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Abstract: Theories of cross-linguistic phonetic category perception
posit that listeners perceive foreign sounds by mapping them onto their
native phonetic categories, but, until now, no way to effectively imple-
ment this mapping has been proposed. In this paper, Automatic Speech
Recognition systems trained on continuous speech corpora are used to
provide a fully specified mapping between foreign sounds and native
categories. The authors show how the machine ABX evaluation method
can be used to compare predictions from the resulting quantitative mod-
els with empirically attested effects in human cross-linguistic phonetic
category perception.
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1. Introduction

The way we perceive phonetic categories (i.e., basic speech sounds such as consonants
and vowels) is largely determined by the language(s) to which we were exposed as a
child. For example, native speakers of Japanese have a hard time discriminating
between American English (AE) /�/ and /l/, a phonetic contrast that has no equivalent
in Japanese (Goto, 1971; Miyawaki et al., 1975). Perceptual specialization to the pho-
nological properties of the native language has been extensively investigated using a
variety of techniques [see Strange (1995) and Cutler (2012) for reviews]. Many of the
proposed theoretical accounts of this phenomenon concur that foreign sounds are not
perceived faithfully, but rather, are “mapped” onto one’s pre-existing (native) phonetic
categories, which act as a kind of “filter” resulting in the degradation of some non-
native contrasts (Best, 1995; Flege, 1995; Kuhl and Iverson, 1995; Werker and Curtin,
2005). In none of these theories, however, is the mapping specified in enough detail to
allow a concrete implementation. In addition, in most of the existing theories,1 even if
a fully specified mapping was available, it remains unclear how predictions on patterns
of error rates could be derived from it (the filtering operation). These theories remain
therefore mainly descriptive.

In this paper, we propose to leverage Automatic Speech Recognition (ASR)
technology to obtain fully specified mappings between foreign sounds and native cate-
gories and then use the machine ABX evaluation task (Schatz et al., 2013; Schatz,
2016) to derive quantitative predictions from these mappings regarding cross-linguistic
phonetic category perception. More specifically, our approach can be broken down
into three steps. First, train a phoneme recognizer in a “native” language using anno-
tated continuous speech recordings. Second, use the trained system to derive perceptual
representations for test stimuli in a foreign language. In this paper, these will be vectors
of posterior probabilities over each of the native phonemes. Third, obtain predictions
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for perceptual errors by running a psychophysical test over these representations for
each foreign contrast. Machine ABX discrimination tasks will be used for this.

To showcase the possibilities offered by the approach, we look at predictions
obtained for three empirically-attested effects in cross-linguistic phonetic category per-
ception. The first two effects are global effects that apply to the set of phonetic con-
trasts in a language as a whole. First, native contrasts tend to be easier to distinguish
than non-native ones (Gottfried, 1984). Second, patterns of perceptual confusions are a
function of the native language(s): two persons with the same native language tend to
confuse the same foreign sounds, which can be different from sounds confused by per-
sons with another native language (Strange, 1995). Thanks to the quantitative and sys-
tematic nature of the proposed approach, these effects are straightforward to study.
We show that ASR models can account for both of them. Most effects documented in
the empirical literature on cross-linguistic phonetic category perception are more local
however. They describe patterns of confusion observed for very specific choices of lan-
guages and contrasts. We illustrate how such effects can be studied with our method
through the classical example of AE /�/-/l/ perception by native Japanese listeners
(Goto, 1971; Miyawaki et al., 1975). We show that ASR models correctly predict the
difficulty of perceiving this distinction for Japanese listeners.

Previous attempts at specifying mappings between foreign and native catego-
ries relied on phonological descriptions of the languages involved. Analyses at the level
of abstract (context-independent) phonemes, however, were found not to be sufficient
to fully account for perceptual data (Kohler, 1981; Strange et al., 2004). For example,
the French [u-y] contrast can be either easy or hard to perceive for native AE listeners,
depending on the specific phonetic context in which it is realized (Levy and Strange,
2002). Attempting to specify mappings explicitly through finer-grain phonetic analyses
certainly remains an option, but involves a formidable amount of work. An attractive
and potentially less costly alternative consists in specifying mappings implicitly,
through quantitative models of native speech perception. By this, we mean models that
map any input sound to a perceptual representation adapted to the model’s “native
language.” This representation can take the form of a phonetic category label, a vector
of posterior probabilities over possible phones or some other, possibly richer, form of
representation. Predictions regarding human perception of foreign speech sounds are
then derived by analyzing the “native representations” produced by the model when
exposed to these foreign sounds.

Let us now explain the rationale for turning toward ASR technology, when the
goal is to model human speech perception. This approach is best understood in the con-
text of a top-down effort, where the focus is on developing models first at the information
processing level, before considering issues at the algorithmic and biological implementa-
tion levels (Marr, 1982). Native speech perception is thought to arise primarily from a
need to reliably identify the linguistic content in the language-specific speech signal to
which we are exposed, despite extensive para-linguistic variations. ASR systems, whose
goal is to map input speech to corresponding sequences of words, face the same problem.
ASR systems seek optimal performance, and can thus be interesting as potential norma-
tive models of human behavior from an efficient coding point of view (Barlow, 1961),
even though biological plausibility is not taken into account in their development.

We found two previous studies taking steps in the proposed direction. In the
first one (Strange et al., 2004), a Linear Discriminant Analysis model was trained to clas-
sify AE vowels from F1/F2/F3 formant plus duration representations. The classification
of North German vowels by this model was then compared to assimilation patterns
from a phoneme classification task performed by native AE speakers exposed to North
German vowels. The model’s predictions only partially matched observed human behav-
ior. In the second study (Gong et al., 2010), Hidden-Markov-Models (HMM) with a
structure inspired from ASR technology were trained to classify Mandarin consonants
from Mel-Frequency Cepstral Coefficients2 (MFCC). The classification of AE conso-
nants by this model was then compared to assimilation patterns from a phoneme classifi-
cation task performed by native Mandarin speakers exposed to AE consonants. There
was a good consistency between the model’s predictions and human assimilation patterns
in most cases, although the model provided more variable answers overall and differed
markedly from humans in its preferred Mandarin classification of certain AE fricatives.

The present work expands over these previous studies in several respects.
First, we replace ad hoc speech processing models trained on restricted stimuli3 with
general-purpose ASR systems trained on natural continuous speech. This has both con-
ceptual and practical benefits. Conceptually, the information processing problem our
models attempt to solve is closer to the one solved by humans, who have to deal with
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the full variability of natural speech. From a practical point of view, this allows us to
capitalize on existing corpora of annotated speech recordings developed for ASR. A
second difference with previous studies is that we improve on the evaluation methodol-
ogy, by replacing informal analysis of assimilation patterns with quantitative evalua-
tions based on a simple model of an ABX discrimination task, leading to clean and
clearly interpretable results. Finally, we conduct more systematic evaluations, testing
for two global and one local effect in cross-linguistic phonetic category perception.

2. Methods

2.1 Speech recordings

To train and evaluate ASR models, five corpora of recorded speech in different languages
were used: a subset of the Wall Street Journal (WSJ) corpus (Paul and Baker, 1992),
the Buckeye (BUC) corpus (Pitt et al., 2005), a subset of the Corpus of Spontaneous
Japanese (CSJ) (Maekawa, 2003), the Global Phone Mandarin (GPM) corpus (Schultz,
2002), and the Global Phone Vietnamese (GPV) corpus (Vu and Schultz, 2009).
Important characteristics of the corpora are summarized in Table 1. Two corpora in AE
were included to dissociate language-mismatch effects, in which we are interested, from
channel-mismatch effects due to differences across corpora in recording conditions, micro-
phones, speech register, etc. Phonetic transcriptions were obtained by combining word-
level transcriptions with a phonetic dictionary for the WSJ, BUC, GPM, and GPV cor-
pora. For the CSJ corpus, manual phonetic transcriptions were used. For all corpora,
timestamps for the phonetic transcriptions were obtained by forced alignment using an
ASR system similar to those described in Sec. 2.2, but trained on the whole corpus.

2.2 ASR models

State-of-the-art ASR systems are built from deep recurrent neural networks. These sys-
tems, however, typically require hundreds of hours of data to be reliably trained and
we decided to focus in this study on using older, but more stable, Gaussian-Mixture
based Hidden-Markov Models (GMM-HMM) to ensure a reasonable performance
across all corpora. Each corpus was randomly split into training and a test set of
approximately the same size, each containing an equal number of speakers. There was
no overlap between training and test speakers. Models were trained with the Kaldi
toolkit (Povey et al., 2011) using the same recipe with the same parameters and input
features to train all models.4 The Word-Error Rate5 (WER) on the test set for each of
the resulting models is reported in Table 1.

We will not attempt to describe the inner workings of the models beyond men-
tioning that a generative model is trained for each phone, with explicit mechanisms for
handling variability due to changes in speaker, phonetic context, or word-position. We
refer to the Kaldi documentation for further detail.6 Input to the models takes the form
of 39 MFCC7 plus 9 pitch-related features8 extracted every 10 ms of signal. These 48-
dimensional input features can be seen as a universal auditory-like baseline representation
that is not tuned to any particular native language. The model produces native representa-
tions under the form of output vectors produced every 10 ms, which list the posterior prob-
abilities, according to the model, that the corresponding stretch of speech signal belongs to
each of the segment in the phonemic inventory of the model’s native language.9 The test
set of each corpus is decoded with each of the five ASR models and we also use the input
features directly, without any GMM-HMM decoding, as a language-independent control,
yielding a total of six different representations of each corpus to be evaluated.

2.3 Machine ABX evaluation

We evaluate our ASR models with a machine version of an ABX discrimination task
(Schatz et al., 2013; Schatz, 2016) that allows us to quantify how easy it is to

Table 1. WERs obtained by the ASR systems trained on each corpus as well as the language, total duration,
speech register, and number of speakers for each corpus. AE stands for American English, Spont. stands for
Spontaneous.

Corpus Language Time Type Spk WER

WSJ AE 143 h Read 338 8.5%
BUC AE 19 h Spont. 40 48.0%
CSJ Japanese 15 h Spont. 75 30.0%
GPM Mandarin 30 h Read 132 31.0%
GPV Vietnamese 20 h Read 129 23.5%
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distinguish two phonetic categories based on representations produced by one of our
models. The basic idea is to take two acoustic realizations A and X from one of the
phonetic categories and one acoustic realization B from the other category and to test
whether the model representation for X is closer to the model representation for A
than to the model representation for B. The probability for this to be false for A, B,
and X randomly chosen in a corpus is defined as the ABX error rate for the two pho-
netic categories according to the model. If it is equal to 0, the two categories are per-
fectly discriminated. If it is equal to 0.5, discrimination is at chance level.

For each A, B, and X triplet, we use the phone-level time alignments to select
corresponding model representations. Because the stimuli have variable durations, the
resulting representations can have different lengths. To find a good alignment and
obtain a quantitative measure of dissimilarity between A and X and B and X, we use
Dynamic Time Warping based on a frame-wise symmetric Kullback-Leibler divergence
for posterior probability vectors and a frame-wise cosine distance for the input features
control. In the specific ABX task considered here, we select only triplets such that A,
B, and X occur in the same phonetic context (same preceding phone and same follow-
ing phone) and are uttered by the same speaker. For each phonetic contrast an aggre-
gated ABX error rate is obtained by averaging over stimulus order, context, and
speaker. Let us illustrate this through the example of the /u/-/i/ contrast. First, we aver-
age error rates obtained when A and X are chosen to be /u/ and B is chosen to be /i/
and vice versa, then we average over all possible choices of speaker and finally we
average over all possible choices of preceding and following phones. We either report
directly the scores obtained for individual phonetic contrasts or we average them over
interesting classes of contrasts, such as consonant contrasts or vowel contrasts.

Note that, because we are studying very robust empirical effects that reflect
what subjects learn outside the lab and that are expected to be observed in any well-
designed experimental task, our evaluation method focuses on simplicity of application
rather than detailed modeling of human performance in a specific experimental setting.

3. Results

See the supplementary material,10 for the raw (unanalyzed) confusion matrices
obtained for each model on each test corpus.

3.1 Native vs non-native contrasts

Native phonetic categories are easier to distinguish than non-native categories
(Gottfried, 1984). This is consistent with the predictions of our models shown in Fig. 1.
The AE models (in red) separate AE phonetic categories better than other models
(in blue). This is true even when they are tested with AE stimuli from a corpus different
from the one on which they were trained, showing that the differences observed cannot
be explained simply by channel-mismatch effects and reflect a true language-specificity
of the representations learned by the models. Another interesting observation is that,
while a moderate improvement in phone separability is observed when comparing
native AE models to the “universal” input features control, the most salient effect is a
large decrease in performance for “non-native” models. A possible interpretation is
that, while ASR models can provide categorical representations of native speech that
are much more compact than the input features, they do it at the expense of a loss of
representation power for coding speech in other languages.11

3.2 Native-language-specific confusion patterns

The specific confusions we make between sounds of a foreign language differ according
to our native language (Strange, 1995). Consistent with this effect, Fig. 2 shows that, for
both consonant and vowel contrasts, the confusion patterns obtained with the two AE
models over the different corpora are more similar to each other than to the confusion

Fig. 1. (Color online) ABX error-rates averaged over all consonant contrasts of AE. Left: using stimuli from
the WSJ corpus test set. Right: using stimuli from the BUC corpus test set.

Schatz et al.: JASA Express Letters https://doi.org/10.1121/1.5037615 Published Online 18 May 2018

J. Acoust. Soc. Am. 143 (5), May 2018 Schatz et al. EL375

https://doi.org/10.1121/1.5037615


patterns obtained with models trained on other languages. Confusion patterns for input
features occupy a somewhat central role. In this figure, the distance between two points is
proportional to the observed similarity between confusion patterns obtained from the
associated models.12 Confusion patterns on a given corpus consist of vectors listing the
ABX errors for either all consonant contrasts or all vowel contrasts in this corpus. For
example for a language with n consonants, n(n� 1)/2 consonant contrasts can be formed
and the corresponding ABX errors are listed in a vector of size n(n� 1)/2. The similarity
between confusion patterns of two models is defined as the average of the cosine similar-
ity between the confusion patterns obtained with these models on each of the five cor-
pora.13 Importantly, the rescaling invariance of the cosine similarity ensures that our
analysis of confusion patterns is independent from the average ABX error rates studied
in Sec. 3.1.

3.3 Japanese listeners and AE /�/-/l/

AE /�/ and /l/ are much harder to perceive for Japanese than for AE native speakers
(Goto, 1971; Miyawaki et al., 1975). Figure 3 shows that our models’ predictions are
fully consistent with this effect: when comparing the Japanese model to both AE mod-
els and to the input features, the /�/-/l/ discriminability drops spectacularly, much more
than the discriminability of two controls. This is observed when using test stimuli from
the WSJ and from the BUC corpora. The first control is the AE /w/-/j/ contrast. Like
/�/ and /l/, /w/ and /j/ are liquid consonants, but unlike those, they have a clear counter-
part in Japanese. The second control is the average ABX error rate from Sec. 3.1. This
control allows to check that there is a specific deficit of the Japanese model on AE /�/-/l/
discrimination, that cannot be explained by an overall weakness of this model.

4. Discussion

Fully specified mappings between foreign sounds and native phonetic categories were
obtained for several language pairs through GMM-HMM ASR systems. Coupled with
a simple model of a discrimination task, they successfully accounted for several empiri-
cally attested effects in cross-linguistic phonetic category perception by monolingual lis-
teners. This includes two types of global effects: first, that the phonetic categories of a
language are overall harder to discriminate for non-native speakers than for native
speakers and second, that the pattern of confusions between phonetic categories for
non-native speakers is specific to their native language (e.g., native speakers of Japanese

Fig. 2. (Color online) Two-dimensional embeddings of the different models based on the average cosine similar-
ity between their patterns of ABX errors across the five test corpora. The distance between models in the embed-
ding space directly reflects whether they make the same type of confusions or not. Left: for consonant contrasts.
Right: for vowel contrasts. Text labels are centered horizontally and vertically on the point they represent.

Fig. 3. (Color online) Comparison of the ABX error-rates obtained with the input features, with the two AE
models and with the Japanese model on the AE /�/-/l/ contrast. ABX error-rates for the /w/-/j/ contrast and ABX
error-rates averaged over all consonant contrasts of AE are also shown as controls. Left: using stimuli from the
WSJ corpus test set. Right: using stimuli from the BUC corpus test set.
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do not make the same confusions between phonetic categories of AE than native speak-
ers of French). We also showed that the proposed model can account for a well-known
local effect: AE /�/ and /l/ are very hard to discriminate for native speakers of Japanese.

These results provide a proof-of-concept for the proposed approach to evaluat-
ing ASR systems as quantitative models of phonetic category perception. They also
show promise regarding the possibility of modeling human phonetic category perception
with ASR systems. Yet we do not claim, at this point, to have provided definitive evi-
dence that the particular GMM-HMM ASR systems considered provide the best, or
even a particularly “good,” such model. A host of local effects have been documented in
the empirical literature on phonetic category perception beyond the one investigated here
(Strange, 1995; Cutler, 2012) and the empirical adequacy of the proposed models with
respect to more of these effects will need to be determined before any conclusion can be
reached. Effects that are hard to predict from conventional phonological analyses, such
as how the phonetic or prosodic context can modulate the difficulty of perceiving certain
foreign contrasts (Levy and Strange, 2002; Kohler, 1981; Strange et al., 2004), should be
of particular interest. Finally, let us underline that we only investigated predictions
obtained with one particular ASR architecture. There are multiple ways of instantiating
ASR systems, which might yield different predictions. For example, modeling variability
in the signal due to the phonetic context explicitly with context-dependent phone models,
as in this article, or implicitly with context-independent phone models, might affect pre-
dictions regarding the aforementioned context-dependent effects. Another example of a
potentially significant decision is whether to use HMM-GMM or neural-network sys-
tems. HMM models have known structural limitations for modeling segment duration
(Pylkk€onen and Kurimo, 2004), from which neural-network models do not suffer. Thus,
neural-network ASR systems may provide better models of native perception in lan-
guages like Japanese, where duration is contrastive. The multiplicity of documented
empirical effects and available computational models calls for an extensive investigation,
which could in turn trigger a more systematic experimental investigation of non-native
perception and result in applications in foreign language education.
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