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Abstract

While classical kernel-based classifiers are
based on a single kernel, in practice it is often
desirable to base classifiers on combinations
of multiple kernels. Lanckriet et al. (2004)
considered conic combinations of kernel ma-
trices for the support vector machine (SVM),
and showed that the optimization of the co-
efficients of such a combination reduces to
a convex optimization problem known as a
quadratically-constrained quadratic program
(QCQP). Unfortunately, current convex op-
timization toolboxes can solve this problem
only for a small number of kernels and a
small number of data points; moreover, the
sequential minimal optimization (SMO) tech-
niques that are essential in large-scale imple-
mentations of the SVM cannot be applied be-
cause the cost function is non-differentiable.
We propose a novel dual formulation of
the QCQP as a second-order cone program-
ming problem, and show how to exploit the
technique of Moreau-Yosida regularization to
yield a formulation to which SMO techniques
can be applied. We present experimental re-
sults that show that our SMO-based algo-
rithm is significantly more efficient than the
general-purpose interior point methods avail-
able in current optimization toolboxes.

1. Introduction

One of the major reasons for the rise to prominence
of the support vector machine (SVM) is its ability to
cast nonlinear classification as a convex optimization
problem, in particular a quadratic program (QP). Con-
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vexity implies that the solution is unique and brings a
suite of standard numerical software to bear in finding
the solution. Convexity alone, however, does not imply
that the available algorithms scale well to problems of
interest. Indeed, off-the-shelf algorithms do not suffice
in large-scale applications of the SVM, and a second
major reason for the rise to prominence of the SVM
is the development of special-purpose algorithms for
solving the QP (Platt, 1998; Joachims, 1998; Keerthi
et al., 2001).

Recent developments in the literature on the SVM
and other kernel methods have emphasized the need
to consider multiple kernels, or parameterizations of
kernels, and not a single fixed kernel. This provides
needed flexibility and also reflects the fact that prac-
tical learning problems often involve multiple, hetero-
geneous data sources. While this so-called “multiple
kernel learning” problem can in principle be solved via
cross-validation, several recent papers have focused on
more efficient methods for kernel learning (Chapelle
et al., 2002; Grandvalet & Canu, 2003; Lanckriet et al.,
2004; Ong et al., 2003). In this paper we focus on the
framework proposed by Lanckriet et al. (2004), which
involves joint optimization of the coefficients in a conic
combination of kernel matrices and the coefficients of
a discriminative classifier. In the SVM setting, this
problem turns out to again be a convex optimization
problem—a quadratically-constrained quadratic pro-
gram (QCQP). This problem is more challenging than
a QP, but it can also be solved in principle by general-
purpose optimization toolboxes such as Mosek (Ander-
sen & Andersen, 2000). Again, however, this existing
algorithmic solution suffices only for small problems
(small numbers of kernels and data points), and im-
proved algorithmic solutions akin to sequential mini-
mization optimization (SMO) are needed.

While the multiple kernel learning problem is convex,
it is also non-smooth—it can be cast as the minimiza-
tion of a non-differentiable function subject to linear



constraints (see Section 3.1). Unfortunately, as is well
known in the non-smooth optimization literature, this
means that simple local descent algorithms such as
SMO may fail to converge or may converge to incor-
rect values (Bertsekas, 1995). Indeed, in preliminary
attempts to solve the QCQP using SMO we ran into
exactly these convergence problems.

One class of solutions to non-smooth optimization
problems involves constructing a smooth approximate
problem out of a non-smooth problem. In particu-
lar, Moreau-Yosida (MY) regularization is an effec-
tive general solution methodology that is based on
inf-convolution (Lemarechal & Sagastizabal, 1997). It
can be viewed in terms of the dual problem as simply
adding a quadratic regularization term to the dual ob-
jective function. Unfortunately, in our setting, this
creates a new difficulty—we lose the sparsity that
makes the SVM amenable to SMO optimization. In
particular, the QCQP formulation of Lanckriet et al.
(2004) does not lead to an MY-regularized problem
that can be solved efficiently by SMO techniques.

In this paper we show how these problems can be re-
solved by considering a novel dual formulation of the
QCQP as a second-order cone programming (SOCP)
problem. This new formulation is of interest on its
own merit, because of various connections to existing
algorithms. In particular, it is closely related to the
classical maximum margin formulation of the SVM,
differing only by the choice of the norm of the in-
verse margin. Moreover, the KKT conditions arising
in the new formulation not only lead to support vec-
tors as in the classical SVM, but also to a dual notion
of “support kernels”—those kernels that are active in
the conic combination. We thus refer to the new for-
mulation as the support kernel machine (SKM).

As we will show, the conic dual problem defining the
SKM is exactly the multiple kernel learning problem
of Lanckriet et al. (2004).1 Moreover, given this new
formulation, we can design a Moreau-Yosida regular-
ization which preserves the sparse SVM structure, and
therefore we can apply SMO techniques.

Making this circle of ideas precise requires a number
of tools from convex analysis. In particular, Section 3
defines appropriate approximate optimality conditions
for the SKM in terms of subdifferentials and approxi-
mate subdifferentials. These conditions are then used
in Section 4 in the design of an MY regularization for
the SKM and an SMO-based algorithm. We present

1It is worth noting that this dual problem cannot be
obtained directly as the Lagrangian dual of the QCQP
problem—Lagrangian duals of QCQPs are semidefinite
programming problems.

the results of numerical experiments with the new
method in Section 5.

2. Learning the kernel matrix

In this section, we (1) begin with a brief review
of the multiple kernel learning problem of Lanckriet
et al. (2004), (2) introduce the support kernel ma-
chine (SKM), and (3) show that the dual of the SKM
is equivalent to the multiple kernel learning primal.

2.1. Multiple kernel learning problem

In the multiple kernel learning problem, we assume
that we are given n data points (xi, yi), where xi ∈ X
for some input space X , and where yi ∈ {−1, 1}. We
also assume that we are given m matrices Kj ∈ R

n×n,
which are assumed to be symmetric positive semidef-
inite (and might or might not be obtained from eval-
uating a kernel function on the data {xi}). We con-
sider the problem of learning the best linear combi-
nation

∑m
j=1 ηjKj of the kernels Kj with nonnega-

tive coefficients ηj > 0 and with a trace constraint
tr

∑m
j=1 ηjKj =

∑m
j=1 ηj trKj = c, where c > 0 is

fixed. Lanckriet et al. (2004) show that this setup
yields the following optimization problem:

min ζ − 2e>α

(L) w.r.t. ζ ∈ R, α ∈ R
n

s.t. 0 6 α 6 C, α>y = 0

α>D(y)KjD(y)α 6
trKj

c ζ, j ∈ {1, . . . ,m},
where D(y) is the diagonal matrix with diagonal y, e ∈
R
n the vector of all ones, and C a positive constant.

The coefficients ηj are recovered as Lagrange multipli-

ers for the constraints α>D(y)KjD(y)α 6
trKj

c ζ.

2.2. Support kernel machine

We now introduce a novel classification algorithm that
we refer to as the “support kernel machine” (SKM).
It will be motivated as a block-based variant of the
SVM and related margin-based classification algo-
rithms. But our underlying motivation is the fact that
the dual of the SKM is exactly the problem (L). We
establish this equivalence in the following section.

2.2.1. Linear classification

In this section we let X = R
k. We also assume we are

given a decomposition of R
k as a product of m blocks:

R
k = R

k1 × · · · × R
km , so that each data point xi can

be decomposed into m block components, i.e. xi =
(x1i, . . . , xmi), where each xji is in general a vector.

The goal is to find a linear classifier of the form



y = sign(w>x + b) where w has the same block de-
composition w = (w1, . . . , wm) ∈ R

k1+···+km . In the
spirit of the soft margin SVM, we achieve this by min-
imizing a linear combination of the inverse of the mar-
gin and the training error. Various norms can be used
to combine the two terms, and indeed many different
algorithms have been explored for various combina-
tions of `1-norms and `2-norms. In this paper, our
goal is to encourage the sparsity of the vector w at
the level of blocks; in particular, we want most of its
(multivariate) components wi to be zero. A natural
way to achieve this is to penalize the `1-norm of w.
Since w is defined by blocks, we minimize the square
of a weighted block `1-norm, (

∑m
j=1 dj ||wj ||2)2, where

within every block, an `2-norm is used. Note that a
standard `2-based SVM is obtained if we minimize the
square of a block `2-norm,

∑m
j=1 ||wj ||22, which corre-

sponds to ||w||22, i.e., ignoring the block structure. On
the other hand, if m = k and dj = 1, we minimize the
square of the `1-norm of w, which is very similar to
the LP-SVM proposed by Bradley and Mangasarian
(1998). The primal problem for the SKM is thus:

min 1
2 (

∑m
j=1 dj ||wj ||2)2 + C

∑n
i=1 ξi

(P ) w.r.t. w ∈ R
k1 × · · · × R

km , ξ ∈ R
n
+, b ∈ R

s.t. yi(
∑

j w
>
j xji + b) > 1 − ξi,∀i∈{1, . . . , n}.

2.2.2. Conic duality and optimality

conditions

For a given optimization problem there are many ways
of deriving a dual problem. In our particular case,
we treat problem (P ) as a second-order cone program
(SOCP) (Lobo et al., 1998), which yields the following
dual (see Appendix A for the derivation):

min 1
2γ

2 − α>e

(D) w.r.t. γ ∈ R, α ∈ R
n

s.t. 0 6 α 6 C, α>y = 0

||∑i αiyixji||2 6 djγ, ∀j ∈ {1, . . . ,m}.

In addition, the Karush-Kuhn-Tucker (KKT) optimal-
ity conditions give the following complementary slack-
ness equations:

(a) αi(yi(
∑

j w
>
j xji + b) − 1 + ξi) = 0, ∀i

(b) (C − αi)ξi = 0, ∀i
(c)

( wj

||wj ||2

)>(−
∑

i αiyixji

djγ

)

= 0, ∀j
(d) γ(

∑

djtj − γ) = 0.

Equations (a) and (b) are the same as in the classi-
cal SVM, where they define the notion of a “support
vector.” That is, at the optimum, we can divide the

v
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Figure 1. Orthogonality of elements of the second-order
cone K2 = {w = (u, v), u ∈ R

2
, v ∈ R, ||u||2 6 v}: two ele-

ments w, w
′ of K2 are orthogonal and nonzero if and only

if they belong to the boundary and are anti-proportional.

data points into three disjoint sets: I0 = {i, αi = 0},
IM = {i, αi ∈ (0, C)}, and IC = {i, αi = C}, such that
points belonging to I0 are correctly classified points
not on the margin and such that ξi = 0; points in
IM are correctly classified points on the margin such
that ξi = 0 and yi(

∑

j w
>
j xji + b) = 1, and points

in IC are points on the “wrong” side of the margin
for which ξi > 0 (incorrectly classified if ξi > 1) and
yi(

∑

j w
>
j xji + b) = 1− ξi. The points whose indices i

are in IM or IC are the support vectors.

While the KKT conditions (a) and (b) refer to the in-
dex i over data points, the KKT conditions (c) and (d)
refer to the index j over components of the input vec-
tor. These conditions thus imply a form of sparsity not
over data points but over “input dimensions.” Indeed,
two non-zero elements (u, v) and (u′, v′) of a second-
order cone Kd = {(u, v) ∈ R

d × R, ||u||2 6 v} are or-
thogonal if and only if they both belong to the bound-
ary, and they are “anti-proportional” (Lobo et al.,
1998); that is, ∃η > 0 such that ||u||2 = v, ||u′||2 =
v′, (u, v) = η(−u′, v′) (see Figure 1).

Thus, if γ > 0, we have:

• if ||∑i αiyixji||2 < djγ, then wj = 0,

• if ||∑i αiyixji||2 = djγ, then ∃ηj > 0, such that
wj=ηj

∑

i αiyixji, ||wj ||2 =ηjdjγ.

Sparsity thus emerges from the optimization prob-
lem. Let J denote the set of active dimensions, i.e.,
J (α, γ) = {j : ||

∑

i αiyixji||2 = djγ}. We can rewrite
the optimality conditions as

∀j, wj = ηj
∑

i αiyixji, with ηj = 0 if j /∈ J .

Equation (d) implies that γ =
∑

j dj ||wj ||2 =
∑

j dj(ηjdjγ), which in turn implies
∑

j∈J d
2
jηj = 1.

2.2.3. Kernelization

We now remove the assumption that X is a Euclidean
space, and consider embeddings of the data points xi
in a Euclidean space via a mapping φ : X → R

f . In
correspondence with our block-based formulation of



the classification problem, we assume that φ(x) has m
distinct block components φ(x) = (φ1(x), . . . , φm(x)).
Following the usual recipe for kernel methods, we as-
sume that this embedding is performed implicitly, by
specifying the inner product in R

f using a kernel func-
tion, which in this case is the sum of individual kernel
functions on each block component:

k(xi, xj) = φ(xi)
>φ(xj) =

∑m
s=1 φs(xi)

>φs(xj)

=
∑m
s=1 ks(xi, xj).

We now “kernelize” the problem (P ) using this ker-
nel function. In particular, we consider the dual of
(P ) and substitute the kernel function for the inner
products in (D):

min 1
2γ

2 − e>α

(DK) w.r.t. γ ∈ R, α ∈ R
n

s.t. 0 6 α 6 C, α>y = 0

(α>D(y)KjD(y)α)1/2 6 γdj ,∀j,

where Kj is the j-th Gram matrix of the points {xi}
corresponding to the j-th kernel.

The sparsity that emerges via the KKT conditions (c)
and (d) now refers to the kernels Kj , and we refer
to the kernels with nonzero ηj as “support kernels.”
The resulting classifier has the same form as the SVM
classifier, but is based on the kernel matrix combina-
tion K =

∑

j ηjKj , which is a sparse combination of
“support kernels.”

2.3. Equivalence of the two formulations

By simply taking dj =
√

trKj

c , we see that problem

(DK) and (L) are indeed equivalent—thus the dual of
the SKM is the multiple kernel learning primal. Care
must be taken here though—the weights ηj are defined
for (L) as Lagrange multipliers and for (DK) through
the anti-proportionality of orthogonal elements of a
second-order cone, and a priori they might not coin-
cide: although (DK) and (L) are equivalent, their dual
problems have different formulations. It is straightfor-
ward, however, to write the KKT optimality condi-
tions for (α, η) for both problems and verify that they
are indeed equivalent. One direct consequence is that
for an optimal pair (α, η), α is an optimal solution of
the SVM with kernel matrix

∑

j ηjKj .

3. Optimality conditions

In this section, we formulate our problem (in either
of its two equivalent forms) as the minimization of
a non-differentiable convex function subject to linear

constraints. Exact and approximate optimality condi-
tions are then readily derived using subdifferentials. In
later sections we will show how these conditions lead
to an MY-regularized algorithmic formulation that will
be amenable to SMO techniques.

3.1. Max-function formulation

A rearrangement of the problem (DK) yields an equiv-
alent formulation in which the quadratic constraints
are moved into the objective function:

min max
j

{

1
2d2

j

α>D(y)KjD(y)α− α>e
}

(S) w.r.t. α ∈ R
n

s.t. 0 6 α 6 C, α>y = 0.

We let Jj(α) denote 1
2d2

j

α>D(y)KjD(y)α − α>e and

J(α) = maxj Jj(α). Problem (S) is the minimization
of the non-differentiable convex function J(α) subject
to linear constraints. Let J (α) be the set of active
kernels, i.e., the set of indices j such that Jj(α) =
J(α). We let Fj(α) ∈ R

n denote the gradient of Jj ,

that is, Fj =
∂Jj

∂α = 1
d2

j

D(y)KjD(y)α− e.

3.2. Optimality conditions and subdifferential

Given any function J(α), the subdifferential of J at α
∂J(α) is defined as (Bertsekas, 1995):

∂J(α) = {g ∈ R
n, ∀α′, J(α′) > J(α) + g>(α′ − α)}.

Elements of the subdifferential ∂J(α) are called sub-
gradients. When J is convex and differentiable at α,
then the subdifferential is a singleton and reduces to
the gradient. The notion of subdifferential is especially
useful for characterizing optimality conditions of non-
smooth problems (Bertsekas, 1995).

The function J(α) defined in the earlier section is a
pointwise maximum of convex differentiable functions,
and using subgradient calculus we can easily see that
the subdifferential ∂J(α) of J at α is equal to the
convex hull of the gradients Fj of Jj for the active
kernels. That is:

∂J(α) = convex hull{Fj(α), j ∈ J (α)}.

The Lagrangian for (S) is equal to L(α) = J(α) −
δ>α+ξ>(α−Ce)+bα>y, where b ∈ R, ξ, δ ∈ R

n
+, and

the global minimum of L(α, δ, ξ, b) with respect to α
is characterized by the equation

0 ∈ ∂L(α) ⇔ δ − ξ − by ∈ ∂J(α).

The optimality conditions are thus the following:
α, (b, δ, ξ) is a pair of optimal primal/dual variables



if and only if:

δ − ξ − by ∈ ∂J(α)

(OPT0) ∀i, δiαi = 0, ξi(C − αi) = 0

α>y = 0, 0 6 α 6 C.

As before, we define IM (α) = {i, 0 < αi < C},
I0(α) = {i, αi = 0}, IC(α) = {i, αi = C}. We also de-
fine, following (Keerthi et al., 2001), I0+ = I0∩{i, yi =
1} and I0− = I0∩{i, yi = −1}, IC+ = IC ∩{i, yi = 1},
IC− = IC ∩ {i, yi = −1}. We can then rewrite the
optimality conditions as

ν − be = D(y)
∑

j∈J (α) d
2
jηjFj(α)

η > 0,
∑

j d
2
jηj = 1

(OPT1) ∀i ∈ IM ∪ I0+ ∪ IC−, νi > 0

∀i ∈ IM ∪ I0+ ∪ IC−, νi 6 0.

3.3. Approximate optimality conditions

Exact optimality conditions such as (OPT0) or
(OPT1) are generally not suitable for numerical op-
timization. In non-smooth optimization theory, one
instead formulates optimality criteria in terms of the
ε-subdifferential, which is defined as

∂εJ(α) = {g ∈ R
n,∀α′, J(α′) > J(α)−ε+g>(α′−α)}.

When J(α) = maxj Jj(α), then the ε-subdifferential
contains (potentially strictly) the convex hull of the
gradients Fj(α), for all ε-active functions, i.e., for all
j such that maxi Ji(α) − ε 6 Jj(α). We let Jε(α)
denote the set of all such kernels. So, we have Cε(α) =
convex hull{Fj(α), j ∈ Jε(α)} ⊆ ∂εJ(α).

Our stopping criterion, referred to as (ε1, ε2)-
optimality, requires that the ε1-subdifferential is
within ε2 of zero, and that the usual KKT conditions
are met. That is, we stop whenever there exist ν, b, g
such that

g ∈ ∂ε1J(α)

(OPT2) ∀i ∈ IM ∪ I0+ ∪ IC−, νi > 0

∀i ∈ IM ∪ I0+ ∪ IC−, νi 6 0

||ν − be−D(y)g||∞ 6 ε2.

Note that for one kernel, i.e., when the SKM re-
duces to the SVM, this corresponds to the approxi-
mate KKT conditions usually employed for the stan-
dard SVM (Platt, 1998; Keerthi et al., 2001; Joachims,
1998). For a given α, checking optimality is hard, since
even computing ∂ε1J(α) is hard in closed form. How-
ever, a sufficient condition for optimality can be ob-
tained by using the inner approximation Cε1(α) of this

ε1-subdifferential, i.e., the convex hull of gradients of
ε1-active kernels. Checking this sufficient condition
is a linear programming (LP) existence problem, i.e.,
find η such that:

η > 0, ηj = 0 if j /∈ Jε1(α),
∑

j d
2
jηj = 1

(OPT3) max
i∈IM∪I0−∪IC+

{(K(η)D(y)α)i − yi}

6 min
i∈IM∪I0+∪IC−

{(K(η)D(y)α)i − yi} + 2ε2,

where K(η) =
∑

j∈Jε1
(α) ηjKj . Given α, we can de-

termine whether it is (ε1, ε2)-optimal by solving the
potentially large LP (OPT3). If in addition to having
α, we know a potential candidate for η, then a suf-
ficient condition for optimality is that this η verifies
(OPT3), which doesn’t require solving the LP. Indeed,
the iterative algorithm that we present in Section 4
outputs a pair (α, η) and only these sufficient optimal-
ity conditions need to be checked.

3.4. Improving sparsity

Once we have an approximate solution, i.e., values α
and η that satisfy (OPT3), we can ask whether η can
be made sparser. Indeed, if some of the kernels are
close to identical, then some of the η’s can potentially
be removed—for a general SVM, the optimal α is not
unique if data points coincide, and for a general SKM,
the optimal α and η are not unique if data points or
kernels coincide. When searching for the minimum
`0-norm η which satisfies the constraints (OPT3), we
can thus consider a simple heuristic approach where
we loop through all the nonzero ηj and check whether
each such component can be removed. That is, for all
j ∈ Jε1(α), we force ηj to zero and solve the LP. If it
is feasible, then the j-th kernel can be removed.

4. Regularized support kernel machine

The function J(α) is convex but not differentiable.
It is well known that in this situation, steepest de-
scent and coordinate descent methods do not necessar-
ily converge to the global optimum (Bertsekas, 1995).
SMO unfortunately falls into this class of methods.
Therefore, in order to develop an SMO-like algorithm
for the SKM, we make use of Moreau-Yosida regu-
larization. In our specific case, this simply involves
adding a second regularization term to the objective
function of the SKM, as follows:

min 1
2 (

∑

j dj ||wj ||2)2 + 1
2

∑

j a
2
j ||wj ||22 + C

∑

i ξi

(R) w.r.t. w ∈ R
k1 × · · · × R

km , ξ ∈ R
n
+, b ∈ R

s.t. yi(
∑

j w
>
j xji + b) > 1 − ξi, ∀i ∈ {1, . . . , n},

where (aj) are the MY-regularization parameters.



4.1. Dual problem

The conic dual is readily computed as:

min
1

2
γ2 +

1

2

∑

j

(µj − γdj)
2

a2
j

−
∑

i

αi

w.r.t. γ ∈ R+, µ ∈ R
m, α ∈ R

n

s.t. 0 6 αi 6 C, α>y = 0

||∑i αiyixji||2 6 µj , ∀j.

If we define the function G(α) as

G(α) = minγ∈R+,µ∈Rm{ 1
2γ

2 + 1
2

∑

j
(µj−γdj)

2

a2
j

− ∑

i αi,

||∑i αiyixji||2 6 µj ,∀j},

then the dual problem is equivalent to minimizing
G(α) subject to 0 6 α 6 C and α>y = 0. We
prove in Appendix B that G(α) is differentiable and
we show how to compute G(α) and its derivative in
time O(m logm).

4.2. Solving the MY-regularized SKM using

SMO

Since the objective function G(α) is differentiable, we
can now safely envisage an SMO-like approach, which
consists in a sequence of local optimizations over only
two components of α. Since the ε-optimality con-
ditions for the MY-regularized SKM are exactly the
same as for the SVM, but with a different objective
function (Platt, 1998; Keerthi et al., 2001):

(OPT4) max
i∈IM∪I0−∪IC+

{yi∇G(α)i}

6 min
i∈IM∪I0+∪IC−

{yi∇G(α)i} + 2ε,

choosing the pair of indices can be done in a manner
similar to that proposed for the SVM, by using the fast
heuristics of Platt (1998) and Keerthi et al. (2001). In
addition, caching and shrinking techniques (Joachims,
1998) that prevent redundant computations of kernel
matrix values can also be employed.

A difference between our setting and the SVM set-
ting is the line search, which cannot be performed in
closed form for the MY-regularized SKM. However,
since each line search is the minimization of a con-
vex function, we can use efficient one-dimensional root
finding, such as Brent’s method (Brent, 1973).

4.3. Theoretical bounds

In order to be able to check efficiently the approxi-
mate optimality condition (OPT3) of Section 3.3, we
need estimates for α and η from the solution of the

MY-regularized SKM obtained by SMO. It turns out
that the KKT conditions for the MY-regularized SKM
also lead to support kernels, i.e., there is a sparse non-
negative weight vector η such that α is a solution of
the SVM with the kernel K =

∑

j ηjKj . However, in
the regularized case, those weights η can be obtained
directly from α as a byproduct of the computation of
G(α) and its derivative. Those weights η(α) do not
satisfy

∑

j d
2
jηj = 1, but can be used to define weights

η̃(α) that do (we give expressions for η(α) and η̃(α) in
Appendix B).

Let ε1, ε2 be the two tolerances for the approximate
optimality conditions for the SKM. In this section,
we show that if (aj) are small enough, then an ε2/2-
optimal solution of the MY-regularized SKM α, to-
gether with η̃(α), is an (ε1, ε2)-optimal solution of the
SKM, and an a priori bound on (aj) is obtained that
does not depend on the solution α.

Theorem 1 Let 0 < ε < 1. Let y ∈ {−1, 1}n and Kj,
j = 1, . . . ,m be m positive semidefinite kernel matri-
ces. Let dj and aj, j = 1, . . . ,m, be 2m strictly posi-
tive numbers. If α is an ε-optimal solution of the MY-
regularized SKM, then (α, η̃(α)) is an (ε1, ε2)-optimal
solution of the SKM, with

ε1 =nCmax
j

a2
j

d2
j

(2+max
j

a2
j

d2
j

) and ε2 =ε+Cmax
j

a2
jMj

d4
j

,

where Mj = max
u

∑

v

|(Kj)uv|.

Corollary 1 With the same assumptions and

||a||2∞6min
{

min
j
d2
j

ε1
nC

1 + (1 + ε1
nC )1/2

,
ε2/2

maxj
MjC

d4
j

}

,

if α is an ε2/2-optimal solution of the MY-regularized
SKM, then (α, η̃(α)) is an (ε1, ε2)-optimal solution of
the SKM.

4.4. A minimization algorithm

We solve the SKM by solving the MY-regularized SKM
with decreasing values of the regularization parameters
(aj). In our simulations, the kernel matrices are all
normalized, i.e., have unit diagonal, so we can choose
all dj equal. We use aj(κ) = κ and dj(κ) = (1 − κ),
where κ is a constant in [0, 1]. When κ = 1, the MY-
regularized SKM is exactly the SVM based on the sum
of the kernels, while when κ = 0, it is the non-MY-
regularized SKM.

The algorithm is as follows: given the data and pre-
cision parameters ε1, ε2, we start with κ = 1, which



solves the SVM up to precision ε2/2 using standard
SMO, and then update κ to µκ (where µ < 1) and
solve the MY-regularized SKM with constant κ using
the adjusted SMO up to precision ε2/2, and so on. At
the end of every SMO optimization, we can extract
weights η̃j(α) from the α solution, as shown in Ap-
pendix B, and check the (ε1, ε2)-optimality conditions
(OPT3) of the original problem (without solving the
LP). Once they are satisfied, the algorithm stops.

Since each SMO optimization is performed on a
differentiable function with Lipschitz gradient and
SMO is equivalent to steepest descent for the `1-
norm (Joachims, 1998), classical optimization results
show that each of those SMO optimizations is finitely
convergent (Bertsekas, 1995). Corollary 1 directly im-
plies there are only a finite number of such optimiza-
tions; thus, the overall algorithm is finitely convergent.

Additional speed-ups can be easily achieved here. For
example, if for successive values of κ, some kernels have
a zero weight, we might as well remove them from the
algorithm and check after convergence if they can be
safely kept out. In simulations, we use the following
values for the free parameters: µ = 0.5, ε1/n = 0.0005,
ε2 = 0.0001, where the value for ε1/n corresponds to
the average value this quantity attains when solving
the QCQP (L) directly using Mosek.

5. Simulations

We compare the algorithm presented in Section 4.4
with solving the QCQP (L) using Mosek for two
datasets, ionosphere and breast cancer, from the UCI
repository, and nested subsets of the adult dataset
from Platt (1998). The basis kernels are Gaussian
kernels on random subsets of features, with varying
widths. We vary the number of kernels m for fixed
number of data points n, and vice versa. We report
running time results (Athlon MP 2000+ processor,
2.5G RAM) in Figure 2. Empirically, we obtain an
average scaling of m1.1 and n1.4 for the SMO-based
approach and m1.6 and n4.1 for Mosek. Thus the al-
gorithm presented in this paper appears to provide a
significant improvement over Mosek in computational
complexity, both in terms of the number of kernels and
the number of data points.

6. Conclusion

We have presented an algorithm for efficient learning
of kernels for the support vector machine. Our al-
gorithm is based on applying sequential minimization
techniques to a smoothed version of a convex non-
smooth optimization problem. The good scaling with

Ionosphere, n = 351
m SMO Mosek
6 2 4
12 3 8
24 54 20
48 56 51
96 88 162
192 166 548

Breast cancer, n = 683
m SMO Mosek
3 11 11
6 20 17
12 54 45
24 141 120
48 149 492
96 267 764

Adult, n = 1605
m SMO Mosek
3 20 92
6 23 205
12 36 1313
24 119 *
48 618 *
96 957 *

Adult, m = 4
n SMO Mosek
450 17 4
750 29 17
1100 44 52
1605 72 114
2265 121 5455
3185 202 8625
4781 410 *
6212 670 *

Figure 2. Running times in seconds for Mosek and SMO.
(Top) Ionosphere and breast cancer data, with fixed num-
ber of data points n and varying number of kernels m.
(Bottom) Adult dataset: (left) with fixed n and varying
m, (right) with fixed m and varying n (∗ means Mosek ran
out of memory).

respect to the number of data points makes it pos-
sible to learn kernels for large scale problems, while
the good scaling with respect to the number of basis
kernels opens up the possibility of application to large-
scale feature selection, in which the algorithm selects
kernels that define non-linear mappings on subsets of
input features.

Appendix A. Dual of the SKM

The primal problem (P) can be put in the following
equivalent form, where Kk = {(u, v) ∈ R

k+1, ||u||2 6

v} is the second-order cone of order k (we now omit the
summation intervals, with the convention that index i
goes from 1 to n and index j goes from 1 to m):

min 1
2u

2 + C
∑

i ξi

w.r.t. u ∈ R, t ∈ R
m, b ∈ R, ξ ∈ R

n
+, (wj , tj) ∈ Kkj

, ∀j
s.t. yi(

∑

j w
>
j xji + b) > 1 − ξi, ∀i

∑

j djtj 6 u.

The cone Kk is self-dual, so the conic Lagrangian cor-
responding to the problem is

L = 1
2u

2+C
∑

i ξi−
∑

iαi(yi(
∑

j w
>
j xji+b)−1+ξi)

−∑

i βiξi+γ(
∑

jdjtj−u)−
∑

j(λ
>
j wj+µjtj),

with αi∈R+, βi∈R+, γ ∈ R+, (λj , µj) ∈ Kkj
.



After computing derivatives with respect to the pri-
mal variables and setting them to zero, we readily get
the dual function: g(α, β, γ, λ, µ) = − 1

2γ
2 +

∑

i αi de-
fined on the domain defined by αi > 0, βi > 0, γ >

0, ||λj ||2 6 µj , djγ − µj = 0,
∑

i αiyixji + λj =
0,

∑

i αiyi = 0, C − αi − βi = 0. After elimination
of dummy variables, we obtain problem (D).

Appendix B. Computation of G(α)

Let γj(α) = 1
dj
||

∑

i αiyixji||2. We can first maximize

over each µi; a short calculation reveals:

min
µj>||

∑

i αiyixji||2
(µj − γδj)

2 = d2
j max(0, γj − γ)2,

which implies that

G(α) = minγ{ 1
2γ

2 + 1
2

∑

j

d2j
a2

j

ψ(γ2
j , γ) −

∑

i αi},

where ψ(x, y) = max(0,
√
x − y)2. The function ψ

is continuously differentiable, with partial derivatives

equal to
(

∂ψ
∂x ,

∂ψ
∂y

)

= (1− y/
√
x, 2y− 2

√
x) if y 6

√
x,

and zero otherwise. Also, for given x, it is a piecewise
quadratic function of y. We thus need to minimize a
piecewise quadratic differentiable strictly convex func-
tion of γ, which can be done easily by inspecting all
points of non-differentiability, which requires sorting
the sequence (γj). The complexity of such an algo-
rithm is O(m logm).

Because of strict convexity the minimum with respect
to γ is unique and denoted γ(α). In addition, this
uniqueness implies that G(α) is differentiable and that
its derivative is equal to:

∇G(α) = 1
2

∑

j

d2j
a2

j

∂ψ
∂x (γ2

j (α), γ(α))∇γ2
j (α) − e

=
∑

j∈J (α)
1
a2

j

(

1 − γ(α)
γj(α)

)

D(y)KjD(y)α− e.

We define ηj(α) = 1
a2

j

(

1 − γ(α)
γj(α)

)

if γj(α) > γ(α), and

zero otherwise. We also define η̃j(α) = ηj(α)/(1 −
a2
jηj(α)). Using the optimality conditions for γ(α), it

is easy to prove that
∑

j d
2
j η̃j(α) = 1. The weights

η̃j(α) provide an estimate of the weights for the SKM,
and can be used to check optimality. Corollary 1
shows that if (aj) is small enough, then if α is ap-
proximately optimal for the MY-regularized SKM, the
pair (α, η̃(α)) is approximately optimal for the SKM.
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