Stochastic optimization:
Beyond stochastic gradients and convexity

Part 2

SUVRIT SRA
Laboratory for Information & Decision Systems (LIDS)
Massachusetts Institute of Technology

Acknowledgments: Sashank Reddi (CMU)

Joint tutorial with: Francis Bach, INRIA; ENS
NIPS 2016, Barcelona
Outline

1. Introduction / motivation
 - Strongly convex, convex, saddle point
2. Convex finite-sum problems
3. Nonconvex finite-sum problems
 - Basics, background, difficulty of nonconvex
 - nonconvex SVRG, SAGA
 - Linear convergence rates for nonconvex
 - Proximal surprises
 - Handling nonlinear manifolds (orthogonality, positivity, etc.)
4. Large-scale problems
 - Data sparse parallel methods
 - Distributed settings (high level)
5. Perspectives
Nonconvex finite-sum problems

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, DNN(x_i, \theta)) + \Omega(\theta)
\]
Nonconvex finite-sum problems

\[\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \]

Related work

- Original SGD paper \((\text{Robbins, Monro 1951})\) (asymptotic convergence; no rates)
- SGD with scaled gradients \(\theta_t - \eta_t H_t \nabla f(\theta_t)\) + other tricks: space dilation, \((\text{Shor, 1972})\); variable metric SGD \((\text{Uryasev 1988})\); AdaGrad \((\text{Duchi, Hazan, Singer, 2012})\); Adam \((\text{Kingma, Ba, 2015})\), and many others… (typically asymptotic convergence for nonconvex)
- Large number of other ideas, often for step-size tuning, initialization (see e.g., blog post: by S. Ruder on gradient descent algorithms)

Our focus: going beyond SGD (theoretically; ultimately in practice too)
Nonconvex finite-sum problems

\[
\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

Related work (subset)

- (Solodov, 1997) \textit{Incremental gradient, smooth nonconvex} (asymptotic convergence; no rates proved)
- (Bertsekas, Tsitsiklis, 2000) \textit{Gradient descent with errors; incremental} (see §2.4, Nonlinear Programming; no rates proved)
- (Sra, 2012) \textit{Incremental nonconvex non-smooth} (asymptotic convergence only)
- (Ghadimi, Lan, 2013) \textit{SGD for nonconvex stochastic opt.} (first non-asymptotic rates to stationarity)
- (Ghadimi et al., 2013) \textit{SGD for nonconvex non-smooth stoch. opt.} (non-asymptotic rates, but key limitations)
Difficulty of nonconvex optimization

So, try to see how fast we can satisfy this necessary condition

Difficult to optimize, but

\[\nabla g(\theta) = 0 \]

necessary condition – local minima, maxima, saddle points satisfy it.
Measuring efficiency of nonconvex opt.

Convex:
\[\mathbb{E}[g(\theta_t) - g^*] \leq \epsilon \]
(optimality gap)

Nonconvex:
\[\mathbb{E}[\|\nabla g(\theta_t)\|^2] \leq \epsilon \]
(stationarity gap)

Incremental First-order Oracle (IFO)

(Agarwal, Bottou, 2014)
(see also: Nemirovski, Yudin, 1983)

Measure: #IFO calls to attain \(\epsilon \) accuracy

\((x, i) \rightarrow (f_i(x), \nabla f_i(x)) \)
IFO Example: SGD vs GD (nonconvex)

\[
\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

SGD

\[\theta_{t+1} = \theta_t - \eta \nabla f_i(\theta_t)\]

- O(1) IFO calls per iter
- O(1/\epsilon^2) iterations
- **Total**: O(1/\epsilon^2) IFO calls
- independent of n

(Ghadimi, Lan, 2013, 2014)

GD

\[\theta_{t+1} = x_t - \eta \nabla g(\theta_t)\]

- O(n) IFO calls per iter
- O(1/\epsilon) iterations
- **Total**: O(n/\epsilon) IFO calls
- depends strongly on n

(Nesterov, 2003; Nesterov 2012)

assuming Lipschitz gradients

\[\mathbb{E}[\|\nabla g(\theta_t)\|^2] \leq \epsilon\]
Nonconvex finite-sum problems

\[\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \]

SGD
\[\theta_{t+1} = \theta_t - \eta \nabla f_{i_t}(\theta_t) \]

GD
\[\theta_{t+1} = x_t - \eta \nabla g(\theta_t) \]

Do these benefits extend to nonconvex finite-sums?

Analysis depends heavily on convexity (especially for controlling variance)

SAG, SVRG, SAGA, et al.
SVRG/SAGA work again!
(with new analysis)
Nonconvex SVRG

\[\textbf{Nonconvex SVRG} \]

\[
\text{for } s=0 \text{ to } S-1 \\
\theta_0^{s+1} & \leftarrow \theta_m^s \\
\tilde{\theta}^s & \leftarrow \theta^s_m \\
\text{for } t=0 \text{ to } m-1 \\
\text{Uniformly randomly pick } i(t) \in \{1, \ldots, n\} \\
\theta_{t+1}^{s+1} = \theta_{t}^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_{t}^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{\theta}^s) \right] \\
\text{end} \\
\text{end}
\]

The same algorithm as usual SVRG \textit{(Johnson, Zhang, 2013)}
Nonconvex SVRG

\[
\begin{align*}
\textbf{for } \ s = 0 \ \text{to} \ S-1 \\
\theta_{0}^{s+1} & \leftarrow \theta_{m}^{s} \\
\tilde{\theta}^{s} & \leftarrow \theta_{m}^{s} \\
\textbf{for } \ t = 0 \ \text{to} \ m-1 \\
\text{Uniformly randomly pick } \ i(t) \in \{1, \ldots, n\} \\
\theta_{t+1}^{s+1} & = \theta_{t}^{s+1} - \eta_{t} \left[\nabla f_{i(t)}(\theta_{t}^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^{s}) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\tilde{\theta}^{s}) \right] \\
\textbf{end} \\
\textbf{end}
\end{align*}
\]
Nonconvex SVRG

\[
\text{for } s = 0 \text{ to } S-1 \\
\quad \theta_{0}^{s+1} \leftarrow \theta_{m}^{s} \\
\quad \tilde{\theta}^{s} \leftarrow \theta_{m}^{s} \\
\text{for } t = 0 \text{ to } m-1 \\
\quad \text{Uniformly randomly pick } i(t) \in \{1, \ldots, n\} \\
\quad \theta_{t+1}^{s+1} = \theta_{t}^{s+1} - \eta_{t} \left[\nabla f_{i(t)}(\theta_{t}^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^{s}) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\tilde{\theta}^{s}) \right] \\
\text{end} \\
\text{end}
\]
Nonconvex SVRG

\[
\textbf{for } s=0 \text{ to } S-1 \quad \\
\theta_0^{s+1} \leftarrow \theta_m^s \\
\tilde{\theta}^s \leftarrow \theta_m^s \\
\textbf{for } t=0 \text{ to } m-1 \quad \\
\text{Uniformly randomly pick } i(t) \in \{1, \ldots, n\} \\
\theta_t^{s+1} = \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{\theta}^s) \right] \\
\textbf{end} \\
\textbf{end}
\]
Nonconvex SVRG

\begin{align*}
\text{for } s &= 0 \text{ to } S-1 \\
\theta_0^{s+1} &\leftarrow \theta_m^s \\
\tilde{\theta}^s &\leftarrow \theta_m^s \\
\text{for } t &= 0 \text{ to } m-1 \\
\text{Uniformly randomly pick } &i(t) \in \{1, \ldots, n\} \\
\theta_t^{s+1} &= \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \right] \\
\text{end}
\end{align*}
Nonconvex SVRG

\[
\text{for } s = 0 \text{ to } S-1 \\
\theta_{0}^{s+1} \leftarrow \theta_{m}^{s} \\
\tilde{\theta}^{s} \leftarrow \theta_{m}^{s} \\
\text{for } t = 0 \text{ to } m-1 \\
\quad \text{Uniformly randomly pick } i(t) \in \{1, \ldots, n\} \\
\quad \theta_{t+1}^{s+1} = \theta_{t+1}^{s} - \eta_{t} \left[\nabla f_{i(t)}(\theta_{t+1}^{s}) - \nabla f_{i(t)}(\tilde{\theta}^{s}) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\tilde{\theta}^{s}) \right] \\
\text{end} \\
\text{end}
\]

\[\mathbb{E}[\Delta_{t}] = 0\]
for s=0 to S-1
 \(\theta_{0}^{s+1} \leftarrow \theta_{m}^{s} \)
 \(\tilde{\theta}^{s} \leftarrow \theta_{m}^{s} \)

for t=0 to m-1
 Uniformly randomly pick \(i(t) \in \{1, \ldots, n\} \)
 \(\theta_{t+1}^{s+1} = \theta_{t}^{s+1} - \eta_{t} \left[\nabla f_{i(t)}(\theta_{t}^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^{s}) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\tilde{\theta}^{s}) \right] \)

end

end

Full gradient, computed once every epoch
Nonconvex SVRG

for $s = 0$ to $S-1$

$\theta_0^{s+1} \leftarrow \theta_m^{s}$

$\tilde{\theta}^s \leftarrow \theta_m^{s}$

desc for $t = 0$ to $m-1$

Uniformly randomly pick $i(t) \in \{1, \ldots, n\}$

$\theta_t^{s+1} = \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{\theta}^s) \right]$

desc end

Key quantities that determine how the method operates

Full gradient, computed once every epoch
Key ideas for analysis of nc-SVRG

Previous SVRG proofs rely on **convexity to control variance**

New proof technique – quite general; extends to SAGA, to several other finite-sum nonconvex settings!

- Larger step-size \Rightarrow smaller inner loop (full-gradient computation dominates epoch)
- Smaller step-size \Rightarrow slower convergence (longer inner loop)

(Carefully) trading-off #inner-loop iterations m with step-size η leads to lower #IFO calls!

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Allen-Zhu, Hazan, 2016)
Faster nonconvex optimization via VR

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Nonconvex (Lipschitz smooth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD</td>
<td>$O\left(\frac{1}{\epsilon^2}\right)$</td>
</tr>
<tr>
<td>GD</td>
<td>$O\left(\frac{n}{\epsilon}\right)$</td>
</tr>
<tr>
<td>SVRG</td>
<td>$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$</td>
</tr>
<tr>
<td>SAGA</td>
<td>$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$</td>
</tr>
<tr>
<td>MSVRG</td>
<td>$O\left(\min\left(\frac{1}{\epsilon^2}, \frac{n^{2/3}}{\epsilon}\right)\right)$</td>
</tr>
</tbody>
</table>

Remarks

New results for convex case too; additional nonconvex results

For related results, see also *(Allen-Zhu, Hazan, 2016)*

$\mathbb{E}[\|\nabla g(\theta_t)\|^2] \leq \epsilon$
Linear rates for nonconvex problems

\[
\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

The Polyak-Łojasiewicz (PL) class of functions

\[
g(\theta) - g(\theta^*) \leq \frac{1}{2\mu} \| \nabla g(\theta) \|^2
\]

(Polyak, 1963); (Łojasiewicz, 1963)

Examples:

- \(\mu \)-strongly convex \(\Rightarrow \) PL holds
- Stochastic PCA, some large-scale eigenvector problems

(More general than many other “restricted” strong convexity uses)

(Karimi, Nutini, Schmidt, 2016)
(Attouch, Bolte, 2009)
(Bertsekas, 2016)

proximal extensions; references
more general Kurdya-Łojasiewicz class
textbook, more “growth conditions”
Linear rates for nonconvex problems

\[g(\theta) - g(\theta^*) \leq \frac{1}{2\mu} \| \nabla g(\theta) \|^2 \quad \text{or} \quad \mathbb{E}[g(\theta_t) - g^*] \leq \epsilon \]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Nonconvex</th>
<th>Nonconvex-PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD</td>
<td>(O\left(\frac{1}{\epsilon^2}\right))</td>
<td>(O\left(\frac{1}{\epsilon^2}\right))</td>
</tr>
<tr>
<td>GD</td>
<td>(O\left(\frac{n}{\epsilon}\right))</td>
<td>(O\left(\frac{n}{2\mu \log \frac{1}{\epsilon}}\right))</td>
</tr>
<tr>
<td>SVRG</td>
<td>(O\left(n + \frac{n^{2/3}}{\epsilon}\right))</td>
<td>(O\left((n + \frac{n^{2/3}}{2\mu}) \log \frac{1}{\epsilon}\right))</td>
</tr>
<tr>
<td>SAGA</td>
<td>(O\left(n + \frac{n^{2/3}}{\epsilon}\right))</td>
<td>(O\left((n + \frac{n^{2/3}}{2\mu}) \log \frac{1}{\epsilon}\right))</td>
</tr>
<tr>
<td>MSVRG</td>
<td>(O\left(\min\left(\frac{1}{\epsilon^2}, \frac{n^{2/3}}{\epsilon}\right)\right))</td>
<td>—</td>
</tr>
</tbody>
</table>

Variant of \textbf{nc-SVRG} attains this fast convergence!

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016)
Empirical results

CIFAR10 dataset; 2-layer NN
Empirical results

CIFAR10 dataset; 2-layer NN

\[\| \nabla f(\theta_t) \|^2 \]

\# grad / n

SGD

SVRG
Empirical results

CIFAR10 dataset; 2-layer NN
Empirical results

CIFAR10 dataset; 2-layer NN
Non-smooth surprises!

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) + \Omega(\theta)$$

Regularizer, e.g., $\| \cdot \|_1$ for enforcing sparsity of weights (in a neural net, or more generally); or an indicator function of a constraint set, etc.
Nonconvex composite objective problems

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) + \Omega(\theta)
\]

** convex

** nonconvex

Prox-SGD

\[
\theta_{t+1} = \text{prox}_{\lambda_t \Omega}(\theta_t - \eta_t \nabla f_{i_t}(\theta_t))
\]

Prox-SGD convergence not known!*

\[
\text{prox}_{\lambda \Omega}(v) := \arg\min_u \frac{1}{2} \|u - v\|^2 + \lambda \Omega(u)
\]

prox: soft-thresholding for \(\| \cdot \|_1\); projection for indicator function

- Partial results: *(Ghadimi, Lan, Zhang, 2014)*
 (using growing minibatches, shrinking step sizes)

* Except in special cases (where even rates may be available)
Nonconvex composite objective problems

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) + \Omega(\theta)
\]

Once again variance reduction to the rescue?

Prox-SVRG/SAGA converge* and that too faster than both SGD and GD!

The same \(O \left(n + \frac{n^{2/3}}{\epsilon} \right) \) once again!

* some care needed

(Reddi, Sra, Poczos, Smola, 2016)
Empirical results: NN-PCA

Eigenvecs via SGD: (Oja, Karhunen 1985); via SVRG (Shamir, 2015, 2016); (Garber, Hazan, Jin, Kakade, Musco, Netrapalli, Sidford, 2016); and many more!
Finite-sum problems with nonconvex $g(\theta)$ and params θ lying on a known manifold

$$\min_{\theta \in M} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

Example: eigenvector problems (the $||\theta||=1$ constraint)
problems with orthogonality constraints
low-rank matrices
positive definite matrices / covariances
Nonconvex optimization on manifolds

(Zhang, Reddi, Sra, 2016)

\[
\min_{\theta \in \mathcal{M}} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

Related work

- (Udriste, 1994) batch methods; textbook
- (Edelman, Smith, Arias, 1999) classic paper; orthogonality constraints
- (Absil, Mahony, Sepulchre, 2009) textbook; convergence analysis
- (Boumal, 2014) phd thesis, algos, theory, examples
- (Mishra, 2014) phd thesis, algos, theory, examples
- manopt excellent matlab toolbox
- (Bonnabel, 2013) Riemannnnian SGD, asymptotic convg.
- and many more!

Exploiting manifold structure yields speedups

Suvrit Sra (ml.mit.edu) Beyond stochastic gradients and convexity: Part 2
Example: Gaussian Mixture Model

\[p_{\text{mix}}(x) := \sum_{k=1}^{K} \pi_k p_{\mathcal{N}}(x; \Sigma_k, \mu_k) \]

Likelihood \[\max \prod_i p_{\text{mix}}(x_i) \]

Numerical challenge: positive definite constraint on \[\Sigma_k \]

Riemannian (new)

EM Algo

Cholesky \[LL^T \]

[Hosseini, Sra, 2015]
Careful use of manifold geometry helps!

<table>
<thead>
<tr>
<th>K</th>
<th>EM</th>
<th>R-LBFGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17s // 29.28</td>
<td>14s // 29.28</td>
</tr>
<tr>
<td>5</td>
<td>202s // 32.07</td>
<td>117s // 32.07</td>
</tr>
<tr>
<td>10</td>
<td>2159s // 33.05</td>
<td>658s // 33.06</td>
</tr>
</tbody>
</table>

Riemannian-LBFGS (careful impl.)

images dataset
d=35,
n=200,000

github.com/utvisionlab/mixest
Careful use of manifold geometry helps!

Riemannian-SGD for GMMs (multi-epoch)
Summary of nonconvex VR methods

- nc-SVRG/SAGA use fewer #IPO calls than SGD & GD
- Work well in practice
- Easier (than SGD) to use and tune:
 - can use constant step-sizes
- Proximal extension holds a few surprises
- SGD and SVRG extend to Riemannian manifolds too
Large-scale optimization

\[
\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]
Simplest setting: using mini-batches

Idea: Use ‘b’ stochastic gradients / IFO calls per iteration

useful in parallel and distributed settings

increases parallelism, reduces communication

\[
\theta_{t+1} = \theta_t - \frac{\eta_t}{|I_t|} \sum_{j \in I_t} \nabla f_j(\theta_t)
\]

For batch size \(b\), SGD takes a factor \(1/\sqrt{b}\) fewer iterations

(Dekel, Gilad-Bachrach, Shamir, Xiao, 2012)

For batch size \(b\), SVRG takes a factor \(1/b\) fewer iterations

Theoretical **linear speedup** with parallelism

see also S2GD (convex case): (Konečný, Liu, Richtárik, Takáč, 2015)
Asynchronous stochastic algorithms

\[
\theta_{t+1} = \theta_t - \frac{\eta_t}{|I_t|} \sum_{j \in I_t} \nabla f_j(\theta_t)
\]

- Inherently sequential algorithm
- Slow-downs in parallel/dist settings (synchronization)

Classic results in asynchronous optimization: \textit{(Bertsekas, Tsitsiklis, 1987)}

- Asynchronous SGD implementation (HogWild!)
 Avoids need to sync, operates in a “lock-free” manner
- Key assumption: sparse data (often true in ML)

but

It is still SGD, thus has slow sublinear convergence even for strongly convex functions
Asynchronous algorithms: parallel

Does variance reduction work with asynchrony?

Yes!

ASVRG *(Reddi, Hefny, Sra, Poczos, Smola, 2015)*

ASAGA *(Leblond, Pedregosa, Lacoste-Julien, 2016)*

Perturbed iterate analysis *(Mania et al, 2016)*

– a few subtleties involved
– some gaps between theory and practice
– more complex than async-SGD

Bottomline: on sparse data, can get almost linear speedup due to parallelism (\(\pi \) machines lead to \(\sim \pi \) speedup)
Asynchronous algorithms: distributed

common parameter server architecture

(Li, Andersen, Smola, Yu, 2014)

Classic ref: (Bertsekas, Tsitsiklis, 1987)

D-SGD:

– workers compute (stochastic) gradients
– server computes parameter update
– can have quite high communication cost

Asynchrony via: servers use delayed / stale gradients from workers
(Nedic, Bertsekas, Borkar, 2000; Agarwal, Duchi 2011) and many others
(Shamir, Srebro 2014) – nice overview of distributed stochastic optimization
Asynchronous algorithms: distributed

To reduce communication, following idea is useful:

Worker nodes solve compute intensive subproblems

Servers perform simple aggregation (eg. full-gradients for distributed SVRG)

DANE (Shamir, Srebro, Zhang, 2013): distributed Newton, view as having an SVRG-like gradient correction
Asynchronous algorithms: distributed

Key point: Use SVRG (or related fast method) to solve suitable subproblems at workers; reduce #rounds of communication; (or just do D-SVRG)

Some related work

- **D-SVRG**, and accelerated version for some special cases (applies in smaller condition number regime)
 - (Lee, Lin, Ma, Yang, 2015)

- CoCoA+: (updates m local dual variables using m local data points; any local opt. method can be used); higher runtime+comm.
 - (Ma, Smith, Jaggi, Jordan, Richtárik, Takáč, 2015)

- D-SVRG via cool application of **without replacement** SVRG! regularized least-squares problems only for now
 - (Shamir, 2016)

Several more: DANE, DISCO, AIDE, etc.
Summary

- VR stochastic methods for nonconvex problems
- Surprises for proximal setup
- Nonconvex problems on manifolds
- Large-scale: parallel + sparse data
- Large-scale: distributed; SVRG benefits, limitations

If there is a finite-sum structure, can use VR ideas!
Perspectives: did not cover these!

- Stochastic quasi-convex optim. \textit{(Hazan, Levy, Shalev-Shwartz, 2015)}
- Nonlinear eigenvalue-type problems \textit{(Belkin, Rademacher, Voss, 2016)}
- Frank-Wolfe + SVRG: \textit{(Reddi, Sra, Poczos, Smola, 2016)}
- Newton-type methods: \textit{(Carmon, Duchi, Hinder, Sidford, 2016); (Agarwal, Allen-Zhu, Bullins, Hazan, Ma, 2016)};
- many more, including robust optimization,
- infinite dimensional nonconvex problems
- geodesic-convexity for global optimality
- polynomial optimization
- many more… it’s a rich field!
Impact of non-convexity on generalization
Non-separable problems (e.g., minimize AUC); saddle point problems (*Balamurugan, Bach 2016*)
Convergence theory, local and global
Lower-bounds for nonconvex finite-sums
Distributed algorithms (theory and implementations)
New applications (e.g., of Riemannian optimization)
Search for other more “tractable” nonconvex models
Specialization to deep networks, software toolkits