V \A) =
∑

G⊆A
D(G),

for a certain set-function D, which is not usually non-negative. Indeed,
by the Möbius inversion formula2 (see, e.g., [195, 69]), we have:

D(G) =
∑

A⊆G
(−1)|G|−|A|[F (V) − F (V \A)

]
.

Thus, functions for which D is non-negative form a specific subset
of submodular functions (note that for all submodular functions, the
function D(G) is non-negative for all pairs G = {i, j}, for j 6= i, as a
consequence of Prop. 2.3). Moreover, these functions are always non-
decreasing. For further links, see [72], where it is notably shown that
D(G) = 0 for all sets G of cardinality greater or equal to three for cut
functions (which are second-order polynomials in the indicator vector).

2If F and G are any set functions such that ∀A ⊆ V , F (A) =
∑

B⊆A
G(B), then

∀A ⊆ V , G(A) =
∑

B⊆A
(−1)|A\B|F (B) [195].

6.3. Set covers 81

Reinterpretation in terms of set-covers. Let W be any “base” mea-
surable set, and µ an additive measure on W . We assume that for each
k ∈ V , a measurable set Sk ⊆ W is given; we define the cover associ-
ated with A, as the set-function equal to the measure of the union of
sets Sk, k ∈ A, i.e., F (A) = µ

(⋃
k∈A Sk

)
. See Figure 6.6 for an illus-

tration. Then, F is submodular (as a consequence of the equivalence
with the previously defined functions, which we now prove).

These two types of functions (set covers and the ones defined in
Eq. (6.2)) are in fact equivalent. Indeed, for a weight function D : 2V →
R+, we consider the base set W to be the power-set of V , i.e., W = 2V ,
with the finite measure associating mass D(G) to G ∈ 2V = W , and
with Sk = {G ⊆ V,G ∋ k}. We then get, for all A ⊆ V :

F (A) =
∑

G⊆V
D(G)1A∩G 6=∅ =

∑

G⊆V
D(G)1∃k∈A,k∈G

=
∑

G⊆V
D(G)1∃k∈A,G∈Sk

= µ
(⋃

k∈A
Sk
)
.

This implies that F is a set-cover.
Moreover, for a certain set cover defined by a mesurable set W (with

measure µ), and sets Sk ⊆ W , k ∈ V , we may define for any x ∈ W , the
set Gx of elements of V such that x ∈ Sk, i.e., Gx = {k ∈ V, Sk ∋ x}.
We then have:

F (A) = µ
(⋃

k∈A
Sk
)

=
∫

1x∈∪k∈ASk
dµ(x) =

∫
1A∩Gx 6=∅dµ(x),

=
∑

G⊆V
1A∩G 6=∅µ

(
{x ∈ W, Gx = G}

)
.

Thus, with D(G) = µ
(
{x ∈ W, Gx = G}

)
, we obtain a set-function

expressed in terms of groups and non-negative weight functions.

Applications to machine learning. Submodular set-functions which
can be expressed as set covers (or equivalently as a sum of maximum of
certain components) have several applications, mostly as regular set-
covers or through their use in sparsity-inducing norms.

When considered directly as set-functions, submodular functions
are traditionally used because algorithms for maximization with theo-

82 Examples and Applications of Submodularity

6
S7
S

5

S1

S

2
S4

S3

S 6
S7
S

5

S1

S

2
S4

S3

S

Figure 6.6: Set covers: (left) p = 7 sets in the two-dimensional planes; (right) in
blue, the union of all elements obtained from A = {1, 2, 3}.

retical guarantees may be used (see Chapter 11). See [127] for several
applications, in particular to sensor placement, where the goal is to
maximize coverage while bounding the number of sensors.

When considered through their Lovász extensions, we obtain struc-
tured sparsity-inducing norms which can be used to impose specific
prior knowledge into learning problems: indeed, as shown in §5.3, they
correspond to a convex relaxation to the set-function applied to the
support of the predictor. Morever, as shown in [111, 7] and Prop. 5.3,
they lead to specific sparsity patterns (i.e., supports), which are stable
for the submodular function, i.e., such that they cannot be increased
without increasing the set-function. For this particular example, sta-
ble sets are exactly intersections of complements of groups G such that
D(G) > 0 (see more details in [111]), that is, some of the groups G with
non-zero weights D(G) carve out the set V to obtain the support of
the predictor. Note that following [142], all of these may be interpreted
in terms of network flows (see §6.4) in order to obtain fast algorithms
to solve the proximal problems.

By choosing certain set of groups G such that D(G) > 0, we can
model several interesting behaviors (see more details in [12, 11]):

– Line segments: Given p variables organized in a sequence, using
the set of groups of Figure 6.7, it is only possible to select contigu-

ous nonzero patterns. In this case, we have p groups with non-zero
weights, and the submodular function is equal to p−2 plus the length
of the range of A (i.e., the distance beween the rightmost element
of A and the leftmost element of A), if A 6= ∅ (and zero otherwise).

6.3. Set covers 83

source

groups

sinks

G

s
k

k

t
k
G

Figure 6.7: Flow (top) and set of groups (bottom) for sequences. When these
groups have unit weights (i.e., D(G) = 1 for these groups and zero for all others),
then the submodular function F (A) is equal (up to constants) to the length of the
range of A (i.e., the distance beween the rightmost element of A and the leftmost
element of A). When applied to sparsity-inducing norms, this leads to supports
which are contiguous segments (see applications in [115]).

84 Examples and Applications of Submodularity

source

tG

sk

groups

k

G

sinks

k

Figure 6.8: Flow (top) and set of groups (bottom) for sequences. When these
groups have unit weights (i.e., D(G) = 1 for these groups and zero for all others),
then the submodular function F (A) is equal to the number of sequential pairs with
at least one present element. When applied to sparsity-inducing norms, this leads
to supports that have no isolated points (see applications in [142]).

This function is often used together with the cardinality function |A|
to avoid selecting long sequences (see an example in §12.4).

– Two-dimensional convex supports: Similarly, assume now that
the p variables are organized on a two-dimensional grid. To constrain
the allowed supports to be the set of all rectangles on this grid, a
possible set of groups to consider may be composed of half planes
with specific orientations: if only vertical and horizontal orientations
are used, the set of allowed patterns is the set of rectangles, while
with more general orientations, more general convex patterns may
be obtained. These can be applied for images, and in particular in
structured sparse component analysis where the dictionary elements
can be assumed to be localized in space [115].

– Two-dimensional block structures on a grid: Using sparsity-
inducing regularizations built upon groups which are composed of
variables together with their spatial neighbors (see Figure 6.7 in
one-dimension) leads to good performances for background subtrac-
tion [36, 15, 103, 142], topographic dictionary learning [116, 143],

6.3. Set covers 85

wavelet-based denoising [183]. This norm typically prevents isolated
variables from being selected.

– Hierarchical structures: here we assume that the variables are
organized in a hierarchy. Precisely, we assume that the p variables
can be assigned to the nodes of a tree (or a forest of trees), and that
a given variable may be selected only if all its ancestors in the tree
have already been selected. This corresponds to a set-function which
counts the number of ancestors of a given set A (note that the stable
sets of this set-function are exactly the ones described above).

This hierarchical rule is exactly respected when using the family of
groups displayed on Figure 6.9. The corresponding penalty was first
used in [213]; one of it simplest instance in the context of regression
is the sparse group Lasso [194, 71]; it has found numerous appli-
cations, for instance, wavelet-based denoising [213, 15, 103, 114],
hierarchical dictionary learning for both topic modelling and image
restoration [113, 114], log-linear models for the selection of poten-
tial orders [187], bioinformatics, to exploit the tree structure of gene
networks for multi-task regression [119], and multi-scale mining of
fMRI data for the prediction of simple cognitive tasks [112]. See also
§12.3 for an application to non-parametric estimation with a wavelet
basis.

– Extensions: Possible choices for the sets of groups (and thus the
set functions) are not limited to the aforementioned examples;
more complicated topologies can be considered, for example three-
dimensional spaces discretized in cubes or spherical volumes dis-
cretized in slices (see an application to neuroimaging by [204]), and
more complicated hierarchical structures based on directed acyclic
graphs can be encoded as further developed in [6] to perform non-
linear variable selection.

Covers vs. covers. Set covers also classically occur in the context
of submodular function maximization, where the goal is, given certain
subsets of V , to find the least number of these that completely cover V .
Note that the main difference is that in the context of set covers con-

86 Examples and Applications of Submodularity

3

7

2

1

4 5 6
4 65 732 1

Figure 6.9: Left: Groups corresponding to a hierarchy. Right: (reduced) network
flow interpretation of same submodular function (see §6.4). When these groups
have unit weights (i.e., D(G) = 1 for these groups and zero for all others), then the
submodular function F (A) is equal to the cardinality of the union of all ancestors
of A. When applied to sparsity-inducing norms, this leads to supports that select a
variable only after all of its ancestors have been selected (see applications in [113]).

sidered here, the cover is considered on a potentially different set W
than V , and each element of V indexes a subset of W .

6.4 Flows

Following [149], we can obtain a family of non-decreasing submodu-
lar set-functions (which include set covers from §6.3) from multi-sink
multi-source networks. We consider a set W of vertices, which includes
a set S of sources and a set V of sinks (which will be the set on which
the submodular function will be defined). We assume that we are given
capacities, i.e., a function c from W × W to R+. For all functions
ϕ : W ×W → R, we use the notation ϕ(A,B) =

∑
k∈A, j∈B ϕ(k, j).

A flow is a function ϕ : W ×W → R+ such that:

(a) capacity constaints: ϕ 6 c for all arcs,

(b) flow conservation: for all w ∈ W\(S ∪ V), the net-flow at w, i.e.,
ϕ(W, {w}) − ϕ({w},W), is zero,

(c) positive incoming flow: for all sources s ∈ S, the net-flow at s is
non-positive, i.e., ϕ(W, {s}) − ϕ({s},W) 6 0,

6.4. Flows 87

sources S

sinks V

Figure 6.10: Flows. Only arcs with strictly positive capacity are typically displayed.
Flow comes in by the sources and gets out from the sinks.

(d) positive outcoming flow: for all sinks t ∈ V , the net-flow at t is
non-negative, i.e., ϕ(W, {t}) − ϕ({t},W) > 0.

We denote by F the set of flows, and ϕ(w1, w2) is the flow going from
w1 to w2. This set F is a polyhedron in R

W×W as it is defined by a set
of linear equality and inequality constraints

For A ⊆ V (the set of sinks), we define

F (A) = max
ϕ∈F

ϕ(W,A) − ϕ(A,W),

which is the maximal net-flow getting out of A. From the max-
flow/min-cut theorem (see, e.g., [49] and Appendix A.2), we have im-
mediately that

F (A) = min
X⊆W, S⊆X, A⊆W\X

c(X,W\X).

One then obtains that F is submodular (as the partial minimization
of a cut function, see Prop. B.3) and non-decreasing by construction.
One particularity is that for this type of submodular non-decreasing
functions, we have an explicit description of the intersection of the
positive orthant and the submodular polyhedron, i.e., of the positive
submodular polyhedron P+(F) (potentially simpler than through the
supporting hyperplanes {s(A) = F (A)}). Indeed, s ∈ R

p
+ belongs to

P (F) if and only if, there exists a flow ϕ ∈ F such that for all k ∈ V ,
sk = ϕ(W, {k}) − ϕ({k},W) is the net-flow getting out of k.

Similarly to other cut-derived functions from §6.2, there are ded-
icated algorithms for proximal methods and submodular minimiza-
tion [98]. See also §9.1 for a general divide-and-conquer strategy for

88 Examples and Applications of Submodularity

solving separable optimization problems based on a sequence of sub-
modular function minimization problems (here, min cut/max flow
problems).

Flow interpretation of set-covers. Following [142], we now show that
the submodular functions defined in this section includes the set covers
defined in §6.3. Indeed, consider a non-negative function D : 2V → R+,
and define F (A) =

∑
G⊆V, G∩A 6=∅D(G). The Lovász extension may be

written as, for all w ∈ R
p
+ (introducing variables tG in a scaled simplex

reduced to variables indexed by G):

f(w) =
∑

G⊆V
D(G) max

k∈G
wk

=
∑

G⊆V
max

tG∈R
p
+, t

G
V \G

=0, tG(G)=D(G)
w⊤tG

= max
tG∈R

p
+, t

G
V \G

=0, tG(G)=D(G), G⊆V

∑

G⊆V
w⊤tG

= max
tG∈R

p
+, t

G
V \G

=0, tG(G)=D(G), G⊆V

∑

k∈V

(∑

G⊆V, G∋k
tGk

)
wk.

Because of the representation of f as a maximum of linear functions
shown in Prop. 3.2, s ∈ P (F) ∩ R

p
+ = P+(F), if and only there exists

tG ∈ R
p
+, t

G
V \G = 0, tG(G) = D(G) for all G ⊆ V , such that for all

k ∈V, sk =
∑
G⊆V, G∋k t

G
k . This can be given a network flow interpre-

tation on the graph composed of a single source, one node per subset
G ⊆ V such that D(G) > 0, and the sink set V . The source is connected
to all subsets G, with capacity D(G), and each subset is connected to
the variables it contains, with infinite capacity. In this representation,
tGk is the flow from the node corresponding to G, to the node corre-
sponding to the sink node k; and sk =

∑
G⊆V t

G
k is the net-flow getting

out of the sink vertex k. Thus, s ∈ P (F) ∩ R
p
+ if and only if, there

exists a flow in this graph so that the net-flow getting out of k is sk,
which corresponds exactly to a network flow submodular function.

We give examples of such networks in Figure 6.8 and Figure 6.7.
This reinterpretation allows the use of fast algorithms for proximal
problems (as there exists fast algorithms for maximum flow problems).

6.5. Entropies 89

The number of nodes in the network flow is the number of groups G
such thatD(G) > 0, but this number may be reduced in some situations
(for example, when a group is included in another, see an example of
a reduced graph in Figure 6.9). See [142, 143] for more details on such
graph constructions (in particular in how to reduce the number of edges
in many situations).

Application to machine learning. Applications to sparsity-inducing
norms (as decribed in §6.3) lead to applications to hierarchical dic-
tionary learning and topic models [113], structured priors for image
denoising [113, 114], background subtraction [142], and bioinformat-
ics [107, 119]. Moreover, many submodular functions may be inter-
preted in terms of flows, allowing the use of fast algorithms (see,
e.g., [98, 2] for more details).

6.5 Entropies

Given p random variables X1, . . . ,Xp which all take a finite number of
values, we define F (A) as the joint entropy of the variables (Xk)k∈A
(see, e.g., [52]). This function is submodular because, if A ⊆ B and
k /∈ B, F (A ∪ {k}) − F (A) = H(XA,Xk) − H(XA) = H(Xk|XA) >

H(Xk|XB) = F (B ∪ {k}) − F (B) (because conditioning reduces the
entropy [52]). Moreover, its symmetrization3 leads to the mutual infor-
mation between variables indexed by A and variables indexed by V \A.

This can be extended to any distribution by considering differential
entropies. For example, if X ∈ R

p is a multivariate random vector
having a Gaussian distribution with invertible covariance matrix Q,
then H(XA) = 1

2 log det(2πeQAA) [52]. This leads to the submodularity
of the function defined through F (A) = log detQAA, for some positive
definite matrix Q ∈ R

p×p (see further related examples in §6.6).

Entropies are less general than submodular functions. Entropies
of discrete variables are non-decreasing, non-negative submodular set-

3For any submodular function F , one may defined its symmetrized version as
G(A) = F (A) + F (V \A) − F (V), which is submodular and symmetric. See further
details in §10.3 and Appendix B.

90 Examples and Applications of Submodularity

functions. However, they are more restricted than this, i.e., they sat-
isfy other properties which are not satisfied by all submodular func-
tions [212]. Note also that it is not known if their special structure can
be fruitfully exploited to speed up certain of the algorithms presented
in Chapter 10.

Applications to graphical model structure learning. In the context
of probabilistic graphical models, entropies occur in particular in al-
gorithms for structure learning: indeed, for directed graphical models,
given the directed acyclic graph, the minimum Kullback-Leibler diver-
gence between a given distribution and a distribution that factorizes
into the graphical model may be expressed in closed form through
entropies [130, 94]. Applications of submodular function optimiza-
tion may be found in this context, with both minimization [157, 40]
for learning bounded-treewidth graphical model and maximization for
learning naive Bayes models [125], or both (i.e., minimizing differences
of submodular functions, as shown in Chapter 11) for discriminative
learning of structure [158]. In particular, for undirected graphical mod-
els, finding which subsets of vertices are well-separated by a given sub-
set S corresponds to minimizing over all non-trivial subsets of V \S the
symmetric submodular function B 7→ I(XB ,XV \(S∪B)|XS) [157, 40],
which may be done in polynomial time (see §10.3).

Applications to experimental design. Entropies also occur in exper-

imental design in Gaussian linear models [190]. Given a design matrix
X ∈ R

n×p, assume that the vector y ∈ R
n is distributed as Xv + σε,

where v has a normal prior distribution with mean zero and covariance
matrix σ2λ−1I, and ε ∈ R

n is a standard normal vector.
The joint distribution of (v, y) is normally distributed with

mean zero and covariance matrix σ2λ−1

(
I X⊤

X XX⊤ + λI

)
. The

posterior distribution of v given y is thus normal with mean
cov(v, y)cov(y, y)−1y = X⊤(XX⊤ +λI)−1y = (X⊤X+λI)−1X⊤y and

6.5. Entropies 91

covariance matrix

cov(v, v) − cov(v, y)cov(y, y)−1cov(y, v)

= λ−1σ2
[
I −X⊤(XX⊤ + λI)−1X

]

= λ−1σ2
[
I − (X⊤X + λI)−1X⊤X

]
= σ2(X⊤X + λI)−1,

where we have used the matrix inversion lemma [101]. The posterior
entropy of v given y is thus equal (up to constants) to p log σ2 −
log det(X⊤X + λI). If only the observations in A are observed, then
the posterior entropy of v given yA is equal to F (A) = p log σ2 −
log det(X⊤

AXA + λI), where XA is the submatrix of X composed of
rows of X indexed by A. We have moreover F (A) = p log λ−1σ2 −
log det(λ−1X⊤

AXA + I) = p log λ−1σ2 − log det(λ−1XAX
⊤
A + I), and

thus F (A) is supermodular because the entropy of a Gaussian random
variable is the logarithm of its determinant. In experimental design,
the goal is to select the set A of observations so that the posterior en-
tropy of v given yA is minimal (see, e.g., [64]), and is thus equivalent
to maximizing a submodular function (for which forward selection has
theoretical guarantees, see §11.1). Note the difference with subset se-
lection (§6.7) where the goal is to select columns of the design matrix
instead of rows.

In this particular example, the submodular function we aim to max-
imize may be written as F (A) = g(1A), where g(w) = p log(σ2λ−1) −
log det

(
I+λ−1∑p

i=1wiXiX
⊤
i

)
, where Xi ∈ R

n is the i-th column of X.
The function g is concave and should not be confused with the Lovász
extension which is convex and piecewise affine. It is not also the con-
cave closure of F (see definition in §5.1); therefore maximizing g(w)
with respect to w ∈ [0, 1]p is not equivalent to maximizing F (A) with
respect to A ⊆ V . However, it readily leads to a convex relaxation of
the problem of maximizing G, which is common in experimental design
(see, e.g., [180, 29]).

Application to semi-supervised clustering. Given p data points
x1, . . . , xp in a certain set X , we assume that we are given a Gaus-
sian process (fx)x∈X . For any subset A ⊆ V , then fxA

is normally

92 Examples and Applications of Submodularity

distributed with mean zero and covariance matrix KAA where K is the
p × p kernel matrix of the p data points, i.e., Kij = k(xi, xj) where
k is the kernel function associated with the Gaussian process (see,
e.g., [184]). We assume an independent prior distribution on subsets
of the form p(A) ∝ ∏

k∈A ηk
∏
k/∈A(1 − ηk) (i.e., each element k has a

certain prior probability ηk of being present, with all decisions being
statistically independent).

Once a set A is selected, we only assume that we want to model
the two parts, A and V \A as two independent Gaussian processes with
covariance matrices ΣA and ΣV \A. In order to maximize the likelihood
under the joint Gaussian process, the best estimates are ΣA = KAA and
ΣV \A = KV \A,V \A. This leads to the following negative log-likelihood

I(fA, fV \A) −
∑

k∈A
log ηk −

∑

k∈V \A
log(1 − ηk),

where I(fA, fV \A) is the mutual information between two Gaussian pro-
cesses (see similar reasoning in the context of independent component
analysis [35]).

In order to estimate A, we thus need to minimize a modular function
plus a mutual information between the variables indexed by A and the
ones indexed by V \A, which is submodular and symmetric. Thus in this
Gaussian process interpretation, clustering may be cast as submodular
function minimization. This probabilistic interpretation extends the
minimum description length interpretation of [160] to semi-supervised
clustering.

Note here that similarly to the unsupervised clustering framework
of [160], the mutual information may be replaced by any symmetric
submodular function, such as a cut function obtained from appropri-
ately defined weigths. In Figure 6.11, we consider X = R

2 and sample
points from a traditional distribution in semi-supervised clustering, i.e.,
twe “two-moons” dataset. We consider 100 points and 8 randomly cho-
sen labelled points, for which we impose ηk ∈ {0, 1}, the rest of the
ηk being equal to 1/2 (i.e, we impose a hard constraint on the labelled
points to be on the correct clusters). We consider a Gaussian kernel
k(x, y) = exp(−α‖x−y‖2

2), and we compare two symmetric submodular
functions: mutual information and the weighted cuts obtained from the

6.5. Entropies 93

Figure 6.11: Examples of semi-supervised clustering : (left) observations, (middle)
results of the semi-supervised clustering algorithm based on submodular function
minimization, with eight labelled data points, with the mutual information, (right)
same procedure with a cut function.

same matrix K (note that the two functions use different assumptions
regarding the kernel matrix, positive definiteness for the mutual infor-
mation, and pointwise positivity for the cut). As shown in Figure 6.11,
by using more than second-order interactions, the mutual information
is better able to capture the structure of the two clusters. This ex-
ample is used as an illustration and more experiments and analysis
would be needed to obtain sharper statements. In Chapter 12, we use
this example for comparing different submodular function minimiza-
tion procedures. Note that even in the case of symmetric submodular
functions F , where more efficient algorithms in O(p3) for submodular
function minimization (SFM) exist [181] (see also §10.3), the minimiza-
tion of functions of the form F (A) − z(A), for z ∈ R

p is provably as
hard as general SFM [181].

Applying graphical model concepts to submodular functions. In a
graphical model, the entropy of the joint distribution decomposes as
a sum of marginal entropies of subsets of variables; moreover, for any
distribution, the entropy of the closest distribution factorizing in the
graphical model provides an bound on the entropy. For directed graph-
ical models, this last property turns out to be a direct consequence of
the submodularity of the entropy function, and allows the generaliza-
tion of graphical-model-based upper bounds to any submodular func-

94 Examples and Applications of Submodularity

tions. In [129], these bounds are defined and used within a variational
inference framework for the maximization of submodular functions.

6.6 Spectral functions of submatrices

Given a positive semidefinite matrix Q ∈ R
p×p and a real-valued func-

tion h from R+ to R, one may define the matrix function Q 7→ h(Q)
defined on positive semi-definite matrices by leaving unchanged the
eigenvectors of Q and applying h to each of the eigenvalues [82]. This
leads to the expression of tr[h(Q)] as

∑p
i=1 h(λi) where λ1, . . . , λp are

the (nonnegative) eigenvalues of Q [101]. We can thus define the func-
tion F (A) = trh(QAA) for A ⊆ V . Note that for Q diagonal (i.e.,
Q = Diag(s)), we exactly recover functions of modular functions con-
sidered in §6.1.

The concavity of h is not sufficient however in general to ensure the
submodularity of F , as can be seen by generating random examples
with h(λ) = λ/(λ+ 1).

Nevertheless, we know that the functions h(λ) = log(λ+t) for t > 0
lead to submodular functions since they correspond to the entropy of a
Gaussian random variable with joint covariance matrix Q+ λI. Thus,
since for ρ ∈ (0, 1), λρ = ρ sinρπ

π

∫∞
0 log(1 + λ/t)tρ−1dt (see, e.g., [3]),

h(λ) = λρ for ρ ∈ (0, 1] is a positive linear combination of functions
that lead to non-decreasing submodular set-functions. We thus obtain
a non-decreasing submodular function.

This can be generalized to functions of the singular values of sub-
matrices of X where X is a rectangular matrix, by considering the
fact that singular values of a matrix X are related to the non-zero

eigenvalues of

(
0 X

X⊤ 0

)
(see, e.g., [82]).

Application to machine learning (Bayesian variable selection). As
shown in [7], such spectral functions naturally appear in the con-
text of variable selection using the Bayesian marginal likelihood (see,
e.g., [75]). Indeed, given a subset A, assume that the vector y ∈ R

n is
distributed as XAwA + σε, where X is a design matrix in R

n×p and
wA a vector with support in A, and ε ∈ R

n is a standard normal vec-

6.7. Best subset selection 95

tor. Note that there, as opposed to the experimental design situation
of §6.5, XA denotes the submatrix of X with columns indexed by A.
If a normal prior with covariance matrix σ2λ−1I is imposed on wA,
then the negative log-marginal likelihood of y given A (i.e., obtained
by marginalizing out wA), is equal to (up to constants):

min
wA∈R|A|

1
2σ2

‖y−XAwA‖2
2 +

λ

2σ2
‖wA‖2

2+
1
2

log det[σ2λ−1XAX
⊤
A +σ2I].

(6.3)

Indeed, the marginal likelihood is obtained by the best log-likelihood
when maximizing with respect to wA plus the entropy of the covariance
matrix [191].

Thus, in a Bayesian model selection setting, in order to find the
best subset A, it is necessary to minimize with respect to w:

min
w∈Rp

1
2σ2

‖y−Xw‖2
2+

λ

2σ2
‖w‖2

2+
1
2

log det[λ−1σ2XSupp(w)X
⊤
Supp(w)+σ

2I],

which, in the framework outlined in §5.4, leads to the submodular
function F (A) = 1

2 log det[λ−1σ2XAX
⊤
A + σ2I] = 1

2 log det[XAX
⊤
A +

λI] + n
2 log(λ−1σ2). Note also that, since we use a penalty which is

the sum of a squared ℓ2-norm and a submodular function applied to
the support, then a direct convex relaxation may be obtained through
reweighted least-squares formulations using the ℓ2-relaxation of com-
binatorial penalties presented in §5.4 (see also [175]). See also related
simulation experiments for random designs from the Gaussian ensemble
in [7].

Note that a traditional frequentist criterion is to penalize larger
subsets A by the Mallow’s CL criterion [145], which is equal to A 7→
tr(XAX

⊤
A + λI)−1XAX

⊤
A , which is not a submodular function.

6.7 Best subset selection

Following [56], we consider p random variables (covariates) X1, . . . ,Xp,
and a random response Y with unit variance, i.e., var(Y) = 1. We
consider predicting Y linearly from X. We consider F (A) = var(Y) −
var(Y |XA). The function F is a non-decreasing function (the condi-
tional variance of Y decreases as we observed more variables). In order

96 Examples and Applications of Submodularity

to show the submodularity of F using Prop. 2.3, we compute, for all
A ⊆ V , and i, j distinct elements in V \A, the following quantity:

F (A ∪ {j, k}) − F (A ∪ {j}) − F (A ∪ {k}) + F (A)

= [var(Y |XA,Xk) − var(Y |XA)] − [var(Y |XA,Xj ,Xk) − var(Y |XA,Xj)]

= −Corr(Y,Xk|XA)2 + Corr(Y,Xk|XA,Xj)2,

using standard arguments for conditioning variances (see more details
in [56]). Thus, the function is submodular if and only if the last quantity
is always non-positive, i.e., |Corr(Y,Xk|XA,Xj)| 6 |Corr(Y,Xk|XA)|,
which is often referred to as the fact that the variables Xj is not a
suppressor for the variable Xk given A.

Thus greedy algorithms for maximization have theoretical guaran-
tees (see Chapter 11) if the assumption is met. Note however that the
condition on suppressors is rather strong, although it can be appropri-
ately relaxed in order to obtain more widely applicable guarantees for
subset selection [57].

Subset selection as the difference of two submodular functions.

We may also consider the linear model from the end of §6.6, where a
Bayesian approach is taken for model selection, where the parameters
w are marginalized out. We can now also maximize the marginal likeli-
hood with respect to the noise variance σ2, instead of considering it as
a fixed hyperparameter. This corresponds to minimizing Eq. (6.3) with
respect to σ and wA, with optimal values wA = (X⊤

AXA + λI)−1X⊤
A y

and σ2 = 1
n‖y−XAwA‖2

2 + λ
n‖wA‖2, leading to the following cost func-

tion in A (up to constant additive terms):

n

2
log y⊤(I −XA(X⊤

AXA + λI)−1X⊤
A)y +

1
2

log det[X⊤
AXA + λI]

=
n

2
log det

(
X⊤
AXA + λI X⊤

Ay

y⊤XA y⊤y

)
− n− 1

2
log det(X⊤

AXA + λI),

which is a difference of two submodular functions (see §11.3 for related
optimization schemes). Note the difference between this formulation
(aiming at minimizing a set-function directly by marginalizing out or
maximizing out w) and the one from §6.6 which provides a convex

6.8. Matroids 97

relaxation of the maximum likelihood problem by maximizing the like-
lihood with respect to w.

6.8 Matroids

Matroids have emerged as combinatorial structures that generalize the
notion of linear independence betweens columns of a matrix. Given
a set V , we consider a family I of subsets of V with the following
properties:

(a) ∅ ∈ I,

(b) “hereditary property”: I1 ⊆ I2 ∈ I ⇒ I1 ∈ I,

(c) “exchange property”: for all I1, I2 ∈ I, |I1| < |I2| ⇒ ∃k ∈
I2\I1, I1 ∪ {k} ∈ I.

The pair (V,I) is then referred to as a matroid, with I its family
of independent sets. Given any set A ⊆ V , then a base of A is any
independent subset of A which is maximal for the inclusion order (i.e.,
no other independent set contained in A contains it). An immediate
consequence of property (c) is that all bases of A have the same car-
dinalities, which is defined as the rank of A. The following proposition
shows that the set-function thus defined is a submodular function.

Proposition 6.4. (Matroid rank function) The rank function of a
matroid, defined as F (A) = maxI⊆A, A∈I |I|, is submodular. Moreover,
for any set A ⊆ V and k ∈ V \A, F (A ∪ {k}) − F (A) ∈ {0, 1}.

Proof. We first prove the second assertion. Since F has integer values
and is non-decreasing (because of the hereditary property (b)), we only
need to show that F (A ∪ {k}) − F (A) 6 1. Let B1 be a base of A
and B2 be a base of A ∪ {k}. If |B2| > |B1| + 1, then, by applying the
exchange property (c) twice, there exists two distincts elements i, j of
B2\B1 such that B1 ∪ {i, j} is a base. One of these elements cannot
be k and thus has to belong to A which contradicts the maximality of
B1 as an independent subset of A; this proves by contradiction that
|B2| 6 |B1| + 1, and thus F (A ∪ {k}) − F (A) ∈ {0, 1}.

98 Examples and Applications of Submodularity

To show the submodularity of F , we consider Prop. 2.3 and a set
A ⊆ V and j, k ∈ V \A. Given the property shown above, we only need
to show that if F (A ∪ {k}) = F (A), then F (A ∪ {j, k}) = F (A ∪ {j}).
This will immediately imply that F (A∪{k})−F (A) > F (A∪{j, k})−
F (A∪ {j}) (and thus F is submodular). Assume by contradiction that
F (A ∪ {j, k}) = F (A ∪ {j}) + 1. If F (A ∪ {j}) = F (A), then we have
F (A∪ {j, k}) = F (A) + 1, and thus by the exchange property, we must
have F (A∪ {k}) = F (A) + 1, which is a contradiction. If F (A∪ {j}) =
F (A) + 1, then F (A ∪ {j, k}) = F (A ∪ {j}) + 2, and we must have
F (A ∪ {k}) = F (A) + 1 (because the increments of F are in {0, 1}),
which is also a contradiction.

Note that matroid rank functions are exactly the ones for which all
extreme points are in {0, 1}p. They are also exactly the submodular
functions for which F (A) is integer and F (A) 6 |A| [189].

A classical example is the graphic matroid; it corresponds to V be-
ing the edge set of a certain graph, and I being the set of subsets of
edges leading to a subgraph that does not contain any cycle. The rank
function ρ(A) is then equal to p minus the number of connected compo-
nents of the subgraph induced by A. Beyond the historical importance
of this matroid (since, as shown later, this leads to a nice proof of exact-
ness for Kruskal’s greedy algorithm for maximum weight spanning tree
problems), the base polyhedron, often referred to as the spanning tree
polytope, has interesting applications in machine learning, in particular
for variational inference in probabilistic graphical models [205].

The other classical example is the linear matroid. Given a matrix M
with p columns, then a set I is independent if and only if the columns
indexed by I are linearly independent. The rank function ρ(A) is then
the rank of the set of columns indexed by A (this is also an instance
of functions from §6.6 because the rank is the number of non-zero
eigenvalues, and when ρ → 0+, then λρ → 1λ>0). For more details on
matroids, see, e.g., [189].

Greedy algorithm. For matroid rank functions, extreme points of the
base polyhedron have components equal to zero or one (because F (A∪
{k}) − F (A) ∈ {0, 1} for any A ⊆ V and k ∈ V), and are incidence

6.8. Matroids 99

vectors of the maximal independent sets. Indeed, the extreme points
are such that s ∈ {0, 1}p and Supp(s) is an independent set because,
when running the greedy algorithm, the set of non-zero elements of the
already determined elements of s is always independent. Moreover, it
is maximal, because s ∈ B(F) and thus s(V) = F (V).

The greedy algorithm for maximizing linear functions on the base
polyhedron may be used to find maximum weight maximal independent
sets, where a certain weight wk is given to all elements of k V , that is,
it finds a maximal independent set I, such that

∑
k∈I wk is maximum.

In this situation, the greedy algorithm is actually greedy, i.e., it first
orders the weights of each element of V in decreasing order and select
elements of V following this order and skipping the elements which lead
to non-independent sets.

For the graphic matroid, the base polyhedron is thus the convex
hull of the incidence vectors of sets of edges which form a spanning
tree, and is often referred to as the spanning tree polytope4 [45]. The
greedy algorithm is then exactly Kruskal’s algorithm to find maximum
weight spanning trees [49].

Minimizing matroid rank function minus a modular function. Gen-
eral submodular functions may be minimized in polynomial time (see
Chapter 10). For functions which are equal to the rank function of
a matroid minus a modular function, then dedicated algorithms have
better running-time complexities, i.e., O(p3) [53, 161].

4Note that algorithms presented in Chapter 9 lead to algorithms for several
operations on this spanning tree polytopes, such as line searches and orthogonal
projections.

7

Non-smooth Convex Optimization

In this chapter, we consider optimization problems of the form

min
w∈Rp

Ψ(w) + h(w), (7.1)

where both functions Ψ and h are convex. In this section, we always as-
sume that h is non-smooth and positively homogeneous; hence we con-
sider only algorithms adapted to non-smooth optimization problems.
Problems of this type appear many times when dealing with submodu-
lar functions (submodular function minimization in Chapter 10, sepa-
rable convex optimization in Chapters 8 and 9, sparsity-based problems
in §5.3); however, they are typically applicable much more widely, in
particular to all polytopes where maximizing linear functions may be
done efficiently, which is the case for the various polytopes defined from
submodular functions.

Our first three algorithms deal with generic problems where few as-
sumptions are made beyond convexity, namely the subgradient method
in §7.2, the ellipsoid method in §7.3, Kelley’s method (an instance of
cutting planes) in §7.4, and analytic center cutting planes in §7.5.

The next algorithms we present rely on the strong convexity of the
function Ψ and have natural dual intepretations: in §7.6, we consider

100

7.1. Assumptions 101

mirror descent techniques whose dual interpretations are conditional
gradient algorithms, which are both iterative methods with cheap iter-
ations. In §7.7, we consider bundle methods, whose dual corresponding
algorithms are simplicial methods. They share the same principle than
the previous iterative techniques, but the memory of all past informa-
tion is explicitly kept and used at each iteration.

The next two algorithms require additional efficient operations re-
lated to the function h (beyong being able to compute function values
and subgradients). In §7.8, we present dual simplicial methods, which
use explicitly the fact that h is a gauge function (i.e., convex homo-
geneous and non-negative), which leads to iterative methods with no
memory and algorithms that keep and use explicitly all past informa-
tion. This requires to be able to maximize w⊤s with respect to w under
the constraint that h(w) 6 1.

We finally present in §7.9 proximal methods, which are adapted to
situations where Ψ is differentiable, under the condition that problems
with Ψ(w) being an isotropic quadratic function, i.e., Ψ(w) = 1

2‖w −
z‖2

2, are easy to solve. These methods are empirically the most useful for
problems with sparsity-inducing norms and are one of the motivations
behind the focus on solving separable problems in Chapters 8 and 9.

7.1 Assumptions

Positively homogeneous convex functions. Throughout this chapter
on convex optimization, the function h is always assumed positively
homogeneous and non-negative. Such functions are often referred to as
gauge functions (see Appendix A.1). Since we assume that h is finite
(i.e., it has full domain), this implies that there exists a compact convex
set K that contains the origin such that for all w ∈ R

p,

h(w) = max
s∈K

s⊤w. (7.2)

This is equivalent to h∗(s) = IK(s), where IK(s) is the indicator func-
tion of set K, equal to zero on K, and to +∞ otherwise. In this mono-
graph, K will typically be:

– the base polyhedron B(F) with h being the Lovász extension of F ,

102 Non-smooth Convex Optimization

– the symmetric submodular polyhedron |P |(F) with h being the norm
Ω∞ defined in §5.3,

– the dual unit ball of the norm Ωq with h being the norm Ωq defined
in §5.4, for q ∈ (1,∞).

The most important assumption which we are using is that the
maximization defining h in Eq. (7.2) may be performed efficiently, i.e., a
maximizer s ∈ K of the linear function s⊤w may be efficiently obtained.
For the first two examples above, it may be done using the greedy
algorithm. Another property that will be important is the polyhedral
nature of K. This is true for B(F) and |P |(F). Since K is bounded,
this implies that there exists a finite number of extreme points (si)i∈H ,
and thus that K is the convex hull of these |H| points. Typically, the
cardinality |H| of H may be exponential in p, but any solution may be
expressed with at most p such points (by Carathéodory’s theorem for
cones [185]).

Smooth, strongly convex or separable convex functions. The func-
tion Ψ in Eq. (7.1) may exhibit different properties that make the
optimization problem potentially easier to solve. All these assump-
tions may also be seen in the Fenchel-conjugate Ψ∗ defined as Ψ∗(s) =
supw∈Rp w⊤s− Ψ(w) (see Appendix A).

– Lipschitz-continuity: Ψ is Lipschitz-continuous on a closed convex
set C with Lipschitz-constant B if and only if

∀(w1, w2) ∈ C × C, |Ψ(w1) − Ψ(w2)| 6 B‖w1 − w2‖2.

This is equivalent to all subgradients of Ψ on C being bounded in
ℓ2-norm by B. This is the typical assumption in non-smooth opti-
mization.

Our motivating examples are Ψ(w) = 1
n

∑n
i=1 ℓ(yi, w

⊤xi) = Φ(Xw)
where the loss function is convex but non-smooth (such as for sup-
port vector machines). Also, Ψ(w) = I[0,1]p(w) for minimizing sub-
modular functions.

7.1. Assumptions 103

– Smoothness: In this monograph, Ψ is said smooth if its domain is
equal to R

p, and it has Lipchitz-continuous gradients, that is, there
exists L > 0 such that:

∀(w1, w2) ∈ R
p × R

p, ‖Ψ′(w1) − Ψ′(w2)‖2 6 L‖w1 − w2‖2.

If Ψ is twice differentiable, this is equivalent to Ψ′′(w) 4 LI for all
w ∈ R

p (where A 4 B means that B − A is positive semi-definite).
Our motivating examples are Ψ(w) = 1

n

∑n
i=1 ℓ(yi, w

⊤xi) = Φ(Xw)
where the loss function is convex and smooth (such as for least-
squares regression and logistic regression). This includes separable
optimization problems with Ψ(w) = 1

2‖w − z‖2
2 for some z ∈ R

p.

– Strong convexity: Ψ is said strongly convex if and only if the
function w 7→ Ψ(w) − µ

2 ‖w‖2
2 is convex for some µ > 0. This is

equivalent to:

∀(w1, w2) ∈ C×C, Ψ(w1) > Ψ(w2)+Ψ′(w2)⊤(w1−w2)+
µ

2
‖w1−w2‖2

2,

i.e., Ψ is lower-bounded by tangent quadratic functions. If Ψ is twice
differentiable, this is equivalent to Ψ′′(w) < µI for all w ∈ R

p. Note
however that Ψ may be strongly convex but not differentiable (and
vice-versa).

Our motivating examples are of the form Ψ(w) =
1
n

∑n
i=1 ℓ(yi, w

⊤xi) = Φ(Xw) where the loss function is convex
and smooth (such as for least-squares regression and logistic regres-
sion), and the design matrix has full column rank. This includes
separable optimization problems with Ψ(w) = 1

2‖w − z‖2
2 for some

z ∈ R
p.

– Separability: Ψ is said separable if it may be written as Ψ(w) =∑p
k=1 Ψk(wk) for functions Ψk : R → R. The motivating example is

Ψ(w) = 1
2‖w − z‖2

2. Chapters 8 and 9 are dedicated to the analy-
sis and design of efficient algorithms for such functions (when h is
obtained the Lovász extension).

– Composition by a linear map: Many objective functions used
in signal processing and machine learning as often composed with
a linear map, i.e., we consider functions of the form w 7→ Φ(Xw),

104 Non-smooth Convex Optimization

where Φ : Rn → R and X ∈ R
n×p. This explicit representation is

particularly useful to derive dual problem as Φ may have a simple
Fenchel conjugate while w 7→ Φ(Xw) may not, because X does not
have full rank.

– Representations as linear programs: A function Ψ is said poly-
hedral if its epigraph {(w, t) ∈ R

p+1, Ψ(w) 6 t} is a polyhedron.
This is equivalent to Ψ having a polyhedral domain and being ex-
pressed as the maximum of finitely many affine functions. Thus,
the problem of minimizing Ψ(w) may expressed as a linear program
minAw+ct6b t for a matrix A ∈ R

k×p and vectors c ∈ R
k and b ∈ R

k.
Such linear programs may be solved efficiently by a number of meth-
ods, such as the simplex method (which uses heavily the polyhedral
aspect of the problem, see §7.10) and interior-point methods (see,
e.g., [24] and §7.5).

– Representations as convex quadratic programs: The function
Ψ(w) is then of the form maxAw+ct6b t + 1

2w
⊤Qw, for a positive

semi-definite matrix. Such programs may be efficiently solved by
active-set methods [174] or interior point methods [173]. Active-set
methods will be reviewed in §7.11.

Dual problem and optimality conditions. Using Fenchel duality, we
have

min
w∈Rp

Ψ(w) + h(w) = min
w∈Rp

Ψ(w) + max
s∈K

w⊤s

= max
s∈K

−Ψ∗(−s).

The duality gap is, for (w, s) ∈ R
p ×K:

gap(w, s) =
[
h(w) − w⊤s

]
+
[
Ψ(w) + Ψ∗(−s) − w⊤(−s)

]
,

and is equal to zero if and only if (a) s ∈ K is a maximizer of w⊤s,
and (b) the pair (w,−s) is dual for Ψ. The primal minimizer is al-
ways unique only when Ψ is strictly convex (and thus Ψ∗ is smooth),
and we then have w = (Ψ∗)′(s), i.e., we may obtain a primal solution
directly from any dual solution s. When both Ψ and Ψ∗ are differen-
tiable, then we may go from w to s as s = −Ψ′(w) and w = (Ψ∗)′(s).

7.2. Projected subgradient descent 105

However, in general it is not possible to naturally go from a primal
candidate to a dual candidate in closed form. In this chapter, we only
consider optimization algorithms which exhibit primal-dual guarantees,
i.e., generate both primal candidates w and dual candidates s.

7.2 Projected subgradient descent

When no smoothness assumptions are added to Ψ, we may consider
without loss of generality that h = 0, which we do in this section (like
in the next three sections). Thus, we only assume that Ψ is Lipschitz-
continuous on a compact set C, with Lipschitz-constant B. Starting
from any point in C, the subgradient method is an iterative algorithm
that goes down the direction of negative subgradient. More precisely:

(1) Initialization: w0 ∈ C.

(2) Iteration: for t > 1, compute a subgradient Ψ′(wt−1) of Ψ at wt−1

and compute
wt = ΠC

(
wt−1 − γtΨ′(wt−1)

)
,

where ΠC is the orthogonal projection onto C.

This algorithm is not a descent algorithm, i.e., it is possible that
Ψ(wt) > Ψ(wt−1). There are several strategies to select the constants γt.
If the diameter D of C is known, then by selecting γt = D

B
√
t
, if we

denote Ψopt = minx∈C Ψ(x), then we have for all t > 0, the following
convergence rate (see proof in [171, 9]):

0 6 min
u∈{0,...,t}

Ψ(xu) − Ψopt
6

4DB√
t
.

Note that this convergence rate is independent of the dimension p (at
least not explicitly, as constants D and B would typically grow with p),
and that it is optimal for methods that look only at subgradients at
certain points and linearly combine them [171, Section 3.2.1]. More-
over, the iteration cost is limited, i.e., O(p), beyond the computation
of a subgradient. Other strategies exist for the choice of the step size,
in particular Polyak’s rule: γt = Ψ(xt−1)−Ψ∗

‖Ψ′(xt−1)‖2
2

, where Ψ∗ is any lower

bound on the optimal value (which may usually obtained from any
dual candidate).

106 Non-smooth Convex Optimization

Certificate of optimality. If one can compute Ψ∗ efficiently, the aver-
age s̄t of all subgradients, i.e., s̄t = 1

t

∑t−1
u=0 Ψ′(wu), provides a certificate

of suboptimality with offline guarantees, i.e., if w̄t = 1
t

∑t−1
u=0wu,

gap(w̄t, s̄t) = Ψ(w̄t) + Ψ∗(s̄t) + max
w∈C

{
− s̄⊤

t w
}
6

4DB√
t
.

See [163] and a detailed proof in [9]. In the context of this monograph,
we will apply the projected subgradient method to the problem of min-
imizing f(w) on [0, 1]p, leading to algorithms with small iteration com-
plexity but slow convergence (though a decent solution is found quite
rapidly in applications).

Note that when Ψ is obtained by composition by a linear map X,
then similar certificates of optimality may be obtained [9].

7.3 Ellipsoid method

Like in the previous section, we assume that h = 0 and that Ψ is
Lipschitz-continuous on a compact set C. Moreover, we assume that C
is contained in the ellipsoid E0 = {V0u+w0, ‖u‖2 6 1}, with V0 ∈ R

p×p

an invertible matrix and w0 ∈ R
p is the center of the ellipsoid. We

denote by EC the minimum volume ellipsoid containing C.
The ellipsoid method builds a sequence of ellipsoids that contain all

minimizers of Ψ on K. At every iteration, the volume of the ellipsoid
is cut by a fixed multiplicative constant. Starting from an ellipsoid
containing K, we consider its center. If it is in C, then a subgradient
of Ψ will divide the space in two, and the global minima have to be
in a known half. Similarly, if the center not in C, then a separating
hyperplane between the center and C plays the same role. We can then
iterate the process. The precise algorithm is as follows:

(1) Initialization: ellipsoid E0 = {V0u + w0, ‖u‖2 6 1} that contains
the optimization set C.

(2) Iteration: for t > 0,

(a) Select half-plane

− If wt−1 is feasible (i.e., wt−1 ∈ C), then zt−1 = Ψ′(wt−1), i.e.,

7.3. Ellipsoid method 107

any subgradient of Ψ at wt−1.
− Otherwise zt−1 is a normal vector to any hyperplane passing
by wt−1 and not intersecting C, i.e., zt−1 is such that C ⊆ {w ∈
R
p, (w − wt−1)⊤zt−1 6 0}.

(b) Compute new ellipsoid Et = {Vtu+ wt, ‖u‖2 6 1} with

z̃t−1 = (z⊤
t−1Vt−1V

⊤
t−1zt−1)−1/2zt−1

wt = wt−1 − 1

p+ 1
Vt−1V

⊤
t−1z̃t−1

Vt =
p2

p2 − 1

(
Vt−1 − 2

p+ 1
Vt−1V

⊤
t−1z̃t−1z̃

⊤
t−1Vt−1V

⊤
t−1

)
.

See an illustration in Figure 7.1. As shown in [167] by using the in-
variance by linear rescaling that allows to consider the unit Euclidean
ball, (a) Et is the minimum volume ellipsoid containing the intersection
of Et−1 and the half-plane {w ∈ R

p, (w − wt−1)⊤zt−1 6 0}, (b) the
volume of Et = {Vtu + wt, ‖u‖2 6 1} is less than the volume of Et−1

times exp
(−1

2p

)
, and (c) Et contains any global minimizer of Ψ on C.

Thus, the ellipsoid Et has a volume decreasing at an exponen-
tial rate. This allows to obtain an exponential rate of convergence
for the minimization problem. Indeed, following [167], let 1 > ε >

min{1,
(vol(Et)

vol(EK)

)1/p} and wopt a minimizer of Ψ on K. We define
Kε = wopt + ε(K − wopt). We have vol(Kε) = εpvol(K) > vol(Et).
The two sets Kε and Et have at least the point wopt in common; given
the volume inequality, there must be at least one element v ∈ Kε\Et.
Since ε 6 1, Kε ⊆ K, and hence v ∈ K. Since it is not in Et, it must
have been removed in one of the steps of the ellipsoid method, hence its
value Ψ(v) is greater than mini∈{0,...,t} Ψ(wi). Moreover, by convexity,
Ψ(v) 6 (1 − ε)Ψ(wopt) + εmaxw∈K Ψ(w), which implies

min
i∈{0,...,t}

Ψ(wi) − Ψ(wopt) 6 ε
[
max
w∈K

Ψ(w) − min
w∈K

Ψ(w)
]
.

This implies that there exists i 6 t, such that wi ∈ K and

Ψ(wi)−min
w∈K

Ψ(w) 6
(

max
w∈K

Ψ(w)−min
w∈K

Ψ(w)
)
×min

{
1,
(vol(Et)

vol(EK)

)1/p}
.

See [169, 167] for more details.

108 Non-smooth Convex Optimization

1

E

E

0
1

2
E

E

Figure 7.1: Two iterations of the ellipsoid method, showing how the intersection of
an half-plane and an ellipsoid may be inscribed in another ellipsoid, which happens
to have a smaller volume.

The convergence rate is exponential, but there is a direct and strong
dependence on the dimension of the problem p. Note that dual certifi-
cates may be obtained at limited additional computational cost, with
no extra information [168]. This algorithm is typically slow in practice
since it has a running-time of O(p3) per iteration. Moreover, it makes
slow progress and cannot take advantage of additional properties of
the function Ψ as the approximation of the reduction in volume has a
tight dependence on p: that is, it cannot really converge faster than the
bound.

This algorithm has an important historical importance, as it implies
that most convex optimization problems may be solved in polynomial-
time, which implies polynomial-time algorithms for many combinato-
rial problems that may be expressed as convex programs; this includes
the problem of minimizing submodular functions [84]. See §10.4 for a
detailed convergence rate when applied to this problem.

7.4 Kelley’s method

Like in the previous section, we assume that h = 0 and that Ψ is
Lipschitz-continuous on a compact set C. In the subgradient and ellip-
soid methods, only a vector (for the subgradient method) or a pair of
a vector and a matrix (for the ellipsoid method) are kept at each itera-

7.4. Kelley’s method 109

Figure 7.2: Lower-bounding a convex function (in black) by the maximum of affine
functions (in blue).

tion, and the values of the function Ψ(wi) and of one of its subgradients
Ψ′(wi), for i < t, are discarded.

Bundle methods aim at keeping and using exactly the bundle of
information obtained from past iterations. This is done by noticing
that for each t, the function Ψ is lower bounded by

Ψ̃t(w) = max
i∈{0,...,t}

{
Ψ(wi) + Ψ′(wi)

⊤(w − wi)
}
.

The function Ψ̃t is a piecewise-affine function and we present an illus-
tration in Figure 7.2.

Kelley’s method (see, e.g., [171]) simply minimizes this lower bound
Ψ̃t at every iteration, leading to the following algorithm:

(1) Initialization: w0 ∈ C.

(2) Iteration: for t > 1, compute a subgradient Ψ′(wt−1) of Ψ at wt−1

and compute any minimizer

wt ∈ arg min
w∈C

max
i∈{0,...,t−1}

{
Ψ(wi) + Ψ′(wi)

⊤(w − wi)
}
.

The main iteration of Kelley’s method (which can be seen in particular
as an instance of a cutting-plane method [26]) thus requires to be able to
solve a subproblem which may be complicated. When C is a polytope,
then it may be cast a linear programming problem and then solved
by interior-point methods or the simplex algorithm. The number of
iterations to reach a given accuracy may be very large (see lower bounds

110 Non-smooth Convex Optimization

in [171]), and the method is typically quite unstable, in particular when
they are multiple minimizers in the local optimization problems.

However, the method may take advantage of certain properties of Ψ

and C, in particular the representability of C and Ψ through linear pro-
grams. In this situation, the algorithm terminates after a finite number
of iterations with an exact minimizer [23]. Note that although Kelley’s
method is more complex than subgradient descent, the best known
convergence rate is still of the order O(1/

√
t) after t iterations [200].

In the context of this monograph, we will apply Kelley’s method
to the problem of minimizing the Lovász extenstion f(w) on [0, 1]p,
and, when the simplex algorithm is used to minimize Ψ̃t(w) this will
be strongly related to the simplex algorithm applied directly to a linear
program with exponentially many constraints (see §10.5).

In our simulations in §12.1, we have observed that when an interior
point method is used to minimize Ψ̃t(w) (this is essentially what the
weighted analytic center cutting plane method from §7.5 and §10.6
does), then the minimizer wt leads to a better new subgradient than
with an extreme point (see §10.6).

7.5 Analytic center cutting planes

We consider a similar situation than the previous sections, i.e., we as-
sume that h = 0 and that Ψ is Lipschitz-continuous on a compact set C.
The ellipsoid method is iteratively reducing a candidate set which has
to contain all optimal solutions. This is done with a provable (but
small) constant reduction in volume. If the center of the smallest el-
lipsoid containing the new candidate set is replaced by its center of
gravity, then an improved bound holds [167] (with p2 replaced by p in
the complexity bound); however, this algorithm is not implemented in
practice as there is no known efficient algorithm to find the center of
gravity of a polytope. An alternative strategy is to replace the center
of gravity of the polytope by its analytic center [78].

The analytic center of a polytope with non-empty interior defined as
the intersection of half-planes a⊤

i w 6 bi, i ∈ I, is the unique minimizer

7.6. Mirror descent/conditional gradient 111

of
min
w∈Rp

−
∑

i∈I
log(bi − a⊤

i w).

The analytic center may be found with arbitrary precision using New-
ton’s method [30]. For the original problem of minimizing Ψ, there is a
non-exponential complexity bound that decay as O(1/

√
t) [170] but no

bound similar to the ellipsoid method; however, its empirical behavior
is often much improved, and this was confirmed in our simulations in
§12.1.

In this tutorial, we consider the epigraph version of the problem,
where we minimize u with respect to (w, u) such that w ∈ C and
Ψ(w) 6 u. For simplicity, we assume that C is a polytope with non-
empty interior, which is defined through the set of half-planes a⊤

i w 6 bi,
i ∈ I0. The algorithm is as follows:

(1) Initialization: set of half-planes a⊤
i w 6 bi, i ∈ I0 with analytic

center w0, u0 = +∞.

(2) Iteration: for t > 0,

(a) Compute function Ψ(wt−1) and gradient and Ψ′(wt−1):
− add hyperplane u > Ψ(wt−1) + Ψ′(wt−1)⊤(w −wt−1),
− it t = 1, add the plane u 6 Ψ(w0),
− if Ψ(wt−1) 6 ut−1, replace u 6 ut−1 by u 6 ut = Ψ(wt−1),

(b) Compute analytic center (wt, ut) of the new polytope.

Note that when computing the analytic center, if we put a large weight
for the logarithm of the constraint u 6 ut, then we recover an instance
of Kelley’s method, since the value of u will be close to the piecewise
affine lower bound Ψ̃t(w) defined in §7.4. Note the difference with the
simplex method: here, the candidate w is a center of the set of minimiz-
ers, rather than an extreme point, which makes considerable difference
in practice (see experiments in §12.1).

7.6 Mirror descent/conditional gradient

We now assume that the function Ψ is µ-strongly convex, and for sim-
plicity, we assume that its domain is Rp (this may be relaxed in general,

112 Non-smooth Convex Optimization

see [9]). We are now going to use the special properties of our prob-
lem, namely that h may be written as h(w) = maxs∈K w⊤s. Since Ψ

is µ-strongly convex, Ψ∗ is (1/µ)-smooth. The dual problem we aim to
solve is then

max
s∈K

−Ψ∗(−s).

We are thus faced with the optimization of a smooth function on a com-
pact convex set on which linear functions may be maximized efficiently.
This is exactly the situation where conditional gradient algorithms are
useful (they are also often referred to as “Frank-Wolfe” algorithms [70]).
The algorithm is as follows:

(1) Initialization: s0 ∈ K (typically an extreme point, obtained by
maximizing w⊤

0 s for a certain w0 ∈ R
p).

(2) Iteration: for t > 1, find a maximizer s̄t−1 of (Ψ∗)′(st−1)⊤s w.r.t.
s ∈ K, and set st = (1 − ρt)st−1 + ρts̄t−1, for some ρt ∈ [0, 1].

There are two typical choices for ρt ∈ [0, 1]:

– Line search (adaptive schedule): we either maximize −Φ∗(−s) on
the segment [st−1, s̄t−1], or a quadratic lower bound (traditionally
obtained from the smoothness of Ψ∗), which is tight at st−1, i.e.,

ρt−1 = arg max
ρt∈[0,1]

ρt(s̄t−1 − st−1)⊤(Ψ∗)′(st−1) − 1

2µ
ρ2
t ‖s̄t−1 − st−1‖2

2

= min

{
1,
µ(s̄t−1 − st−1)⊤(Ψ∗)′(st−1)

‖s̄t−1 − st−1‖2
2

}
.

– Fixed schedule: ρt = 2
t+1 .

Convergence rates. It may be shown [62, 108, 9] that, if we denote
Ψopt = minw∈K Ψ(w)+h(w) = maxs∈K −Ψ∗(−s), then, for ρt obtained
by line search, we have for all t > 0, the following convergence rate:

0 6 Ψopt + Ψ∗(−st) 6
2D2

µt
,

where D is the diameter of K. Moreover, the natural choice of primal
variable wt = (Ψ∗)′(−st) leads to a duality gap of the same order. See

7.6. Mirror descent/conditional gradient 113

ΨΨ

vw

(v)

 (v)+ ’(w)(v−w)Ψ Ψ

D (v,w)

Figure 7.3: Bregman divergence: DΨ(v, w) is equal to the difference between the
convex function Ψ(v) and the affine function tangent at w. When Ψ is µ-strongly
convex, then DΨ(v, w) > 0 with equality if and only if v = w. Moreover, we have
DΨ(v, w) > µ

2
‖v − w‖2. Note that for a quadratic function, the Bregman divergence

is a squared Euclidean norm.

an illustration in Figure 9.2 for Ψ∗(−s) = −1
2‖z − s‖2

2 (i.e., the dual
problem is equivalent to an orthogonal projection of z onto K). For the
fixed-schedule, a similar bound holds; moreover, the relationship with
a known primal algorithm will lead to a further interpretation.

Primal interpretation. For simplicity, we assume that Ψ is essentially
smooth so that (Ψ∗)′ is a bijection from R

p to K. For a fixed schedule
ρt = 2

t+1 , then by considering wt = (Ψ∗)′(−st)—so that st = −Ψ′(wt),
and seeing s̄t as one of the subgradient of h at wt, i.e., denoting s̄t =

h′(wt), the iteration is as follows:

Ψ′(wt) =
(
1 − ρt

)
Ψ′(wt−1) − ρth

′(wt−1).

We denote by DΨ the Bregman divergence associated with the
strongly convex function Ψ, i.e., DΨ(v,w) = Ψ(v) − Ψ(w) − (v −
w)⊤Ψ′(w). See Figure 7.3 for an illustration and further properties
in [14]. The previous iteration may be seen as the one of minimizing
with respect to w a certain function, i.e.,

wt = arg min
w∈Rp

DΨ(w,wt−1) − ρt
[
Ψ′(wt−1) + h′(wt−1)

]⊤
(w − wt−1),

which is an instance of mirror-descent [167]. Indeed, the solution of the
previous optimization problem is characterized by Ψ′(wt)− Ψ′(wt−1)−
ρt
[
Ψ′(wt−1) + h′(wt−1)

]
= 0.

114 Non-smooth Convex Optimization

For example, when Ψ(w) = µ
2 ‖w‖2

2, we obtain regular subgradient
descent with step-size ρt/µ. In [9], a convergence rates of order O(1/µt)

is provided for the averaged primal iterate w̄t = 2
t(t+1)

∑t
k=0 kwk when

ρt = 2/(t + 1), using the traditional proof technique from mirror de-
scent, but also a convergence rate of O(1/µt) for the dual variable st,
and for one of the primal iterates. Moreover, when Ψ is obtained by
composition by a linear map X, then similar certificates of optimality
may be obtained. See more details in [9].

Note finally, that if Ψ∗ is also strongly convex (i.e., when Ψ is
smooth) and the global optimum is in the interior of K, then the con-
vergence rate is exponential [87, 19].

7.7 Bundle and simplicial methods

In §7.4, we have considered the minimization of a function Ψ over a
compact set K and kept the entire information regarding the function
values and subgradients encountered so far. In this section, we extend
the same framework to the type of problems considered in the previous
section. Again, primal and dual interpretations will emerge.

We consider the minimization of the function Ψ(w)+h(w), where h
is non-smooth, but Ψ may have in general any additional assumptions
such as strong-convexity, representability as quadratic or linear pro-
grams. The algorithm is similar to Kelley’s method in that we keep all
information regarding the subgradients of h (i.e., elements of K), but
each step performs optimization where Ψ is not approximated (see Fig-
ure 7.2 for an illustration of the piecewise linear approximation of h):

(1) Initialization: w0 ∈ K.

(2) Iteration: for t > 1, compute a subgradient st−1 = h′(wt−1) ∈ K of
h at wt−1 and compute

wt ∈ arg min
w∈Rp

Ψ(w) + max
i∈{0,...,t−1}

s⊤
i w.

Like Kelley’s method, the practicality of the algorithm depends on
how the minimization problem at each iteration is performed. In the
common situation where each of the subproblems is solved with high

7.7. Bundle and simplicial methods 115

accuracy, the algorithm is only practical for functions Ψ which can
be represented as linear programs or quadratic programs. Moreover,
the method may take advantage of certain properties of Ψ and K, in
particular the representability of K and Ψ through linear programs.
In this situation, the algorithm terminates after a finite number of
iterations with an exact minimizer [23]. In practice, like most methods
considered in this monograph, using the dual interpretation described
below, one may monitor convergence using primal-dual pairs.

Dual interpretation. We first may see st−1 as the maximizer of
s⊤wt−1 over s ∈ K. Moreover, we have, by Fenchel duality:

min
w∈Rp

Ψ(w) + max
i∈{0,...,t−1}

s⊤
i w

= min
w∈Rp

Ψ(w) + max
η>0,

∑t−1

i=0
ηi=1

w⊤
(t−1∑

i=0

ηisi

)

= max
η>0,

∑t−1

i=0
ηi=1

min
w∈Rp

Ψ(w) + w⊤
(t−1∑

i=0

ηisi

)

= max
η>0,

∑t−1

i=0
ηi=1

−Ψ∗
(

−
t−1∑

i=0

ηisi

)
.

This means that when Ψ∗ is differentiable (i.e., Ψ strictly convex)
we may interpret the algorithm as iteratively building inner ap-
proximations of the compact convex set K as the convex hull of
the point s0, . . . , st−1 (see illustration in Figure 7.4). The function
−Ψ∗(−s) is then maximized over this convex-hull. Given the op-
timum s̄ =

∑t−1
i=0 ηisi, then it is globally optimum if and only if

maxs∈K(Ψ∗)′(−s̄)⊤(s − s̄) = 0, i.e., denoting w̄ = (Ψ∗)′(−s̄), h(w) =

w⊤s.
Note the difference with the conditional gradient algorithm from

§7.6. Both algorithms are considering extreme points of K; however,
conditional gradient algorithms only make a step towards the newly
found extreme point, while simplicial methods defined in this section
will optimize over the entire convex hull of all extreme points gener-
ated so far, leading to better function values at the expense of extra
computation.

116 Non-smooth Convex Optimization

1

s3

s4

s5

s2

s6
s

w s = h(w)tt

Figure 7.4: Approximation of compact convex set K: (top) inner approximation
as a convex hull, used by simplicial methods in §7.7, (bottom) outer approximation
as an intersection of half hyperplanes, used by dual simplicial methods in §7.8.

7.8. Dual simplicial method 117

In the context of this monograph, we will apply this method to the
problem of minimizing 1

2‖w−z‖2
2 +f(w) on R

p, and, when an active set
is used to minimize the subproblem, this will correspond almost exactly
to an active set algorithm applied directly to the quadratic program
with exponentially many constraints (the only difference between the
active-set and the simplicial method is that in the active-set methods,
the set of extreme points of K which are used is not only growing, but
may also be reduced during line-search iterations, see §7.11 for more
details). See the illustration in Figure 9.1 in §9.2, and contrast it with
Figure 9.2.

7.8 Dual simplicial method

We now assume that 0 ∈ K, which implies that h(w) = maxs∈K w⊤s is
non-negative. The set K may be seen as the intersection of the (poten-
tially uncountably infinitely many) hyperplane {s ∈ R

p, s⊤w 6 h(w)}
for w ∈ R

p. In this section, we assume that given any s, we may test
efficiently whether s ∈ K. If s /∈ K, we assume that we can also pro-
vide a certificate w ∈ R

p such that s⊤w > h(w). One such possibility
is to consider situations where maxh(w)61w

⊤s may be computed effi-
ciently. In our submodular context, when K = B(F) for a non-negative
submodular function, this amounts to computing maxf(w)61 w

⊤s =

maxA⊆V, A 6=∅

s(A)
F (A) , which can be done efficiently if one can minimize

F (A) − t(A) with respect to A ⊆ V , where F is our submodular func-
tion and t ∈ R

p (see §9.4). Similarly, when K is the unit ball of the
norms Ωq, we would need to compute similar quantities. See more de-
tails in §9.4.

The dual simplicial method works by iteratively building outer ap-
proximations K̄t−1 = {s ∈ R

p, ∀k ∈ {0, . . . , t− 1}, w̄⊤
k s 6 h(w̄k)} of K

as the intersection of half hyperplanes (see an illustration in Figure 7.4);
the algorithms is as follows:

(1) Initialization: w0 ∈ R
p

(2) Iteration: for t > 1, compute

st ∈ arg max
s∈Rp

−Ψ∗(−s) such that ∀i ∈ {0, . . . , t− 1}, w̄⊤
i s 6 h(w̄i),

118 Non-smooth Convex Optimization

and let w̄t ∈ arg maxh(w̄)61 w̄
⊤st. If w̄⊤

t st 6 1, w̄t is the optimal
solution.

Like Kelley’s method or bundle methods, the practicality of the algo-
rithm depends on how the minimization problem at each iteration is
performed. In the common situation where each of the subproblems is
solved with high accuracy, the algorithm is only practical for functions
Ψ which can be represented as linear programs or quadratic programs.

Moreover, the method may also take advantage of certain properties
of Ψ∗ and K, in particular the representability of K and Ψ∗ through
linear programs. In this situation, the algorithm terminates after a finite
number of iterations with an exact minimizer. This can be checked by
testing if st ∈ K, i.e, maxh(w)61w

⊤st 6 1 (in which case, the outer
approximation is tight enough).

Interpretation using gauge functions. We define the gauge function
γK of the convex set K (that we have assumed to contain 0) as γK(s) =

min{λ ∈ R+, s ∈ λK}. If h is the support function of K, i.e., for all
w ∈ R

p, h(w) = maxs∈K w⊤s, then, h is the gauge function associated
to the polar set K◦ (see more details in Appendix A).

Primal interpretation. The iteration may be given a primal interpre-
tation. Indeed, we have:

max
s∈Rp

Ψ∗(−s) such that ∀i ∈ {0, . . . , t− 1}, w̄⊤
i s 6 h(w̄i)

= max
s∈Rp

min
λ∈R

t
+

−Ψ∗(−s) −
t−1∑

i=0

λi
[
w̄⊤
i s− h(w̄i)

]

= min
λ∈R

t
+

max
s∈Rp

−Ψ∗(−s) −
t−1∑

i=0

λi
[
w̄⊤
i s− h(w̄i)

]

= min
λ∈R

t
+

Ψ
(t−1∑

i=0

λiw̄i
)

+
t−1∑

i=0

λih(w̄i).

It may then be reformulated as

min
w∈Rp

Ψ(w) + min
µ∈R

t
+, w=

∑t−1

i=0
λiw̄i/h(w̄i)

t−1∑

i=0

λi.

7.9. Proximal methods 119

That is, the iteration first consists in replacing h(w) by a certain (con-
vex) upper-bound. This upper-bound may be given a special interpre-
tation using gauge functions. Indeed, if we consider the polar set K◦

and the (potentially infinite set) C of its extreme points, then h is the
gauge function of the set K◦, and also of the set C = {vi, i ∈ I}, that
is:

h(w) = inf
w=
∑

i∈I
λivi, λ>0

m∑

i=1

λi.

This means that we may reformulate the original problem as minimiz-
ing with respect to λ ∈ R

I the function Ψ(
∑
i∈I λivi) +

∑
i∈I λi. We

are thus using an active set method with respect to all elements of K◦.
Note that we may represent K◦ by its set of extreme points, which is
finite when K is a polytope. When I is not finite, some care has to be
taken but the algorithm also applies (see [60, 10] for details).

Moreover, the second part of the iteration is w̄t ∈
arg minh(w̄)61 w̄

⊤Ψ′(wt), which is exactly equivalent to testing
mini∈I v⊤

i Ψ′(w̄t) > −1, which happens to be the optimality condition
for the problem with respect to λ.

Convergence rates. Like Kelley’s method or bundle methods, the
dual simplicial method is finitely convergent when K is a polytope.
However, no bound is known regarding the number of iterations. Like
the simplicial method, a simpler method which does not require to fully
optimize the subproblem comes with a convergence rate in O(1/t). It
replaces the full minimization with respect to w in the conic hull of
all wi by a simple line-search over one or two parameters [211, 89, 10].

7.9 Proximal methods

When Ψ is smooth, then the particular form on non-smoothness of
the objective function may be taken advantage of. Proximal methods
essentially allow to solve the problem regularized with a new regularizer
at low implementation and computational costs. For a more complete
presentation of optimization techniques adapted to sparsity-inducing
norms, see, e.g., [11] and references therein. Proximal-gradient methods

120 Non-smooth Convex Optimization

constitute a class of first-order techniques typically designed to solve
problems of the following form [172, 20, 48]:

min
w∈Rp

Ψ(w) + h(w), (7.3)

where Ψ is smooth. They take advantage of the structure of Eq. (7.3)
as the sum of two convex terms, only one of which is assumed smooth.
Thus, we will typically assume that Ψ is differentiable (and in our
situation in Eq. (5.1), where Ψ corresponds to the data-fitting term,
that the loss function ℓ is convex and differentiable), with Lipschitz-
continuous gradients (such as the logistic or square loss), while h will
only be assumed convex.

Proximal methods have become increasingly popular over the past
few years, both in the signal processing (see, e.g., [21, 208, 48] and
numerous references therein) and in the machine learning communi-
ties (see, e.g., [11] and references therein). In a broad sense, these meth-
ods can be described as providing a natural extension of gradient-based
techniques when the objective function to minimize has a non-smooth
part. Proximal methods are iterative procedures. Their basic princi-
ple is to linearize, at each iteration, the function g around the current
estimate ŵ, and to update this estimate as the (unique, by strong con-
vexity) solution of the following proximal problem:

min
w∈Rp

[
Ψ(ŵ) + (w − ŵ)⊤Ψ′(ŵ) + h(w) +

L

2
‖w − ŵ‖2

2

]
. (7.4)

The role of the added quadratic term is to keep the update in a neigh-
borhood of ŵ where Ψ stays close to its current linear approximation;
L>0 is a parameter which is an upper bound on the Lipschitz constant
of the gradient Ψ′.

Provided that we can solve efficiently the proximal problem in
Eq. (7.4), this first iterative scheme constitutes a simple way of solv-
ing problem in Eq. (7.3). It appears under various names in the liter-
ature: proximal-gradient techniques [172], forward-backward splitting
methods [48], and iterative shrinkage-thresholding algorithm [20]. Fur-
thermore, it is possible to guarantee convergence rates for the function
values [172, 20], and after t iterations, the precision be shown to be of

7.9. Proximal methods 121

order O(1/t), which should contrasted with rates for the subgradient
case, that are rather O(1/

√
t).

This first iterative scheme can actually be extended to “acceler-
ated” versions [172, 20]. In that case, the update is not taken to be
exactly the result from Eq. (7.4); instead, it is obtained as the solution
of the proximal problem applied to a well-chosen linear combination
of the previous estimates. In that case, the function values converge
to the optimum with a rate of O(1/t2), where t is the iteration num-
ber. From [171], we know that this rate is optimal within the class
of first-order techniques; in other words, accelerated proximal-gradient
methods can be as fast as without non-smooth component.

We have so far given an overview of proximal methods, without
specifying how we precisely handle its core part, namely the computa-
tion of the proximal problem, as defined in Eq. (7.4).

Proximal problem. We first rewrite problem in Eq. (7.4) as

min
w∈Rp

1

2

∥∥w −
(
ŵ − 1

L
Ψ′(ŵ)

)∥∥2

2
+

1

L
h(w).

Under this form, we can readily observe that when h = 0, the solution
of the proximal problem is identical to the standard gradient update
rule. The problem above can be more generally viewed as an instance
of the proximal operator [151] associated with h:

Proxh : u ∈ R
p 7→ argmin

v∈Rp

1

2
‖u− v‖2

2 + h(v).

For many choices of regularizers h, the proximal problem has a
closed-form solution, which makes proximal methods particularly effi-
cient. If h is chosen to be the ℓ1-norm, the proximal operator is simply
the soft-thresholding operator applied elementwise [59]. In this mono-
graph the function h will be either the Lovász extension f of the sub-
modular function F , or, for non-decreasing submodular functions, the
norm Ωq defined in §5.3 and §5.4. In both cases, the proximal operator
can be cast a exactly one of the separable optimization problems we
consider Chapter 8.

122 Non-smooth Convex Optimization

7.10 Simplex algorithm for linear programming

We follow the exposition of [24]. We consider a vector c ∈ R
n and a

matrix A ∈ R
m×n, and the following linear program:

min
Ax=b, x>0

c⊤x, (7.5)

with dual problem

max
A⊤y6c

b⊤y, (7.6)

and optimality conditions: (a) x > 0, (b) A⊤y 6 c, (c) y⊤(Ax − b) =

0. We assume that m 6 n and that the m rows of A are linearly
independent.

The simplex method is an iterative algorithm that will explore ver-
tices of the polyhedron of Rn defined by Ax = b and x > 0. Since we
are maximizing a linear function over this polyhedron, if the problem
is bounded, the solution may be found within these vertices (the set of
solution is typically a face of the polyhedron and the simplex outputs
one of its vertices).

A basic feasible solution is defined by a subset J of m linearly in-
dependent columns of A (among the n possible ones), and such that
xJ = A−1

J b has non-negative components, where AJ denotes the sub-
matrix of A composed of the columns indexed by J (note that since
|J | = m, AJ is a square matrix which is invertible because we have as-
sumed A has full rank). This defines a feasible solution x ∈ R

n. It is said
non-degenerate if all components of xJ are strictly positive. For sim-
plicity, we assume that all basic feasible solutions are non-degenerate.

Given J and xJ = A−1
J b a non-degenerate feasible solution, we

consider a descent direction d such that dJc = 0 except for a single
component j ∈ Jc (which is equal to one). This will allow the variable
xj to enter the active set by considering x+ ud for a sufficiently small
u > 0. In order to satisfy the constraint Ax = b, we must have Ad = 0.
Since only the m components of d in J are undetermined and A has
rank m, the vector d is fully specified. Indeed, we have AJdJ +Aj = 0,
leading to dJ = −A−1

J Aj (with Aj ∈ R
n being the j-th column of A).

Along this direction, we have c⊤(x+ud) = c⊤
J xJ +u

[
cj − c⊤

J A
−1
J Aj]. If

7.10. Simplex algorithm for linear programming 123

we define y = A−⊤
J cJ ∈ R

m and c̄ = c−A⊤y, then the feasible direction
d including the new variable j ∈ Jc will lead to a rate of increase (or
decrease) of c̄j .

Intuitively, if c̄ > 0, there is no possible descent direction and x

should be optimal. Indeed, (x, y) is then a primal-dual optimal pair
(since the optimality conditions are then satisfied), otherwise, since
x is assumed non-degenerate, the direction d for a j ∈ Jc such that
c̄j < 0 is a strict descent direction. This direction may be followed
as long as (x + ud)J > 0. If dJ has only nonnegative components,
then the problem is unbounded. Otherwise, the largest positive u is
u = mini, di<0

xJ(i)

−di
=

xJ(k)

−dk
. We then replace J(k) by j in J and obtain

a new basic feasible solution.
For non-degenerate problems, the iteration described above leads

to a strict decrease of the primal objective, and since the number
of basic feasible solution is finite, the algorithm terminates in finitely
many steps; note however that there exists problem instances for which
exponentially many basic feasible solutions are visited, although the
average-case complexity is polynomial (see, e.g., [193] and references
therein). When the parameters A, b and c come from data with abso-
lutely continuous densities, the problem is non-degenerate with prob-
ability one. However, linear programs coming from combinatorial op-
timization (like the ones we consider in this monograph) do exhibit
degenerate solutions. Several strategies for the choice of basic feasi-
ble solutions may be used in order to avoid cycling of the iterations.
See [24, 174] for further details, in particular in terms of efficient asso-
ciated numerical linear algebra.

In this monograph, the simplex method will be used for submod-
ular function minimization, which will be cast a linear program with
exponentially many variables (i.e., n is large), but for which every step
has a polynomial-time complexity owing to the greedy algorithm (see
§10.5 for details).

124 Non-smooth Convex Optimization

7.11 Active-set methods for quadratic programming

We consider a vector c ∈ R
n, a positive semi-definite matrix Q ∈ R

n×n

and a matrix A ∈ R
m×n, and the following quadratic program:

min
Ax=b, x>0

1

2
x⊤Qx+ c⊤x. (7.7)

For simplicity, we assume that Q is invertible, m < n and A ∈ R
m×n

has full column rank. The dual optimization problem is obtained as
follows:

min
Ax=b, x>0

1

2
x⊤Qx+ c⊤x

= min
x∈Rn

max
λ∈Rm, µ∈R

n
+

1

2
x⊤Qx+ c⊤x− λ⊤(Ax− b) − µ⊤x

= max
λ∈Rm, µ∈R

n
+

min
x∈Rn

1

2
x⊤Qx+ c⊤x− λ⊤(Ax− b) − µ⊤x,

and the optimality conditions are (a) stationarity: Qx+c−A⊤λ−µ = 0,
(b) feasibility: Ax = b and µ > 0 and (c) complementary slackness:
µ⊤x = 0.

Active-set methods rely on the following fact: if the indices J of
the non-zero components of x are known, then the optimal xJ may
be obtained as minAJxJ=b

1
2x

⊤
JQJJxJ + c⊤

J xJ . This is a problem with
linear equality constraints but no inequality constraints. Its minimum
may be found through a primal-dual formulation:

min
AJxJ=b

1

2
x⊤
JQJJxJ + c⊤

J xJ

= min
xJ ∈R|J|

max
λ∈Rm

1

2
x⊤
JQJJxJ + c⊤

J xJ − λ⊤(AJxJ − b), (7.8)

with optimality conditions: (a) QJJxJ + cJ −A⊤
J λ = 0 and (b) AJxJ =

b. Primal-dual pairs for Eq. (7.8) may thus be obtained as the solution
of the following linear system:

(
QJJ −A⊤

J

−Aj 0

)(
xJ
λ

)
=

(−cJ
0

)
. (7.9)

The solution is globally optimal if and only if xJ > 0 and µJc =

QJcJxJ + cJc −A⊤
Jcλ > 0.

7.11. Active-set methods for quadratic programming 125

The iteration of an active set method is as follows, starting from
a feasible point x ∈ R

n (such that x > 0 and Ax = b) and an active
set J . From the set J ⊂ {1, . . . , n}, the potential solution y ∈ R

n may
be obtained as the solution of Eq. (7.8), with dual variable λ ∈ R

m:

(a) If yJ > 0 and QJcJyJ + cJc −A⊤
Jcλ > 0, then y is globally optimal

(b) If yJ > 0 and there exists j ∈ Jc such that QjJyJ + cj − A⊤
j λ < 0,

then j is added to J , and x replaced by y.

(c) If ∃j ∈ J such that yj < 0. Then let u be the largest positive scalar
so that x+u(y−x) > 0 and k be an index so that xk+u(yk−xk) = 0.
The set J is replaced by (J ∪ {j})\{k} and x by x+ u(y − x).

We can make the following observations:

– The unique solution (since we have assumed that Q is invertible) of
the quadratic problem may have more than m non-zero components
for x (as opposed to the simplex method).

– All iterations are primal-feasible.

– It is possible to deal with exponentially many components of x, i.e.,
n very large, as long as it is possible to compute maxj∈Jc QjJyJ +

cj −A⊤
j λ efficiently.

– In terms of numerical stability, care has to be taken to deal with
approximation solutions of the linear system in Eq. (7.9), which may
be ill-conditioned. See more practical details in [174].

– Active sets methods may also be used when the matrix Q is not
positive definite [174]. In this monograph, we will always consider
adding an extra ridge penalty proportional to ‖x‖2

2 for a small ε > 0.
It in this section, we assume for simplicity that I is finite, but it can
be extended easily to infinite uncountable sets using gauge functions.

– Classical examples that will be covered in this monograph are
minη>0, η⊤1=1

1
2‖S⊤η‖2 (then obtaining the minimum-norm-point al-

gorithm described in §9.2), or least-squares problems 1
2n‖y−Xw‖2

2 +

h(w), for h(w) a polyhedral function, which may be represented ei-
ther as h(w) = maxs∈K s⊤w with K being a polytope (or only its

126 Non-smooth Convex Optimization

extreme points), or as h(w) = infw=
∑

i∈I
ηiwi

∑
i∈I ηi, for a certain

family (wi)i∈I . See next section for more details.

7.12 Active set algorithms for least-squares problems∗

We consider a design matrix X ∈ R
n×p and the following optimization

problem

min
w∈Rp

1

2n
‖y −Xw‖2

2 + λh(w), (7.10)

for a certain non-negative polyhedral convex function h, which may be
represented either as h(w) = maxs∈K s⊤w with K being a polytope
(or only its extreme points), or as h(w) = infw=

∑
i∈I

ηiwi

∑
i∈I ηi, for

a certain family (wi)i∈I . We will assume for simplicity that X⊤X is
invertible. In practice, one may add a ridge penalty ε

2‖w‖2
2.

Primal active-set algorithm. We consider the first representation
h(w) = infw=

∑
i∈I

ηiwi

∑
i∈I ηi, for a certain family (wi)i∈I , which leads

to the following optimization problem in η ∈ R
I :

min
η∈R

I
+

1

2n

∥∥∥∥y −
∑

i∈I
ηiXwi

∥∥∥∥
2

2

+ λ
∑

i∈I
ηi. (7.11)

We consider the matrix Z ∈ R
n×|I| with columns Xwi ∈ R

n, for
i ∈ I. The problem is then equivalent to a least-square problem with
non-negative constraints (with algorithms similar to algorithms for ℓ1-
regularized problems [11]).

The active-set algorithm starts from J = ∅ and η = 0, and perform
the following iteration:

– Compute ζ such that ζJc = 0 and ζJ ∈ arg minζJ ∈RJ
1

2n

∥∥y−ZJζJ
∥∥2

2
+

λ
∑
i∈J ζi, which is equal to ζJ = (Z⊤

J ZJ)−1(Z⊤
J y − nλ1J).

– If ζJ > 0 and Z⊤
Jc(ZJζJ − y) +nλ1Jc > 0, then ζ is globally optimal.

– If ζJ > 0 and ∃j ∈ Jc, Z⊤
j (ZJζJ − y) + nλ < 0, then replace J by

J ∪ {j} and η by ζ.

7.12. Active set algorithms for least-squares problems∗ 127

– If ∃j ∈ J , ζj < 0, then let u be the largest positive scalar so that
η + u(ζ − η) > 0 and k be an index so that ηj + u(ζk − ηk) = 0, i.e.,
k ∈ argmink∈J, ζk<ηk

ηk
ηk−ζk

. The set J is replaced by (J ∪ {j})\{k}
and η by η + u(ζ − η).

The algorithm terminates after finitely many iterations (but the
number of these, typically of order O(p), may be exponential in p in
general). Note that the algorithm needs to access the potentially large
number of columns of Z through the maximization of Z⊤

j t with respect
to j ∈ I for a certain vector t ∈ R

p. This corresponds to the support
function of the convex hull of columns Zj, j ∈ I. Moreover, only linear
systems with size |J | need to be solved, and these are usually small.

Note that this algorithm is close to a specific instantiation of the
dual simplicial method of §7.8. Indeed, every time we are in the sit-
uation where we add a new index to J (i.e., ζJ > 0 and ∃j ∈ Jc,
Z⊤
j (ZJζJ − y) + nλ < 0), then we have the solution of the original

problem (with positivity constraints) on the reduced set of variables J .
Note that when a variable is removed in the last step, it may re-enter
the active set later on (this appears very unfrequently in practice, see a
counter-example in Figure 7.5 for the minimum-norm-point algorithm,
which is a dual active set algorithm for a least-square problem with
no design), and thus we only have a partial instantiation of the dual
simplicial method.

Primal regularization paths A related algorithm computes the entire
regularization path, i.e., the set of solutions for all λ ∈ R+. These algo-
rithms hinge on the fact that the set J ⊂ I is globally optimal as long
as ζJ = (Z⊤

J ZJ)−1(Z⊤
J y − nλ1J) > 0 and Z⊤

Jc(ZJζJ − y) + nλ1Jc > 0,
which defines an interval of validity in λ, leading to a solution path
which is piecewise affine in λ [147, 178].

Starting from the first break-point, λ0 = maxj∈J
1
nZ

⊤
j y, the solu-

tion η0 = 0 and the set J0 composed of the index j maximizing Z⊤
j y

(so that w = 0 for all λ > λ0), the following iterations are performed:

– For J = Jk, compute the smallest λk > 0 such that (a)
(Z⊤

J ZJ)−1Z⊤
J y−nλ(Z⊤

J ZJ)−11J > 0 and (b) Z⊤
Jc

(
ZJ(Z⊤

J ZJ)−1Z⊤
J −

I
)
y + nλ

(
1Jc − Z⊤

Jc(Z⊤
J ZJ)−1

)
> 0.

128 Non-smooth Convex Optimization

D

A
O

Q
C

P

B

Figure 7.5: Counter-example for re-entering of a constraint in quadratic program-
ming. We consider the problem of finding the projection of O onto the convex hull
of four points in three dimensions A, B, C and D. Since O is in this convex hull,
it is equal to its projection. P is the projection of O on the segment AB. Starting
from the active set {A, B}, the best new point to add is C. The points Q is the
projection of O on the triangle ABC and happens to be on the segment AC. This
implies that B has exited the active set; however, it needs to re-enter in the next
iteration because the optimal solution includes it.

– On the interval [λk, λk−1], the optimal set of J and ηJ =

(Z⊤
J ZJ)−1(Z⊤

J y − nλ1J), set ηkJ = (Z⊤
J ZJ)−1(Z⊤

J y − nλk1J).

– If λk = 0, the algorithm terminates.

– If the constraint (a) is the limiting one, with corresponding index
j ∈ J , then set Jk = Jk\{j}.

– If the constraint (b) is the limiting one, with corresponding index
j ∈ Jc, then set Jk = Jk ∪ {j}.

– Replace k by k + 1.

The algorithm stops with a sequence of break-points (λk), and corre-
sponding vectors (ηk). The number of break-points is typically of order
O(|I|) but it may be exponential in the worst-case [144]. Note that
typically, the algorithm may be stopped after a certain maximal size of
active set |J | is attained. Then, beyond the linear system with size less
than |J | that need to be solved, the columns of Z are accessed to sat-
isfy constraint (b) above, which requires more than simply maximizing
Z⊤
j u for some u (but can be solved by binary search using such tests).

Dual active-set algorithm. We consider the representation h(w) =

maxi∈I s⊤
i w, for a family (si)i∈I of vectors in R

p. For simplicity, we
assume that 0 is in the convex hull of points si with known linear

7.12. Active set algorithms for least-squares problems∗ 129

combination coefficients (in practice, one may simply add 0 to the set
of si, i ∈ I, so that one can start the algorithm with α = 0 and w

the ordinary least-square solution) and that S ∈ R
|I|×p is the matrix

whose columns are the vectors si, i ∈ I. This leads to the optimization
problem:

min
w∈Rp

1

2n
‖y −Xw‖2

2 + λmax
i∈I

s⊤
i w. (7.12)

We may derive a dual optimization problem by introducing a new vari-
able u = Xw ∈ R

n and its associated Lagrange multipler α ∈ R
n:

min
w∈Rp

1

2n
‖y −Xw‖2

2 + λmax
i∈I

s⊤
i w

= min
(w,u)∈Rp+n

1

2n
‖y − u‖2

2 + max
(ηi)i∈R

I
+, η

⊤1I =λ
w⊤∑

i∈I
ηisi + max

α∈Rn
α⊤(u−Xw)

= min
(w,u)∈Rp+n

max
α∈Rn, (ηi)i∈RI

+

1

2n
‖y − u‖2

2 + w⊤∑

i∈I
ηisi + α⊤(u−Xw)

such that η⊤1I = λ

= max
α∈Rn, (ηi)i∈RI

+

min
(w,u)∈Rp+n

1

2n
‖y − u‖2

2 + w⊤∑

i∈I
ηisi + α⊤(u−Xw)

such that η⊤1I = λ

= max
α∈Rn, (ηi)i∈R

I
+, η

⊤1I =λ
−n

2
‖α‖2

2 + y⊤α such that S⊤η = X⊤α,

where the optimal u is obtained from α as u = y − nα. The problem
above is a quadratic program in the variables η and α. The active set
algorithm described in §7.11 may thus be applied, and starting from
feasible dual variables (α, η) (which are easy to find with α = 0, since
0 is in the convex hull of all si), and a subset J ⊆ I, the following
iteration is performed:

– Compute a maximizer (β, ζJ) of −n
2 ‖β‖2

2 + y⊤β subjet to S⊤
J ζJ =

X⊤β and ζ⊤
J 1J = λ. This problem is may be put in variational form

as follows:

max
β∈Rn

max
ζ⊤

J 1J =λ
min
w∈Rp

−n

2
‖β‖2

2 + y⊤β + w⊤(S⊤
J ζJ −X⊤β)

= min
w∈Rp, SJw=c1J , c∈R

1

2n
‖y −Xw‖2

2 + λc,

130 Non-smooth Convex Optimization

with the following optimality conditions (a) stationarity: y −Xw −
nβ = 0, (b) feasibility: S⊤

J ζJ = X⊤β, ζ⊤
J 1J = λ and SJw = c1J .

These may be put in a single symmetric linear system:

(1
nX

⊤X S⊤
J 0

SJ 0 −1J
0 −1⊤

J

)(w

ζJ
c

)
=

(1
nX

⊤y
0J
−λ

)
.

– If ζJ > 0 and maxj∈Jc s⊤
j w 6 c, then the pair (ζ, β) is globally

optimal.

– If ζJ > 0 and maxj∈Jc s⊤
j w > c, then the set J is replaced by J ∪{j}

with j the corresponding maximizer in Jc, and (η, α) by (ζ, β).

– If ∃j ∈ J such that ζj < 0, then then let u be the largest positive
scalar so that η+u(ζ− η) > 0 and k be an index so that ηj +u(ζk −
ηk) = 0, i.e., k ∈ argmink∈J, ζk<ηk

ηk
ηk−ζk

. The set J is replaced by
(J ∪ {j})\{k} and (η, α) by (η + u(ζ − η), α + u(β − α)).

Note that the full family of vectors si is only accessed through
the maximization of a linear function s⊤

j w for a certain w. This is thus
well adapted to our situation where si are the extreme points of the the
base polytope (or of a polyhedral dual ball). Moreover, this algorithm is
close to a particular instantiation of the simplicial algorithm from §7.7,
and, like in the primal active-set method, once a variable is removed,
it may re-enter the active set (this is not frequent in practice, see a
counter-example in Figure 7.5).

In our context, where h(w) may be a sparsity-inducing norm, then
the potential sparsity in w is not used (as opposed to the primal active-
set method). This leads in practice to large active sets and potential
instability problems (see Chapter 12). Finally, regularization paths may
be derived using the same principles as before, since the local solution
with a known active set has an affine dependence in λ.

8

Separable Optimization Problems: Analysis

In this chapter, we consider separable convex functions and the mini-
mization of such functions penalized by the Lovász extension of a sub-
modular function. When the separable functions are all quadratic func-
tions, those problems are often referred to as proximal problems and
are often used as inner loops in convex optimization problems regu-
larized by the Lovász extension (see a brief introduction in §7.9 and,
e.g., [48, 11] and references therein). Beyond their use for convex op-
timization problems, we show in this chapter that they are also inti-
mately related to submodular function minimization, and can thus be
also useful to solve discrete optimization problems.

We first study the separable optimization problem and derive its
dual—which corresponds to maximizing a separable function on the
base polyhedron B(F)—and associated optimality conditions in §8.1.
We then consider in §8.2 the equivalence between separable optimiza-
tion problems and a sequence of submodular minimization problems.
In §8.3, we focus on quadratic functions, with intimate links with sub-
modular function minimization and orthogonal projections on B(F).
Finally, in §8.4, we consider optimization problems on the other poly-
hedra we have defined, i.e., P (F), P+(F) and |P |(F) and show how

131

132 Separable Optimization Problems: Analysis

solutions may be obtained from solutions of the separable problems on
B(F). For related algorithm see Chapter 9.

8.1 Optimality conditions for base polyhedra

Throughout this chapter, we make the simplifying assumption that
the problem is strictly convex and differentiable (but not necessarily
quadratic) and such that the derivatives are unbounded, but sharp
statements could also be made in the general case. The next propo-
sition shows that by convex strong duality (see Appendix A), it is
equivalent to the maximization of a separable concave function over
the base polyhedron.

Proposition 8.1. (Dual of proximal optimization problem) Let F
be a submodular function and f its Lovász extension. Let ψ1, . . . , ψp be
p continuously differentiable strictly convex functions on R such that
for all j ∈ V , supα∈R ψ

′
j(α) = +∞ and infα∈R ψ

′
j(α) = −∞. Denote

ψ∗
1 , . . . , ψ

∗
p their Fenchel-conjugates (which then have full domain). The

two following optimization problems are dual of each other:

min
w∈Rp

f(w) +
p∑

j=1

ψj(wj), (8.1)

max
s∈B(F)

−
p∑

j=1

ψ∗
j (−sj). (8.2)

The pair (w, s) is optimal if and only if (a) sk = −ψ′
k(wk) for all

k ∈ {1, . . . , p}, and (b) s ∈ B(F) is optimal for the maximization of
w⊤s over s ∈ B(F) (see Prop. 4.2 for optimality conditions).

Proof. We have assumed that for all j ∈ V , supα∈R ψ
′
j(α) = +∞

and infα∈R ψ
′
j(α) = −∞. This implies that the Fenchel-conjugates

ψ∗
j (which are already differentiable because of the strict convexity of
ψj [28]) are defined and finite on R; moreover, since each ψk is contin-
uously differentiable, each ψ∗

k is strictly convex. This implies that both
w and s are unique.

We have (since strong duality applies because of Fenchel duality,

8.2. Equivalence with submodular function minimization 133

see Appendix A.1 and [28]):

min
w∈Rp

f(w) +
p∑

j=1

ψj(wj) = min
w∈Rp

max
s∈B(F)

w⊤s+
p∑

j=1

ψj(wj),

= max
s∈B(F)

min
w∈Rp

w⊤s+
p∑

j=1

ψj(wj),

= max
s∈B(F)

−
p∑

j=1

ψ∗
j (−sj),

where ψ∗
j is the Fenchel-conjugate of ψj. Thus the separably penalized

problem defined in Eq. (8.1) is equivalent to a separable maximization
over the base polyhedron (i.e., Eq. (8.2)). Moreover, the unique opti-
mal s for Eq. (8.2) and the unique optimal w for Eq. (8.1) are related
through sj = −ψ′

j(wj) for all j ∈ V .

Duality gap. Given a pair of candidate (w, s) such that w ∈ R
p and

s ∈ B(F), then the difference between the primal objective function in
Eq. (8.1) and the dual objective in Eq. (8.2) provides a certificate of
suboptimality for both w and s. It is equal to:

gap(w, s) = f(w)−w⊤s+
∑

j∈V

{
ψj(wj)+ψ∗(−sj)−wj(−sj)

}
. (8.3)

Note that gap(w, s) is always non-negative, is the sum of the non-
negative terms (by Fenchel-Young inequality, see Appendix A): f(w)−
w⊤s and ψj(wj) + ψ∗(−sj) − wj(−sj), for j ∈ {1, . . . , p}; this gap is
thus equal to zero if and only these two terms are equal to zero.

8.2 Equivalence with submodular function minimization

Following [38], we also consider a sequence of set optimization problems,
parameterized by α ∈ R:

min
A⊆V

F (A) +
∑

j∈A
ψ′
j(α). (8.4)

We denote by Aα any minimizer of Eq. (8.4); typically, there may be
several minimizers. Note that Aα is a minimizer of a submodular func-
tion F + ψ′(α), where ψ′(α) ∈ R

p is the vector of components ψ′
k(α),

k ∈ {1, . . . , p}.

134 Separable Optimization Problems: Analysis

The key property we highlight in this section is that, as shown
in [38], solving Eq. (8.1), which is a convex optimization problem, is
equivalent to solving Eq. (8.4) for all possible α ∈ R, which are sub-
modular optimization problems. We first show a monotonicity property
of solutions of Eq. (8.4). Note that in the sequence of arguments show-
ing equivalence between the separable convex problems, submodularity
is only used here.

Proposition 8.2. (Monotonicity of solutions) Under the same as-
sumptions than in Prop. 8.1, if α < β, then any solutions Aα and Aβ

of Eq. (8.4) for α and β satisfy Aβ ⊆ Aα.

Proof. We have, by optimality of Aα and Aβ :

F (Aα) +
∑

j∈Aα

ψ′
j(α) 6 F (Aα ∪Aβ) +

∑

j∈Aα∪Aβ

ψ′
j(α)

F (Aβ) +
∑

j∈Aβ

ψ′
j(β) 6 F (Aα ∩Aβ) +

∑

j∈Aα∩Aβ

ψ′
j(β),

and by summing the two inequalities and using the submodularity of F ,
∑

j∈Aα

ψ′
j(α) +

∑

j∈Aβ

ψ′
j(β) 6

∑

j∈Aα∪Aβ

ψ′
j(α) +

∑

j∈Aα∩Aβ

ψ′
j(β),

which is equivalent to
∑
j∈Aβ\Aα

[
ψ′
j(β) − ψ′

j(α)
]
6 0, which implies,

since for all j ∈ V , ψ′
j(β) > ψ′

j(α) (because of strict convexity), that
Aβ\Aα = ∅.

The next proposition shows that we can obtain the unique solution
of Eq. (8.1) from all solutions of Eq. (8.4).

Proposition 8.3. (Proximal problem from submodular function

minimizations) Under the same assumptions than in Prop. 8.1, given
any solutions Aα of problems in Eq. (8.4), for all α ∈ R, we define the
vector u ∈ R

p as
uj = sup({α ∈ R, j ∈ Aα}).

Then u is the unique solution of the convex optimization problem in
Eq. (8.1).

8.2. Equivalence with submodular function minimization 135

Proof. Because infα∈R ψ
′
j(α) = −∞, for α small enough, we must have

Aα = V , and thus uj is well-defined and finite for all j ∈ V .
If α > uj, then, by definition of uj , j /∈ Aα. This implies that

Aα ⊆ {j ∈ V, uj > α} = {u > α}. Moreover, if uj > α, there exists β ∈
(α, uj) such that j ∈ Aβ . By the monotonicity property of Prop. 8.2,
Aβ is included in Aα. This implies {u > α} ⊆ Aα.

We have for all w ∈ R
p, and β less than the smallest of (wj)− and

the smallest of (uj)−, j ∈ V , using Eq. (3.4) from Prop. 3.1:

f(u) +
p∑

j=1

ψj(uj)

=

∫ ∞

0
F ({u > α})dα +

∫ 0

β
(F ({u > α}) − F (V))dα

+
p∑

j=1

{∫ uj

β
ψ′
j(α)dα + ψj(β)

}

= C +

∫ ∞

β

[
F ({u > α}) +

p∑

j=1

(1uj>α)jψ
′
j(α)

]
dα

with C =

∫ β

0
F (V)dα +

p∑

j=1

ψj(β),

6 C +

∫ ∞

β

[
F ({w > α}) +

p∑

j=1

(1wj>α)jψ
′
j(α)

]
dα,

because Aα is optimal for F + ψ′(α) and {u > α} ⊆ Aα ⊆ {u > α}
(and what happens when α is equal to one of the components of u is
irrelevant for integration). By performing the same sequence of steps
on the last equation, we get:

f(u) +
p∑

j=1

ψj(uj) 6 f(w) +
p∑

j=1

ψj(wj).

This shows that u is indeed the unique optimum of the problem in
Eq. (8.1).

From the previous proposition, we also get the following corollary,
i.e., all solutions of the submodular function minimization problems
in Eq. (8.4) may be obtained from the unique solution of the convex
optimization problem in Eq. (8.1). Note that we immediately get the

136 Separable Optimization Problems: Analysis

maximal and minimal minimizers, but that there is no general charac-
terization of the set of minimizers (see more details in §10.1).

Proposition 8.4. (Submodular function minimizations from

proximal problem) Under the same assumptions than in Prop. 8.1,
if u is the unique minimizer of Eq. (8.1), then for all α ∈ R, the min-
imal minimizer of Eq. (8.4) is {u > α} and the maximal minimizer
is {u > α}. Moreover, we have {u > α} ⊆ Aα ⊆ {u > α} for any
minimizer Aα.

Proof. From the definition of the supremum in Prop. 8.3, then we im-
mediately obtain that {u > α} ⊆ Aα ⊆ {u > α} for any minimizer
Aα. Moreover, if α is not a value taken by some uj, j ∈ V , then this
defines uniquely Aα. If not, then we simply need to show that {u > α}
and {u > α} are indeed maximizers, which can be obtained by taking
limits of Aβ when β tends to α from below and above.

Duality gap. The previous proposition relates the optimal solutions
of different optimization problems. The next proposition shows that
approximate solutions also have a link, as the duality gap for Eq. (8.1)
is the integral over α of the duality gaps for Eq. (8.4).

Proposition 8.5. (Decomposition of duality gap) With the same
assumptions than Prop. 8.1, let s ∈ B(F) and w ∈ R

p. The gap
gap(w, s) defined in Eq. (8.3) decomposes as follows:

gap(w, s) = f(w) − w⊤s+
p∑

j=1

{
ψj(wj) + ψ∗

j (−sj) + wjsj
}

=

∫ +∞

−∞

{
(F + ψ′(α))({w > α}) − (s+ ψ′(α))−(V)

}
dα. (8.5)

Proof. From Eq. (3.4) in Prop. 3.1, for M > 0 large enough,

f(w) =

∫ +∞

−M
F ({w > α})dα −MF (V).

Moreover, for any j ∈ {1, . . . , p},

ψj(wj) =

∫ wj

−M
ψ′
j(α)dα + ψj(−M) =

∫ +∞

−M
ψ′
j(α)1wj>αdα+ ψj(−M).

8.3. Quadratic optimization problems 137

Finally, since sj + ψ′
j(α) ⇔ α 6 (ψ∗)′(−sj), we have:

∫ +∞

−M
(sj + ψ′

j(α))−dα =

∫ (ψ∗)′(−sj)

−M
(sj + ψ′

j(α))dα

= sj
[
(ψ∗)′(−sj) +M

]
+ ψj((ψ

∗)′(−sj)) − ψj(−M)

= sjM − ψj(−M) − ψ∗
j (−sj),

the last equality stemming from equality in Fenchel-Young inequality
(see Appendix A.1). By combining the last three equations, we obtain
(using s(V) = F (V)):

gap(w, s) =

∫ +∞

−M

{
(F + ψ′(α))({w > α}) − (s+ ψ′(α))−(V)

}
dα.

Since the integrand is equal to zero for α 6 −M , the result follows.

Thus, the duality gap of the separable optimization problem in
Prop. 8.1, may be written as the integral of a function of α. It turns
out that, as a consequence of Prop. 10.3 (Chapter 10), this function of
α is the duality gap for the minimization of the submodular function
F+ψ′(α). Thus, we obtain another direct proof of the previous proposi-
tions. Eq. (8.5) will be particularly useful when relating an approximate
solution of the convex optimization problem to an approximate solution
of the combinatorial optimization problem of minimizing a submodular
function (see §10.8).

8.3 Quadratic optimization problems

When specializing Prop. 8.1 and Prop. 8.4 to quadratic functions, we
obtain the following corollary, which shows how to obtain minimizers
of F (A)+λ|A| for all possible λ ∈ R from a single convex optimization
problem:

Proposition 8.6. (Quadratic optimization problem) Let F be a
submodular function and w ∈ R

p the unique minimizer of w 7→ f(w) +
1
2‖w‖2

2. Then:
(a) s = −w is the point in B(F) with minimum ℓ2-norm,
(b) For all λ ∈ R, the maximal minimizer of A 7→ F (A) + λ|A| is
{w > −λ} and the minimal minimizer of F is {w > −λ}.

138 Separable Optimization Problems: Analysis

One of the consequences of the last proposition is that some of the
solutions to the problem of minimizing a submodular function sub-
ject to cardinality constraints may be obtained directly from the solu-
tion of the quadratic separable optimization problems (see more details
in [156]).

Another crucial consequence is obtained for λ = 0: a minimizer
of the submodular function F may be obtained by thresholding the
orthogonal projection of 0 onto the base polyhedroon B(F) [73]. See
more details in Chapter 10.

Primal candidates from dual candidates. From Prop. 8.6, given the
optimal solution s of maxs∈B(F) −1

2‖s‖2
2, we obtain the optimal so-

lution w = −s of minw∈Rp f(w) + 1
2‖w‖2

2. However, when using ap-
proximate algorithms such as the ones presented in Chapter 9, one
may actually get only an approximate dual solution s, and in this
case, one can improve over the natural candidate primal solution
w = −s. Indeed, assume that the components of s are sorted in in-
creasing order sj1 6 · · · 6 sjp, and denote t ∈ B(F) the vector
defined by tjk

= F ({j1, . . . , jk}) − F ({j1, . . . , jk−1}) . Then we have
f(−s) = t⊤(−s), and for any w such that wj1 > · · · > wjp, we have
f(w) = w⊤t. Thus, by minimizing w⊤t + 1

2‖w‖2
2 subject to this con-

straint, we improve on the choice w = −s. Note that this is exactly
an isotonic regression problem with total order, which can be solved
simply and efficiently in O(p) by the “pool adjacent violators” algo-
rithm (see, e.g., [25] and Appendix A.3). In §12.2, we show that this
leads to much improved approximate duality gaps. In Figure 8.1, we
illustrate the following geometric interpretation: each permutation of
the p elements of V defines a (typically non-unique) extreme point t
of B(F), and the dual optimization problem of the isotonic regression
problem (see Appendix A.3) corresponds to the orthogonal projection
of 0 onto the set of u ∈ R

b such thats u(V) = F (V) and for all k,
s({j1, . . . , jk}) 6 F ({j1, . . . , jk}). This set is an outer approximation of
K that contains the tangent cone of B(F) at u (it may not be equal to
it when several orderings lead to the same base t).

8.4. Separable problems on other polyhedra∗ 139

s =F({3})
31s +s =F({1,3})

1s =F({1})
2s

3s

2s =F({2})

32s +s =F({2,3})

1s

21s +s =F({1,2})

3

t

0

u

Figure 8.1: Representation of B(F) for a submodular function with p = 3 (pro-
jected onto the set s(V) = F (V)), with the projection u of 0 onto the tangent cone
at an extreme point t corresponding to the ordering (2,1,3).

Additional properties. Proximal problems with the square loss ex-
hibit further interesting properties. For example, when considering
problems of the form minw∈Rp λf(w) + 1

2‖w− z‖2
2, for varying λ, some

set-functions (such as the cut in the chain graph) leads to an agglom-
erative path, i.e., as λ increases, components of the unique optimal so-
lutions cluster together and never get separated [8]. This is illustrated
in Figure 5.6 for cardinality-based functions.

Also, one may add an additional ℓ1-norm penalty to the regularized
quadratic separable problem defined above, and it is shown in [8] that,
for any submodular function, the solution of the optimization problem
may be obtained by soft-thresholding the result of the original proximal
problem; note that this is not true for other separable optimization
problems (see also [141, Appendix B]).

8.4 Separable problems on other polyhedra∗

We now show how to minimize a separable convex function on the sub-
modular polyhedron P (F), the positive submodular polyhedron P+(F)

and the symmetric submodular polyhedron |P |(F), given the minimizer
on the base polyhedron B(F). We first show the following proposition
for the submodular polyhedron of any submodular function (non neces-
sarily non-decreasing), which relates the unrestricted proximal problem
with the proximal problem restricted to R

p
+. Note that we state results

with the same regularity assumptions than for Prop. 8.1, but that these

140 Separable Optimization Problems: Analysis

could be relaxed.

Proposition 8.7. (Separable optimization on the submodular

polyhedron) With the same conditions than for Prop. 8.1, let (v, t)

be a primal-dual optimal pair for the problem

min
v∈Rp

f(v) +
∑

k∈V
ψk(vk) = max

t∈B(F)
−
∑

k∈V
ψ∗
k(−tk). (8.6)

For k ∈ V , let sk be a maximizer of −ψ∗
k(−sk) on (−∞, tk]. Define

w = v+. Then (w, s) is a primal-dual optimal pair for the problem

min
w∈R

p
+

f(w) +
∑

k∈V
ψk(wk) = max

s∈P (F)
−
∑

k∈V
ψ∗
k(−sk). (8.7)

Proof. The pair (w, s) is optimal for Eq. (8.7) if and only if (a) wksk +

ψk(wk)+ψ∗
k(−sk) = 0, i.e., (wk,−sk) is a Fenchel-dual pair for ψk, and

(b) f(w) = s⊤w.
For each k ∈ V , there are two possibilities, sk = tk or sk < tk.

The equality sk = tk occurs when the function sk 7→ −ψ∗
k(−sk) has

positive derivative at tk, i.e., (ψ∗
k)′(−tk) > 0. Since vk = (ψ∗

k)′(−tk) by
optimality for Eq. (8.6), this occurs when vk > 0, and thus wk = sk
and the pair (wk,−sk) is Fenchel-dual. The inequality sk < tk occurs
when (ψ∗

k)
′(−tk) < 0, i.e., vk < 0. In this situation, by optimality of

sk, (ψ∗
k)

′(−sk) = 0, and thus the pair (wk,−sk) is optimal. This shows
that condition (a) is met.

For the second condition (b), notice that s is obtained from t by
keeping the components of t corresponding to strictly positive values
of v (let K denote that subset), and lowering the ones for V \K. For
α > 0, the level sets {w > α} are equal to {v > α} ⊆ K. Thus, by
Prop. 4.2, all of these are tight for t (i.e., for these sets A, t(A) = F (A))
and hence for s because these sets are included in K, and sK = tK . This
shows, by Prop. 4.2, that s ∈ P (F) is optimal for maxs∈P (F)w

⊤s.

We can apply Prop. 8.7 to perform the orthogonal projection onto
P (F): for z ∈ R

p, and ψk(wk) = 1
2(wk−zk)

2, then ψ∗
k(sk) = 1

2s
2
k+skzk,

and the problem in Eq. (8.7) is indeed the orthogonal projection of z
onto P (F). Given the optimal primal-dual pairs (v, t) for Eq. (8.6)—
i.e., t is the orthogonal projection of z onto B(F), we get w = v+ and

8.4. Separable problems on other polyhedra∗ 141

s

s1

2

B(F)

s z

t
P(F)

s

s1

2

B(F)

z

+
t

s
u

P (F)

Figure 8.2: From orthogonal projections onto B(F) to orthogonal projections onto
P (F) and P+(F). Left: t is the projection of z onto B(F), from which we obtain
the projection s onto P (F). Right: t is the projection of z onto B(F), from which
we obtain the projection u onto P (F), then the projection s onto P+(F).

s = z − (z − t)+, i.e., sk = tk if zk > tk, and sk = zk otherwise. See
illustration in Figure 8.2.

Note that we can go from the solutions of separable problems on
B(F) to the ones on P (F), but not vice-versa. Moreover, Prop. 8.7
involves primal-dual pairs (w, s) and (v, t), but that we can define w
from v only, and define s from t only; thus, primal-only views and dual-
only views are possible. This also applies to Prop. 8.9 and Prop. 8.8,
which extends Prop. 8.7 to the symmetric and positive submodular
polyhedra (we denote by a◦b the pointwise product between two vectors
of same dimension).

Proposition 8.8. (Separable optimization on the positive sub-

modular polyhedron) Assume F is submodular and non-decreasing.
With the same conditions than for Prop. 8.1, let (v, t) be a primal-dual
optimal pair for the problem

min
v∈Rp

f(v) +
∑

k∈V
ψk(vk) = max

t∈B(F)
−
∑

k∈V
ψ∗
k(−tk).

Let wk be the minimizer of ψk(wk) on (−∞, (vk)+] and sk be the pos-
itive part of the maximizer of −ψ∗

k(−sk) on (−∞, tk]. Then (w, s) is a
primal-dual optimal pair for the problem

min
w∈Rp

f(w+) +
∑

k∈V
ψk(wk) = max

s∈P+(F)
−
∑

k∈V
ψ∗
k(−sk).

142 Separable Optimization Problems: Analysis

Proof. Let (a, u) be the primal-dual pair obtained from Prop. 8.7, itself
obtained from (v, t). The pair (w, s) is obtained from (a, u), as sk =

(uk)+ and wk be the minimizer of ψk(wk) on (−∞, ak] for all k ∈ V .
We use a similar argument than in the proof of Prop. 8.7, to show that
(a) the pair (wk,−sk) is a Fenchel dual pair for ψk and (b) s ∈ P+(F)

maximizes w⊤s.
If uk > 0, then we have sk = (uk)+ = uk, moreover this means that

ψ′
k(ak) = −uk 6 0 and thus wk = ak (as the minimizer defining wk is

attained on the boundary of the interval). This implies from Prop. 8.7
that (w,−s) = (a,−u) is a Fenchel-dual pair. If uk < 0, then sk =

(uk)+ = 0, moreover, since ψ′
k(ak) = −uk > 0, then the optimization

problem defining wk has a solution away from the boundary, which
implies that ψ′

k(wk) = 0, and thus the pair (w,−s) is optimal for ψk.
This implies condition (a).

In order to show condition (b), from Prop. 4.9, we simply need to
show that all strictly positive suplevel-sets of w are tight for F and
that wk < 0 implies sk = 0. Since wk < 0 can only occur when uk < 0

(and then sk = 0), we only need to check the first property. We now
need to consider two other cases: (1) if vk < 0, then uk = (vk)+ = 0

and wk 6 uk = 0, and thus this does not contribute to the positive
level sets of w. (2) If vk > 0, then ak = vk and uk = tk; moreover, since
B(F) ⊂ R

p
+, we must have tk > 0, which implies sk = uk = tk and

wk = ak = vk. Thus the positive suplevel sets of w are the ones of v
and for these indices k, sk = tk. Thus the positive suplevel sets of w
are tight for s from the optimality of t ∈ B(F).

For quadratic functions ψk(wk) = 1
2(wk−zk)2, the previous proposi-

tion can be seen as projecting on P (F), then projecting on the positive
orthant R

p
+. Doing the projections in the other order would here lead

to the same result. See illustration in Figure 8.2.

Proposition 8.9. (Separable optimization on the symmetric

submodular polyhedron) Assume F is submodular and non-
decreasing. With the same conditions than for Prop. 8.1, let εk ∈
{−1, 1} denote the sign of (ψ∗

k)
′(0) = arg maxsk∈R ψ

∗
k(sk) (if it is equal

to zero, then the sign can be either −1 or 1). Let (v, t) be a primal-dual

8.4. Separable problems on other polyhedra∗ 143

optimal pair for the problem

min
v∈Rp

f(v) +
∑

k∈V
ψk(εkvk) = max

t∈B(F)
−
∑

k∈V
ψ∗
k(−εktk).

Let w = ε ◦ (v+) and sk be εk times a maximizer of −ψ∗
k(−εksk) on

(−∞, tk]. Then (w, s) is a primal-dual optimal pair for the problem

min
w∈Rp

f(|w|) +
∑

k∈V
ψk(wk) = max

s∈|P |(F)
−
∑

k∈V
ψ∗
k(−sk).

Proof. Without loss of generality we may assume that ε > 0, by the
change of variables wk → εkwk; note that since εk ∈ {−1, 1}, the
Fenchel conjugate of wk 7→ ψk(εkwk) is sk 7→ ψ∗

k(εksk).
Because f is non-decreasing with respect to each of its component,

the global minimizer of f(|w|) +
∑
k∈V ψk(wk) must have non-negative

components (indeed, if one them has a strictly negative component
wk, then with respect to the k-th variable, around wk, f(|w|) is non-
increasing and ψk(wk) is strictly decreasing, which implies that w can-
not be optimal, which leads to a contradiction).

We may then apply Prop. 8.7 to wk 7→ ψk(εkwk), which has Fenchel
conjugate sk 7→ ψ∗

k(εksk) (because ε2
k = 1), to get the desired result.

Applications to sparsity-inducing norms. Prop. 8.8 is particularly
adapted to sparsity-inducing norms defined in §5.2, as it describes how
to solve the proximal problem for the norm Ω∞(w) = f(|w|). For a
quadratic function, i.e., ψk(wk) = 1

2(wk−zk)2 and ψ∗
k(sk) = 1

2s
2
k+skzk.

Then εk is the sign of zk, and we thus have to minimize

min
v∈Rp

f(v) +
1

2

∑

k∈V
(vk − |zk|)2,

which is the classical quadratic separable problem on the base polyhe-
dron, and select w = ε◦v+. Thus, proximal operators for the norm Ω∞
may be obtained from the proximal operator for the Lovász extension.
See §9.4 for the proximal operator for the norms Ωq, q ∈ (1,+∞).

9

Separable Optimization Problems: Algorithms

In the previous chapter, we have analyzed a series of optimization prob-
lems which may be defined as the minimization of a separable function
on the base polyhedron. In this chapter, we consider two main types of
algorithms to solve these problems. The algorithm we present in §9.1
is a divide-and-conquer exact method that will recursively solve the
separable optimization problems by defining smaller problems. This al-
gorithm requires to be able to solve submodular function minimization
problems of the form minA⊆V F (A) − t(A), where t ∈ R

p, and is thus
applicable only when such algorithms are available (such as in the case
of cuts, flows or cardinality-based functions).

The next two sets of algorithms are iterative methods for convex
optimization on convex sets for which the support function can be com-
puted, and are often referred to as “Frank-Wolfe” algorithms. This only
assumes the availability of an efficient algorithm for maximizing linear
functions on the base polyhedron (greedy algorithm from Prop. 3.2).
The min-norm-point algorithm that we present in §9.2 is an active-set
algorithm dedicated to quadratic functions and converges after finitely
many operations (but with no complexity bounds), while the condi-
tional gradient algorithms that we consider in §9.3 do not exhibit finite

144

9.1. Divide-and-conquer algorithm for proximal problems 145

convergence but have known convergence rates. Finally, in §9.4. we con-
sider extensions of proximal problems, normally line-search in the base
polyhedron and the proximal problem for the norms Ωq, q ∈ (1,+∞)

defined in §5.4.

9.1 Divide-and-conquer algorithm for proximal problems

We now consider an algorithm for proximal problems, which is based
on a sequence of submodular function minimizations. It is based on a
divide-and-conquer strategy. We adapt the algorithm of [83] and the
algorithm presented here is the dual version of the one presented in [72,
Sec. 8.2]. Also, as shown at the end of the section, it can be slightly
modified for problems with non-decreasing submodular functions [83]
(otherwise, Prop. 8.8 and Prop. 8.9 may be used).

For simplicity, we consider strictly convex differentiable functions
ψ∗
j , j = 1, . . . , p, defined on R, (so that the minimum in s is unique)

and the following recursive algorithm:

(1) Find the unique minimizer t ∈ R
p of

∑
j∈V ψ

∗
j (−tj) such that t(V) =

F (V).

(2) Minimize the submodular function F − t, i.e., find a set A ⊆ V that
minimizes F (A) − t(A).

(3) If F (A) = t(A), then t is optimal. Exit.

(4) Find a minimizer sA of
∑
j∈A ψ

∗
j (−sj) over s in the base polyhedron

associated to FA, the restriction of F to A.

(5) Find the unique minimizer sV \A of
∑
j∈V \A ψ

∗
j (−sj) over s in the

base polyhedron associated to the contraction FA of F on A, defined
as FA(B) = F (A ∪B) − F (A), for B ⊆ V \A.

(6) Concatenate sA and sV \A. Exit.

The algorithm must stop after at most p iterations. Indeed, if
F (A) 6= t(A) in step (3), then we must have A 6= ∅ and A 6= V since
by construction t(V) = F (V). Thus we actually split V into two non-
trivial parts A and V \A. Step (1) is a separable optimization problem

146 Separable Optimization Problems: Algorithms

with one linear constraint. When ψ∗
j is a quadratic polynomial, it may

be obtained in closed form; more precisely, one may minimize 1
2‖t−z‖2

2

subject to t(V) = F (V) by taking t = F (V)
p 1V + z − 1V 1⊤

V
p z.

Geometric interpretation. The divide-and-conquer algorithm has a
simple geometric interpretation. In step (1), we minimize our function
on a larger subset thanB(F), i.e., the affine hyperplane {s ∈ R

p, s(V) =

F (V)}. In step (2), we check if the obtained projection t ∈ R
p is in B(F)

by minimizing the set-function F −t. To decide if t ∈ B(F) or not, only
the minimal value is necessary in step (3). However, the minimizer A
turns out to provide additional information by reducing the problems
to two decoupled subproblems—steps (4) and (5).

The algorithm may also be interpreted in the primal, i.e., for mini-
mizing f(w) +

∑p
j=1 ψj(wj). The information given by A simply allows

to reduce the search space to all w such that mink∈Awk > mink∈V \Awk,
so that f(w) decouples into the sum of a Lovász extension of the re-
striction to A and the one of the contraction to A.

Proof of correctness. Let s be the output of the recursive algorithm.
If the algorithm stops at step (3), then we indeed have an optimal
solution. Otherwise, we first show that s ∈ B(F). We have for any
B ⊆ V :

s(B) = s(B ∩A) + s(B ∩ (V \A))

6 F (B ∩A) + F (A ∪B) − F (A) by definition of sA and sV \A

6 F (B) by submodularity.

Thus s is indeed in the submodular polyhedron P (F). Moreover, we
have s(V) = sA(A) + sV \A(V \A) = F (A) +F (V) −F (A) = F (V), i.e.,
s is in the base polyhedron B(F).

Our proof technique now relies on using the equivalence between
separable problems and a sequence of submodular function minimiza-
tions, shown in Prop. 8.4. Let wj be the Fenchel-dual to −tj for the
convex function ψ∗

j , we have wj = (ψ∗
j)′(−tj). Since t is obtained by

minimizing
∑
j∈V ψ

∗
j (−tj) such that t(V) = F (V), by introducing a

Lagrange multiplier for the constraint s(V) = F (V), we obtain that

9.1. Divide-and-conquer algorithm for proximal problems 147

w is proportional to 1V (i.e., has uniform components). Let α ∈ R be
the common value of the components of wj. We have tj = −ψ′

j(α) for
all j ∈ V . And thus A is a minimizer of F + ψ′(α). This implies from
Prop. 8.4 that the minimizer w of the proximal problem is such that
{w > α} ⊆ A ⊆ {w > α}. This implies that we may look for w such
that mink∈Awk > mink∈V \Awk. For such a w, f(w) decouples into the
sum of a Lovász extension of the restriction to A and the one of the
contraction to A. Since the rest of the cost function is separable, the
problem becomes separable and the recursion is indeed correct.

Note finally that similar algorithms may be applied when we re-
strict s to have integer values (see, e.g., [83, 96]).

Minimization separable problems in other polyhedra. In this chap-
ter, we have considered the minimization of separable functions on the
base polyhedron B(F). In order to minimize over the submodular poly-
hedron P (F), we may use Prop. 8.7 that shows how to obtain the solu-
tion in P (F) from the solution on B(F). Similarly, for a non-decreasing
submodular function, when minimizing with respect to the symmetric
submodular polyhedron |P |(F) or P+(F), we may use Prop. 8.8 or
Prop. 8.9. Alternatively, we may use a slightly different algorithm that
is dedicated to these situations. For P+(F), this is exactly the algorithm
of [83].

The only changes are in the first step. For minimizing with respect
to s ∈ P+(F), the vector t is defined as the minimizer of

∑
j∈V ψ

∗
j (−tj)

such that t(V) 6 F (V) and t > 0, while for minimizing with respect to
s ∈ |P |(F), the vector t is defined as the minimizer of

∑
j∈V ψ

∗
j (−tj)

such that |t|(V) 6 F (V). These first steps (projection onto the sim-
plex or the ℓ1-ball) may be done in O(p) (see, e.g., [32, 139]). In our
experiments in §12.2, the decomposition algorithm directly on |P |(F)

is slightly faster.

Making splits more balanced. In the divide-and-conquer algorithm
described above, at every step, the problem in dimension p is divided
into two problems with dimensions p1 and p2 summing to p. Unfor-
tunately, in practice, the splitting may be rather unbalanced, and the

148 Separable Optimization Problems: Algorithms

total complexity of the algorithm may then be O(p) times the complex-
ity of a single submodular function minimization (instead of O(log p)

for binary splits). Following the algorithm of [199] which applies to
cut problems, an algorithm is described in [109] which reaches a ε-
approximate solution by using a slightly different splitting strategy,
with an overall complexity which is only log(1/ε) times the complexity
of a single submodular function minimization problem.

9.2 Iterative algorithms - Exact minimization

In this section, we focus on quadratic separable problems. Note that
modifying the submodular function by adding a modular term1, we can
consider ψk = 1

2w
2
k. As shown in Prop. 8.1, minimizing f(w) + 1

2‖w‖2
2

is equivalent to minimizing 1
2‖s‖2

2 such that s ∈ B(F).
Thus, we can minimize f(w) + 1

2‖w‖2
2 by computing the minimum

ℓ2-norm element of the polytope B(F), or equivalently the orthogo-
nal projection of 0 onto B(F). Although B(F) may have exponentially
many extreme points, the greedy algorithm of Prop. 3.2 allows to max-
imize a linear function over B(F) at the cost of p function evaluations.
The minimum-norm point algorithm of [206] is dedicated to such a sit-
uation, as outlined by [73]. It turns out that the minimum-norm point
algorithm can be interpreted as a standard active-set algorithm for
quadratic programming (§7.11), which we now describe.

Frank Wolfe algorithm as an active-set algorithm. We consider m
points x1, . . . , xm in R

p and the following optimization problem:

min
η∈R+

1

2

∥∥∥
m∑

i=1

ηixi
∥∥∥

2

2
such that η > 0, η⊤1V = 1.

In our situation, the vectors xi will be the extreme points of B(F), i.e.,
outputs of the greedy algorithm, but they will always be used implicitly

through the maximization of linear functions over B(F). We will apply
the primal active set strategy outlined in Section 16.4 of [174] and in

1Indeed, we have 1
2
‖w − z‖2

2 + f(w) = 1
2
‖w‖2

2 + (f(w) − w⊤z) + 1
2
‖z‖2, which

corresponds (up to the irrelevant constant term 1
2
‖z‖2

2) to the proximal problem for
the Lovász extension of A 7→ F (A) − z(A).

9.2. Iterative algorithms - Exact minimization 149

§7.11, which is exactly the algorithm of [206]. The active set strategy
hinges on the fact that if the set of indices j ∈ J for which ηj > 0 is
known, the solution ηJ may be obtained in closed form by computing
the affine projection on the set of points indexed by I (which can be
implemented by solving a positive definite linear system, see step 2
in the algorithm below). Two cases occur: (a) If the affine projection
happens to have non-negative components, i.e., ηJ > 0 (step (3)), then
we obtain in fact the projection onto the convex hull of the points
indexed by J , and we simply need to check optimality conditions and
make sure that no other point needs to enter the hull (step 5), and
potentially add it to go back to step (2). (b) If the projection is not in
the convex hull, then we make a move towards this point until we exit
the convex hull (step (4)) and start again at step (2). We describe in
Figure 9.1 an example of several iterations.

(1) Initialization: We start from a feasible point η ∈ R
p
+ such that

η⊤1V = 1, and denote J the set of indices such that ηj > 0 (more
precisely a subset of J such that the set of vectors indexed by the
subset is linearly independent). Typically, we select one of the orig-
inal points, and J is a singleton.

(2) Projection onto affine hull: Compute ζJ the unique minimizer
1
2

∥∥∑
j∈J ηjxj

∥∥2

2
such that 1⊤

J ηJ = 1, i.e., the orthogonal projection
of 0 onto the affine hull of the points (xi)i∈J .

(3) Test membership in convex hull: If ζJ > 0 (we in fact have an
element of the convex hull), go to step (5).

(4) Line search: Let α ∈ [0, 1) be the largest α such that ηJ + α(ζJ −
ηJ) > 0. Let K the sets of j such that ηj + α(ζj − ηj) = 0. Replace
J by J\K and η by η + α(ζ − η), and go to step (2).

(5) Check optimality: Let y =
∑
j∈J ηjxj . Compute a minimizer i of

y⊤xi. If y⊤xi = y⊤η, then η is optimal. Otherwise, replace J by
J ∪ {i}, and go to step (2).

The previous algorithm terminates in a finite number of iterations
because it strictly decreases the quadratic cost function at each itera-
tion; however, there is no known bounds regarding the number of iter-
ations (see more details in [174]). Note that in pratice, the algorithm is

150 Separable Optimization Problems: Algorithms

(a)1
2

3

4
5

0

(b)1
2

3

4
5

0

(c)1
2

3

4
5

0

(d)1
2

3

4
5

0

(e)1
2

3

4
5

0

(f)1
2

3

4
5

0

Figure 9.1: Illustration of Frank-Wolfe minimum norm point algorithm: (a) initial-
ization with J = {2} (step (1)), (b) check optimality (step (5)) and take J = {2, 5},
(c) compute affine projection (step (2)), (d) check optimality and take J = {1, 2, 5},
(e) perform line search (step (3)) and take J = {1, 5}, (f) compute affine projection
(step (2)) and obtain optimal solution.

9.3. Iterative algorithms - Approximate minimization 151

stopped after either (a) a certain duality gap has been achieved—given
the candidate η, the duality gap for η is equal to ‖x̄‖2

2+maxi∈{1,...,m} x̄i,
where x̄ =

∑m
i=1 ηixi (in the context of application to orthogonal pro-

jection on B(F), following §8.3, one may get an improved duality gap
by solving an isotonic regression problem); or (b), the affine projection
cannot be performed reliably because of bad condition number (for
more details regarding stopping criteria, see [206]).

Application to |P |(F) or P+(F). When projecting onto the sym-
metric submodular polyhedron, one may either use the algorithm de-
fined above which projects onto B(F) and use Prop. 8.9. It is also
possible to apply the min-norm-point algorithm directly to this prob-
lem, since we can also maximize linear functions on |P |(F) or P+(F)

efficiently, by the greedy algorithm presented in Prop. 3.5. In our ex-
periments in §12.3, we show that the number of iterations required for
the minimum-norm-point algorithm applied directly to |P |(F) is lower;
however, in practice, warm restart strategies, that start the min-norm-
point algorithm from a set of already computed extreme points, are not
as effective.

9.3 Iterative algorithms - Approximate minimization

In this section, we describe an algorithm strongly related to the
minimum-norm point algorithm presented in §9.2. As shown in §7.6,
this “conditional gradient” algorithm is dedicated to minimization of
any convex smooth functions on the base polyhedron. Following the
same argument than for the proof of Prop. 8.1, this is equivalent to
the minimization of any strictly convex separable function regularized
by the Lovász extension. As opposed to the mininum-norm point al-
gorithm, it is not convergent in finitely many iterations; however, as
explained in §7.6, it comes with approximation guarantees.

Algorithm. If g is a smooth convex function defined on R
p with

Lipschitz-continuous gradient (with constant L), then the conditional
gradient algorithm is an iterative algorithm that will (a) start from a

152 Separable Optimization Problems: Algorithms

certain s0 ∈ B(F), and (b) iterate the following procedure for t > 1:
find a minimizer s̄t−1 over the (compact) polytope B(F) of the Taylor
expansion of g around st−1, i.e, s 7→ g(st−1) + g′(st−1)⊤(s− st−1), and
perform a step towards s̄t−1, i.e., compute st = ρt−1s̄t−1+(1−ρt−1)st−1.

There are several strategies for computing ρt−1. The first is to
take ρt−1 = 2/(t + 1) [62, 108], while the second one is to per-
form a line search on the quadratic upper-bound on g obtained from
the L-Lipschitz continuity of g (see §7.6 for details). They both ex-
hibit the same upper bound on the sub-optimality of the iterate st,
together with g′(wt) playing the role of a certificate of optimality.
More precisely, the base polyhedron is included in the hyper-rectangle∏
k∈V [F (V) − F (V \{k}), F ({k})] (as a consequence of the greedy al-

gorithm applied to 1{k} and −1{k}). We denote by αk the length of the
interval for variable k, i.e., αk = F ({k}) + F (V \{k}) − F (V). Using
results from §7.6, we have for the two methods:

g(st) − min
s∈B(F)

g(s) 6
L
∑p
k=1 α

2
k

t+ 1
,

and the computable quantity maxs∈B(F) g
′(st)⊤(s−st) provides a certifi-

cate of optimality, that is, we always have that g(st)−mins∈B(F) g(s) 6

maxs∈B(F) g
′(st)⊤(s−st), and the latter quantity has (up to constants)

the same convergence rate. Note that while this certificate comes with
an offline approximation guarantee, it can be significantly improved,
following §8.3, by solving an appropriate isotonic regression problem
(see simulations in Chapter 12).

In Figure 9.2, we consider the conditional gradient algorithm (with
line search) for the quadratic problem considered in §9.2. These two al-
gorithms are very similar as they both consider a sequence of extreme
points of B(F) obtained from the greedy algorithm, but they differ in
the following way: the min-norm-point algorithm is finitely convergent
but with no convergence rate, while the conditional gradient algorithm
is not finitely convergent, but with a convergence rate. Moreover, the
cost per iteration for the min-norm-point algorithm is much higher as
it requires linear system inversions. In context where the function F is
cheap to evaluate, this may become a computational bottleneck; how-
ever, in our simulations in Chapter 12, we have focused on situations

9.4. Extensions 153

where the bottleneck is evaluation of functions (i.e., we compare algo-
rithms using number of function calls or number of applications of the
greedy algorithm).

9.4 Extensions

In this section, we consider extensions of the algorithms presented
above, with application to the computation of dual norms and proximal
operators for the norms Ωq presented in §5.4. These are key to provid-
ing either efficient algorithms or efficient ways of providing approximate
optimality certificates (see more details in [11]).

Line search in submodular polyhedron and computation of dual

norms. Given an element s ∈ P (F) and a non-zero vector t ∈ R
p,

the line search problem is the one of finding the largest α ∈ R+ such
that s + αt ∈ P (F). We are thus looking for the maximum α ∈ R+

such that for all A ⊆ V , s(A) + αt(A) 6 F (A), i.e., if we define the
set-function G : A 7→ F (A) − s(A), αt(A) 6 G(A). The function
G is submodular and non-negative. In order to test if α is allowed,
we need to minimize the submodular function G − αt. If we denote
g(α) = minA⊆V G(A) − αt(A), then the function g is concave, non-
negative, such that g(0) = 0, piecewise affine and our goal is to find
the largest α > 0 such that g(α) = 0.

Since g is piecewise affine with at most 2p different pieces, a natu-
ral algorithm is to use Newton method to find α. Indeed, as outlined
by [155], from any β such that g(β) > 0, we consider any minimizer A
of G(A) − βt(A). Since g(β) < 0 and G > 0, we must have t(A) > 0

and we may define γ = G(A)/t(A) ∈ R+. Moreover, α 6 γ < β and γ

is on the same affine part of g if and only if γ = α; otherwise, it belongs
to another affine part. Thus, after at most 2p of such steps, we must
obtain the optimal α.

The number of iterations is typically much smaller than 2p (see suf-
ficient conditions in [155]). Moreover, if all components of t are strictly
positive, then the number of iterations is in fact less than p. In this
situation, α = maxA⊆V

t(A)
G(A) and thus the line search problem allows

154 Separable Optimization Problems: Algorithms

(a)1
2

3

4
5

0

(b)1
2

3

4
5

0

(c)1
2

3

4
5

0

(d)1
2

3

4
5

0

(e)1
2

3

4
5

0

(f)1
2

3

4
5

0

(g)1
2

3

4
5

0

(h)1
2

3

4
5

0

(i)1
2

3

4
5

0

Figure 9.2: Illustration of Frank-Wolfe conditional gradient algorithm: starting
from the initialization (a), in steps (b),(d),(f),(h), an extreme point on the polytope
is found an in steps (c),(e),(g),(i), a line search is performed. Note the oscillations
to converge to the optimal point (especially compared to Figure 9.1).

9.4. Extensions 155

computation of the dual norms defined in Chapter 5, as already done
by [143] for the special case of the flow-based norms described in §6.4.
We now present a certain proximal problem which provides interesting
new insights into the algorithm above.

We consider the continuous minimization of g(w) + 1
2

∑
k∈V tkw

2
k,

where g is the Lovász extension of G. From results in Chapter 8, finding
the unique minimizer w is equivalent to minimizing a sequence of sub-
modular functions G+ αt(A) for α ∈ R, and any minimizer satisfies a
monotonicity property. This implies that the minimizers in the Newton
algorithms must be included in one another, and thus there can only
be at most p iterations. The algorithm is then as follows:

– Initialization: β = G(V)/t(V), and B = V .

– Perform the following iterations until termination (which must
happens after at most p iterations): let A be any minimizer of
G(A) − βt(A) on B. If G(A) − βt(A) = 0, then output α = β and
stop. Otherwise, Let β = G(A)/t(A) and B = A.

While we have shown the validity of the previous algorithm for t
having strictly positive components, the same result also holds for t
having potentially zero values (because it corresponds to a reduced
problem with strictly positive values, defined on a restriction of F).
Moreover, it turns out that the divide-and-conquer algorithm of §9.1
applied to the minimization of f(w)+ 1

2

∑
k∈V tkw

2
k, i.e., the maximiza-

tion of −1
2

∑
k∈V

s2
k
tk

over t ∈ B(F), can be shown to lead to the exact
same algorithm.

Proximal problem for ℓ2-relaxation. For the norms Ωq we have de-
fined in §5.4, we can use the results from this section to compute the
proximal operator, i.e., the unique minimizer of 1

2‖w − z‖2
2 + Ωq(w)

(or equivalently maximizing 1
2‖z‖2

2 − 1
2‖s − z‖2 such that Ω∗

q(s) 6 1).
For q = ∞, i.e., Ω∞(w) = f(|w|), then the divide-and-conquer algo-
rithm immediately finds the solution, by applying it to the problem
minw∈Rp

1
2‖w − |z|‖2

2 + f(w) and then thresholding, or by using the
modification described at the end of §9.1.

156 Separable Optimization Problems: Algorithms

For q = 2, we may compute the proximal operator as follows. We
first notice that for the problem of minimizing 1

2‖z‖2
2 − 1

2‖s− z‖2 such
that Ω∗

2(s) 6 1, then the signs of the solutions are known, i.e., skzk > 0

for all k ∈ V . Thus, if ε is the vector of signs of z, then s = ε ◦ t
with t a maximizer of t⊤|z| − 1

2‖t‖2
2 for t in the intersection of the

positive orthant Rp+ and the unit dual ball of Ω2. By a change of variable
uk = t2k, for k ∈ V , then we need to maximize

∑

k∈V
|zk|u1/2

k − 1

2

∑

k∈V
uk

over the positive submodular polyhedron P+(F). We can apply the
divide-and-conquer algorithm (note that we have only shown its opti-
mality for smooth functions, but it holds more generally, and in par-
ticular here). The only different element is the minimization of the
previous cost function subject to u > 0 and

∑
k∈V uk 6 F (V). This

can be obtained in closed form as uk = |zk|2 min{1, F (V)/‖z‖2
2}. The

divide-and-conquer algorithm may also be used to compute the norm
Ω2(w), by maximizing

∑
k∈V |zk|u1/2

k over u ∈ P+(F), the first step
now becoming uk = |zk|2F (V)/‖z‖2

2. See additional details in [175].

Special cases. In all the extensions that were presented in this sec-
tion, faster dedicated algorithms exist for special cases, namely for
cardinality-based functions [175] and cuts in chain graphs [16].

10

Submodular Function Minimization

Several generic algorithms may be used for the minimization of a sub-
modular function. In this chapter, we present algorithms that are all
based on a sequence of evaluations of F (A) for certain subsets A ⊆ V .
For specific functions, such as the ones defined from cuts or matroids,
faster algorithms exist (see, e.g., [74, 96], §6.2 and §6.8). For other spe-
cial cases, such as functions obtained as the sum of simple functions,
faster algorithms also exist and are reviewed in §10.9.

Submodular function minimization algorithms may be divided in
two main categories: exact algorithms aim at obtaining a global mini-
mizer, while approximate algorithms only aim at obtaining an approx-
imate solution, that is, a set A such that F (A) − minB⊆V F (B) 6 ε,
where ε is as small as possible. Note that if ε is less than the minimal
absolute difference δ between non-equal values of F , then this leads
to an exact solution, but that in many cases, this difference δ may be
arbitrarily small.

An important practical aspect of submodular function minimization
is that most algorithms come with online approximation guarantees;
indeed, because of a duality relationship detailed in §10.1, in a very
similar way to convex optimization, a base s ∈ B(F) may serve as

157

158 Submodular Function Minimization

a certificate for optimality. Note that many algorithms (the simplex
algorithm is notably not one of them) come with offline approximation
guarantees.

In §10.2, we review “combinatorial algorithms” for submodular
function minimization that come with complexity bounds and are not
explicitly based on convex optimization. Those are however not used
in practice in particular due to their high theoretical complexity (i.e.,
O(p5)), except for the particular class of posimodular functions, where
algorithms scale as O(p3) (see §10.3). In §10.4, we show how the ellip-
soid algorithm may be applied with a well-defined complexity bounds.
While this provided the first polynomial-time algorithms for the sub-
modular function minimization problem, it is too slow in practice.

In §10.5, we show how a certain “column-generating” version of the
simplex algorithm may be considered for this problem, while in §10.6,
the analytic center cutting-plane method center is considered. We show
in particular that these methods are closely related to Kelley’s method
from §7.4, which sequentially optimizes piecewise affine lower-bounds
to the Lovász extension.

In §10.7 a formulation based on quadratic separable problem on
the base polyhedron, but using the minimum-norm-point algorithm
described in §9.2. These last two algorithms come with no complexity
bounds.

All the algorithms mentioned above have the potential to find the
global minimum of the submodular function if enough iterations are
used. They come however with a cost of typically O(p3) per iteration.
The following algorithms have O(p) cost per iteration, but have slow
convergence rate, that makes them useful to obtain quickly approx-
imate results (this is confirmed in simulations in §12.1): in §10.8, we
describe optimization algorithms based on separable optimization prob-
lems regularized by the Lovász extension. Using directly the equivalence
presented in Prop. 3.7, we can minimize the Lovász extension f on the
hypercube [0, 1]p using subgradient descent with approximate optimal-
ity for submodular function minimization of O(1/

√
t) after t iterations.

Using quadratic separable problems, we can use the algorithms of §9.3
to obtain new submodular function minimization algorithms with con-

10.1. Minimizers of submodular functions 159

vergence of the convex optimization problem at rate O(1/t), which
translates through the analysis of Chapter 8 to the same convergence
rate of O(1/

√
t) for submodular function minimization, although with

improved behavior and better empirical performance (see §10.8 and
§12.1).

Most algorithms presented in this chapter are generic, i.e., they
apply to any submodular functions and only access them through the
greedy algorithm; in §10.9, we consider submodular function minimiza-
tion problems with additional structure, that may lead to more efficient
algorithms.

Note that maximizing submodular functions is a hard combinato-
rial problem in general, with many applications and many recent de-
velopments with approximation guarantees. For example, when max-
imizing a non-decreasing submodular function under a cardinality
constraint, the simple greedy method allows to obtain a (1 − 1/e)-
approximation [166] while recent local search methods lead to 1/2-
approximation guarantees (see more details in Chapter 11).

10.1 Minimizers of submodular functions

In this section, we review some relevant results for submodular function
minimization (for which algorithms are presented in next sections).

Proposition 10.1. (Lattice of minimizers of submodular func-

tions) Let F be a submodular function such that F (∅) = 0. The set
of minimizers of F is a lattice, i.e., if A and B are minimizers, so are
A ∪B and A ∩B.

Proof. Given minimizers A and B of F , then, by submodularity, we
have 2 minC⊆V F (C) 6 F (A ∪ B) + F (A ∩ B) 6 F (A) + F (B) =

2 minC⊆V F (C), hence equality in the first inequality, which leads to
the desired result.

The following proposition shows that some form of local optimality
implies global optimality.

Proposition 10.2. (Property of minimizers of submodular func-

tions) Let F be a submodular function such that F (∅) = 0. The

160 Submodular Function Minimization

set A ⊆ V is a minimizer of F on 2V if and only if A is a min-
imizer of the function from 2A to R defined as B ⊆ A 7→ F (B),
and if ∅ is a minimizer of the function from 2V \A to R defined as
B ⊆ V \A 7→ F (B ∪A) − F (A).

Proof. The set of two conditions is clearly necessary. To show that it is
sufficient, we let B ⊆ V , we have: F (A)+F (B) > F (A∪B)+F (A∩B) >

F (A)+F (A), by using the submodularity of F and then the set of two
conditions. This implies that F (A) 6 F (B), for all B ⊆ V , hence the
desired result.

The following proposition provides a useful step towards submod-
ular function minimization. In fact, it is the starting point of most
polynomial-time algorithms presented in §10.2. Note that submodular
function minimization may also be obtained from minimizing ‖s‖2

2 over
s in the base polyhedron (see Chapter 8 and §8.3).

Proposition 10.3. (Dual of minimization of submodular func-

tions) Let F be a submodular function such that F (∅) = 0. We have:

min
A⊆V

F (A) = max
s∈B(F)

s−(V) = F (V) − min
s∈B(F)

‖s‖1, (10.1)

where (s−)k = min{sk, 0} for k ∈ V . Moreover, given A ⊆ V and
s ∈ B(F), we always have F (A) > s−(V) with equality if and only if
{s < 0} ⊆ A ⊆ {s 6 0} and A is tight for s, i.e., s(A) = F (A).

We also have

min
A⊆V

F (A) = max
s∈P (F), s60

s(V). (10.2)

Moreover, given A ⊆ V and s ∈ P (F) such that s 6 0, we always have
F (A) > s(V) with equality if and only if {s < 0} ⊆ A and A is tight
for s, i.e., s(A) = F (A).

Proof. We have, by strong convex duality, and Props. 3.7 and 4.1:

min
A⊆V

F (A) = min
w∈[0,1]p

f(w)

= min
w∈[0,1]p

max
s∈B(F)

w⊤s = max
s∈B(F)

min
w∈[0,1]p

w⊤s = max
s∈B(F)

s−(V).

10.2. Combinatorial algorithms 161

Strong duality indeed holds because of Slater’s condition ([0, 1]p has
non-empty interior). Since s(V) = F (V) for all s ∈ B(F), we have
s−(V) = F (V) − ‖s‖1, hence the second equality.

Moreover, we have, for all A ⊆ V and s ∈ B(F):

F (A) > s(A) = s(A∩{s < 0})+s(A∩{s > 0}) > s(A∩{s < 0}) > s−(V),

with equality if there is equality in the three inequalities. The first one
leads to s(A) = F (A). The second one leads to A ∩ {s > 0} = ∅, and
the last one leads to {s < 0} ⊆ A. Moreover,

max
s∈P (F), s60

s(V) = max
s∈P (F)

min
w>0

s⊤1V − w⊤s = min
w>0

max
s∈P (F)

s⊤1V − w⊤s

= min
1>w>0

f(1V −w) because of property (c) in Prop. 4.1,

= min
A⊆V

F (A) because of Prop. 3.7.

Finally, given s ∈ P (F) such that s 6 0 and A ⊆ V , we have:

F (A) > s(A) = s(A ∩ {s < 0}) > s(V),

with equality if and only if A is tight and {s < 0} ⊆ A.

10.2 Combinatorial algorithms

Most algorithms are based on Prop. 10.3, i.e., on the identity
minA⊆V F (A) = maxs∈B(F) s−(V). Combinatorial algorithms will usu-
ally output the subset A and a base s ∈ B(F) such that A is tight for
s and {s < 0} ⊆ A ⊆ {s 6 0}, as a certificate of optimality.

Most algorithms, will also output the largest minimizer A of F , or
sometimes describe the entire lattice of minimizers. Best algorithms
have polynomial complexity [188, 106, 177], but still have high com-
plexity (typically O(p5) or more). Most algorithms update a sequence
of convex combination of vertices of B(F) obtained from the greedy
algorithm using a specific order (see a survey of existing approaches
in [148]). Recent algorithms [110] consider reformulations in terms of
generalized graph cuts, which can be approximately solved efficiently.

Note here the difference between the combinatorial algorithm which
maximizes s−(V) and the ones based on the minimum-norm point al-
gorithm which maximizes −1

2‖s‖2
2 over the base polyhedron B(F). In

162 Submodular Function Minimization

both cases, the submodular function minimizer A is obtained by taking
the negative values of s. In fact, the unique minimizer of 1

2‖s‖2
2 is also

a maximizer of s−(V), but not vice-versa.

10.3 Minimizing symmetric posimodular functions

A submodular function F is said symmetric if for all B ⊆ V , F (V \B) =

F (B). By applying submodularity, we get that 2F (B) = F (V \B) +

F (B) > F (V) + F (∅) = 2F (∅) = 0, which implies that F is non-
negative. Hence its global minimum is attained at V and ∅. Undirected
cuts (see §6.2) are the main classical examples of such functions.

Such functions can be minimized in time O(p3) over all non-trivial

(i.e., different from ∅ and V) subsets of V through a simple algorithm
of Queyranne [181]. Moreover, the algorithm is valid for the regular
minimization of posimodular functions [154], i.e., of functions that sat-
isfies

∀A,B ⊆ V, F (A) + F (B) > F (A\B) + F (B\A).

These include symmetric submodular functions as well as non-
decreasing modular functions, and hence the sum of any of those (in
particular, cuts with sinks and sources, as presented in §6.2). Note how-
ever that this does not include general modular functions (i.e., with po-
tentially negative values); worse, minimization of functions of the form
F (A) − z(A) is provably as hard as general submodular function mini-
mization [181]. Therefore this O(p3) algorithm is quite specific and may
not be used for solving proximal problems with symmetric functions.

10.4 Ellipsoid method

Following [84], we may apply the ellipsoid method described in §7.3 to
the problem minw∈[0,1]p f(w). The minimum volume ellipsoid E0 that
contains [0, 1]p is the ball of center 1V /2 and radius

√
p/2. Starting

from this ellipsoid, the complexity bound from §7.3 leads to, after t
iterations

f(wt) − min
A⊆V

F (A) 6 exp(−t/2p2)
[
max
A⊆V

F (A) − min
A⊆V

F (A)
]
.

10.5. Simplex method for submodular function minimization 163

This implies that in order to reach a precision of ε
[
maxA⊆V F (A) −

minA⊆V F (A)
]
, at most 2p2 log(1/ε) iterations are needed. Given that

every iteration has complexity O(p3), we obtain an algorithm with
complexity O(p5 log(1/ε)), with similar complexity than the currently
best-known combinatorial algorithms from §10.2. Note here the differ-
ence between weakly polynomial algorithms such as the ellipsoid with
a polynomial dependence on log(1/ε), and strongly polynomial algo-
rithms which have a bounded complexity when ε tends to zero.

10.5 Simplex method for submodular function minimization

In this section, following [148, 76], we consider the dual optimization
problem derived in Prop. 10.3. We thus assume that we are given d

points in R
p, s1, . . . , sd, put in a matrix S ∈ R

d×p. We want to maximize
s−(V) over the convex hull of s1, . . . , sd. That is, we are looking for
η ∈ R

d such that s = S⊤η and η > 0, and η⊤1d = 1. In our situation, d
is the number of extreme points of the base polytope B(F) (up to p!).
We classically represent S⊤η ∈ R

p as S⊤η = α− β, where α and β are
non-negative vectors in R

p. The problem then becomes:

min
η>0, α>0, β>0

β⊤1p such that S⊤η − α+ β = 0, η⊤1d = 1.

It is thus exactly a linear program in standard form (as considered in
§7.10) with:

x =

(η

α

β

)
, c =

(0d
0p
1p

)
, b =

(
1

0p

)
, A =

(
1⊤
d 0⊤

p 0⊤
p

S⊤ −Ip Ip

)
.

This linear program have many variables and a certain version of sim-
plex method may be seen as a column decomposition approach [136],
as we now describe.

A basic feasible solution is defined by a subset J of {1, . . . , 2p+ d},
which can be decomposed into a subset I ⊆ {1, . . . , d} and two disjoint
subsets Iα and Iβ of {1, . . . , p} (they have to be disjoint so that the
corresponding columns of A are linearly independent). We denote by
K = (Iβ ∪ Iα)c ⊂ {1, . . . , p}. Since |I| + |Iα| + |Iβ| = p + 1, then
|I| = |K| + 1.

164 Submodular Function Minimization

In order to compute the basic feasible solution (i.e., xJ = −A−1
J b),

we denote by T the |I| × |I| square matrix T =

(
1⊤

|I|
S⊤
IK

)
. The basic

feasible solution x corresponds to ηI defined as ηI = T−1(1, 0⊤
|I|−1)⊤,

i.e., such that η⊤
I 1|I| = 1 and S⊤

IKηI = 0 (as many equations as un-
knowns). Then, αIα = S⊤

IIα
ηI , βIβ

= −S⊤
IIβ
ηI . All of these have to be

non-negative, while all others are set to zero.
We can now compute the candidate dual variable (i.e., y = A−⊤

J cJ),
as y = (−v,w⊤)⊤, with v ∈ R and w ∈ R

p, with the following equations:
s⊤
i w = v for all i ∈ I, and wIα = 0|Iα| and wIβ

= 1|Iβ |. This may be
obtained by computing (−v,w⊤

K)⊤ = −T−⊤SIIβ
1|Iβ |. We then obtain

the following vector of reduced cost (i.e., c̄ = c−A⊤y):

c̄ =

(0d
0p
1p

)
−
(1d S

0p −Ip
0p +Ip

)(−v
w

)
=

(v1 − Sw

w

1 − w

)
.

If c̄ > 0, we recover optimality conditions for the original problem.
There are several possibilities for lack of optimality. Indeed, we need
to check which elements of Jc is violating the constraint. It could be
j ∈ Ic such that s⊤

j w > v, or j ∈ {1, . . . , p} such that wj /∈ [0, 1]. In
our algorithm, we may choose which violated constraints to treat first.
We will always check first w ∈ [0, 1]p (since it does not require to run
the greedy algorithm), then, in cases where we indeed have w ∈ [0, 1]p,
we run the greedy algorithm to obtain j ∈ Ic such that s⊤

j w > v. We
thus consider the following situations:

– If there exists i ∈ K such that wi < 0. The descent direction dJ =

−A−1
J Aj is thus equal to

(−T−1(0, δ⊤
i)⊤

−S⊤
IIα
T−1(0, δ⊤

i)⊤

+S⊤
IIβ
T−1(0, δ⊤

i)⊤

)
, and by keeping

only the negative component, we find the largest u such that (x+ud)J
hits a zero, and remove the corresponding index.

– Similarly, if there exists i ∈ K such that wi > 1, we have the same
situation.

– If there exists j such that (v1 − Sw)j < 0, the descent direction

10.6. Analytic center cutting planes 165

is

(−T−1(1, (sj)K)⊤

−S⊤
IIα
T−1(1, (sj)K)⊤

+S⊤
IIβ
T−1(1, (sj)K)⊤

)
, then we add a new index to I and

remove one from Iα or Iβ. Note that if we assume w ∈ [0, 1]p, then
we have an optimal solution of the problem constrained to vectors
sj for j ∈ I.

Using the proper linear algebra tools common in simplex methods [24],
each iteration has complexity O(p2).

In summary, if we consider a pivot selection strategy such that
we always consider first the violation of the constraints w > 0 and
w 6 1, then, every time these two constraints are satisfied, w is a
global minimum of maxi∈I s⊤

i w over w ∈ [0, 1]p, that is a piecewise
affine lower-bound obtained from subgradients of the Lovász exten-
sion are certain points. Thus, we are actually “almost” using Kelley’s
method described in §7.7 (almost, because, like for active-set meth-
ods for quadratic programming in §7.12, extreme points sj may come
in and out of the set I). Moreover, the global minimum w mentioned
above is not unique, and the simplex method selects an extreme point
of the polytope of solutions. This is to be contrasted with the next sec-
tion, where interior-point will be considered, leading to much improved
performance in our experiments.

10.6 Analytic center cutting planes

In this section, we consider the application of the method presented in
§7.5 to the problem minw∈[0,1]p f(w). Given the set of already observed
points w0, . . . , wt−1 (and the corresponding outcomes of the greedy
algorithm at these points s0, . . . , st−1), and the best function values
Ft−1 for F obtained so far, then the next point is obtained by finding
a weighted analytic center, i.e., by minimizing

min
w∈Rp,u∈R

−α log(Ft−1 − u) −
t−1∑

j=0

log(u− s⊤
j w) − 1

2

p∑

i=1

logwi(1 − wi).

166 Submodular Function Minimization

Using strong convex duality, this is equivalent to

min
w∈Rp,u∈R

−α log(Ft−1 − u) − 1

2

p∑

i=1

logwi(1 − wi)

+
t−1∑

j=0

max
ηj∈R

ηj(s
⊤
j w − u) + log ηj

= max
η∈Rt

min
w∈Rp,u∈R

−α log(Ft−1 − u) − 1

2

p∑

i=1

logwi(1 − wi)

+w⊤S⊤η − uη⊤1 +
t−1∑

j=0

log ηj

= max
η∈Rt

α log η⊤1 − η⊤1 +
t−1∑

j=0

log ηj +
p∑

j=1

ϕ((S⊤η)j) + cst,

with ϕ(x) = minw∈[0,1]wx − 1
2 logw(1 − w) = x

2 + 1−
√

1+x2

2 +
1
2 log 1+

√
1+x2

2 . The minimization may be done using Newton’s
method [30], since a feasible start is easy to find from previous iter-
ations.

The generic cutting-plane method considers α = 1. When α tends
to infinity, then every analytic center subproblem is equivalent to min-
imizing maxj∈{0,...,t−1} s

⊤
j w such that w ∈ [0, 1]p and selecting among

all minimizers the analytic center of the polytope of solutions. Thus,
we obtain an instance of Kelley’s method. The selection of an interior-
point leads in practice to a choice of the next subgradient st which is
much better than with an extreme point (which the simplex method
described above would give).

10.7 Minimum-norm point algorithm

From Eq. (8.4) or Prop. 8.4, we obtain that if we know how to minimize
f(w)+ 1

2‖w‖2
2, or equivalently, minimize 1

2‖s‖2
2 such that s ∈ B(F), then

we get all minimizers of F from the negative components of s.
We can then apply the minimum-norm point algorithm detailed in

§9.2 to the vertices of B(F), and notice that step (5) does not require
to list all extreme points, but simply to maximize (or minimize) a
linear function, which we can do owing to the greedy algorithm. The
complexity of each step of the algorithm is essentially O(p) function

10.8. Approximate minimization through convex optimization 167

evaluations and operations of order O(p3). However, there are no known
upper bounds on the number of iterations. Finally, we obtain s ∈ B(F)

as a convex combination of extreme points.
Note that once we know which values of the optimal vector s (or w)

should be equal, greater or smaller, then, we obtain in closed form all
values. Indeed, let v1 > v2 > · · · > vm the m different values taken by
w, and Ai the corresponding sets such that wk = vj for k ∈ Aj . Since
we can express f(w) + 1

2‖w‖2
2 =

∑m
j=1

{
vj [F (A1 ∪ · · · ∪ Aj) − F (A1 ∪

· · · ∪Aj−1)] +
|Aj |

2 c2
j

}
, we then have:

vj =
−F (A1 ∪ · · · ∪Aj) + F (A1 ∪ · · · ∪Aj−1)

|Aj |
, (10.3)

which allows to compute the values vj knowing only the sets Aj (i.e.,
the ordered partition of constant sets of the solution). This shows in
particular that minimizing f(w) + 1

2‖w‖2
2 may be seen as a certain

search problem over ordered partitions.

10.8 Approximate minimization through convex optimiza-
tion

In this section, we consider two approaches to submodular function
minimization based on iterative algorithms for convex optimization: a
direct approach, which is based on minimizing the Lovász extension
directly on [0, 1]p (and thus using Prop. 3.7), and an indirect approach,
which is based on quadratic separable optimization problems (and thus
using Prop. 8.6). All these algorithms will access the submodular func-
tion through the greedy algorithm, once per iteration, with minor op-
erations inbetween.

Restriction of the problem. Given a submodular function F , if
F ({k}) < 0, then k must be in any minimizer of F , since, because
of submodularity, if it is not, then adding it would reduce the value
of F . Similarly, if F (V) − F (V \{k}) > 0, then k must be in the com-
plement of any minimizer of F . Thus, if we denote Amin the set of k ∈ V

such that F ({k}) < 0 and Amax the complement of the set of k ∈ V

168 Submodular Function Minimization

such that F (V) − F (V \{k}) > 0, then we may restrict the minimiza-
tion of F to subset A such that Amin ⊆ A ⊆ Amax. This is equivalent
to minimizing the submodular function A 7→ F (A ∪ Amin) − F (Amin)

on Amax\Amin.
From now on, (mostly for the convergence rate described below)

we assume that we have done this restriction and that we are now
minimizing a function F so that for all k ∈ V , F ({k}) > 0 and
F (V)−F (V \{k}) 6 0. We denote by αk = F ({k})+F (V \{k})−F (V),
which is non-negative by submodularity. Note that in practice, this re-
striction can be seamlessly done by starting regular iterative methods
from specific starting points.

Direct approach. From Prop. 3.7, we can use any convex optimization
algorithm to minimize f(w) on w ∈ [0, 1]p. Following [93], we consider
subgradient descent with step-size γt = D

√
2√
pt

(where D2 =
∑
k∈V α

2
k),

i.e., (a) starting from any w0 ∈ [0, 1]p, we iterate (a) the computa-
tion of a maximiser st−1 of w⊤

t−1s over s ∈ B(F), and (b) the update

wt = Π[0,1]p
[
wt−1 − D

√
2√
pt
st−1

]
, where Π[0,1]p is the orthogonal projection

onto the set [0, 1]p (which may done by thresholding the components
independently).

The following proposition shows that in order to obtain a certified
ε-approximate set B, we need at most 4pD2

ε2 iterations of subgradient
descent (whose complexity is that of the greedy algorithm to find a
base s ∈ B(F)).

Proposition 10.4. (Submodular function minimization by sub-

gradient descent) After t steps of projected subgradient descent,
among the p sup-level sets of wt, there is a set B such that F (B) −
minA⊆V F (A) 6

Dp1/2
√

2t
. Moreover, we have a certificate of optimal-

ity s̄t = 1
t+1

∑t
u=0 su, so that F (B) − (s̄t)−(V) 6

Dp1/2
√

2t
, with D2 =

∑p
k=1 α

2
k.

Proof. Given an approximate solution w so that 0 6 f(w) − f∗ 6 ε,
with f∗ = minA⊆V F (A) = minw∈[0,1]p f(w), we can sort the elements
of w in decreasing order, i.e., 1 > wj1 > · · · > wjp > 0. We then have,

10.8. Approximate minimization through convex optimization 169

with Bk = {j1, . . . , jk},

f(w) − f∗ =
p−1∑

k=1

(F (Bk) − f∗)(wjk
−wjk+1

)

+(F (V) − f∗)(wjp − 0) + (F (∅) − f∗)(1 − wj1).

Thus, as the sum of positive numbers, there must be at least one Bk
such that F (Bk)−f∗ 6 ε. Therefore, given w such that 0 6 f(w)−f∗ 6

ε, there is at least on the sup-level set of w which has values for F which
is ε-approximate.

The subgradients of f , i.e., elements s of B(F) are such that F (V)−
F (V \{k}) 6 sk 6 F ({k}). This implies that f is Lipschitz-continuous
with constant D, with D2 =

∑p
k=1 α

2
k. Since [0, 1]p is included in an ℓ2-

ball of radius
√
p/2, results from §7.2 imply that we may take ε = Dp1/2

√
2t

.
Moreover, as shown in [9], the average of all subgradients provides a
certificate of duality with the same known convergence rate (i.e., if we
use it as a certificate, it may lead to much better certificates than the
bound actually suggests).

Finally, if we replace the subgradient iteration by wt =

Π[0,1]p
[
wt−1 − Diag(α)−1

√
2√
t
st−1

]
, then this corresponds to a subgradi-

ent descent algorithm on the function w 7→ f(Diag(α)−1/2w) on the set
∏
k∈V [0, α

1/2
k], for which the diameter of the domain and the Lipschitz

constant are equal to
(∑

k∈V αk
)1/2. We would obtain the improved

convergence rate of
∑

k∈V
αk√

2t
, but with few empirical differences.

The previous proposition relies on one of the most simple al-
gorithms for convex optimization, subgradient descent, which is ap-
plicable in most situations; however, its use is appropriate because
the Lovász extension is not differentiable, and the dual problem is
also not differentiable. We have considered a non-adaptive steps-size
γt = D

√
2√
pt

in order to obtain a complexity bound. Another common
strategy is to use an approximation Polyak’s rule [22]: given the func-
tion value f(wt), the gradient norm ‖st‖2 and the current best dual
value dt−1 = maxu∈{0,...,t−1}(s̄u)−(V), the step-size is αt = f(wt)−dt−1

‖st‖2
2

.
See §12.1 for an experimental comparison.

170 Submodular Function Minimization

From separable problems to submodular function minimization. We
now consider separable quadratic optimization problems whose duals
are the maximization of a concave quadratic function on B(F), which is
smooth. We can thus use the conditional gradient algorithm described
in §7.6, with a better convergence rate; however, as we show below,
when we threshold the solution to obtain a set A, we get the same scal-
ing as before (i.e., O(1/

√
t)), with nevertheless an improved empirical

behavior. See below and experimental comparisons in Chapter 12. We
first derive a bound bonding the duality gap for submodular function
minimization when thresholding the iterates from the minimization of
1
2‖w‖2

2 + f(w).

Proposition 10.5. (Duality gap for submodular function mini-

mization from proximal problem) Let (w, s) ∈ R
p×B(F) be a pair

of primal-dual candidates for the minimization of 1
2‖w‖2

2 + f(w), with
duality gap ε = 1

2‖w‖2
2 + f(w) + 1

2‖s‖2
2. Then if A is the suplevel-set of

w with smallest value of F , then

F (A) − s−(V) 6
√
pε/2.

Proof. From Eq. (8.5), if we assume that (F +ψ′(α))({w > α}) − (s+

ψ′(α))−(V) > ε/2η for all α ∈ [−η, η], then we obtain:

ε >

∫ +η

−η

{
(F + α1V)({w > α}) − (s + α1V)−(V)

}
dα > ε,

which is a contradiction. Thus, there exists α ∈ [−η, η] such that 0 6

(F + α1V)({w > α}) − (s+ α1V)−(V) 6 ε/2η. This leads to

F ({w > α}) − (s)−(V) 6
ε

2η
− α|{w > α}| − (s)−(V) + (s+ α1V)−(V)

6
ε

2η
+ |α|p 6

ε

2η
+ ηp.

The last inequality may be derived using monotonicity arguments and
considering two cases for the sign of α. By choosing η =

√
ε/2p, we

obtain the desired bound.

Conditional gradient. We now consider the set-up of Chapter 8 with
ψk(wk) = 1

2w
2
k, and thus ψ∗

k(sk) = 1
2s

2
k. That is, e consider the con-

ditional gradient algorithm studied in §9.3 and §7.6, with the smooth

10.8. Approximate minimization through convex optimization 171

function g(s) = 1
2

∑
k∈V s

2
k: (a) starting from any base s0 ∈ B(F), iter-

ate (b) the greedy algorithm to obtain a minimizer s̄t−1 of s⊤
t−1s with

respect to s ∈ B(F), and (c) perform a line search to minimize with
respect to ρ ∈ [0, 1], [st−1 + ρ(s̄t−1 − st−1)]⊤[st−1 + ρ(s̄t−1 − st−1)].

Let αk = F ({k})+F (V \{k})−F (V), k = 1, . . . , p, be the widths of
the hyper-rectangle enclosing B(F). The following proposition shows
how to obtain an approximate minimizer of F .

Proposition 10.6. (Submodular function minimization by con-

ditional gradient descent) After t steps of the conditional gradient
method described above, among the p sub-level sets of st, there is a

set B such that F (B) − minA⊆V F (A) 6
1√
t

√∑p

k=1
α2

k

2

∑p
k=1. More-

over, st acts as a certificate of optimality, so that F (B) − (st)−(V) 6

1√
t

√∑p

k=1
α2

k

2 p.

Proof. The convergence rate analysis of the conditional gradient

method leads to an ε-approximate solution with ε 6

∑p

k=1
α2

k

t+1 . From
Prop. 10.5, then we obtain by thresholding the desired gap for sub-
modular function minimization.

Here the convergence rate is the same as for subgradient descent.
See Chapter 12 for an empirical comparison, showing a better behavior
for the conditional gradient method. As for subgradient descent, this
algorithm provides certificates of optimality. Moreover, when offline (or
online) certificates of optimality ensures that we an approximate solu-
tion, because the problem is strongly convex, we obtain also a bound√

2ε on ‖st − s∗‖2 where s∗ is the optimal solution. This in turn al-
lows us to ensure that all indices k such that st >

√
2ε cannot be in

a minimizer of F , while those indices k such that st < −
√

2ε have to
be in a minimizer, which can allow efficient reduction of the search
space (although these have not been implemented in the simulations in
Chapter 12).

Alternative algorithms for the same separable optimization prob-
lems may be used, i.e., conditional gradient without line search [108,
61], with similar convergence rates and behavior, but sometimes worse

172 Submodular Function Minimization

empirical peformance. Another alternative is to consider projected sub-
gradient descent in w, with the same convergence rate (because the
objective function is then strongly convex). Note that as shown before
(§9.3), it is equivalent to a conditional gradient algorithm with no line
search.

10.9 Using special structure

For some specific submodular functions, it is possible to use alterna-
tive optimization algorithms with either improved complexity bounds
or numerical efficiency. The most classical structure is decomposability:
the submodular function F is assumed to be a sum of simple submodu-
lar functions Fi, i = 1, . . . , r, i.e., ∀A ⊆ V , F (A) =

∑r
i=1 Fi(A). There

are several notions of simplicity that may be considered and are com-
pared empirically in [109]. All included functions of cardinality and
restrictions thereof, as well as cuts in chain or tree-structured graphs.

In [123], it is assumed that a minimizer of the set function A 7→
Fj(A) − s(A) may be computed efficiently for any vector s ∈ R

p. This
leads naturally to consider a dual approach where projected subgradi-
ent ascent is used to optimize the dual function. While this approach
exploits decomposability appropriately (in particular to derive parallel
implementations), the number of iterations required by the projected
subgradient methods is large.

In [196], it is assumed that one may compute a convex smooth
(with bounded Lipschitz-constant of the gradient) approximation of
the Lovász extension fi with uniform approximation error. In this sit-
uation, the Lovász extension of F may be approximated by a smooth
function on which an accelerated gradient technique such as described
in §7.9 may be used with convergence rate O(1/t2) after t iterations.
When choosing a well-defined amount of smoothnees, this leads to an
approximation guarantee for submodular function minimization of the
form O(1/t), instead of O(1/

√
t) in the general case.

In [109], it is assumed that one may compute efficiently the unique
minimizer of 1

2‖w − z‖2 + fi(w) for any z ∈ R
p, which is equivalent to

efficient orthogonal projections on the base polytope B(Fi). One may

10.9. Using special structure 173

then use a decomposition approach for the problem minw∈Rp f(w) +
1
2‖w‖2

2 (from which we may obtain a minimizer of F by thresholding
the solution at 0). As shown in [109], the dual problem may be cast as
finding the closest points between two polytopes, for which dedicated
efficient algorithms are available [18]. Moreover, these approaches are
also efficiently parallelizable.

11

Other Submodular Optimization Problems

While submodular function minimization may be solved in polynomial
time (see Chapter 10), submodular function maximization (which in-
cludes the maximum cut problem) is NP-hard. However, for many sit-
uations, local search algorithms exhibit theoretical guarantees and the
design and analysis of such algorithms is an active area of research, in
particular due to the many applications where the goal is to maximize
submodular functions (see, e.g., sensor placement in §6.3 and experi-
mental design in §6.5). Interestingly, the techniques used for maximiza-
tion and minimization are rather different, in particular with less use
of convex analysis for maximization. In this chapter, we review some
classical and recent results for the maximization of submodular (§11.1
and §11.2), before presenting the problem of differences of submodular
functions in §11.3.

11.1 Maximization with cardinality constraints

In this section, we first consider the classical instance of a submodular
maximization problem, for which the greedy algorithm leads to the
optimal approximation guarantee.

174

11.1. Maximization with cardinality constraints 175

Greedy algorithm for non-decreasing functions. Submodular func-
tion maximization provides a classical example where greedy algo-
rithms do have performance guarantees. We now consider a non-
decreasing submodular function F and the problem of minimizing F (A)

subject to the constraint |A| 6 k, for a certain k. The greedy algorithm
will start with the empty set A = ∅ and iteratively add the element
k ∈ V \A such that F (A∪{k})−F (A) is maximal. As we show below, it
has an (1−1/e)-performance guarantee [166]. Note that this guarantee
cannot be improved in general, as it cannot for Max k-cover (assuming
P 6= NP , no polynomial algorithm can provide better approximation
guarantees; see more details in [65]).

Proposition 11.1. (Performance guarantee for submodular

function maximization) Let F be a non-decreasing submodular
function. The greedy algorithm for maximizing F (A) subset to |A| 6 k

outputs a set A such that

F (A) > [1 − (1 − 1/k)k] max
B⊆V, |B|6k

F (B) > (1 − 1/e) max
B⊆V, |B|6k

F (B).

Proof. We follow the proof of [166, 207]. Let A∗ be a maximizer of F
with k elements, and aj the j-th element selected during the greedy
algorithm. We consider ρj = F ({a1, . . . , aj}) − F ({a1, . . . , aj−1}). For
a given j ∈ {1, . . . , k}, we denote by {b1, . . . , bm} the elements of A∗\Aj
(we must have k > m). We then have:

F (A∗)

6 F (A∗ ∪Aj−1) because F is non-decreasing,

= F (Aj−1) +
m∑

i=1

[
F (Aj−1 ∪ {b1, . . . , bi}) − F (Aj−1 ∪ {b1, . . . , bi−1})

]

6 F (Aj−1) +
m∑

i=1

[
F (Aj−1 ∪ {bi})−F (Aj−1)

]
by submodularity,

6 F (Aj−1) +mρj by definition of the greedy algorithm,

6 F (Aj−1) + kρj because m 6 k,

=
j−1∑

i=1

ρi + kρj by definition of ρi, i ∈ {1, . . . , j − 1}.

176 Other Submodular Optimization Problems

Since F (Ak) =
∑k
i=1 ρi, in order to have a lower bound on F (Ak),

we can minimize
∑k
i=1 ρi subject to the k constraints defined above

(plus pointwise positivity), i.e.,
∑j−1
i=1 ρi+kρj > F (A∗). This is a linear

programming problem with 2k−1 inequality constraints. Let M be the
k × k matrix such that for all j ∈ {1, . . . , k}, (Mρ)j =

∑j−1
i=1 ρi + kρj .

We need to minimize ρ⊤1 such that Mρ > F (A∗) and ρ > 0. We may
define a convex dual optimization problem by introducing Lagrange
multipliers λ ∈ R

p
+:

min
Mρ>F (A∗), ρ>0

ρ⊤1 = min
ρ>0

max
λ>0

ρ⊤1 + λ⊤(Mρ− F (A∗)1)

= max
λ>0

min
ρ>0

ρ⊤1 + λ⊤(Mρ− F (A∗)1)

= max
λ>0,M⊤λ61

−F (A∗)λ⊤1.

Since M is lower triangular, we may compute the vector ρ =

F (A∗)M−11 iteratively and easily show by induction that ρj =

F (A∗)(k − 1)j−1k−j . Similarly, M⊤ is upper-triangular and we may
compute λ = M−⊤1 as λk−j+1 = (k − 1)j−1k−j.

Since these two vectors happen to be non-negative, they are re-
spectively primal and dual feasible. Since they respectively lead to the
same primal and dual objective, this shows that the optimal value
of the linear program is equal to F (A∗)1⊤M−11 = F (A∗)

∑k
i=1(1 −

1/k)i−1k−1 = F (A∗)(1 − 1/k)k, hence the desired result since (1 −
1/k)k = exp(k log(1 − 1/k)) 6 exp(k × (−1/k)) = 1/e.

Extensions. Given the previous result on cardinality constraints, sev-
eral extensions have been considered, such as knapsack constraints or
matroid constraints (see [42] and references therein). Moreover, fast al-
gorithms and improved online data-dependent bounds can be further
derived [150].

11.2 General submodular function maximization

In this section, we consider a submodular function and the maximiza-
tion problem:

max
A⊆V

F (A). (11.1)

11.2. General submodular function maximization 177

This problem is known to be NP-hard (note that it includes the max-
imum cut problem) [67]. In this section, we present general local opti-
mality results as well as a review of existing approximation guarantees
available for non-negative functions.

Local search algorithm. Given any set A, simple local search algo-
rithms simply consider all sets of the form A ∪ {k} and A\{k} and
select the one with largest value of F . If this value is lower than F ,
then the algorithm stops and we are by definition at a local minimum.
While these local minima do not lead to any global guarantees in gen-
eral, there is an interesting added guarantee based on submodularity,
which we now prove (see more details in [80]).

Proposition 11.2. (Local maxima for submodular function max-

imization) Let F be a submodular function and A ⊆ V such that for
all k ∈ A, F (A\{k}) 6 F (A) and for all k ∈ V \A, F (A∪ {k}) 6 F (A).
Then for all B ⊆ A and all B ⊃ A, F (B) 6 F (A).

Proof. If B = A ∪ {i1, . . . , iq}, then

F (B) − F (A) =
q∑

j=1

F (A ∪ {i1, . . . , ij}) − F (A ∪ {i1, . . . , ij−1})

6

q∑

j=1

F (A ∪ {ij}) − F (A) 6 0,

which leads to the first result. The second one may be obtained from
the first one applied to A 7→ F (V \A) − F (V).

Note that branch-and-bound algorithms (with worst-case exponen-
tial time complexity) may be designed that specifically take advantage
of the property above [80].

Formulation using base polyhedron. Given F and its Lovász exten-
sion f , we have (the first equality is true since maximization of convex

178 Other Submodular Optimization Problems

function leads to an extreme point [185]):

max
A⊆V

F (A) = max
w∈[0,1]p

f(w),

= max
w∈[0,1]p

max
s∈B(F)

w⊤s because of Prop. 3.2,

= max
s∈B(F)

s+(V) = max
s∈B(F)

1

2
(s+ |s|)(B)

=
1

2
F (V) +

1

2
max
s∈B(F)

‖s‖1.

Thus submodular function maximization may be seen as finding the
maximum ℓ1-norm point in the base polyhedron (which is not a convex
optimization problem). See an illustration in Figure 11.1.

Non-negative submodular function maximization. When the func-
tion is known to be non-negative (i.e., with non-negative values F (A)

for all A ⊆ V), then simple local search algorithm have led to theoret-
ical guarantees [67, 42, 33]. It has first been shown in [67] that a 1/2

relative bound could not be improved in general if a polynomial num-
ber of queries of the submodular function is used. Recently, [33] has
shown that a simple strategy that maintains two solutions, one start-
ing from the empty set and one starting from the full set, and updates
them using local moves, achieves a ratio of 1/3, while a randomized
local move leads to the optimal approximation ratio of 1/2.

However, such theoretical guarantees should be considered with
caution, since in this similar setting of maximizing a non-negative sub-
modular function, selecting a random subset already achieves at least
1/4 of the optimal value (see the simple argument outlined by [67] that
simply uses the convexity of the Lovász extension and conditioning):
having theoretical guarantees do not necessarily imply that an algo-
rithm is doing anything subtle.

Interestingly, in the analysis of submodular function maximization,
a new extension from {0, 1}p to [0, 1]p has emerged, the multi-linear

extension [42], which is equal to

f̃(w) =
∑

A⊆V
F (A)

∏

i∈A
wi

∏

i∈V \A
(1 − wi).

11.3. Difference of submodular functions∗ 179

B(F)

0s

B(F)

s
t B(G)

Figure 11.1: Geometric interpretation of submodular function maximization (left)
and optimization of differences of submodular functions (right). See text for details.

It is equal to the expectation of F (B) whereB is a random subset where
the i-th element is selected with probability wi (note that this inter-
pretation allows the computation of the extension through sampling),
and this is to be contrasted with the Lovász extension, which is equal
to the expectation of F ({w > u}) for u a random variable with uniform
distribution in [0, 1]. The multi-linear extension is neither convex nor
concave but has marginal convexity properties that may be used for the
design and analysis of algorithms for maximization problems [42, 68].

11.3 Difference of submodular functions∗

In regular continuous optimization, differences of convex functions
play an important role, and appear in various disguises, such as DC-
programming [102], concave-convex procedures [210], or majorization-
minimization algorithms [104]. They allow the expression of any con-
tinuous optimization problem with natural descent algorithms based
on upper-bounding a concave function by its tangents.

In the context of combinatorial optimization, [158] has shown that
a similar situation holds for differences of submodular functions. We
now review these properties.

Formulation of any combinatorial optimization problem. Let F :

2V → R be any set-function, and H a strictly submodular function,
i.e., a function such that

α = min
A⊆V

min
i,j∈V \A

−H(A∪{i, j})+H(A∪{i})+H(A∪{j})−H(A) > 0.

180 Other Submodular Optimization Problems

A typical example would be H(A) = −1
2 |A|2, where α = 1. If

β = min
A⊆V

min
i,j∈V \A

−F (A ∪ {i, j}) + F (A ∪ {i}) + F (A ∪ {j}) − F (A)

is non-negative, then F is submodular (see Prop. 2.3). If β < 0, then
F (A) − β

αH(A) is submodular, and thus, we have F (A) = [F (A) −
β
αH(A)] − [−β

αH(A)], which is a difference of two submodular func-
tions. Thus any combinatorial optimization problem may be seen as a
difference of submodular functions (with of course non-unique decom-
position). However, some problems, such as subset selection in §6.7,
or more generally discriminative learning of graphical model structure
may naturally be seen as such [158].

Optimization algorithms. Given two submodular set-functions F and
G, we consider the following iterative algorithm, starting from a sub-
set A:

1. Compute modular lower-bound B 7→ s(B), of G which is tight at
A: this might be done by using the greedy algorithm of Prop. 3.2
with w = 1A. Several orderings of components of w may be used
(see [158] for more details).

2. Take A as any minimizer of B 7→ F (B) − s(B), using any algo-
rithm of Chapter 10.

It converges to a local minimum, in the sense that at convergence to a
set A, all sets A ∪ {k} and A\{k} have smaller function values.

Formulation using base polyhedron. We can give a similar geometric
interpretation than for submodular function maximization; given F,G

11.3. Difference of submodular functions∗ 181

and their Lovász extensions f , g, we have:

min
A⊆V

F (A) −G(A) = min
A⊆V

min
s∈B(G)

F (A) − s(A) because of Prop. 3.2,

= min
w∈[0,1]p

min
s∈B(G)

f(w) − s⊤w because of Prop. 3.7,

= min
s∈B(G)

min
w∈[0,1]p

f(w) − s⊤w

= min
s∈B(G)

min
w∈[0,1]p

max
t∈B(F)

t⊤w − s⊤w

= min
s∈B(G)

max
t∈B(F)

min
w∈[0,1]p

t⊤w − s⊤w by strong duality,

= min
s∈B(G)

max
t∈B(F)

(t − s)−(V)

=
F (V) −G(V)

2
− 1

2
min

s∈B(G)
max
t∈B(F)

‖t− s‖1.

Thus optimization of the difference of submodular functions is related
to the Hausdorff distance between B(F) and B(G): this distance is
equal to max

{
mins∈B(G) maxt∈B(F) ‖t−s‖1,mins∈B(G) maxt∈B(F) ‖t−

s‖1
}

(see, e.g., [152]). See also an illustration in Figure 11.1.

12

Experiments

In this chapter, we provide illustrations of the optimization algorithms
described earlier, for submodular function minimization (§12.1), as well
as for convex optimization problems: quadratic separable ones such
as the ones used for proximal methods or within submodular func-
tion minimization (§12.2), an application of sparsity-inducing norms
to wavelet-based estimators (§12.3), and some simple illustrative ex-
periments of recovery of one-dimensional signals using structured reg-
ularizers (§12.4). The Matlab code for all these experiments may be
found at http://www.di.ens.fr/~fbach/submodular/.

12.1 Submodular function minimization

We compare several approaches to submodular function minimization
described in Chapter 10, namely:

– MNP: the minimum-norm-point algorithm to maximize −1
2‖s‖2

2

over s ∈ B(F), described in §10.7.

– Simplex: the simplex algorithm described in §10.5.

– ACCPM: the analytic center cutting plane technique from §10.6.

182

http://www.di.ens.fr/~fbach/submodular/

12.1. Submodular function minimization 183

Figure 12.1: Examples of semi-supervised clustering : (left) observations, (right)
results of the semi-supervised clustering algorithm based on submodular function
minimization, with eight labelled data points. Best seen in color.

– ACCPM-Kelley: the analytic center cutting plane technique pre-
sented in §10.6, with a large weight α = 1000, which emulates the
simplicial method from §7.7.

– Ellipsoid: the ellipsoid algorithm described in §10.4.

– SG: the projected gradient descent algorithm to minimize f(w) over
w ∈ [0, 1]p, described in §10.8, with two variants, a step-size propor-
tional to 1/

√
t (denoted “SG-1/t1/2”) and using the approximation

of Polyak’s rule (“SG-Polyak”) described in §10.8.

– CG-LS: the conditional gradient algorithm to maximize −1
2‖s‖2

2

over s ∈ B(F), with line search, described in §10.8.

– CG-2/(t+1): the conditional gradient algorithm to maximize
−1

2‖s‖2
2 over s ∈ B(F), with step size 2/(t + 1), described in §10.8.

From all these algorithms, we may obtain sets A ⊆ V and dual cer-
tificates s ∈ B(F); the quantity F (A) − s−(V) (see Prop. 10.3) then
serves as a certificate of optimality. In order to distinguish primal and
dual approximate optimality we report F (A) − Opt and Opt + s−(V),
where Opt = minA⊆V F (A) is the optimal value of the problem.

We test these algorithms on five data sets:

– Two-moons (clustering with mutual information criterion): we gen-
erated data from a standard synthetic examples in semi-supervised

184 Experiments

0 500 1000 1500
−1

0

1

2

3

4

iterations

lo
g 10

(m
in

(F
)−

s −
(V

))

MNP
CG−LS
CG−2/(t+1)
SD−1/t1/2

SD−Polyak
Ellipsoid
Simplex
ACCPM
ACCPM−Kelley

0 500 1000 1500
−1

0

1

2

3

4

iterations

lo
g 10

(F
(A

)−
m

in
(F

))

Figure 12.2: Submodular function minimization results for “Genrmf-wide” exam-
ple: (left) optimal value minus dual function values in log-scale vs. number of iter-
ations vs. number of iteration. (Right) Primal function values minus optimal value
in log-scale vs. number of iterations. Best seen in color.

learning (see Figure 12.1) with p = 400 data points, and 16 labelled
data points, using the method presented in §6.5, based on the mutual
information between two Gaussian processes (with a Gaussian-RBF
kernel).

– Genrmf-wide and Genrmf-long (min-cut/max-flow standard
benchmark): following [73], we generated cut problem using the gen-
erator GENRMF available from DIMACS challenge1. Two types
of network were generated, “long” and “wide”, with respectively
p = 575 vertices and 2390 edges, and p = 430 and 1872 edges (see [73]
for more details).

– Speech: we consider a dataset used by [133, 110], in order to
solve the problem of finding a maximum size speech corpus with
bounded vocabulary (p = 800). The submodular function is of the
form F (A) = |V \A| + λ

√
G(A), where G(A) is a set-cover function

from §6.3 (this function is submodular because of Prop. B.6).

– Image segmentation: we consider the minimum-cut problem used
in Figure 6.4 for segmenting a 50 × 50 image, i.e., p = 2500.

1 The First DIMACS international algorithm implemen-
tation challenge: The core experiments (1990), available at
ftp://dimacs.rutgers.edu/pub/netßow/generalinfo/core.tex.

ftp://dimacs.rutgers.edu/pub/net�ow/generalinfo/core.tex

12.1. Submodular function minimization 185

0 500 1000
−1

0

1

2

3

4

iterations

lo
g 10

(m
in

(F
)−

s −
(V

))

MNP
CG−LS
CG−2/(t+1)
SD−1/t1/2

SD−Polyak
Ellipsoid
Simplex
ACCPM
ACCPM−Kelley

0 500 1000
−1

0

1

2

3

4

iterations

lo
g 10

(F
(A

)−
m

in
(F

))

Figure 12.3: Submodular function minimization results for “Genrmf-long” exam-
ple: (left) optimal value minus dual function values in log-scale vs. number of iter-
ations vs. number of iteration. (Right) Primal function values minus optimal value
in log-scale vs. number of iterations. Best seen in color.

In Figures 12.2, 12.3, 12.4, 12.5 and 12.6, we compare the algorithms
on the five datasets. We denote by Opt the optimal value of the opti-
mization problem, i.e., Opt = minw∈Rp f(w) = maxs∈B(F) s−(V). On
the left plots, we display the dual suboptimality, i.e, log10(Opt−s−(V)).
In the right plots we display the primal suboptimality log10(F (B) −
Opt). Note that in all the plots, we plot the best values achieved so far,
i.e., we make all curves non-increasing.

Since all algorithms perform a sequence of greedy algorithms (for
finding maximum weight bases), we measure performance in numbers
of iterations in order to have an implementation-independent measure.
Among the tested methods, some algorithms (subgradient and condi-
tional gradient) have no extra cost, while others involved solving linear
systems.

On all datasets, the achieved primal function values are in fact much
lower than the certified values (i.e., primal suboptimality converges
to zero much faster than dual suboptimality). In other words, primal
values F (A) are quickly very good and iterations are just needed to
sharpen the certificate of optimality.

Among the algorithms, only ACCPM has been able to obtain
both close to optimal primal and dual solutions in all cases, while
the minimum-norm-point does so in most cases, though more slowly.
Among methods that may find the global optimum, the simplex exhibit

186 Experiments

0 200 400 600
−4

−3

−2

−1

0

1

2

iterations

lo
g 10

(m
in

(F
)−

s −
(V

))

MNP
CG−LS
CG−2/(t+1)
SD−1/t1/2

SD−Polyak
Ellipsoid
Simplex
ACCPM
ACCPM−Kelley

0 200 400 600
−4

−3

−2

−1

0

1

2

iterations

lo
g 10

(F
(A

)−
m

in
(F

))

Figure 12.4: Submodular function minimization results for “Two-moons” example:
(left) optimal value minus dual function values in log-scale vs. number of iterations
vs. number of iteration. (Right) Primal function values minus optimal value in log-
scale vs. number of iterations. Best seen in color.

poor performance. The simpler methods (subgradient and conditional
gradient) perform worse, with an advantage for the conditional gradi-
ent with line search, which is able to get good primal values quicker
(while dual certificates converge slowly).

12.2 Separable optimization problems

In this section, we compare the iterative algorithms outlined in Chap-
ter 9 for minimization of quadratic separable optimization problems, on
two of the problems related to submodular function minimization from
the previous section (i.e., minimizing f(w) + 1

2‖w‖2
2). In Figures 12.7

and 12.8, we compare three algorithms on two datasets, namely the
mininum-norm-point algorithm, and two versions of conditional gradi-
ent (with and without line search). On the left plots, we display the pri-
mal suboptimality log10(f(w)+ 1

2‖w‖2
2 −minv∈Rp f(v)+ 1

2‖v‖2
2) while in

the right plots we display dual suboptimality, for the same algorithms.
As in §12.1, on all datasets, the achieved primal function values are in
fact much lower than the certified values, a situation common in convex
optimization. On all datasets, the min-norm-point algorithm achieved
quickest small duality gaps. On all datasets, among the two conditional
gradient algorithms, the version with line-search perform significantly
better than the algorithm with decaying step sizes. Note also, that

12.2. Separable optimization problems 187

0 200 400
−4

−3

−2

−1

0

1

2

iterations

lo
g 10

(m
in

(F
)−

s −
(V

))

MNP
CG−LS
CG−2/(t+1)
SD−1/t1/2

SD−Polyak
Ellipsoid
Simplex
ACCPM
ACCPM−Kelley

0 100 200 300 400
−4

−3

−2

−1

0

1

2

iterations

lo
g 10

(F
(A

)−
m

in
(F

))
Figure 12.5: Submodular function minimization results for “Speech” example:
(left) optimal value minus dual function values in log-scale vs. number of itera-
tions vs. number of iteration. (Right) Primal function values minus optimal value
in log-scale vs. number of iterations. Best seen in color.

0 200 400
−4

−3

−2

−1

0

1

2

iterations

lo
g 10

(m
in

(F
)−

s −
(V

))

MNP
CG−LS
CG−2/(t+1)
SD−1/t1/2

SD−Polyak
Ellipsoid
Simplex
ACCPM
ACCPM−Kelley

0 100 200 300 400
−4

−3

−2

−1

0

1

2

iterations

lo
g 10

(F
(A

)−
m

in
(F

))

Figure 12.6: Submodular function minimization results for “image” example: (left)
optimal value minus dual function values in log-scale vs. number of iterations
vs. number of iteration. (Right) Primal function values minus optimal value in log-
scale vs. number of iterations. Best seen in color.

188 Experiments

0 500 1000 1500
0

2

4

6

8

iterations

lo
g 10

(O
P

T
+

 ||
s|

|2 /2
)

MNP
CG−LS
CG−2/(t+1)

0 500 1000 1500
0

2

4

6

8

iterations

lo
g 10

(
||w

||2 /2
+

f(
w

)−
O

P
T

)

Figure 12.7: Separable optimization problem for “Genrmf-wide” example. (Left)
optimal value minus dual function values in log-scale vs. number of iterations.
(Right) Primal function values minus optimal value in log-scale vs. number of iter-
ations, in dashed, before the “pool-adjacent-violator” correction. Best seen in color.

0 500 1000
−2

0

2

4

6

iterations

lo
g 10

(O
P

T
+

 ||
s|

|2 /2
)

MNP
CG−LS
CG−2/(t+1)

0 500 1000
−2

0

2

4

6

iterations

lo
g 10

(
||w

||2 /2
+

f(
w

)−
O

P
T

)

Figure 12.8: Separable optimization problem for “Genrmf-long” example. (Left)
optimal value minus dual function values in log-scale vs. number of iterations.
(Right) Primal function values minus optimal value in log-scale vs. number of iter-
ations, in dashed, before the “pool-adjacent-violator” correction. Best seen in color.

while the conditional gradient algorithm is not finitely convergent, its
performance is not much worse than the minimum-norm-point algo-
rithm, with smaller running time complexity per iteration. Moreover,
as shown on the right plots, the “pool-adjacent-violator” correction is
crucial in obtaining much improved primal candidates.

12.3 Regularized least-squares estimation

In this section, we illustrate the use of the Lovász extension in the
context of sparsity-inducing norms detailed in §5.2, with the submod-

12.3. Regularized least-squares estimation 189

0 0.5 1
−2

−1

0

1

2

0 0.5 1
−2

0

2

4

0 0.5 1
−2

0

2

4

0 0.5 1
−4

−2

0

2

4

0 0.5 1
−4

−2

0

2

4

0 0.5 1
−4

−2

0

2

4

0 0.5 1
−4

−2

0

2

4

Figure 12.9: Wavelet binary tree (d = 3). See text for details.

ular function defined in Figure 6.9, which is based on a tree structure
among the p variables, and encourages variables to be selected after
their ancestors. We do not use any weights, and thus F (A) is equal to
the cardinality of the union of all ancestors Anc(A) of nodes indexed
by elements of A.

Given a probability distribution (x, y) on [0, 1] × R, we aim to
estimate g(x) = E(Y |X = x), by a piecewise constant function.
Following [213], we consider a Haar wavelet estimator with max-
imal depth d. That is, given the Haar wavelet, defined on R as
ψ(t) = 1[0,1/2)(t) − 1[1/2,1)(t), we consider the functions ψij(t) defined
as ψij(t) = ψ(2i−1t − j), for i = 1, . . . , d and j ∈ {0, . . . , 2i−1 −1},
leading to p = 2d− 1 basis functions. These functions come naturally
in a binary tree structure, as shown in Figure 12.9 for d = 3. Impos-
ing a tree-structured prior enforces that a wavelet with given support
is selected only after all larger supports are selected; this avoids the
selection of isolated wavelets with small supports.

We consider random inputs xi ∈ [0, 1], i = 1, . . . , n, from a uniform
distribution and compute yi = sin(20πx2

i) + εi, where εi is Gaussian
with mean zero and standard deviation 0.1. We consider the optimiza-

190 Experiments

0 0.5 1

−1

−0.5

0

0.5

1

Hierarchic

0 0.5 1

−1

−0.5

0

0.5

1

Lasso

0 0.5 1

−1

−0.5

0

0.5

1

Ridge

Figure 12.10: Estimation with wavelet trees: (left) hierarchical penalty
(MSE=0.04), (middle) Lasso (MSE=0.11), (right) ridge regression (MSE=0.33). See
text for details.

tion problem

min
w∈Rp,b∈R

1

2n

n∑

k=1

(
yk −

d∑

i=1

2i−1−1∑

j=0

wijψij(xk) − b

)2

+ λR(w), (12.1)

where b is a constant term and R(w) is a regularization function.
In Figure 12.10, we compare several regularization terms, namely
R(w) = 1

2‖w‖2
2 (ridge regression), R(w) = ‖w‖1 (Lasso) and R(w) =

Ω(w) = f(|w|) defined from the hierarchical submodular function
F (A) = Card(Anc(A)). For all of these, we select λ such that the
generalization performance is maximized, and compare the estimated
functions. The hierarchical prior leads to a lower estimation error with
fewer artefacts.

In this section, our goal is also to compare several optimization
schemes to minimize Eq. (12.1) for this particular example (for more
simulations on larger-scale examples with similar conclusions, see [11,
143, 114, 8]). We compare in Figure 12.11 several ways of solving the
regularized least-squares problem:

– Prox. hierarchical: we use a dedicated proximal operator based on
the composition of local proximal operators [114]. This strategy is
only applicable for this submodular function.

– Prox. decomposition: we use the algorithm of §9.1 which uses
the fact that for any vector t, F − t may be minimized by dynamic

12.3. Regularized least-squares estimation 191

programming [114]. We also consider a modification (“abs”), where
the divide-and-conquer strategy is used directly on the symmetric
submodular polyhedron.

– Prox-MNP: we use the generic method which does not use any of
the structure, with the modification (“abs”) that operates directly
on |P |(F) and not on B(F). For these two algorithms, since the
min-norm-point algorithm is used many times for similar inputs, we
use warm restarts to speed up the algorithm. We also report results
without such warm restarts (the algorithm is then much slower).

– subgrad-descent: we use a generic method which does not use any
of the structure, and minimize directly Eq. (12.1) by subgdradient
descent, using the best possible (in hindsight) step-size sequence pro-
portional to 1/

√
t.

– Active-primal: primal active-set method presented in §7.12, which
require to be able to minimize the submodular function efficiently
(possible here). When F is the cardinality function, this corresponds
to the traditional active-set algorithm for the Lasso.

– Active-dual: dual active-set method presented in §7.12, which sim-
ply requires to access the submodular function through the greedy
algorithm. Since our implementation is unstable (due to the large
linear ill-conditioned systems that are approximately solved), it is
only used for the small problem where p = 127.

As expected, in Figure 12.11, we see that the most efficient algo-
rithm is the dedicated proximal algorithm (which is usually not avail-
able except in particular cases like the tree-structured norm), while the
methods based on submodular functions fare correctly, with an advan-
tage for methods using the structure (i.e., the decomposition method,
which is only applicable when submodular function minimization is effi-
cient) over the generic method based on the min-norm-point algorithm
(which is always applicable). Note that the primal active-set method
(which is only applicable when minimizing F is efficient) is competitive
while the dual active-set method takes many iterations to make some
progress and then converge quickly.

192 Experiments

0 2 4 6 8

−10

−8

−6

−4

−2

time (seconds)

lo
g 10

(g
(w

)
−

 m
in

(g
))

Subgrad. descent
Prox. MNP
Prox. MNP (no restart)
Prox. MNP (abs)
Prox. decomp.
Prox. decomp. (abs)
Prox. hierarchical
Active−primal
Active−dual

0 50 100

−10

−8

−6

−4

−2

time (seconds)

lo
g 10

(g
(w

)
−

 m
in

(g
))

Subgrad. descent
Prox. MNP
Prox. MNP (no restart)
Prox. MNP (abs)
Prox. decomp.
Prox. decomp. (abs)
Prox. hierarchical
Active−primal

Figure 12.11: Running times for convex optimization for a regularized prob-
lem: several methods are compared; top: small-scale problems (p = 127), bottom:
medium-scale problem p = 511). See text for details. Best seen in color.

Interestingly,applying the divide-and-conquer strategies directly to
|P |(F) and not through B(F) is more efficient while this is the opposite
when the min-norm-point algorithm is used.

12.4 Graph-based structured sparsity

In this monograph, we have considered several sparsity-inducing norms
related to graph topologies. In this section, we consider a chain graph,
i.e., we are looking for sparsity-inducing terms that take into account
the specific ordering of the components of our vector w. We consider
the following regularizers r(w):

12.4. Graph-based structured sparsity 193

– Total variation + ℓ1-penalty: r(w) =
∑p−1
k=1 |wk − wk+1| + 1

2‖w‖1.
This regularizer aims at finding piecewise-constant signals with the
additional prior that the 0-level-set is large.

– Laplacian quadratic form + ℓ1-penaly: r(w) = 1
2

∑p−1
k=1 |wk−wk+1|2+

‖w‖1. This regularizer aims at finding smooth and sparse signals.

– ℓ∞-relaxation of the function F (A) = |A| + range(A) + cst. This
function aims at selecting contiguous elements in a sequence, but
may suffer from additional biases due to the extra extreme points of
the ℓ∞-norm.

– ℓ2-relaxation of the function F (A) = |A| + range(A) + cst. This
function aims at selecting contiguous elements in a sequence. We
consider the relaxation outlined in §5.4.

In Figure 12.12, we compare these four regularizers on three signals
that clearly exhibit the different behaviors. We selected the largest reg-
ularization parameter that leads to optimal sparsity pattern selection.
We can make the following observations: (a) the ℓ∞ and ℓ2 relaxation
are invariant by sign flips of the inputs (hence the results between the
first two rows are simply flipped), and are adapted to signals with con-
tiguous non-zero elements but with potentially different signs; (b) the
total variation is particularly well adapted to the first row, while the
Laplacian smoothing is best adapted to the third row; (c) in the third
row, the ℓ∞-relaxation adds an additional bias while the ℓ2-relaxation
does not.

194 Experiments

20 40 60

0

1

2

L∞−relaxation

20 40 60

0

1

2

Laplacian + L
1

20 40 60

0

1

2

L
2
−relaxation

20 40 60

0

1

2

TV + L
1

20 40 60
−2

0

2

L∞−relaxation

20 40 60
−2

0

2

Laplacian + L
1

20 40 60
−2

0

2

L
2
−relaxation

20 40 60
−2

0

2

TV + L
1

20 40 60

0

2

4

L∞−relaxation

20 40 60

0

2

4

Laplacian + L
1

20 40 60

0

2

4

L
2
−relaxation

20 40 60

0

2

4

TV + L
1

Figure 12.12: Denoising results for three different signals. Comparison of several
sparsity-inducing norms. Red: signal (bold) and noisy version (plain). Black: recov-
ered signal. See text for details.

13

Conclusion

In this monograph, we have explored various properties and applica-
tions of submodular functions. We have emphasized primarily on a
convex perspective, where the key concepts are the Lovász extension
and the associated submodular and base polyhedra.

Given the numerous examples involving such functions, the analysis
and algorithms presented in this monograph allow the unification of
several results in convex optimization, in particular in situations where
combinatorial structures are considered.

Related work on submodularity. In this monograph, we have focused
primarily on the relationships between convex optimization and sub-
modular functions. However, submodularity is an active area of research
in computer science, and more generally in algorithms and machine
learning, which goes beyond such links:

– Online optimization: In this monograph, we have focused on of-
fline methods for the optimization problem: at any given iteration,
the submodular function is accessed through the value oracle. In cer-
tain situations common in machine learning, the submodular func-
tion is a sum of often simple submodular functions, and online learn-

195

196 Conclusion

ing techniques can be brought to bear to either speed up the opti-
mization or provide online solutions. This can be done both for the
maximization of submodular functions [198, 88] or their minimiza-
tion [93]

– Learning submodular functions: We have assumed that the set-
functions we were working with were given, and hence manually
built for each given application. It is of clear interest to learn the
submodular functions directly from data. See, e.g., [13, 77, 197] for
several approaches.

– Discrete convex analysis: We have presented a link between com-
binatorial optimization and convex optimization based on submod-
ular functions. The theory of discrete convex analysis goes beyond
submodularity and the minimization or maximization of submodular
functions. See, e.g., [153].

– Beyond submodular minimization or maximization: concepts
related to submodularity may also be used for sequential decision
problems, in particular through the development of adaptive sub-
modularity (see [81] and references therein).

Open questions. Several questions related to submodular analysis are
worth exploring, such as:

– Improved complexity bounds and practical performance

for submodular function minimization: the currently best-
performing algorithms (min-norm-point and analytic center cutting-
planes) do not come with convergence bounds. Designing efficient
optimization algorithms for submodular function minimization, with
both good computational complexity bounds and practical perfor-
mance, remains a challenge. On a related note, active-set methods
such that the simplex and min-norm-point algorithms may in general
take exponentially many steps [120]. Are submodular polyhedra spe-
cial enough so that the complexity of these algorithms (or variations
thereof) is polynomial for submodular function minimization?

– Lower bounds: We have presented algorithms for approximate sub-
modular function minimization with convergence rate of the form

197

O(1/
√
t) where t is the number of calls to the greedy algorithm; it

would be interesting to obtain better rates or show that this rate is
optimal, like in non-smooth convex optimization (see, e.g., [171]).

– Multi-way partitions: Computer vision applications have focused
also on multi-way partitions, where an image has to be segmented
in more than two regions [31]. The problem cannot then be solved
in polynomial-time [41], and it would be interesting to derive frame-
works with good practical performance on large graphs with millions
of nodes and attractive approximation guarantees.

– Semi-definite programming: The current theory of submodu-
lar functions essentially considers links between combinatorial opti-
mization problems and linear programming, or linearly constrained
quadratic programming; it would be interesting to extend submod-
ular analysis using more modern convex optimization tools such as
semidefinite programming.

– Convex relaxation of submodular maximization: while sub-
modular function minimization may be seen naturally as a convex
problem, this is not the case of maximization; being able to provide
convex relaxation would notably allow a unified treatment of differ-
ences of submodular functions, which then include all set-functions.

Appendices

A

Review of Convex Analysis and Optimization

In this appendix, we review relevant concepts from convex analysis in
Appendix A.1. For more details, see [30, 22, 28, 185]. We also consider
a detailed convexity-based proofs for the max-flow min-cut theorem
in Appendix A.2, and a derivation of the pool-adjacent-violators algo-
rithm in Appendix A.3.

A.1 Convex analysis

In this section, we review extended-value convex functions, Fenchel
conjugates, Fenchel duality, dual norms, gauge functions and polar sets.

Extended-value convex functions. In this monograph, we consider
functions defined on R

p with values in R ∪ {+∞}; the domain of f is
defined to be the set of vectors in R

p such that f has finite values.
Such an “extended-value” function is said to be convex if its domain is
convex and f restricted to its domain (which is a real-valued function)
is convex.

Throughout this monograph, we denote by w 7→ IC(w) the indi-
cator function of the convex set C, defined as 0 for w ∈ C and +∞

199

200 Review of Convex Analysis and Optimization

otherwise; this defines a convex function and allows constrained opti-
mization problems to be treated as unconstrained optimization prob-
lems. In this monograph, we always assume that f is a proper function
(i.e., has non-empty domain). A function is said closed if for all α ∈ R,
the set {w ∈ R

p, f(w) 6 α} is a closed set. We only consider closed

proper functions in this monograph.

Fenchel conjugate. For any function f : Rp → R ∪ {+∞}, we may
define the Fenchel conjugate f∗ as the extended-value function from R

p

to R ∪ {+∞} defined as

f∗(s) = sup
w∈Rp

w⊤s− f(w). (A.1)

For a given direction s ∈ R
p, f∗(s) may be seen as minus the intercept

of the tangent to the graph of f with slope s, defined as the hyperplane
s⊤w + c = 0 which is below f and closest (i.e., largest possible −c =

maxw∈Rp w⊤s− f(w)). See Figure A.1.
As a pointwise supremum of linear functions, f∗ is always convex

(even if f is not), and it is always closed. By construction, for all s ∈ R
p

and w ∈ R
p, f(w) > w⊤s − f∗(s), i.e., f is lower-bounded by a set of

affine functions. When f is convex, it is geometrically natural that the
envelope of these affine functions is equal to f . Indeed, when f is convex
and closed, then the biconjugate of f (i.e., f∗∗) is equal to f , i.e., for
all w ∈ R

p,
f(w) = sup

s∈Rp
w⊤s− f∗(s).

In Figure A.1, we provide an illustration of the representation of f as
the maximum of affine functions.

If f is not convex and closed, then the bi-conjugate is always a
lower-bound on f , i.e., for all w ∈ R

p, f∗∗(w) 6 f(w), and it is the
tightest such convex closed lower bound, often referred to as the convex

envelope (see examples in Chapter 5).
When f is convex and closed, many properties of f may be seen

from f∗ and vice-versa:

– f is strictly convex if and only if f∗ is differentiable in the interior
of its domain,

A.1. Convex analysis 201

c=−f (s)

sw+c

w

f(w)

*

Figure A.1: Convex function f(w) as the maximum of affine functions. For any
slope s, c = −f∗(s) is the intercept of the tangent of direction s.

dom(f) f(w) dom(f∗) f∗(s) conditions
R

1
2w

2
R

1
2s

2

R
1
q |w|q R

1
r |s|r q, r ∈ (1,∞)

R log(1 + ew) [0, 1] (1−s) log(1−s) + s log s

R (w)+ [0, 1] 0

R+ −wq/q R
∗
+ −(−s)r/r q ∈ (0, 1)

Table A.1: Fenchel dual pairs for one-dimensional functions. The real numbers q

and r are linked through 1
q

+ 1
r

= 1.

– f is µ-strongly convex (i.e., the function w 7→ f(w) − µ
2 ‖w‖2

2 is con-
vex) if and only if f∗ has Lipschitz-continuous gradients (with con-
stant 1/µ) in the interior of its domain.

In this monograph, we often consider separable functions f : Rp →
R, that is, functions which may be written as f(w) =

∑p
k=1 fk(wk) for

certain functions fk : R → R. We then have, for all s ∈ R
p, f∗(s) =∑p

k=1 f
∗
k (sk). In Table A.1, we give classical Fenchel dual pairs (see

also [28]). Moreover, for a real number a 6= 0 and b ∈ R
p, if f∗ is the

Fenchel dual of f , then s 7→ f∗(s/a) − b⊤s/a is the Fenchel dual of
w 7→ f(aw + b).

202 Review of Convex Analysis and Optimization

Fenchel-Young inequality. We have seen earlier that for any pair
(w, s) ∈ R

p, then we have

f(w) + f∗(s) − w⊤s > 0.

There is equality above, if and only if (w, s) is a Fenchel-dual pair for
f , i.e., if and only if w is maximizer of w⊤s − f(w), which is itself
equivalent to s is maximizer of w⊤s− f∗(s). When both f and f∗ are
differentiable, this corresponds to f ′(w) = s and w = (f∗)′(s).

Fenchel duality. Given two convex functions f, g : Rp → R ∪ {+∞},
then we have:

min
w∈Rp

g(w) + f(w) = min
w∈Rp

max
s∈Rp

g(w) + s⊤ − f∗(s)

= max
s∈Rp

min
w∈Rp

g(w) + s⊤ − f∗(s)

= max
s∈Rp

−g∗(−s) − f∗(s),

which defines two convex optimization problems dual to each other.
Moreover, given any candidate pair (w, s), the following difference be-
tween primal and dual objectives provides certificate of optimality:

gap(w, s) =
[
f(w) + f∗(s) − w⊤s

]
+
[
g(w) + g∗(−s) − w⊤(−s)

]
.

By Fenchel-Young inequality, the gap(w, s) is always non-negative (as
the sum of two non-negative parts), and is equal to zero if and only the
two parts are equal to zero, i.e., (w, s) is a Fenchel dual pair for f and
(w,−s) is a Fenchel dual pair for g.

Support function. Given a convex closed set C, the support function
of C is the Fenchel conjugate of IC , defined as:

∀s ∈ R
p, I∗

C(s) = sup
w∈C

w⊤s.

It is always a positively homogeneous proper closed convex function.
Moreover, if f is a positively homogeneous proper closed convex func-
tion, then f∗ is the indicator function of a closed convex set.

A.1. Convex analysis 203

Proximal problems and duality. In this monograph, we will consider
minimization problems of the form

min
w∈Rp

1

2
‖w − z‖2

2 + f(w),

where f is a positively homogeneous proper closed convex function
(with C being a convex closed set such that f∗ = IC). We then have

min
w∈Rp

1

2
‖w − z‖2

2 + f(w) = min
w∈Rp

max
s∈C

1

2
‖w − z‖2

2 + w⊤s

= max
s∈C

min
w∈Rp

1

2
‖w − z‖2

2 + w⊤s

= max
s∈C

1

2
‖z‖2

2 − 1

2
‖s− z‖2

2,

where the unique minima of the two problems are related through w =

z − s. Note that the inversion of the maximum and minimum were
made possible because strong duality holds in this situation (f has
domain equal to R

p). Thus the original problem is equivalent to an
orthogonal projection on C. See applications and extensions to more
general separable functions (beyond quadratic) in Chapter 8.

Norms and dual norms. A norm Ω on R
p is a convex positively ho-

mogeneous function such that Ω(w) = 0 if and only if w = 0. One may
define its dual norm Ω∗ as follows:

∀s ∈ R
p, Ω∗(s) = sup

Ω(w)61
s⊤w.

The dual norm is a norm, and should not be confused with the Fenchel
conjugate of Ω, which is the indicator function of the unit dual ball.
Moreover, the dual norm of the dual norm is the norm itself. Classical
examples include Ω(w) = ‖w‖q, for which Ω∗(s) = ‖s‖r, with 1/q +

1/r = 1. For example, the ℓ2-norm is self-dual, and the dual of the
ℓ1-norm is the ℓ∞-norm.

Gauge functions. Given a closed convex set C ⊂ R
d, the gauge func-

tion γC is the function

γC(x) = inf{λ > 0, x ∈ λC}.

204 Review of Convex Analysis and Optimization

The domain dom(γC) of γC is the cone generated by C, i.e., R+C (that
is, γC(x) < +∞ if and only if x ∈ R+C). The function γC is equivalently
defined as the homogeneized version of the indicator function IC (with

values 0 on C and +∞ on its complement), i.e., γC(x) = infλ>0 λIC
(
x
λ

)
.

From this interpretation, γC is therefore a convex function. Moreover, it
is positively homogeneous and has non-negative values. Conversely, any
function γ which satisfies these three properties is the gauge function
of the set {x ∈ R

d, γ(x) 6 1}.
Several closed convex sets C lead to the same gauge function.

However the unique closed convex set containing the origin is {x ∈
R
d, γC(x) 6 1}. In general, we have for any closed convex set C,

{x ∈ R
d, γC(x) 6 1} = hull(C ∪ {0}).

Classical examples are norms, which are gauge functions coming
from their unit balls: norms are gauge functions γ which (a) have
a full domain, (b) are such that γ(x) = 0 ⇔ x = 0, and (c) are
even, which corresponds to sets C which (a) have 0 in its interior,
(b) are compact and (c) centrally symmetric. In general, the set C
might neither be compact nor centrally symmetric, for example, when
C = {x ∈ R

+
d , 1⊤

d x 6 1}. Moreover, a gauge function may take infi-
nite values (such as in the previous case, for any vector with a strictly
negative component).

Polar sets and functions. Given any set C (not necessarily convex),
the polar of C is the set C◦ defined as

C◦ = {y ∈ R
d, ∀x ∈ C, x⊤y 6 1}.

It is always closed and convex. Moreover, the polar of C is equal to the
polar of the closure of hull(C ∪ {0}).

When C is the unit ball of a norm Ω, C◦ is the unit ball of the dual
norm which we denote Ω∗; note here the inconsistency in notation,
because Ω∗ is not the Fenchel-conjugate of Ω (the Fenchel conjugate
of Ω is not the dual norm, but the indicator function of the dual unit
ball). Moreover, if C is a cone, then the polar cone is equal to C◦ =

{y ∈ R
d, ∀x ∈ C, x⊤y 6 0}, which is exactly the negative of the dual

cone often used also in convex analysis.

A.1. Convex analysis 205

If C is a closed convex set containing the origin, then C◦◦ = C—
more generally, for any set C, C◦◦ is the closure of hull(C ∪ {0}). The
polarity is a one-to-one mapping from closed convex sets containing the
origin to themselves.

The Fenchel conjugate of γC is the indicator function of C◦, i.e.,
γ∗
C = IC◦ , which is equivalent to γC = I∗

C◦ , i.e., ∀x ∈ R
d, γC(x) =

supy∈C◦ x⊤y. Given a gauge function γC , we define its polar as the
function γ◦

C given by

γ◦
C(y) = inf

{
λ > 0, ∀x ∈ R

d, x⊤y 6 λγC(x)
}

= sup
x∈Rd

x⊤y
γC(x)

,

the last inequality being true only if γC(x) = 0 ⇔ x = 0 (i.e., C
compact). It turns out that γ◦

C = γC◦ . This implies that γC◦ = I∗
C◦◦ ,

i.e., γC◦(y) = supx∈C◦◦ x⊤y = supx∈C(x⊤y)+. For example, the polar
of a norm is its dual norm. We have for all x, y ∈ R

d, the inequality
that is well known for forms: x⊤y 6 γC(x)γC◦(y). Finally, the Fenchel-
conjugate of x 7→ 1

2γC(x)2 is y 7→ 1
2γ

◦
C(y)2.

Operations on gauge functions. For two closed convex sets C and
D containing the origin, then for all x ∈ R

d, max{γC(x), γD(x)} =

γC∩D(x). Another combination, is the “inf-convolution” of γC and γD,
i.e., x 7→ infx=y+z γC(z)+γD(y), which is equal to γhull(C∪D). Moreover,
γ◦
C∩D = γhull(C◦∪D◦), or equivalently, (C ∩D)◦ = hull(C◦ ∪D◦).

Links with convex hulls. Given a compact set P and its compact
convex hull C (for example, P might be the set of extreme points of
C), we have P ◦ = C◦, since maxima of linear functions on C or P are
equal. An alternative definition of γC is then

γC(x) = min

{∑

i∈I
ηi, (ηi)i∈I ∈ R

I
+, (xi)i∈I ∈ P I , I finite, x =

∑

i∈I
ηixi

}
.

Moreover, in the definition above, by Caratheodory’s theorem for cones,
we may restrict the cardinality of I to be less than or equal to d.

206 Review of Convex Analysis and Optimization

sources S

sinks V

Figure A.2: Flows. Only arcs with strictly positive capacity are typically displayed.
Flow comes in by the sources and gets out from the sinks.

A.2 Max-flow min-cut theorem

We consider a set W of vertices, which includes a set S of sources and a
set V of sinks (which will be the set on which the submodular function
will be defined). We assume that we are given capacities, i.e., a function
c from W × W to R+. For all functions ϕ : W × W → R, we use the
notation ϕ(A,B) =

∑
k∈A, j∈B ϕ(k, j).

A flow is a function ϕ : W ×W → R+ such that:

(a) capacity constaints: ϕ 6 c for all arcs,

(b) flow conservation: for all w ∈ W\(S ∪ V), the net-flow at w, i.e.,
ϕ(W, {w}) − ϕ({w},W), is zero,

(c) positive incoming flow: for all sources s ∈ S, the net-flow at s is
non-positive, i.e., ϕ(W, {s}) − ϕ({s},W) 6 0,

(d) positive outcoming flow: for all sinks t ∈ V , the net-flow at t is
non-negative, i.e., ϕ(W, {t}) − ϕ({t},W) > 0.

We denote by F the set of flows, and ϕ(w1, w2) is the flow going from
w1 to w2. This set F is a polyhedron in R

W×W as it is defined by a set
of linear equality and inequality constraints

For A ⊆ V (the set of sinks), we define

F (A) = max
ϕ∈F

ϕ(W,A) − ϕ(A,W),

A.2. Max-flow min-cut theorem 207

which is the maximal net-flow getting out of A. We now prove the
max-flow/min-cut theorem, namely that

F (A) = min
X⊆W, S⊆X, A⊆W\X

c(X,W\X).

The maximum-flow F (A) is the optimal value of a linear program.
We therefore introduce Lagrange multipliers for the constraints in (b),
(c) and (d)—note that we do not dualize constraint (a). These corre-
sponds to λw for w ∈ W , with the constraint that λs 6 0 for s ∈ S

and λt > 0 for t ∈ V . We obtain the dual problem as follows (strong
duality holds because of the Slater condition):

F (A)

= max
06ϕ6c

min
λ
ϕ(W,A) − ϕ(A,W) +

∑

w∈W
λw
[
ϕ(W, {w}) − ϕ({w},W)

]

= min
λ

max
06ϕ6c

ϕ(W,A) − ϕ(A,W) +
∑

w∈W
λw
[
ϕ(W, {w}) − ϕ({w},W)

]

= min
λ

max
06ϕ6c

∑

w∈W,v∈W
ϕ(v,w)

(
λw − λv + 1w∈A − 1v∈A

)

= min
λ

∑

w∈W,v∈W
c(v,w)

(
λw − λv + 1w∈A − 1v∈A

)
+
.

For any set X ⊆ W such that S ⊆ X and A ⊆ W\X, then we may
define x ∈ {0, 1}W as the indicator vector of X. The cut c(X,W\X)

is then equal to
∑
w,v∈W c(v,w)(xv − xw)+. Given our constraints on

X, we have xS = 1 and xA = 0, λw defined as λw = 1 − xw − 1w∈A is
such that for w ∈ S, λw = 0 and for w ∈ T , λw = 1 − xw − 1w∈A =

1w∈W\X − 1w∈A > 0 because A ⊆ W\X. Thus λ is a dual-feasible
vector and thus the cut c(X,W\X) is larger than F (A).

In order to show equality, we denote by λ an optimal dual solu-
tion of the convex program above, and consider a uniform random
variable ρ in (0, 1), and define x ∈ {0, 1}W as follows: xw = 1 if
−λw − 1w∈A > −ρ, and zero otherwise. Denote by X the set of w
such that xw = 1. If w ∈ S, then −λw − 1w∈A > 0 and thus xw
is almost surely equal to one, i.e, S ⊆ X almost surely. Moreover, if
w ∈ A, −λw−1w∈A 6 −1 and thus xw is almost surely equal to zero, i.e,
A ⊆ W\X almost surely. Finally, the expectation of the cut c(X,W\X)

208 Review of Convex Analysis and Optimization

is equal to
∑
w∈W,v∈W c(v,w)P(−λv − 1v∈A > −ρ > −λw − 1w∈A) 6∑

w∈W,v∈W c(v,w)
(
λw −λv +1w∈A−1v∈A

)
+

= F (A). This implies that
almost surely, the cut c(X,W\X) is equal to F (A) and hence the result.

A.3 Pool-adjacent-violators algorithm

In this section we consider z ∈ R
p and the following minimization prob-

lem, which is the isotonic regression problem with a chain constraint
(see more general formulations in §6.2).

min
w∈Rp

1

2
‖w − z‖2

2 such that ∀t ∈ {1, . . . , p− 1}, wt > wt+1. (A.2)

We may find the dual problem as follows:

min
w∈Rp

1

2
‖w − z‖2

2 such that ∀t ∈ {1, . . . , p− 1}, wt > wt+1

= min
w∈Rp

max
s∈Rp

−s⊤(w − z) − 1

2
‖s‖2

2 s.t. ∀t ∈ {1, . . . , p− 1}, wt > wt+1

with w = z − s at optimality,

= max
s∈Rp

min
w∈Rp

−s⊤(w − z) − 1

2
‖s‖2

2 s.t. ∀t ∈ {1, . . . , p− 1}, wt > wt+1.

We have, with St = s1 + · · · + st (with the convention S0 = 0), by
summation by parts,

w⊤s =
p∑

t=1

(St − St−1)wt =
p−1∑

t=1

St(wt − wt+1) + wpSp.

This implies that the maximum value of w⊤s such that w is a non-
increasing sequence is equal to zero, if St 6 0 for all t ∈ {1, . . . , P − 1},
and Sp = 0, and equal to +∞ otherwise. Thus we obtain the dual
optimization problem:

max
s∈Rp

s⊤z − 1

2
‖s‖2

2 (A.3)

such that s(V) = 0 and ∀k ∈ {1, . . . , p− 1}, s({1, . . . , k}) 6 0.

We now consider an active-set method such as described in §7.11
for the problem in Eq. (A.3), starting from all constraints saturated,

A.3. Pool-adjacent-violators algorithm 209

i.e., s({1, . . . , k}) = 0, for all k ∈ {1, . . . , p − 1}, leading to s = 0, this
corresponds to a primal candidate w = z and the active set J = ∅.

Given an active set J , we may compute the dual feasible s ∈ R
p

that maximizes s⊤z − 1
2‖s‖2

2 such that s(V) = 0 and for all j ∈ Jc,
s({1, . . . , j}) = 0. If j1 < · · · < jk are the k = |Jc| elements of Jc

and we consider the sets A1 = {1, . . . , j1}, Ai = {ji−1 + 1, . . . , ji} for
i ∈ {2, . . . , k}, and Ak+1 = {jk + 1, . . . , p}, then w = z − s has to be
constant on each Ai, and its value equal to vi = z(Ai)/|Ai|. Indeed, we
have

max
sAi

(Ai)=0
s⊤
Ai
zAi − 1

2
‖sAi‖2

2

= min
vi

max
sAi

s⊤
Ai
zAi − 1

2
‖sAi‖2

2 − visAi(Ai)

= min
vi

1

2
‖zAi − vi1Ai‖2

2,

with solution vi = z(Ai)/|Ai|.
As shown in §7.11, in an active-set method, given a new candidate

active set, there are two types of steps: (a) when the corresponding op-
timal value s obtained from this active-set is feasible, we need to check
dual-feasibility (i.e., here that the sequence (vi) is non-increasing). If
it is not, then the active set is augmented and here this exactly corre-
sponds to taking any violating adjacent pair (vi, vi+1), and merge the
corresponding sets Ai and Ai+1, i.e., add ji to J . The other type of
steps is (b) when the corresponding optimal value is not feasible: this
never occurs in this situation [85].

Thus the algorithm updates the constant values of w, and averages
adjacent ones when they violate the ordering constraint. By starting
from the first indices, it is possible to choose the ordering of the pooling
operations so that the overall complexity is O(p). See [85, 25] for de-
tails. Moreover, replacing the squared ℓ2-norm ‖w− z‖2 by a weighted
squared ℓ2-norm leads to the same running-time complexity.

B

Operations that Preserve Submodularity

In this appendix, we present several ways of building submodular func-
tions from existing ones. For all of these, we describe how the Lovász
extensions and the submodular polyhedra are affected. Note that in
many cases, operations are simpler in terms of submodular and base
polyhedra. Many operations such as projections onto subspaces may be
interpreted in terms of polyhedra corresponding to other submodular
functions.

We have seen in §6.5 that given any submodular function F , we may
define G(A) = F (A) +F (V \A) −F (V). Then G is always submodular
and symmetric (and thus non-negative, see §10.3). This symmetriza-
tion can be applied to any submodular function and in the example
of Chapter 6, they often lead to interesting new functions. We now
present other operations that preserve submodularity.

Proposition B.1. (Restriction of a submodular function) let F be
a submodular function such that F (∅) = 0 and A ⊆ V . The restriction
of F on A, denoted FA is a set-function on A defined as FA(B) = F (B)

for B ⊆ A. The function FA is submodular. Moreover, if we can write
the Lovász extension of F as f(w) = f(wA, wV \A), then the Lovász ex-
tension of FA is fA(wA) = f(wA, 0). Moreover, the submodular poly-

210

211

hedron P (FA) is simply the projection of P (F) on the components
indexed by A, i.e., s ∈ P (FA) if and only if ∃t such that (s, t) ∈ P (F).

Proof. Submodularity and the form of the Lovász extension are
straightforward from definitions. To obtain the submodular polyhe-
dron, notice that we have fA(wA) = f(wA, 0) = max(s,t)∈P (F) w

⊤
As +

0⊤t, which implies the desired result.

Proposition B.2. (Contraction of a submodular function) let F
be a submodular function such that F (∅) = 0 and A ⊆ V . The
contraction of F on A, denoted FA is a set-function on V \A de-
fined as FA(B) = F (A ∪ B) − F (A) for B ⊆ V \A. The function
FA is submodular. Moreover, if we can write the Lovász extension
of F as f(w) = f(wA, wV \A), then the Lovász extension of FA is
fA(wV \A) = f(1A, wV \A) − F (A). Moreover, the submodular poly-
hedron P (FA) is simply the projection of P (F) ∩ {s(A) = F (A)}
on the components indexed by V \A, i.e., t ∈ P (FA) if and only if
∃s ∈ P (F) ∩ {s(A) = F (A)}, such that sV \A = t.

Proof. Submodularity and the form of the Lovász extension are
straightforward from definitions. Let t ∈ R

|V \A|. If ∃s ∈ P (F)∩{s(A) =

F (A)}, such that sV \A = t, then we have for all B ⊆ V \A, t(B) =

t(B) + s(A) − F (A) 6 F (A ∪ B) − F (A), and hence t ∈ P (FA). If
t ∈ P (FA), then take any v ∈ B(FA) and concatenate v and t into
s. Then, for all subsets C ⊆ V , s(C) = s(C ∩ A) + s(C ∩ (V \A)) =

v(C ∩A) + t(C ∩ (V \A)) 6 F (C ∩A) +F (A∪ (C ∩ (V \A))) −F (A) =

F (C∩A)+F (A∪C)−F (A) 6 F (C) by submodularity. Hence s ∈ P (F).

The next proposition shows how to build a new submodular func-
tion from an existing one, by partial minimization. Note the similarity
(and the difference) between the submodular polyhedra for a partial
minimum (Prop. B.3) and for the restriction defined in Prop. B.1.

Note also that contrary to convex functions, the pointwise maxi-
mum of two submodular functions is not in general submodular (as
can be seen by considering functions of the cardinality from §6.1).

212 Operations that Preserve Submodularity

Proposition B.3. (Partial minimum of a submodular function)

We consider a submodular function G on V ∪W , where V ∩W = ∅ (and
|W | = q), with Lovász extension g : Rp+q → R. We consider, for A ⊆ V ,
F (A) = minB⊆W G(A ∪ B) − minB⊆W G(B). The set-function F is
submodular and such that F (∅) = 0. Moreover, if minB⊆W G(B) = 0,
we have for all w ∈ R

p
+, f(w) = minv∈R

q
+
g(w, v), and the submodular

polyhedron P (F) is the set of s ∈ R
p for which there exists t ∈ R

q
+,

such that (s, t) ∈ P (G).

Proof. Define c = minB⊆W G(B) 6 0, which is independent of A. We
have, for A,A′ ⊆ V , and any B,B′ ⊆ W , by definition of F :

F (A ∪A′) + F (A ∩A′)

6 −2c+G([A ∪A′] ∪ [B ∪B′]) +G([A ∩A′] ∪ [B ∩B′])

= −2c+G([A ∪B] ∪ [A′ ∪B′]) +G([A ∪B] ∩ [A′ ∪B′])

6 −2c+G(A ∪B) +G(A′ ∪B′) by submodularity.

Note that the second equality is true because V and W are disjoint.
Minimizing with respect to B and B′ leads to the submodularity of F .

Assuming that c = 0, we now show that P (F) =
{
s ∈ R

p, ∃t ∈
R
q, t > 0, (s, t) ∈ P (G̃)

}
. We have s ∈ P (F), if and only if for all

A ⊆ V , B ⊂ W , then s(A) 6 G(A ∪ B): (a) for s ∈ P (F), we define
t = 0, and thus (s, t) ∈ P (G); (b) if there exists t > 0 such that
(s, t) ∈ P (G), then for all A,B, s(A) 6 s(A) + t(B) 6 G(A ∪B).

We may now use Prop. 4.1, to get for w ∈ R
p
+:

f(w) = max
s∈P (F)

s⊤w = max
(s,t)∈P (G), t>0

s⊤w

= min
v>0

max
(s,t)∈P (G)

s⊤w + t⊤v by Lagrangian duality,

= min
v>0

g(w, v) by Prop. 4.1.

The following propositions give an interpretation of the intersec-
tion between the submodular polyhedron and sets of the form {s 6 z}
and {s > z}. Prop. B.4 notably implies that for all z ∈ R

p, we have:
minB⊆V F (B) + z(V \B) = maxs∈P (F), s6z s(V), which implies the sec-
ond statement of Prop. 10.3 for z = 0.

213

Proposition B.4. (Convolution of a submodular function and

a modular function) Let F be a submodular function such that
F (∅) = 0 and z ∈ R

p. Define G(A) = minB⊆A F (B) + z(A\B). Then
G is submodular, satisfies G(∅) = 0, and the submodular polyhedron
P (G) is equal to P (F)∩{s 6 z}. Moreover, for all A ⊆ V , G(A) 6 F (A)

and G(A) 6 z(A).

Proof. Let A,A′ ⊆ V , and B,B′ the corresponding minimizers defining
G(A) and G(A′). We have:

G(A) +G(A′)

= F (B) + z(A\B) + F (B′) + z(A′\B′)

> F (B ∪B′) + F (B ∩B′) + z(A\B) + z(A′\B′) by submodularity,

= F (B ∪B′) + F (B ∩B′) + z([A ∪A′]\[B ∪B′]) + z([A ∩A′]\[B ∩B′])

> G(A ∪A′) +G(A ∩A′) by definition of G,

hence the submodularity of G. If s ∈ P (G), then ∀B ⊆ A ⊆ V , s(A) 6

G(A) 6 F (B) + z(A\B). Taking B = A, we get that s ∈ P (F); from
B = ∅, we get s 6 z, and hence s ∈ P (F)∩{s 6 z}. If s ∈ P (F)∩{s 6
z}, for all ∀B ⊆ A ⊆ V , s(A) = s(A\B) + s(B) 6 z(A\B) + F (B); by
minimizing with respect to B, we get that s ∈ P (G).

We get G(A) 6 F (A) by taking B = A in the definition of G(A),
and we get G(A) 6 z(A) by taking B = ∅.

Proposition B.5. (Monotonization of a submodular function)

Let F be a submodular function such that F (∅) = 0. Define G(A) =

minB⊃A F (B) − minB⊆V F (B). Then G is submodular such that
G(∅) = 0, and the base polyhedron B(G) is equal to B(F) ∩ {s > 0}.
Moreover, G is non-decreasing, and for all A ⊆ V , G(A) 6 F (A).

Proof. Let c = minB⊆V F (B). Let A,A′ ⊆ V , and B,B′ the corre-
sponding minimizers defining G(A) and G(A′). We have:

G(A) +G(A′) = F (B) + F (B′) − 2c

> F (B ∪B′) + F (B ∩B′) − 2c by submodularity

> G(A ∪A′) +G(A ∩A′) by definition of G,

214 Operations that Preserve Submodularity

hence the submodularity of G. It is obviously non-decreasing. We get
G(A) 6 F (A) by taking B = A in the definition of G(A). Since G is
increasing, B(G) ⊆ R

p
+ (because all of its extreme points, obtained by

the greedy algorithm, are in R
p
+). By definition of G, B(G) ⊆ B(F).

Thus B(G) ⊆ B(F) ∩ R
p
+. The opposite inclusion is trivial from the

definition.

The final result that we present in this appendix is due to [132] and
resembles the usual compositional properties of convex functions [30].

Proposition B.6. (Composition of concave and submodular

non-decreasing functions) Let F : 2V → R be a non-decreasing sub-
modular function with values in a convex subsetK ⊆ R, and ϕ : K → R

a non-decreasing concave function. Then A 7→ ϕ(F (A)) is submodular.

Proof. Let A ⊆ V and two disjoints elements j and k of V \A. We
have from the submodularity of F and Prop. 2.3, F (A ∪ {j, k}) 6

F (A ∪ {j}) + F (A ∪ {k}) − F (A). We thus get by monotonicity of ϕ:

ϕ(F (A ∪ {j, k})

6 ϕ(F (A ∪ {j}) − F (A) + F (A ∪ {k})) − ϕ(F (A ∪ {k})) + ϕ(F (A ∪ {k}))

6 ϕ(F (A ∪ {j}) − F (A) + F (A)) − ϕ(F (A)) + ϕ(F (A ∪ {k})),

because F (A ∪ {k}) > F (A), F (A ∪ {j}) > F (A) and ϕ is concave
(using the property used in the proof of Prop. 6.1).

Acknowledgements

This monograph was partially supported by the European Research
Council (SIERRA Project). The author would like to thank Rodolphe
Jenatton, Armand Joulin, Simon Lacoste-Julien, Julien Mairal and
Guillaume Obozinski for discussions related to submodular functions
and convex optimization. The suggestions of the reviewers were greatly
appreciated and have significantly helped improve the manuscript.

215

References

[1] S. Ahmed and A. Atamtürk. Maximizing a class of submodular utility
functions. Mathematical Programming: Series A and B, 128(1-2):149–
169, 2011.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory,
algorithms, and applications. Prentice hall, 1993.

[3] T. Ando. Concavity of certain maps on positive definite matrices and
applications to Hadamard products. Linear Algebra and its Applica-
tions, 26:203–241, 1979.

[4] M. Babenko, J. Derryberry, A. Goldberg, R. Tarjan, and Y. Zhou. Ex-
perimental evaluation of parametric max-flow algorithms. In Proceed-
ings of International Conference on Experimental algorithms (WEA),
2007.

[5] F. Bach. Consistency of the group Lasso and multiple kernel learning.
Journal of Machine Learning Research, 9:1179–1225, 2008.

[6] F. Bach. Exploring large feature spaces with hierarchical multiple ker-
nel learning. In Advances in Neural Information Processing Systems
(NIPS), 2008.

[7] F. Bach. Structured sparsity-inducing norms through submodular func-
tions. In Advances in Neural Information Processing Systems (NIPS),
2010.

[8] F. Bach. Shaping level sets with submodular functions. In Advances in
Neural Information Processing Systems (NIPS), 2011.

216

References 217

[9] F. Bach. Duality between subgradient and conditional gradient meth-
ods. Technical Report hal-00757696, HAL, 2012.

[10] F. Bach. Convex relaxations of structured matrix factorizations. Tech-
nical Report 00861118, HAL, 2013.

[11] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization
with sparsity-inducing penalties. Foundations and Trends R© in Machine
Learning, 4(1):1–106, 2011.

[12] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity
through convex optimization. Statistical Science, 27(4):450–468, 2012.

[13] M. F. Balcan and N. J. A. Harvey. Learning submodular functions. In
Proceedings of the Symposium on Theory of Computing (STOC), 2011.

[14] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with
Bregman divergences. The Journal of Machine Learning Research,
6:1705–1749, 2005.

[15] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-
based compressive sensing. IEEE Transactions on Information Theory,
56(4):1982–2001, 2010.

[16] A. Barbero and S. Sra. Fast Fewton-type methods for total variation
regularization. In Proceedings of the International Conference on Ma-
chine Learning (ICML, 2011.

[17] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk.
Statistical inference under order restrictions: the theory and application
of isotonic regression. John Wiley, 1972.

[18] H. H. Bauschke, P. L. Combettes, and D. R. Luke. Finding best ap-
proximation pairs relative to two closed convex sets in Hilbert spaces.
J. Approx. Theory, 127(2):178–192, 2004.

[19] A. Beck and M. Teboulle. A conditional gradient method with linear
rate of convergence for solving convex linear systems. Mathematical
Methods of Operations Research, 59(2):235–247, 2004.

[20] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM Journal on Imaging Sciences,
2(1):183–202, 2009.

[21] S. Becker, J. Bobin, and E. Candes. NESTA: A fast and accurate first-
order method for sparse recovery. SIAM Journal on Imaging Sciences,
4(1):1–39, 2011.

[22] D. Bertsekas. Nonlinear programming. Athena Scientific, 1995.

218 References

[23] D.P. Bertsekas and H. Yu. A unifying polyhedral approximation
framework for convex optimization. SIAM Journal on Optimization,
21(1):333–360, 2011.

[24] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1997.

[25] M. J. Best and N. Chakravarti. Active set algorithms for isotonic regres-
sion; a unifying framework. Mathematical Programming, 47(1):425–439,
1990.

[26] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal.
Numerical Optimization Theoretical and Practical Aspects. Springer,
2003.

[27] E. Boros and P.L. Hammer. Pseudo-Boolean optimization. Discrete
Applied Mathematics, 123(1-3):155–225, 2002.

[28] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Opti-
mization: Theory and Examples. Springer, 2006.

[29] M. Bouhtou, S. Gaubert, and G. Sagnol. Submodularity and random-
ized rounding techniques for optimal experimental design. Electronic
Notes in Discrete Mathematics, 36:679–686, 2010.

[30] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[31] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 23(11):1222–1239, 2001.

[32] P. Brucker. An O(n) algorithm for quadratic knapsack problems. Op-
erations Research Letters, 3(3):163–166, 1984.

[33] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight linear
time (1/2)-approximation for unconstrained submodular maximization.
In Proceedings of the Symposium on Foundations of Computer Science
(FOCS), 2012.

[34] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a mono-
tone submodular function subject to a matroid constraint. SIAM Jour-
nal on Computing, 40(6):1740–1766, 2011.

[35] J. F. Cardoso. Dependence, correlation and gaussianity in independent
component analysis. Journal of Machine Learning Research, 4:1177–
1203, 2003.

References 219

[36] V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal
recovery using Markov random fields. In Advances in Neural Informa-
tion Processing Systems (NIPS), 2008.

[37] A. Chambolle. An algorithm for total variation minimization and ap-
plications. Journal of Mathematical imaging and vision, 20(1):89–97,
2004.

[38] A. Chambolle and J. Darbon. On total variation minimization and sur-
face evolution using parametric maximum flows. International Journal
of Computer Vision, 84(3):288–307, 2009.

[39] G. Charpiat. Exhaustive family of energies minimizable exactly by a
graph cut. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2011.

[40] A. Chechetka and C. Guestrin. Efficient principled learning of thin
junction trees. In Advances in Neural Information Processing Systems
(NIPS), 2007.

[41] C. Chekuri and A. Ene. Approximation algorithms for submodular
multiway partition. In Proceedings of the Symposium on Foundations
of Computer Science (FOCS), 2011.

[42] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function
maximization via the multilinear relaxation and contention resolution
schemes. In Proceedings of the Symposium on Theory of Computing
(STOC), 2011.

[43] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition
by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61,
1998.

[44] B. V. Cherkassky and A. V. Goldberg. On implementing the push-
relabel method for the maximum flow problem. Algorithmica, 19(4):390–
410, 1997.

[45] S. Chopra. On the spanning tree polyhedron. Operations Research
Letters, 8(1):25–29, 1989.

[46] G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–
295, 1954.

[47] F. R. K. Chung. Spectral Graph Theory. American Mathematical Soci-
ety, 1997.

[48] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal
processing. In Fixed-Point Algorithms for Inverse Problems in Science
and Engineering. Springer, 2010.

220 References

[49] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 1989.

[50] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank
accounts to optimize float: An analytic study of exact and approximate
algorithms. Management Science, 23(8):789–810, 1977.

[51] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. On the uncapac-
itated location problem. Annals of Discrete Mathematics, 1:163–177,
1977.

[52] T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons, 1991.

[53] W. H. Cunningham. Testing membership in matroid polyhedra. Journal
of Combinatorial Theory, Series B, 36(2):161–188, 1984.

[54] W. H. Cunningham. Minimum cuts, modular functions, and matroid
polyhedra. Networks, 15(2):205–215, 1985.

[55] J. Darbon. Global optimization for first order Markov random fields
with submodular priors. In Combinatorial Image Analysis, pages 229–
237. Springer, 2008.

[56] A. Das and D. Kempe. Algorithms for subset selection in linear re-
gression. In Proceedings of the Symposium on Theory of Computing
(STOC), 2008.

[57] A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms
for subset selection, sparse approximation and dictionary selection.
In Proceedings of the International Conference on Machine Learning
(ICML), 2011.

[58] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2002.

[59] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness
via wavelet shrinkage. Journal of the American Statistical Association,
90(432):1200–1224, 1995.

[60] M. Dudik, Z. Harchaoui, and J. Malick. Lifted coordinate descent for
learning with trace-norm regularization. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS),
2012.

[61] J. C. Dunn. Convergence rates for conditional gradient sequences gen-
erated by implicit step length rules. SIAM Journal on Control and
Optimization, 18:473–487, 1980.

References 221

[62] J. C. Dunn and S. Harshbarger. Conditional gradient algorithms with
open loop step size rules. Journal of Mathematical Analysis and Appli-
cations, 62(2):432–444, 1978.

[63] J. Edmonds. Submodular functions, matroids, and certain polyhe-
dra. In Combinatorial optimization - Eureka, you shrink!, pages 11–26.
Springer, 2003.

[64] V. V. Fedorov. Theory of optimal experiments. Academic press, 1972.

[65] U. Feige. A threshold of lnn for approximating set cover. Journal of
the ACM (JACM), 45(4):634–652, 1998.

[66] U. Feige. On maximizing welfare when utility functions are subadditive.
In Proceedings of the Symposium on Theory of Computing (STOC),
2006.

[67] U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone
submodular functions. SIAM Journal on Computing, 40(4):1133–1153,
2011.

[68] M. Feldman, J. Naor, and R. Schwartz. A unified continuous greedy al-
gorithm for submodular maximization. In Proceedings of the Symposium
on Foundations of Computer Science (FOCS), 2011.

[69] S. Foldes and P. L. Hammer. Submodularity, supermodularity, and
higher-order monotonicities of pseudo-Boolean functions. Mathematics
of Operations Research, 30(2):453–461, 2005.

[70] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

[71] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group Lasso
and a sparse group Lasso. Technical Report 1001.0736, ArXiv, 2010.

[72] S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.

[73] S. Fujishige and S. Isotani. A submodular function minimization algo-
rithm based on the minimum-norm base. Pacific Journal of Optimiza-
tion, 7:3–17, 2011.

[74] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric max-
imum flow algorithm and applications. SIAM Journal on Computing,
18(1):30–55, 1989.

[75] A. Gelman. Bayesian data analysis. CRC press, 2004.

[76] E. Girlich and N. N. Pisaruk. The simplex method for submodular func-
tion minimization. Technical Report 97-42, University of Magdeburg,
1997.

222 References

[77] M. X. Goemans, N. J. A. Harvey, S. Iwata, and V. Mirrokni. Ap-
proximating submodular functions everywhere. In Proceedings of the
Symposium on Discrete Algorithms (SODA), 2009.

[78] J.-L. Goffin and J.-P. Vial. On the computation of weighted analytic
centers and dual ellipsoids with the projective algorithm. Mathematical
Programming, 60(1-3):81–92, 1993.

[79] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM (JACM), 35(4):921–940, 1988.

[80] B. Goldengorin, G. Sierksma, G.A. Tijssen, and M. Tso. The data-
correcting algorithm for the minimization of supermodular functions.
Management Science, 41(11):1539–1551, 1999.

[81] D. Golovin and A. Krause. Adaptive submodularity: Theory and ap-
plications in active learning and stochastic optimization. Journal of
Artificial Intelligence Research, 42(1):427–486, 2011.

[82] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 1996.

[83] H. Groenevelt. Two algorithms for maximizing a separable concave
function over a polymatroid feasible region. European Journal of Oper-
ational Research, 54(2):227–236, 1991.

[84] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–
197, 1981.

[85] S. J. Grotzinger and C. Witzgall. Projections onto order simplexes.
Applied mathematics and Optimization, 12(1):247–270, 1984.

[86] B. Grünbaum. Convex polytopes, volume 221. Springer Verlag, 2003.

[87] J. Guelat and P. Marcotte. Some comments on Wolfe’s “away step”.
Mathematical Programming, 35(1):110–119, 1986.

[88] A. Guillory and J. Bilmes. Online submodular set cover, ranking, and
repeated active learning. Advance in Neural Information Processing
Systems (NIPS), 2011.

[89] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient
algorithms for norm-regularized smooth convex optimization. Technical
Report 1302.2325, arXiv, 2013.

[90] Z. Harchaoui and C. Lévy-Leduc. Catching change-points with Lasso.
Advances in Neural Information Processing Systems (NIPS), 20, 2008.

[91] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001.

References 223

[92] J. Haupt and R. Nowak. Signal reconstruction from noisy random pro-
jections. IEEE Transactions on Information Theory, 52(9):4036–4048,
2006.

[93] E. Hazan and S. Kale. Online submodular minimization. In Advances
in Neural Information Processing Systems (NIPS), 2009.

[94] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian
networks: The combination of knowledge and statistical data. Machine
Learning, 20(3):197–243, 1995.

[95] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Mini-
mization Algorithms: Part 1: Fundamentals, volume 1. Springer, 1996.

[96] D. S. Hochbaum. An efficient algorithm for image segmentation, Markov
random fields and related problems. Journal of the ACM, 48(4):686–
701, 2001.

[97] D. S. Hochbaum. Multi-label Markov random fields as an efficient
and effective tool for image segmentation, total variations and regu-
larization. Numerical Mathematics: Theory, Methods and Applications,
6(1):169–198, 2013.

[98] D. S. Hochbaum and S. P. Hong. About strongly polynomial time algo-
rithms for quadratic optimization over submodular constraints. Math-
ematical Programming, 69(1):269–309, 1995.

[99] T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an algo-
rithm for clustering using convex fusion penalties. In Proceedings of the
International Conference on Machine Learning (ICML), 2011.

[100] H. Hoefling. A path algorithm for the fused Lasso signal approxima-
tor. Journal of Computational and Graphical Statistics, 19(4):984–1006,
2010.

[101] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University
Press, 1990.

[102] R. Horst and N.V. Thoai. Dc programming: overview. Journal of Op-
timization Theory and Applications, 103(1):1–43, 1999.

[103] J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity.
In Proceedings of the International Conference on Machine Learning
(ICML), 2009.

[104] D. R. Hunter and K. Lange. A tutorial on MM algorithms. The Amer-
ican Statistician, 58(1):30–37, 2004.

224 References

[105] H. Ishikawa. Exact optimization for Markov random fields with convex
priors. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 25(10):1333–1336, 2003.

[106] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly poly-
nomial algorithm for minimizing submodular functions. Journal of the
ACM, 48(4):761–777, 2001.

[107] L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and
graph Lasso. In Proceedings of the International Conference on Machine
Learning (ICML), 2009.

[108] M. Jaggi. Convex optimization without projection steps. Technical
Report 1108.1170, Arxiv, 2011.

[109] S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly
submodular optimization. In Advances in Neural Information Process-
ing Systems (NIPS), 2013.

[110] S. Jegelka, H. Lin, and J. A. Bilmes. Fast approximate submodular
minimization. In Advances in Neural Information Processing Systems
(NIPS), 2011.

[111] R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection
with sparsity-inducing norms. Journal of Machine Learning Research,
12:2777–2824, 2011.

[112] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach,
and B. Thirion. Multiscale mining of fMRI data with hierarchical struc-
tured sparsity. SIAM Journal on Imaging Sciences, 5(3):835–856, 2012.

[113] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal meth-
ods for sparse hierarchical dictionary learning. In Proceedings of the
International Conference on Machine Learning (ICML), 2010.

[114] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal meth-
ods for hierarchical sparse coding. Journal Machine Learning Research,
12:2297–2334, 2011.

[115] R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal
component analysis. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2009.

[116] K. Kavukcuoglu, M. A. Ranzato, R. Fergus, and Y. Le-Cun. Learning
invariant features through topographic filter maps. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

References 225

[117] Y. Kawahara, K. Nagano, K. Tsuda, and J. A. Bilmes. Submodularity
cuts and applications. In Advances in Neural Information Processing
Systems (NIPS), 2009.

[118] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of
influence through a social network. In Proceedings of the Conference on
Knoledge Discovery and Data Mining (KDD), 2003.

[119] S. Kim and E. Xing. Tree-guided group Lasso for multi-task regression
with structured sparsity. In Proceedings of the International Conference
on Machine Learning (ICML), 2010.

[120] V. Klee and G. J. Minty. How good is the simplex algorithm? In
O. Shisha, editor, Inequalities, volume 3, pages 159–175. Academic
Press, 1972.

[121] V. Kolmogorov. Minimizing a sum of submodular functions. Discrete
Applied Mathematics, 160(15):2246–2258, 2012.

[122] V. Kolmogorov and R. Zabih. What energy functions can be minimized
via graph cuts? IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 26(2):147–159, 2004.

[123] N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy minimization
and beyond via dual decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 33(3):531–552, 2011.

[124] A. Krause and V. Cevher. Submodular dictionary selection for sparse
representation. In Proceedings of the International Conference on Ma-
chine Learning (ICML), 2010.

[125] A. Krause and C. Guestrin. Near-optimal nonmyopic value of informa-
tion in graphical models. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence (UAI), 2005.

[126] A. Krause and C. Guestrin. Beyond convexity: Submodularity in ma-
chine learning, 2008. Tutorial at ICML.

[127] Andreas Krause and Carlos Guestrin. Submodularity and its applica-
tions in optimized information gathering. ACM Transactions on Intel-
ligent Systems and Technology, 2(4), 2011.

[128] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[129] K. S. S. Kumar and F. Bach. Maximizing submodular functions using
probabilistic graphical models. Technical Report 00860575, HAL, 2013.

[130] S. L. Lauritzen. Graphical Models (Oxford Statistical Science Series).
Oxford University Press, July 1996.

226 References

[131] A. Lefèvre, F. Bach, and C. Févotte. Itakura-Saito nonnegative matrix
factorization with group sparsity. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2011.

[132] H. Lin and J. Bilmes. A class of submodular functions for document
summarization. In Proceedings of the North American chapter of the
Association for Computational Linguistics/Human Language Technol-
ogy Conference (NAACL/HLT), 2011.

[133] H. Lin and J. A. Bilmes. Optimal selection of limited vocabulary speech
corpora. In Proceedings of INTERSPEECH, 2011.

[134] F. Lindsten, H. Ohlsson, and L. Ljung. Clustering using sum-of-norms
regularization: With application to particle filter output computation.
In Workshop on Statistical Signal Processing Workshop, 2011.

[135] L. Lovász. Submodular functions and convexity. Mathematical program-
ming: The state of the art, Bonn, pages 235–257, 1982.

[136] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

[137] R. Luss, S. Rosset, and M. Shahar. Decomposing isotonic regression for
efficiently solving large problems. In Advances in Neural Information
Processing Systems (NIPS), 2010.

[138] R. Luss, S. Rosset, and M. Shahar. Efficient regularized isotonic regres-
sion with application to gene–gene interaction search. The Annals of
Applied Statistics, 6(1):253–283, 2012.

[139] N. Maculan and G. Galdino de Paula. A linear-time median-finding
algorithm for projecting a vector on the simplex of R

n. Operations
research letters, 8(4):219–222, 1989.

[140] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix
factorization and sparse coding. Journal of Machine Learning Research,
11:19–60, 2010.

[141] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix
factorization and sparse coding. Journal of Machine Learning Research,
11(1):19–60, 2010.

[142] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow al-
gorithms for structured sparsity. In Advances in Neural Information
Processing Systems (NIPS), 2010.

[143] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network
flow optimization for structured sparsity. Journal of Machine Learning
Research, 12:2681–2720, 2011.

References 227

[144] J. Mairal and B. Yu. Complexity analysis of the Lasso regularization
path. In Proceedings of the International Conference on Machine Learn-
ing (ICML, 2012.

[145] C. L. Mallows. Some comments on Cp. Technometrics, 15:661–675,
1973.

[146] J.L. Marichal. An axiomatic approach of the discrete Choquet integral
as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy
Systems, 8(6):800–807, 2000.

[147] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[148] S. T. McCormick. Submodular function minimization. Discrete Opti-
mization, 12:321–391, 2005.

[149] N. Megiddo. Optimal flows in networks with multiple sources and sinks.
Mathematical Programming, 7(1):97–107, 1974.

[150] M. Minoux. Accelerated greedy algorithms for maximizing submodular
set functions. Optimization Techniques, pages 234–243, 1978.

[151] J. J. Moreau. Fonctions convexes duales et points proximaux dans un
espace Hilbertien. Comptes-Rendus de l’Académie des Sciences, Série
A Mathématiques, 255:2897–2899, 1962.

[152] J.R. Munkres. Elements of algebraic topology, volume 2. Addison-
Wesley Reading, MA, 1984.

[153] K. Murota. Discrete convex analysis, volume 10. Society for Industrial
Mathematics, 1987.

[154] H. Nagamochi and T. Ibaraki. A note on minimizing submodular func-
tions. Information Processing Letters, 67(5):239–244, 1998.

[155] K. Nagano. A strongly polynomial algorithm for line search in submod-
ular polyhedra. Discrete Optimization, 4(3-4):349–359, 2007.

[156] K. Nagano, Y. Kawahara, and K. Aihara. Size-constrained submodu-
lar minimization through minimum norm base. In Proceedings of the
International Conference on Machine Learning (ICML), 2011.

[157] M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graph-
ical models. In Proceedings of the Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 2004.

[158] M. Narasimhan and J. Bilmes. A submodular-supermodular procedure
with applications to discriminative structure learning. In Advances in
Neural Information Processing Systems (NIPS), volume 19, 2006.

228 References

[159] M. Narasimhan and J. Bilmes. Local search for balanced submodular
clusterings. In Proceedings of the International Joint Conferences on
Artificial Intelligence, 2007.

[160] M. Narasimhan, N. Jojic, and J. Bilmes. Q-clustering. Advances in
Neural Information Processing Systems (NIPS), 2006.

[161] H. Narayanan. A rounding technique for the polymatroid membership
problem. Linear algebra and its applications, 221:41–57, 1995.

[162] H. Narayanan. Submodular Functions and Electrical Networks. North-
Holland, 2009. Second edition.

[163] A. Nedić and A. Ozdaglar. Approximate primal solutions and rate
analysis for dual subgradient methods. SIAM Journal on Optimization,
19(4), February 2009.

[164] S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A uni-
fied framework for high-dimensional analysis of M-estimators with de-
composable regularizers. In Advances in Neural Information Processing
Systems (NIPS), 2009.

[165] S. Negahban and M. J. Wainwright. Joint support recovery under high-
dimensional scaling: Benefits and perils of ℓ1-ℓ∞-regularization. In Ad-
vances in Neural Information Processing Systems (NIPS), 2008.

[166] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions–i. Mathematical
Programming, 14(1):265–294, 1978.

[167] A. Nemirovski. Efficient methods in convex programming. Technical
Report Lecture notes, Technion, Israel Institute of Technology, 1994.

[168] A. Nemirovski, S. Onn, and U. G. Rothblum. Accuracy certificates for
computational problems with convex structure. Mathematics of Opera-
tions Research, 35(1):52–78, 2010.

[169] A. S. Nemirovski and D. B. Yudin. Problem complexity and method
efficiency in optimization. John Wiley, 1983.

[170] Y. Nesterov. Complexity estimates of some cutting plane methods based
on the analytic barrier. Mathematical Programming, 69(1-3):149–176,
1995.

[171] Y. Nesterov. Introductory lectures on convex optimization: a basic
course. Kluwer Academic Publishers, 2004.

[172] Y. Nesterov. Gradient methods for minimizing composite objective
function. Technical report, Center for Operations Research and Econo-
metrics (CORE), Catholic University of Louvain, 2007.

References 229

[173] Y. Nesterov, A. S. Nemirovski, and Y. Ye. Interior-point polynomial
algorithms in convex programming, volume 13. SIAM, 1994.

[174] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

[175] G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties.
Technical Report 00694765, HAL, 2012.

[176] G. Obozinski, G. Lanckriet, C. Grant, M.I. Jordan, W.S. Noble,
et al. Consistent probabilistic outputs for protein function prediction.
Genome Biology, 9(Suppl 1):S6, 2008.

[177] J. B. Orlin. A faster strongly polynomial time algorithm for submodu-
lar function minimization. Mathematical Programming, 118(2):237–251,
2009.

[178] M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its
dual. Journal of Computational and Graphical Statistics, 9(2):319–37,
2000.

[179] S. Osher. Level set methods. Geometric Level Set Methods in Imaging,
Vision, and Graphics, pages 3–20, 2003.

[180] F. Pukelsheim. Optimal design of experiments, volume 50. Society for
Industrial Mathematics, 2006.

[181] M. Queyranne. Minimizing symmetric submodular functions. Mathe-
matical Programming, 82(1):3–12, 1998.

[182] M. Queyranne and A. Schulz. Scheduling unit jobs with compatible
release dates on parallel machines with nonstationary speeds. Integer
Programming and Combinatorial Optimization, 920:307–320, 1995.

[183] N. S. Rao, R. D. Nowak, S. J. Wright, and N. G. Kingsbury. Convex
approaches to model wavelet sparsity patterns. In Proceedings of the
International Conference on Image Processing (ICIP), 2011.

[184] C. E. Rasmussen and C. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[185] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997.

[186] M. J. Schell and B. Singh. The reduced monotonic regression method.
Journal of the American Statistical Association, 92(437):128–135, 1997.

[187] M. Schmidt and K. Murphy. Convex structure learning in log-linear
models: Beyond pairwise potentials. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

230 References

[188] A. Schrijver. A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time. Journal of Combinatorial Theory,
Series B, 80(2):346–355, 2000.

[189] A. Schrijver. Combinatorial optimization: Polyhedra and efficiency.
Springer, 2004.

[190] M. Seeger. On the submodularity of linear experimental design, 2009.
http://lapmal.epfl.ch/papers/subm_lindesign.pdf.

[191] M. W. Seeger. Bayesian inference and optimal design for the sparse
linear model. Journal of Machine Learning Research, 9:759–813, 2008.

[192] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, 2004.

[193] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. Journal of the
ACM, 51(3):385–463, 2004.

[194] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar. Collaborative
hierarchical sparse modeling. In Proceedings of the Conference on In-
formation Sciences and Systems (CISS), 2010.

[195] R. P. Stanley. Enumerative combinatorics, volume 49. Cambridge uni-
versity press, 2011.

[196] P. Stobbe and A. Krause. Efficient minimization of decomposable sub-
modular functions. In Advances in Neural Information Processing Sys-
tems (NIPS), 2010.

[197] P. Stobbe and A. Krause. Learning fourier sparse set functions. In
Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), 2012.

[198] M. Streeter and D. Golovin. An online algorithm for maximizing sub-
modular functions. In Advances in Neural Information Processing Sys-
tems (NIPS), 2007.

[199] R. Tarjan, J. Ward, B. Zhang, Y. Zhou, and J. Mao. Balancing applied
to maximum network flow problems. Algorithms–ESA 2006, pages 612–
623, 2006.

[200] C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle
methods for regularized risk minimization. Journal of Machine Learning
Research, 11:311–365, 2010.

[201] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal
of the Royal Statistical Society. Series B, 58(1):267–288, 1996.

http://lapmal.epfl.ch/papers/subm_lindesign.pdf

References 231

[202] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity
and smoothness via the fused Lasso. Journal of the Royal Statistical
Society. Series B, Statistical Methodology, 67(1):91–108, 2005.

[203] D. M. Topkis. Supermodularity and complementarity. Princeton Uni-
versity Press, 2001.

[204] G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion,
and F. Bach. Sparse structured dictionary learning for brain resting-
state activity modeling. In NIPS Workshop on Practical Applications
of Sparse Modeling: Open Issues and New Directions, 2010.

[205] M. J. Wainwright and M. I. Jordan. Graphical models, exponential fam-
ilies, and variational inference. Foundations and Trends R© in Machine
Learning, 1(1-2):1–305, 2008.

[206] P. Wolfe. Finding the nearest point in a polytope. Mathematical Pro-
gramming, 11(1):128–149, 1976.

[207] L’ A. Wolsey. Maximising real-valued submodular functions: Primal
and dual heuristics for location problems. Mathematics of Operations
Research, 7(3):410–425, 1982.

[208] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse recon-
struction by separable approximation. IEEE Transactions on Signal
Processing, 57(7):2479–2493, 2009.

[209] M. Yuan and Y. Lin. On the non-negative garrotte estimator. Journal
of The Royal Statistical Society Series B, 69(2):143–161, 2007.

[210] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural
Computation, 15(4):915–936, 2003.

[211] X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-
norm regularization: A boosting approach. In Advances in Neural In-
formation Processing Systems (NIPS), 2012.

[212] Z. Zhang and R. W. Yeung. On characterization of entropy function
via information inequalities. IEEE Transactions on Information Theory,
44(4):1440–1452, 1998.

[213] P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model se-
lection through composite absolute penalties. Annals of Statistics,
37(6A):3468–3497, 2009.

[214] P. Zhao and B. Yu. On model selection consistency of Lasso. Journal
of Machine Learning Research, 7:2541–2563, 2006.

232 References

[215] S. Zivnı, D. A. Cohen, and P. G. Jeavons. The expressive power of binary
submodular functions. Discrete Applied Mathematics, 157(15):3347–
3358, 2009.

	Introduction
	Definitions
	Equivalent definitions of submodularity
	Associated polyhedra
	Polymatroids (non-decreasing submodular functions)

	Lovász Extension
	Definition
	Greedy algorithm
	Links between submodularity and convexity

	Properties of Associated Polyhedra
	Support functions
	Facial structure
	Positive and symmetric submodular polyhedra

	Convex Relaxation of Submodular Penalties
	Convex and concave closures of set-functions
	Structured sparsity
	Convex relaxation of combinatorial penalty
	q-relaxations of submodular penalties
	Shaping level sets

	Examples and Applications of Submodularity
	Cardinality-based functions
	Cut functions
	Set covers
	Flows
	Entropies
	Spectral functions of submatrices
	Best subset selection
	Matroids

	Non-smooth Convex Optimization
	Assumptions
	Projected subgradient descent
	Ellipsoid method
	Kelley's method
	Analytic center cutting planes
	Mirror descent/conditional gradient
	Bundle and simplicial methods
	Dual simplicial method
	Proximal methods
	Simplex algorithm for linear programming
	Active-set methods for quadratic programming
	Active set algorithms for least-squares problems

	Separable Optimization Problems: Analysis
	Optimality conditions for base polyhedra
	Equivalence with submodular function minimization
	Quadratic optimization problems
	Separable problems on other polyhedra

	Separable Optimization Problems: Algorithms
	Divide-and-conquer algorithm for proximal problems
	Iterative algorithms - Exact minimization
	Iterative algorithms - Approximate minimization
	Extensions

	Submodular Function Minimization
	Minimizers of submodular functions
	Combinatorial algorithms
	Minimizing symmetric posimodular functions
	Ellipsoid method
	Simplex method for submodular function minimization
	Analytic center cutting planes
	Minimum-norm point algorithm
	Approximate minimization through convex optimization
	Using special structure

	Other Submodular Optimization Problems
	Maximization with cardinality constraints
	General submodular function maximization
	Difference of submodular functions

	Experiments
	Submodular function minimization
	Separable optimization problems
	Regularized least-squares estimation
	Graph-based structured sparsity

	Conclusion
	Appendices
	Review of Convex Analysis and Optimization
	Convex analysis
	Max-flow min-cut theorem
	Pool-adjacent-violators algorithm

	Operations that Preserve Submodularity

