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Abstract

Sparse coding—that is, modelling data vectors as spars® lioenbinations of basis elements—is
widely used in machine learning, neuroscience, signalgssiaog, and statistics. This paper fo-
cuses on the large-scale matrix factorization problemabasists ofearningthe basis set in order
to adapt it to specific data. Variations of this problem ingulictionary learning in signal pro-
cessing, non-negative matrix factorization and sparsecjp@l component analysis. In this paper,
we propose to address these tasks with a new online optiorizalgorithm, based on stochastic
approximations, which scales up gracefully to large datswih millions of training samples, and
extends naturally to various matrix factorization forntidas, making it suitable for a wide range
of learning problems. A proof of convergence is presentEhgawith experiments with natural
images and genomic data demonstrating that it leads to-etdke-art performance in terms of
speed and optimization for both small and large data sets.

Keywords: basis pursuit, dictionary learning, matrix factorizati@mline learning, sparse cod-
ing, sparse principal component analysis, stochasticoappations, stochastic optimization, non-
negative matrix factorization

1. Introduction

The linear decomposition of a signal using a few atoms [aaneddictionary instead of a pre-
defined one—based on wavelets (Mallat, 1999) for example—has recethtty ate-of-the-art
results in numerous low-level signal processing tasks such as imagsidgn&lad and Aharon,
2006; Mairal et al., 2008b), texture synthesis (Rey&009) and audio processing (Grosse et al.,
2007; Fevotte et al., 2009; Zibulevsky and Pearlmutter, 2001), as well as highartasks such as
image classification (Raina et al., 2007; Mairal et al., 2008a, 2009b;l&ramd Bagnell, 2009;
Yang et al., 2009), showing that sparse learned models are well adaptatural signals. Unlike
decompositions based on principal component analysis and its variargs, rtteelels do not im-
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pose that the basis vectors be orthogonal, allowing more flexibility to adapeginesentation to
the datal In machine learning and statistics, slightly different matrix factorization proslare
formulated in order to obtain a feinterpretablebasis elements from a set of data vectors. This in-
cludes non-negative matrix factorization and its variants (Lee and S20adg; Hoyer, 2002, 2004;
Lin, 2007), and sparse principal component analysis (Zou et al.,;2DA6premont et al., 2007,
2008; Witten et al., 2009; Zass and Shashua, 2007). As shown in thes, phgse problems have
strong similarities; even though we first focus on the problem of dictionampieg, the algorithm
we propose is able to address all of them. While learning the dictionary basrpto be critical to
achieve (or improve upon) state-of-the-art results in signal and imagessing, effectively solv-
ing the corresponding optimization problem is a significant computational olgall@articularly in
the context of large-scale data sets that may include millions of training sanfldsessing this
challenge and designing a generic algorithm which is capable of efficieatiglimg various matrix
factorization problems, is the topic of this paper.

Concretely, consider a signalin R™. We say that it admits a sparse approximation over a
dictionaryD in R™K, with k columns referred to aatoms when one can find a linear combination
of a “few” atoms fromD that is “close” to the signat. Experiments have shown that modelling a
signal with such a sparse decompositispdrse codinpis very effective in many signal processing
applications (Chen et al., 1999). For natural images, predefined didgeremsed on various types
of wavelets (Mallat, 1999) have also been used for this task. Howewanitg the dictionary
instead of using off-the-shelf bases has been shown to dramatically ienpigval reconstruction
(Elad and Aharon, 2006). Although some of the learned dictionary elemeytsometimes “look
like” wavelets (or Gabor filters), they are tuned to the input images or sigaatiing to much better
results in practice.

Most recent algorithms for dictionary learning (Olshausen and Field7;1@8gan et al., 1999;
Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al., 2007 jtarativebatchprocedures,
accessing the whole training set at each iteration in order to minimize a casibfuninder some
constraints, and cannot efficiently deal with very large training sets (Battal Bousquet, 2008),
or dynamic training data changing over time, such as video sequenceddrBsathese issues, we
propose aronline approach that processes the signals, one at a time, or in mini-batcheds This
particularly important in the context of image and video processing (PratteEkd, 2009; Mairal
et al., 2008c), where it is common to learn dictionaries adapted to small pateitegraining
data that may include several millions of these patches (roughly one pémapckger frame). In
this setting, online techniques based on stochastic approximations are ativattaiternative to
batch methods (see, e.g., Bottou, 1998; Kushner and Yin, 2003; SBhleartz et al., 2009). For
example, first-order stochastic gradient descent with projections omttstraint set (Kushner and
Yin, 2003) is sometimes used for dictionary learning (see Aharon and E0R; Kavukcuoglu
et al., 2008 for instance). We show in this paper that it is possible to goefuatid exploit the
specific structure of sparse coding in the design of an optimization proeathed to this problem,
with low memory consumption and lower computational cost than classical biggotitlams. As
demonstrated by our experiments, it scales up gracefully to large dataigetsillions of training
samples, is easy to use, and is faster than competitive methods.

The paper is structured as follows: Section 2 presents the dictionaryriggrroblem. The
proposed method is introduced in Section 3, with a proof of convergenSedtion 4. Section 5

1. Note that the terminology “basis” is slightly abusive here since the elsnaérihe dictionary are not necessarily
linearly independent and the set can be overcomplete—that is, haesafeanents than the signal dimension.
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extends our algorithm to various matrix factorization problems that genediéidenary learning,
and Section 6 is devoted to experimental results, demonstrating that outtatgisrsuited to a wide
class of learning problems.

1.1 Contributions

This paper makes four main contributions:

e We cast in Section 2 the dictionary learning problem as the optimization of a smobnth
convex objective function over a convex set, minimizing the (deserggctedtost when the
training set size goes to infinity, and propose in Section 3 an iterative orgnathm that
solves this problem by efficiently minimizing at each step a quadratic surrbigatgon of
the empirical cost over the set of constraints. This method is shown in Sddiconverge
almost surely to a stationary point of the objective function.

e As shown experimentally in Section 6, our algorithm is significantly faster thewiqus ap-
proaches to dictionary learning on both small and large data sets of rnatagads. To demon-
strate that it is adapted to difficult, large-scale image-processing tasksamea dictionary
on a 12-Megapixel photograph and use it for inpainting—that is, filling sboies in the
image.

¢ We show in Sections 5 and 6 that our approach is suitable to large-scale faatoisization
problems such as non-negative matrix factorization and sparse prigoipg@ionent analysis,
while being still effective on small data sets.

e To extend our algorithm to several matrix factorization problems, we peopoéppendix
B efficient procedures for projecting onto two convex sets, which @audeful for other
applications that are beyond the scope of this paper.

1.2 Notation

We define forp > 1 the/,, norm of a vectox in R™ as||x||p = (3™, [x[i]|P)/P, wherex]i] denotes

.....

norm as the sparsity measure which counts the number of nonzero elemantsdtor? ||x||o =
#{i s.t. x[i] # 0} =limp_o+ (34 |x[i]|P). We denote the Frobenius norm of a maiin R™" by

IX]|g £ (3 ¥ -1 X[, j]?)Y/2. For a sequence of vectors (or matricesind scalars, we write
Xt = O(W) when there exists a constat> 0 so that for allt, ||x||2 < Ku;. Note that for finite-
dimensional vector spaces, the choice of norm is essentially irreledanbfens are equivalent).
Given two matrices\ in R™*™ andB in R™*"2, A ® B denotes the Kronecker product between
andB, defined as the matrix iR™™*M" defined by blocks of size®, x ny equal toAl[i, j|B. For
more details and properties of the Kronecker product, see Golub ando#m(1996), and Magnus
and Neudecker (1999).

2. Note that it would be more proper to Wrimeng instead ofl x| |o to be consistent with the traditional notatigry| .
However, for the sake of simplicity, we will keep this notation unchanged.
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2. Problem Statement

Classical dictionary learning techniques for sparse representatiomai@lsn and Field, 1997; En-
gan et al., 1999; Lewicki and Sejnowski, 2000; Aharon et al., 2006; éteal., 2007) consider a
finite training set of signalX = [x1,...,Xp] in R™" and optimize the empirical cost function

WD) £ |3 10x.D). @

whereD in R™K is the dictionary, each column representing a basis vector/ anal loss function
such that/(x,D) should be small iD is “good” at representing the signalin a sparse fashion.
The number of samplasis usually large, whereas the signal dimensiors relatively small, for
examplem= 100 for 10x 10 image patches, amd> 100 000 for typical image processing appli-
cations. In general, we also hake n (e.g.,k = 200 forn = 100,000), but each signal only uses a
few elements oD in its representation, say 10 for instance. Note that, in this setting, overcemple
dictionaries withk > mare allowed. As others (see for example Lee et al., 2007), we d&inB)

as the optimal value of th@ sparse codingproblem:

1
£(x,D) = min 3|x — Dat|[5+Alla], )

whereA is a regularization parameter. This problem is also knowhasss pursuit{Chen et al.,
1999), or theLasso(Tibshirani, 1996} It is well known that/; regularization yields a sparse
solution fora, but there is no direct analytic link between the valuexand the corresponding
effective sparsityj|al|o. To preventD from having arbitrarily large values (which would lead to
arbitrarily small values o), it is common to constrain its columms, ..., dy to have ar/o-norm
less than or equal to one. We will c@llthe convex set of matrices verifying this constraint:

CE{DeR™* st ¥j=1....k dldj<1}.

Note that the problem of minimizing the empirical cdgtD) is not convex with respect . It

can be rewritten as a joint optimization problem with respect to the dictidbanyd the coefficients

o = [ag,...,an] in Rk<" of the sparse decompositions, which is not jointly convex, but convex with
respect to each of the two variablBsanda when the other one is fixed:

n

1
min >|[xi — Dail 5+ |a ) 4
Deaaekani;(ZH ! 'HZ || |H1 ( )

This can be rewritten asraatrix factorizationproblem with a sparsity penalty:

. 1
min  Z||X —Da|[g + Allal[11,
DeC,acRkn 2

3. To be more precise, the original formulation of the Lasso is a consttairsion of Eq. (2), with a constraint on the
f1-norm ofa:

1 2
min = ||x—Dal|5 s.t. ||al|1 <T. 3
min 3 [x—Dall3 st ally < ®

Both formulations are equivalent in the sense that for eXeryO (respectively everfy > 0), there exists a scaldr
(respectivelyA) so that Equations (2) and (3) admit the same solutions.
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where, as beforeX = [x1,...,Xn] is the matrix of data vectors, anfdi||1 1 denotes th&; norm of
the matrixa—that is, the sum of the magnitude of its coefficients. A natural approacbiting
this problem is to alternate between the two variables, minimizing over one whipénkgethe other
one fixed, as proposed by Lee et al. (2007) (see also Engan efalab@ Aharon et al. 2006, who
use/p rather thar/; penalties, or Zou et al. 2006 for the problem of sparse principal coergon
analysis)* Since the computation of the coefficients vectmrsiominates the cost of each iteration
in this block-coordinate descent approach, a second-order optimizatibnique can be used to
accurately estimatb at each step whem is fixed.

As pointed out by Bottou and Bousquet (2008), however, one is usoatlynterested in the
minimization of theempirical cost §(D) with high precision, but instead in the minimization of the
expected cost

(D) £ Ex[((x,D)] = lim fy(D) as,

where the expectation (which is supposed finite) is taken relative to thagumi probability dis-
tribution p(x) of the date’ In particular, given a finite training set, one should not spend too much
effort on accurately minimizing the empirical cost, since it is only an approximaifothe ex-
pected cost. An “inaccurate” solution may indeed have the same or bettectespcost than a
“well-optimized” one. Bottou and Bousquet (2008) further show thatetstic gradient algorithms,
whose rate of convergence is very poor in conventional optimization temang,n fact in certain
settings be shown both theoretically and empirically to be faster in reachiniyitéosowith low
expected cost than second-order batch methods. With large traininghsetisk of overfitting is
lower, but classical optimization techniques may become impractical in termged sy memory
requirements.

In the case of dictionary learning, the classical projected first-ordgeqted stochastic gradient
descent algorithm (as used by Aharon and Elad 2008; Kavukcuogluz£08 for instance) consists
of a sequence of updatesf

Dt =M¢|Di—1—&Opl(%,Dt-1) |,

whereD; is the estimate of the optimal dictionary at iteratiord; is the gradient sted] . is the
orthogonal projector ont@, and the vectorg; are i.i.d. samples of the (unknown) distributipfx).
Even though it is often difficult to obtain such i.i.d. samples, the vectoase in practice obtained
by cycling on a randomly permuted training set. As shown in Section 6, we dizserved that
this method can be competitive in terms of speed compared to batch methods wiramthg set

is large and whend, is carefully chosen. In particular, good results are obtained using @irlgar
rate of the formd £ a/(t + b), wherea andb have to be well chosen in a data set-dependent way.
Note that first-order stochastic gradient descent has also beenarsetthdér matrix factorization
problems (see Koren et al., 2009 and references therein).

The optimization method we present in the next section falls into the class of aidiogthms
based on stochastic approximations, processing one sample at a time (ortatoimi-but further
exploits the specific structure of the problem to efficiently solve it by segplnminimizing a
quadratic local surrogate of the expected cost. As shown in Section Bgedtsecond-order infor-
mation of the cost function, allowing the optimization without any explicit learnéig tuning.

4. In our setting, as in Lee et al. (2007), we have preferred to usetiex/, norm, that has empirically proven to be
better behaved in general than thgpseudo-norm for dictionary learning.
5. We use “a.s.” to denote almost sure convergence.
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3. Online Dictionary Learning

We present in this section the basic components of our online algorithm fibordicy learning
(Sections 3.1-3.3), as well as a few minor variants which speed up our imptigioe in practice
(Section 3.4) and an interpretation in terms of a Kalman algorithm (Section 3.5).

3.1 Algorithm Outline

Our procedure is summarized in Algorithm 1. Assuming that the training setnpased of
i.i.d. samples of a distributiop(x), its inner loop draws one elemextat a time, as in stochastic
gradient descent, and alternates classical sparse coding stepsifoutoy the decomposition

of x; over the dictionanpD;_; obtained at the previous iteration, with dictionary update steps where
the new dictionanD; is computed by minimizing ovef the function

A 1l
fi(D)2 =Y (51x — Dol [ +Allaill), (5)
ti;(z S ' )

and the vectors; for i <t have been computed during the previous steps of the algorithm. The
motivation behind this approach is twofold:

e The functionf;, which is quadratic iD, aggregates the past information with a few sufficient
statistics obtained during the previous steps of the algorithm, namely the vegtargl it is
easy to show that it upperbounds the empirical dpdd;) from Eq. (1). One key aspect of
our convergence analysis will be to show ttigD;) and f,(D;) converge almost surely to the
same limit, and thus thdt acts as aurrogatefor f;.

e Sincef is close tof;_; for large values of, so areD; andD;_1, under suitable assumptions,
which makes it efficient to use; ;1 as warm restart for computirg.

3.2 Sparse Coding

The sparse coding problem of Eqg. (2) with fixed dictionary igaregularized linear least-squares
problem. A number of recent methods for solving this type of problems aedban coordinate
descent with soft thresholding (Fu, 1998; Friedman et al., 2007; WuLande, 2008). When the
columns of the dictionary have low correlation, we have observed that gisgple methods are
very efficient. However, the columns of learned dictionaries are in géhéghly correlated, and
we have empirically observed that these algorithms become much slower intthiig.s&his has
led us to use instead the LARS-Lasso algorithm, a homotopy method (Osh@ine2€00; Efron
et al., 2004) that provides the whole regularization path—that is, the saiftioall possible values
of A. With an efficient Cholesky-based implementation (see Efron et al., 2004 ,afd Hastie,
2005) for brief descriptions of such implementations), it has provenrerpatally at least as fast
as approaches based on soft thresholding, while providing the soluitioaWwigher accuracy and
being more robust as well since it does not require an arbitrary stopgitegon.

3.3 Dictionary Update

Our algorithm for updating the dictionary uses block-coordinate desgigmtwarm restarts (see
Bertsekas, 1999). One of its main advantages is that it is parameter trefas not require any
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Algorithm 1 Online dictionary learning.
Require: x € R™ ~ p(x) (random variable and an algorithm to draw i.i.d samplep)ofA € R
(regularization parameteiDy € R™K (initial dictionary), T (number of iterations).

1: Ag € Rk 0, By € R™K — 0 (reset the “past” information).
2. fort=1toT do
3:  Drawx; from p(x).
4:  Sparse coding: compute using LARS
A -1 2
ay =arg m'“éHXt — Draal[z + Aol 1.
acRk
5. Ap— A +oeay.
6: B «+ Bt_l—i-XtC(;r.
7. ComputeD; using Algorithm 2, withD;_; as warm restart, so that
1Ll /1
D £ argmin- Z(|xi —Dayl[3-+lfaills).
DeC t i= 2
= argmin- (—Tr(D DA:) —Tr(D Bt)). (6)
DecC t\2
8: end for

9: Return Dt (learned dictionary).

Algorithm 2 Dictionary Update.

Require: D = [dy,...,dy] € R™X (input dictionary),
A=lay,... a) € Rk
B=[by,...,bJ € R™K

1: repeat
2. for j=1tokdo
3 Update thej-th column to optimize for (6):
u 1 (bj —Daj)+d
. = (bi—Da; .
oAl T @)
d 1 u
L -
b max(||ujf2,1)
4:  end for

5. until convergence
6: Return D (updated dictionary).

learning rate tuning. Moreover, the procedure does not require ® alldhe vectors; anda;, but
only the matrices\; = St_; ajal in Rk andB; = 5_; xaf in R™X. Concretely, Algorithm 2
sequentially updates each columnixf A simple calculation shows that solving (6) with respect
to the j-th columndj, while keeping the other ones fixed under the constlda]fntj <1, amounts
to an orthogonal projection of the vectoy defined in Eq. (7), onto the constraint set, namely
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the /,-ball here, which is solved by Eq. (7). Since the convex optimization pnol{ admits
separable constraints in the updated blocks (columns), convergengéotmeaoptimum is guaran-
teed (Bertsekas, 1999). In practice, the vectgrare sparse and the coefficients of the ma#tix
are often concentrated on the diagonal, which makes the block-coordestent more efficieft.
After a few iterations of our algorithm, using the valuelif ; as a warm restart for computirigy
becomes effective, and a single iteration of Algorithm 2 has empirically faarige sufficient to
achieve convergence of the dictionary update step. Other approaaheseen proposed to up-
dateD: For instance, Lee et al. (2007) suggest using a Newton method on d@hefdtq. (6), but
this requires inverting & x k matrix at each Newton iteration, which is impractical for an online
algorithm.

3.4 Optimizing the Algorithm

We have presented so far the basic building blocks of our algorithm. Tdli®saliscusses a few
simple improvements that significantly enhance its performance.

3.4.1 HANDLING FIXED-SIZE DATA SETS

In practice, although it may be very large, the size of the training set ofieratpredefined finite
size (of course this may not be the case when the data must be treated grikleeafivideo stream
for example). In this situation, the same data points may be examined severaldairdéasis very
common in online algorithms to simulate an i.i.d. samplingo@f) by cycling over a randomly
permuted training set (see Bottou and Bousquet, 2008 and refererceimnth This method works
experimentally well in our setting but, when the training set is small enough,asisilple to further
speed up convergence: In Algorithm 1, the matrisgandB; carry all the information from the past
coefficientsay, ..., 0. Suppose that at tintg, a signak is drawn and the vectar,, is computed. If
the same signad is drawn again at time> to, then it is natural to replace the “old” information,
by the new vecton; in the matricesA; and Bi—that is, Ay «— A¢_1+ O(tCXtT — atocxtTO andB; «—
Bt_1 + X0 —xtortTO. In this setting, which requires storing all the past coefficiegtsthis method
amounts to a block-coordinate descent for the problem of minimizing EqW#Een dealing with
large but finite sized training sets, storing all coefficiemtss impractical, but it is still possible to
partially exploit the same idea, by removing the information fidprandB; that is older than two
epochgcycles through the data), through the use of two auxiliary matA¢esndB; of sizek x k
andmx k respectively. These two matrices should be built with the same rulesasdB;, except
that at the end of an epoch; andB; are respectively replaced B andB;{, while A{ andB; are
set to 0. Thanks to this stratedy, andB; do not carry any coefficients; older than two epochs.

3.4.2 SALING THE “PAST” DATA

At each iteration, the “new” information; that is added to the matricés andB; has the same
weight as the “old” one. A simple and natural modification to the algorithm is tateghe “old”
information so that newer coefficients have more weight, which is classical in online learning.
For instance, Neal and Hinton (1998) present an online algorithm fonitidre sufficient statistics
are aggregated over time, and an exponential decay is used to fotgdtdate statistics. In this

6. We have observed that this is true when the colummr3 afe not too correlated. When a group of columnBiare
highly correlated, the coefficients of the matAx concentrate instead on the corresponding principal submatrices
of At.
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paper, we propose to replace lines 5 and 6 of Algorithm 1 by

A¢ — BrAr_1+ 0]
Bt « BiBr_1+ %07,

where[3; 21 ( — —) andp is a new parameter. In practice, one can apply this strategy after a few
iterations, oncé\; is well-conditioned. Tuning improves the convergence rate, when the training
sets are large, even though, as shown in Section 6, it is not critical. rstadd better the effect

of this madification, note that Eqg. (6) becomes

1 Loine/l 2
Dt—argenglnw Z(t) <§||x.—D0(.|!2+?\|!0(.|!1>,
1 1
= argmin——————( = Tr(D"DA;) — Tr(D"By) ).
IgeC 21 l( /t) ( ( t) ( t)>

Whenp = 0, we obtain the original version of the algorithm. Of course, differemitsgies and

heuristics could also be investigated. In practice, this pararpegeuseful for large data sets only
(n>100000). For smaller data sets, we have not observed a better paré@nwhen using this

extension.

3.4.3 MINI-BATCH EXTENSION

In practice, we can also improve the convergence speed of our algdntlarawingn > 1 signals

at each iteration instead of a single one, which is a classical heuristic irastacgradient descent
algorithms. In our case, this is further motivated by the fact that the complekitpmputingn
vectorsa; is not linear inn. A Cholesky-based implementation of LARS-Lasso for decomposing a
single signal has a complexity @{kms+ks’), wheresis the number of nonzero coefficients. When
decomposing) signals, it is possible to pre-compute the Gram mddi®; and the total complexity
become®(k?m-+n(km+ks?)), which is much cheaper thaptimes the previous complexity when

n is large enough anslis small. Let us denote by 1,...,X% 4 the signals drawn at iteratidn We

can now replace lines 5 and 6 of Algorithm 1 by

10
At — A+ n Zlat,iatja
i=

12 T
Bt +— Bt_1+ ﬁ ZXUGt,i'
i=

3.4.4 SOWING DOWN THE FIRST ITERATIONS

As in the case of stochastic gradient descent, the first iterations of canithig may update the
parameters with large steps, immediately leading to large deviations from the imdti@indry.

To prevent this phenomenon, classical implementations of stochastic drddsment use gradient
steps of the forna/(t + b), whereb “reduces” the step size. An initialization of the forw = tol
andBg = tgDg with tg > 0 also slows down the first steps of our algorithm by forcing the solution of
the dictionary update to stay closelg. As shown in Section 6, we have observed that our method
does not require this extension to achieve good results in general.
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3.4.5 RURGING THE DICTIONARY FROM UNUSED ATOMS

Every dictionary learning technique sometimes encounters situations vareesas the dictionary
atoms are never (or very seldom) used, which typically happens with abagrynitialization. A
common practice is to replace these during the optimization by randomly choseangdeof the
training set, which solves in practice the problem in most cases. For moreuldiffind highly
regularized cases, it is also possible to choose a continuation strateggticanof starting from an
easier, less regularized problem, and gradually increasiiifpis continuation method has not been
used in this paper.

3.5 Link with Second-order Stochastic Gradient Descent

For unconstrained learning problems with twice differentiable expectepthesecond-order stochas-
tic gradient descent algorithm (see Bottou and Bousquet, 2008 arréneés therein) improves
upon its first-order version, by replacing the learning rate by the inarde Hessian. When this
matrix can be computed or approximated efficiently, this method usually yieldsex tonvergence
speed and removes the problem of tuning the learning rate. Howevennibiche applied easily

to constrained optimization problems and requires at every iteration anénvktise Hessian. For
these two reasons, it cannot be used for the dictionary learning probigmevertheless it shares
some similarities with our algorithm, which we illustrate with the example of a diffeneiilpm.

Suppose that two major modifications are brought to our original formulatiptie vectorso;
are independent of the dictionaB—that is, they are drawn at the same timexgs(ii) the op-
timization is unconstrained—that ig, = R™X, This setting leads to the least-square estimation
problem

; 2
Jmin B [[1x—Dalf2], (8)

which is of course different from the original dictionary learning forntiola. Nonetheless, it is
possible to address Eq. (8) with our method and show that it amounts to usiregtirsive formula

t -1
D¢ < Dy_1+ (Xt — Dr_1ay)ay ( ZlaiaiT) ,
i=

which is equivalent to a second-order stochastic gradient descenitlatg: The gradient obtained
at (x¢,ay) is the term—(x; — Dy_10¢)0y , and the sequendg,/t) z}zluia? converges to the Hessian
of the objective function. Such sequence of updates admit a fast impldroantalled Kalman
algorithm (see Kushner and Yin, 2003 and references therein).

4. Convergence Analysis

The main tools used in our proofs are the convergence of empiricalgges¢Van der Vaart, 1998)
and, following Bottou (1998), the convergence of quasi-martingale&,(E&65). Our analysis is
limited to the basic version of the algorithm, although it can in principle be carwed to the
optimized versions discussed in Section 3.4. Before proving our main riesulg first discuss the
(reasonable) assumptions under which our analysis holds.
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4.1 Assumptions

(A) The data admits a distribution with compact support K. Assuming a compact support for
the data is natural in audio, image, and video processing applicationse Wwhgimposed by the
data acquisition process.

(B) The quadratic surrogate functions f; are strictly convex with lower-bounded HessiansWe
assume that the smallest eigenvalue of the positive semi-definite rﬂqa&rﬁefined in Algorithm 1
is greater than or equal to some constant As a consequencé; is invertible andf; is strictly
convex with Hessiah ® %At. This hypothesis is in practice verified experimentally after a few it-
erations of the algorithm when the initial dictionary is reasonable, consisimgxkmple of a few
elements from the training set, or any common dictionary, such as DCT (bbsesines products)
or wavelets (Mallat, 1999). Note that it is easy to enforce this assumptioddiggia termf: ||D| |2

to the objective function, which is equivalent to replacing the positive sefirite matrixtlAt by
%At +Kil. We have omitted for simplicity this penalization in our analysis.

(C) A particular sufficient condition for the uniqueness of the spasse coding solution is satis-
fied. Before presenting this assumption, let us briefly recall classical optimaliglittons for the
¢1 decomposition problem in Eq. (2) (Fuchs, 2005). £an K andD in C, a in RK is a solution of
Eqg. (2) if and only if

df (x—Da) = Asign(a(j]) if afj]#0,
df (x—Da)| <A otherwise

(9)
Let o* be such a solution. Denoting lythe set of indiceg such thaljdjT(x —Da*)| = A, andDp
the matrix composed of the columns frdhrestricted to the seft, it is easy to see from Eg. (9) that
the solutiona™ is necessary unique (DD, ) is invertible and that

o = (DADA) H(DAX — Aen), (10)

wherea, is the vector containing the valuesaf corresponding to the sétande,|j] is equal to the
sign ofay[j] for all j. With this preliminary uniqueness condition in hand, we can now formulate
our assumption¥We assume that there exigts> 0 such that, for allx in K and all dictionariesD

in the subset of” considered by our algorithm, the smallest eigenvaIquID,\ is greater than

or equal tok,. This guarantees the invertibility dD\Dx) and therefore the uniqueness of the
solution of Eq. (2). It is of course easy to build a diction&yfor which this assumption fails.
However, havingD D, invertible is a common assumption in linear regression and in methods
such as the LARS algorithm aimed at solving Eq. (2) (Efron et al., 2004is dlso possible to
enforce this condition using an elastic net penalization (Zou and Hastig),2@placing||a||1 by
|lal|1+%||a]|3 and thus improving the numerical stability of homotopy algorithms, which is the
choice made by Zou et al. (2006). Again, we have omitted this penalization enalysis.

4.2 Main Results

Given assumption§A)—C), let us now show that our algorithm converges to a stationary point
of the objective function. Since this paper is dealing with non-convex optimizaneither our
algorithm nor any one in the literature is guaranteed to find the global optimutine @ptimization
problem. However, such stationary points have often been found to beieaty good enough
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for practical applications, for example, for image restoration (Elad arat@h 2006; Mairal et al.,
2008b).

Our first result (Proposition 2 below) states that givai—C), f(D¢) converges almost surely
and f(Dy) — ft(Dt) converges almost surely to 0, meaning tfiaicts as a converging surrogate
of f. First, we prove a lemma to show tHa¢— D;_; = O(1/t). It does not ensure the convergence
of Dy, but guarantees the convergence of the positive $fim||D; — D;_1/|2, a classical condition
in gradient descent convergence proofs (Bertsekas, 1999).

Lemma 1 [Asymptotic variations of D;].
AssumegA)—C). Then,

Diy1—Dy = O(%) a.s.

Proof This proofis inspired by Prop 4.32 of Bonnans and Shapiro (2000)ehigschitz regularity

of solutions of optimization problems. Using assumpt{Bd, for all t, the surrogatef; is strictly
convex with a Hessian lower-bounded ky. Then, a short calculation shows that it verifies the
second-order growth condition

fi(Dry1) — fi(Dy) > Ky||De1 — Dy 2. (11)
Moreover,

fi(Dey1) — ft(Dr) = fi(Deya) — frra(Dega) + fer1(Desa) — frroa (D) + feia(Dy) — fi(Dy)
fi(Drs1) — frea(Desa) + fipa(Dy) — fi(Dy),

IN

where we have used thé{+1(Dt+1) — ft+1(Dt) < 0 becausé;, 1 minimizes ft+1 on C. Since
fi(D) = (3 Tr(DTDA() — Tr(DTBy)), and||D||r < VK, itis possible to show thaf — fi1 is Lip-
schitz Wlth constant; = (1/t)(||Bt+1 — Bt||r + Vk||Ats1 — At]|F), which gives

fi(De+1) — fi(Dy) < &f[Desa — Di[r- (12)
From Eqg. (11) and (12), we obtain

D1~ Dl < o
K1
AssumptiongA), (C) and Eg. (10) ensure that the vectorsandx; are bounded with probability
one and thereforg = O(1/t) a.s. [

We can now state and prove our first proposition, which shows thatevie@eed minimizing a
smooth function.

Proposition 2 [Regularity of f].
AssumdA) to (C). For x in the support K of the probability distribution p, aridlin the feasible
set(, let us define

a*(x,D) =argmin
aE€RK

2 x— Dol 3+ A1 (13)

Then,
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1. the functior? defined in Eq. (2) is continuously differentiable and

Op/(x,D) = —(x — Da*(x,D))a*(x,D) .

2. fis continuously differentiable aridf (D) = Ex[Op¢(x,D)];
3. Of(D) is Lipschitz onC.

Proof Assumption(A) ensures that the vectons are bounded fox in K andD in C. Therefore,
one can restrict the optimization problem (13) to a compact subset.oblnder assumptio(C),
the solution of Eq. (13) is unique and is well-defined. Theorem 5 in Appendix A from Bonnans
and Shapiro (1998) can be applied and gives us directly the first stateBueceK is compact, and
£ is continuously differentiable, the second statement follows immediately.

To prove the third claim, we will show that for alin K, a*(x, .) is Lipschitz with a constant in-
dependent o%,” which is a sufficient condition fofl f to be Lipschitz. First, the function optimized
in Eqg. (13) is continuous ia, D, x and has a unique minimum, implying that is continuous irx
andD.

Consider a matri® in C andx in K and denote bg* the vector*(x, D), and again by\ the set
of indicesj such thaﬂdjT(x —Da*)| =A. SincedjT (x — Da*) is continuous irD andx, there exists
an open neighborhoddaround(x, D) such that for al(x’,D’) inV, andj ¢ A, |dJ-T’(x’ —D'a*)| <A
anda*'[j] = 0, wherea*' = a*(x/, D).

Denoting byUx the matrix composed of the columns of a matdixorresponding to the index
set/A\ and similarly byua the vector composed of the values of a veat@orresponding taé\, we
consider the functiod

~ 1
7(x,Da,0p) £ 51X —=Daanl[z+Alanll1,

Assumption(C) tells us that(x,Da,.) is strictly convex with a Hessian lower-boundediy Let
us considefx’,D’) in V. A simple calculation shows that

#(x,Da, 03") = £(x, D, 03) = Kol |0 — a3 [3.

Moreover, itis easy to show théfx, Dy, .) — (X', D}, .) is Lipschitz with constarg ||Da — D} || +
e||x —X'||2, whereey, &, are constants independent®fD’, x,x” and then, one can show that

1
= ollo = lloR" — aillz < (@D = Dlle +ezllx—x[2).

Therefore,a* is locally Lipschitz. Since&K x C is compacto* is uniformly Lipschitz onK x C,
which concludes the proof. |

Now that we have shAown thditis a smooth function, we can state our first result showing that
the sequence of functiorfsacts asymptotically as a surrogatefadnd thatf (D;) converges almost
surely in the following proposition.

7. From now on, for a vectax in R™, a*(x,.) denotes the function that associates to a mddrixerifying Assump-
tion (C), the optimal solutior*(x,D). For simplicity, we will use these slightly abusive notation in the rest of the
paper.
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Proposition 3 [Convergence off (D;) and of the surrogate function]. Let f, denote the surrogate
function defined in Eq. (5). Assurt®) to (C). Then,

1. (D) converges almost surely;
2. f(Dy) — (D) converges almost surely €
3. f(Dy) converges almost surely.

Proof Part of this proof is inspired by Bottou (1998). We prove the convergesf the se-
quencefi(D;) by showing that the stochastic positive process

is a quasi-martingale and use Theorem 6 from Fisk (1965) (see Appahdixhich states that if
the sum of the “positive” variations af are boundedy is a quasi-martingale, which converges
with probability one (see Theorem 6 for details). Computing the variationg @fe obtain

U1 — U = frr1(Dega) — fe(Dr)
= fir1(Des1) — fra(Dy) + fia(Dy) — fi(Dy) (14)

0(X+1,D1) — f(Dy)  fi(Dy) — fi(Dy)
t+1 t+1 ’

= fir1(Deya) — fera (D) +

using the fact thafi1(Dt) = 25£(Xt+1,Dt) + 11 ft (D). SinceDyy1 minimizesfi;1 on € andDy is

in C, fiy1(Dey1) — fiea(Dy) < 0. Since the surrogatk upperbounds the empirical cokt we also
have f;(D;) — ﬂ(Dt) < 0. To use Theorem 6, we consider the filtration of the past informagion
and take the expectation of Eq. (14) conditionedf@robtaining the following bound

E[¢(Xt11,D0)| ] — fi(D
Elty1— | %) < [t ttﬂf] t(Dy)

< f(By) — (D)
- t+1
< M= fille
- t+1

)

For a specific matrbD, the central-limit theorem states thBf/t(f(D;) — f;(D;))] is bounded.
However, we need here a stronger result on empirical processesuwotBatE[v/t||f — fi||«] iS
bounded. To do so, we use the Lemma 7 in Appendix A, which is a corollaDpotker theorem
(see Van der Vaart, 1998, chap. 19.2). It is easy to show that in ey, el the hypotheses are
verified, namely/(x,.) is uniformly Lipschitz and bounded since it is continuously differentiable
on a compact set, the sétc R™K is bounded, and,[¢(x, D)?] exists and is uniformly bounded.
Therefore, Lemma 7 applies and there exists a congtan® such that

| =

E[E[u:1— | A1) <

NIw

t

Therefore, defining; as in Theorem 6, we have

00 00

ZE[&(U’Hl —w)] = ZLE[E[UHl — W[ FR]T] < +o.

1= t=
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Thus, we can apply Theorem 6, which proves thatonverges almost surely and that
Z!E[le— Ut | F]| < +o a.s.
t=

Using Eg. (14) we can show that it implies the almost sure convergence pbgitive sum

“ fi(Dy) — ft(Dt).

2 o1

Using Lemma 1 and the fact that the functidipgnd f; are bounded and Lipschitz, with a constant
independent of, it is easy to show that the hypotheses of Lemma 8 in Appendix A are satisfied.
Therefore A

ft(Dt) — ft(Dt) t:oo 0 a.s.

Sinceﬂ(Dt) converges almost surely, this shows tfigD;) converges in probability to the same
limit. Note that we have in additiofjf; — f||e —t—10 O a@.s. (see Van der Vaart, 1998, Theorem
19.4 (Glivenko-Cantelli)). Therefore,

f(Dy) — ﬂ(Dt)t—> 0 as.

— 00

and f(D;) converges almost surely, which proves the second and third points. |

With Proposition 3 in hand, we can now prove our final and strongegttresmely that first-
order necessary optimality conditions are verified asymptotically with probabiiiy

Proposition 4 [Convergence to a stationary point].Under assumptiongA) to (C), the distance
betweerD; and the set of stationary points of the dictionary learning problem comgeajmost
surely toO when t tends to infinity.

Proof Since the sequences of matridgasB; are in a compact set, it is possible to extract converg-
ing subsequences. Let us assume for a moment that these sequaneggeoespectively to two
matricesA. andB.. In that caseD; converges to a matrik. in C. Let U be a matrix iNRM™<k,
Sincef; upperbounds; onR™  for allt,

ft(Dt +U) > (Dt +U).

Taking the limit whert tends to infinity,

~

foo(Deo +U) > f (Do +U).

Let hy > O be a sequence tr)at converges to 0. Using a first order Taylor @gpaand using the
fact thatOf is Lipschitz andf«(Dw) = f(Dw) a.s., we have

f (Do) 4+ Tr(hUT Ofw(De)) +0(hU) > f(Doo) 4+ Tr(hUT Of (De)) +0(hU),

and it follows that 1 1
Tr(———UT0fw(Dw)) > Tr(———UTOf(Do) ),
(oY (0a)) = T (V01 (0)
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Since this inequality is true for dl), 0w (De) = O (Ds). A first-order necessary optimality condi-
tion for D, being an optimum of, is that—Of, is in thenormal coneof the setC at D, (Borwein

and Lewis, 2006). Therefore, this first-order necessary condittonearified for f at D, as well.
SinceAy, B are asymptotically close to their accumulation poirt&lf (D;) is asymptotically close
the normal cone aD; and these first-order optimality conditions are verified asymptotically with
probability one. |

5. Extensions to Matrix Factorization

In this section, we present variations of the basic online algorithm to axldisrent optimization
problems. We first present different possible regularization terma famd D, which can be used
with our algorithm, and then detail some specific cases such as non-eegetirix factorization,
sparse principal component analysis, constrained sparse codithginamtaneous sparse coding.

5.1 Using Different Regularizers fora

In various applications, different priors for the coefficiemtsiay lead to different regularizegga).
As long as the assumptions of Section 4.1 are verified, our algorithm caseldenith:

e Positivity constraints o that are added to thé-regularization. The homotopy method
presented in Efron et al. (2004) is able to handle such constraints.

e The Tikhonov regularizationp(a) = %Ha”%, which does not lead to sparse solutions.

e The elastic net (Zou and Hastie, 200§)a) = A||a||1 + A—ZZHO(H%, leading to a formulation
relatively close to Zou et al. (2006).

e The group Lasso (Yuan and Lin, 2006; Turlach et al., 2005; Badd8RQ(a) = 37 4 ||ail|2,
whereq; is a vector corresponding to a group of variables.

Non-convex regularizers such as thiepseudo-norm{, pseudo-norm wittp < 1 can be used as
well. However, as with any classical dictionary learning techniques explaitimgconvex regular-
izers (e.g., Olshausen and Field, 1997; Engan et al., 1999; Aharbj2&a6), there is no theoretical
convergence results in these cases. Note also that convex smootkigapian of sparse regulariz-
ers (Bradley and Bagnell, 2009), or structured sparsity-inducingaegers (Jenatton et al., 2009a;
Jacob et al., 2009) could be used as well even though we have notttested

5.2 Using Different Constraint Sets for D

In the previous subsection, we have claimed that our algorithm could loewiedifferent regu-
larization terms om. For the dictionary learning problem, we have considerefyaegularization

on D by forcing its columns to have less than ufstnorm. We have shown that with this constraint
set, the dictionary update step can be solved efficiently using a blocklinate descent approach.
Updating thej-th column ofD, when keeping the other ones fixed is solved by orthogonally pro-
jecting the vectou; = dj + (1/A[], j])(b; — Daj) on the constraint sef, which in the classical
dictionary learning case amounts to a projection pbn thel»-ball.
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It is easy to show that this procedure can be extended to differenexamnstraint setg”
as long as the constraints are a union of independent constraints oraanin of D and the
orthogonal projections of the vectargsonto the set” can be done efficiently. Examples of different
sets(’ that we propose as an alternativet@re

e The “non-negative” constraints:

C'={DeR™* st.Vj=1,...k |/dj]2<1 andd; > 0}.

e The “elastic-net” constraints:
C'E{DeR™* st Vj=1,...k [/djl[+yid]]s <1}.

These constraints induce sparsity in the dictiofajn addition to the sparsity-inducing reg-
ularizer on the vectors;). By analogy with the regularization proposed by Zou and Hastie
(2005), we call these constraints “elastic-net constraints.” Heiea new parameter, con-
trolling the sparsity of the dictionay. Adding a non-negativity constraint is also possible in
this case. Note that the presence oftheegularization is important here. It has been shown
by Bach et al. (2008) that using tfg-norm only in such problems lead to trivial solutions
whenk is large enough. The combination @fand/, constraints has also been proposed re-
cently for the problem of matrix factorization by Witten et al. (2009), but itighdly different
setting.

e The “fused lasso” (Tibshirani et al., 2005) constraints. When one Ildrigdor a dictionary
whose columns are sparse and piecewise-constant, a fused ladsoizatian can be used.
For a vectou in R™, we consider thé;-norm of the consecutive differenceswotienoted by

LW £ S ] -ufi— 1]

and define the “fused lasso” constraint set
C2{DeR™K st Vj=1,...k |/djl|3+vi|djl[s+y2FL(dj) < 1}.

This kind of regularization has proven to be useful for exploiting genomia duch as CGH
arrays (Tibshirani and Wang, 2008).

In all these settings, replacing the projections of the vectpaito thel,-ball by the projections
onto the new constraints, our algorithm is still guaranteed to converge rahd Stationary point
of the optimization problem. The orthogonal projection onto the “non negalia# is simple
(additional thresholding) but the projection onto the two other sets is slightle imgolved. In
Appendix B, we propose two algorithms for efficiently solving these probleiifee first one is
presented in Section B.1 and computes the projection of a vector onto the-aktstionstraint
in linear time, by extending the efficient projection onto theball from Maculan and de Paula
(1989) and Duchi et al. (2008). The second one is a homotopy methmch wolves the projection
on the fused lasso constraint sef(ks), wheres is the number of piecewise-constant parts in the
solution. This method also solves efficiently the fused lasso signal appriiaimpaoblem presented
in Friedman et al. (2007):

1
min =||b — ul[5+ya||u[|1 + Y2 FL(u) + ya|[u][5.
uern 2
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Being able to solve this problem efficiently has also numerous applicationgh atédbeyond the
scope of this paper. For instance, it allows us to use the fast algorithmsdéidv (2007) for solving
the more general fused lasso problem (Tibshirani et al., 2005). Ndtthehproposed method could
be used as well with more complex constraints for the columm3, afhich we have not tested in
this paper, addressing for instance the problem of structured spassé€IEnatton et al., 2009b).

Now that we have presented a few possible regularizers fand D, that can be used within
our algorithm, we focus on a few classical problems which can be formudatddttionary learning
problems with specific combinations of such regularizers.

5.3 Non Negative Matrix Factorization

Given a matrixX = [X1,...,Xp] in R™", Lee and Seung (2001) have proposed the non negative
matrix factorization problem (NMF), which consists of minimizing the followingtcos

n

. 1 .
min ZEHXi_DGiH% st.D>0, Vi, a; >0.

DeC,acRkxn;

With this formulation, the matri¥ and the vectors; are forced to have non negative components,
which leads to sparse solutions. When applied to images, such as faeesd_.8eung (2001) have
shown that the learned features are more localized than the ones leathhedalassical singular
value decomposition. As for dictionary learning, classical approadvesddressing this problem
are batch algorithms, such as the multiplicative update rules of Lee and &001g, or the pro-
jected gradient descent algorithm of Lin (2007).

Following this line of research, Hoyer (2002, 2004) has proposedhegative sparse coding
(NNSC), which extends non-negative matrix factorization by adding esgpanducing penalty to
the objective function to further control the sparsity of the vecters

n

. 1 L. .
min ZL(ZHXI_DGIHZJF)\;%[”) st.D>0,Vi, a;>0.

DeC,acRk<n;

WhenA = 0, this formulation is equivalent to NMF. The only difference with the dictigri@arning
problem is that non-negativity constraints are impose®@md the vectors;. A simple modifica-
tion of our algorithm, presented above, allows us to handle these constveiiltsguaranteeing to
find a stationary point of the optimization problem. Moreover, our approantwork in the setting
whenn is large.

5.4 Sparse Principal Component Analysis

Principal component analysis (PCA) is a classical tool for data analykish can be interpreted
as a method for finding orthogonal directions maximizing the variance of ttee daas a low-
rank matrix approximation method. Jolliffe et al. (2003), Zou et al. (2088spremont et al.
(2007), d’Aspremont et al. (2008), Witten et al. (2009) and ZassSirashua (2007) have proposed
different formulations for sparse principal component analysis (SP@Aich extends PCA by
estimating sparse vectors maximizing the variance of the data, some of thaséations enforcing
orthogonality between the sparse components, whereas some do not. paghis we formulate
SPCA as a sparse matrix factorization which is equivalent to the dictionamyinggoroblem with
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eventually sparsity constraints on the dictionary—that is, we uséthegularization term foo
and the “elastic-net” constraint f@ (as used in a penalty term by Zou et al. 2006):

n

. 1 _
min Zi(szi—DO(iH%Jeraih) st.Vi=1,....k [/djl3+Vdj]]s <1

kxn ..
aERN;

As detailed above, our dictionary update procedure amounts to suereg$iogonal projection of
the vectorsi;j on the constraint set. More precisely, the update;dfecomes

1
Ui «— ———(bj —Da;j +d,
J A[J,j]( J J) J

dj <—<’:1crllgﬂgniﬂ|\Uj—0|H§ s.t. [|d|3+vi[d[[1 < 1,
= m

which can be solved in linear time using Algorithm 3 presented in Appendix Bdttition to that,
our SPCA method can be used with fused Lasso constraints as well.

5.5 Constrained Sparse Coding

Constrained sparse coding problems are often encountered in the |deratdr lead to different
loss functions such as
¢(x,D) = min||x—Dal|3 s.t. |ja]|y < T, (15)
acRk

or
¢"(x,D) = min||a||y s.t. ||x—Dall5 <k, (16)
a€eRk

whereT ande¢ are pre-defined thresholds. Even though these loss functions leadit@aleqt
optimization problems in the sense that for give® andA, there exise andT such that(x,D),

¢ (x,D) and¢”(x,D) admit the same solutioa*, the problems of learnin® using/, ¢ of ¢ are

not equivalent. For instance, usidghas proven experimentally to be particularly well adapted to
image denoising (Elad and Aharon, 2006; Mairal et al., 2008b).

For all T, the same analysis as fércan be carried fof’, and the simple modification which
consists of computing; using Eq. (15) in the sparse coding step leads to the minimization of the
expected cost migx: - Ex[¢'(x,D)].

Handling the casé’ is a bit different. We propose to use the same strategy a&-fathat is,
using our algorithm but computing; solving Eq. (16). Even though our analysis does not apply
since we do not have a quadratic surrogate of the expected costinegptl evidence shows that
this approach is efficient in practice.

5.6 Simultaneous Sparse Coding

In some situations, the signatsare not i.i.d samples of an unknown probability distribution, but
are structured in groups (which are however independent fromatheh), and one may want to ad-
dress the problem of simultaneous sparse coding, which appears aleditarttture under various
names such as group sparsity or grouped variable selection (Cotte2€0&; , Turlach et al., 2005;
Yuan and Lin, 2006; Obozinski et al., 2009, 2008; Zhang et al., 200&p et al., 2006; Tropp,
2006). LetX = [Xy,...,Xq] € R™9 be a set of signals. Suppose one wants to obtain sparse decom-
positions of the signals on the dictiondbythat share the same active set (non-zero coefficients).
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Leta = [ay,...,0q] in R4 be the matrix composed of the coefficients. One way of imposing this
joint sparsityis to penalize the number of non-zero rowsiofA classical convex relaxation of this
joint sparsity measure is to consider the-norm on the matrixi

k .
lalliz = S flod]l2,
=1

wherea! is the j-th row of a. In that setting, thé; >-norm ofa is the/1-norm of thel>-norm of
the rows ofa.

The problem of jointly decomposing the signal€an be written as & >-sparse decomposition
problem, which is a subcase of the group Lasso (Turlach et al., 20@81 &nd Lin, 2006; Bach,
2008), by defining the cost function

¢"(X,D) = min_ X~ Dal2 +Aflal 12
acRkxa 2 '
which can be computed using a block-coordinate descent approdetr{fan et al., 2007) or an
active set method (Roth and Fischer, 2008).
Suppose now that we are able to draw groups of sighiais= 1, ..., nwhich have bounded size
and are independent from each other and identically distributed, orleararan adapted dictionary
by solving the optimization problem

12
minlim =} ¢”(X;,D).
Decn—en &

Being able to solve this optimization problem is important for many applicationsinstance, in
Mairal et al. (2009c), state-of-the-art results in image denoising amdsi@icking are achieved with
this formulation. The extension of our algorithm to this case is relatively easyputing at each
sparse coding step a matrix of coefficieatsand keeping the updates &f andB; unchanged.

All of the variants of this section have been implemented. Next section evalaatee of
them experimentally. An efficient C++ implementation with a Matlab interface okthasants is
available on the Willow project-team web page p: / / www. di . ens. fr/wi | | ow SPAVS/ .

6. Experimental Validation

In this section, we present experiments on natural images and genomic datadastrate the effi-
ciency of our method for dictionary learning, non-negative matrix facaion, and sparse principal
component analysis.

6.1 Performance Evaluation for Dictionary Learning

For our experiments, we have randomly selecte2b ¥ 1P patches from images in the Pascal
VOC’06 image database (Everingham et al., 2006), which is composeafrietivnatural images;
10° of these are kept for training, and the rest for testing. We used th&seegdo create three data
setsA, B, andC with increasing patch and dictionary sizes representing various settirigh are
typical in image processing applications: We have centered and normalepdtthes to have unit
¢>-norm and used the regularization paramater 1.2/,/min all of our experiments. The/1/m
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Data set| Signal sizem Nb k of atoms| Type
A 8x8=164 256 b&w
B 12x12x 3=432 512 color
C 16x 16 =256 1024 b&w

term is a classical normalization factor (Bickel et al., 2009), and the aankahas shown to yield
about 10 nonzero coefficients for data set A and 40 for data sets Eadndhese experiments.
We have implemented the proposed algorithm in C++ with a Matlab interface. Altethats
presented in this section use the refinements from Section 3.4 since this thasripaically to
speed improvements. Although our implementation is multithreaded, our experihamtdeen
run for simplicity on a single-CPU, single-core 2.66Ghz machine.

The first parameter to tuneiig the number of signals drawn at each iteration. Trying different
powers of 2 for this variable has shown timat 512 was a good choice (lowest objective function
values on the training set—empirically, this setting also yields the lowest valudsedest set).
Even though this parameter is fairly easy to tune since values of 64, 18&b1024 have given
very similar performances, the difference with the chajce 1 is significant.

Our implementation can be used in both the online setting it is intended for, and gulare
batch mode where it uses the entire data set at each iteration. We have dE=oéemged a first-
order stochastic gradient descent algorithm that shares most of itsmthdeur algorithm, except
for the dictionary update step. This setting allows us to draw meaningful aisopa between our
algorithm and its batch and stochastic gradient alternatives, which wowdddeegen difficult other-
wise. For example, comparing our algorithm to the Matlab implementation of the Bpprbach
from Lee et al. (2007) developed by its authors would have been wgifigie our C++ program has
a built-in speed advantadeTo measure and compare the performances of the three tested meth-
ods, we have plotted the value of the objective functioritentest setacting as a surrogate of the
expected cost, as a function of the corresponding training time.

6.1.1 ONLINE VS. BATCH

The left column of Figure 1 compares the online and batch settings of our impietios. The full
training set consists of £Gamples. The online version of our algorithm draws samples from the
entire set, and we have run its batch version on the full data set as welbsets of size ¥0and
10° (see Figure 1). The online setting systematically outperforms its batch cparttésr every
training set size and desired precision. We use a logarithmic scale forrnigutation time, which
shows that in many situations, the difference in performance can be draatitar experiments
have given similar results on smaller data sets. Our algorithm uses all thergpgérom Section
3.4. The parametgy was chosen by trying the valuess)10, 15, 20,25, andty by trying different
powers of 10. We have select¢d = 0.001 p = 15), which has given the best performance in
terms of objective function evaluated on the training set for the three deta\8& have plotted
three curves for our methodL1 corresponds to the optimal settifig = 0.001 p = 15). Even
though tuning two parameters might seem cumbersome, we have plotted twourtres showing
that, on the contrary, our method is very easy to use. The @ir2e corresponding to the setting

8. Both LARS and the feature-sign algorithm (Lee et al., 2007) requliaegg number of low-level operations which
are not well optimized in Matlab. We have indeed observed that our C+teimgmtation of LARS is up to 50 times
faster than the Matlab implementation of the feature-sign algorithm of Lde(2087) for our experiments.
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(to = 0.001 p = 10), is very difficult to distinguish from the first curve and we have obsgrae
similar behavior with the settin@p = 0.001,p = 20). showing that our method i®bust to the
choice of the parametgy. We have also observed that the paramptisruseful for large data sets
only. When using smaller ones € 100 000), it did not bring any benefit.

Moreover, the curvé®L3 is obtained without using a tuned parameterthat is,p = 15 and
to = 0, and shows that its influence is very limited since very good results anaedtaithout using
it. On the other hand, we have observed that using a paratgéterbig, could slightly slow down
our algorithm during the first epoch (cycle on the training set).

6.1.2 GOMPARISON WITHSTOCHASTIC GRADIENT DESCENT

Our experiments have shown that obtaining good performance with stmchesdient descent
requires using both the mini-batch heuriséind carefully choosing a learning rate of the form
a/(nt+Db). To give the fairest comparison possible, we have thus optimized thesa@i@rs. As
for our algorithm, sampling values among powers of 2 (as before) has shownrfkab12 was a
good value and gives a significant better performance hari.

In an earlier version of this work (Mairal et al., 2009a), we have psepdaa strategy for our
method which does not require any parameter tuning except the miniipatets compared it with
the stochastic gradient descent algorithm (SGD) with a learning rate obimeaf/ (nt). While our
method has improved in performance using the new pararpe®GD has also proven to provide
much better results when using a learning rate of the faftnt + b) instead ofa/(nt), at the cost
of an extra parametdrto tune. Using the learning ra#g (nt) with a high value foa results indeed
in too large initial steps of the algorithm increasing dramatically the value of tieetdle function,
and a small value cd leads to bad asymptotic results, while a learning rate of the &fimt + b)
is a good compromise.

We have tried different powers of 10 farandb. First selected the coupla & 100,000,b =
100,000) and then refined it, trying the values 1000x 2' for i = —3,...,3. Finally, we have
selecteda = 200,000 b = 400,000). As shown on the right column of Figure 1, this setting repre-
sented by the curvBG1 leads to similar results as our method. The cu8@2 corresponds to the
parameterga = 400,000, b = 400,000 and shows that increasing slightly the paramaterakes
the curves worse than the others during the first iterations (see fordestasm curve between 1 and
107 seconds for data set A), but still lead to good asymptotic results. The 8@¥ corresponds
to a situation whera andb are slightly too smal{a = 50,000 b = 100,000). It is as good asG1
for data sets A and B, but asymptotically slightly below the others for data.satl e curves
are obtained as the average of three experiments with different initializatiotesestingly, even
though the problem is not convex, the different initializations have led tp sietilar values of the
objective function and the variance of the experiments was always inseymtifafter 10 seconds of
computations.

6.2 Non Negative Matrix Factorization and Non Negative Sparse Gibing

In this section, we compare our method with the classical algorithm of Lee emagS2001) for
NMF and the non-negative sparse coding algorithm of Hoyer (20020 SC. The experiments
have been carried out on three data sets with different sizes:

e Data set D is composed of= 2,429 face images of size= 19 x 19 pixels from the the
MIT-CBCL Face Database #1 (Sung, 1996).
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Figure 1: Left: Comparison between our method and the batch approadicfionary learning.
Right: Comparison between our method and stochastic gradient descenestitts are
reported for three data sets as a function of computation time on a logarithrigic Note
that the times of computation that are less thds @re not reported. See text for details.
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e Data set E is composed of= 2,414 face images of sizen = 192 x 168 pixels from the
Extended Yale B Database (Georghiades et al., 2001; Lee et al., 2005).

e Data set F is composed nf= 100 000 natural image patches of sime= 16 x 16 pixels from
the Pascal VOC'06 image database (Everingham et al., 2006).

We have used the Matlab implementations of NMF and NNSC of P. Hoyer, whichieely avail-
able atht t p: / / www. cs. hel si nki . fi/ul phoyer/sof tware. ht ni . Even though our C++ imple-
mentation has a built-in advantage in terms of speed over these Matlab implemestatast of
the computational time of NMF and NNSC is spent on large matrix multiplications, varghyp-
ically well optimized in Matlab. All the experiments have been run for simplicity omgle-CPU,
single-core 2.4GHz machine, without using the paramegtensdty presented in Section 3.4—that
is, p =0 andtp = 0. As in Section 6.1, a minibatch of sige= 512 is chosen. Following the original
experiment of Lee and Seung (2001) on data set D, we have chosanrtk e 49 basis vectors for
the face images data sets D and E, and we have chosed for data set F. Each input vector is
normalized to have unib-norm.

The experiments we present in this section compare the value of the objectdten on the
data sets obtained with the different algorithms as a function of the computation $imee our
algorithm learns the matri® but does not provide the matrix the computation times reported for
our approach include two steps: First, we run our algorithm to oldaiBecond, we run one sparse
coding step over all the input vectors to obtainFigure 2 presents the results for NMF and NNSC.
The gradient step for the algorithm of Hoyer (2002) was optimized for &t pperformance ankl
was set to;—m. Both D anda were initialized randomly. The values reported are those obtained for
more than QLs of computation. Since the random initialization provides an objective vahighw
is by far greater than the value obtained at convergence, the cumredl druncated to present
significant objective values. All the results are obtained using the avef8 experiments with
different initializations. As shown on Figure 2, our algorithm provides aicant improvement in
terms of speed compared to the other tested methods, even though the oesuld-fand NNSC
could be improved a bit using a C++ implementation.

6.3 Sparse Principal Component Analysis

We present here the application of our method addressing SPCA with sayjoes of data: faces,
natural image patches, and genomic data.

6.3.1 FACES AND NATURAL PATCHES

In this section, we compare qualitatively the results obtained by PCA, NMfgiotonary learning

and our sparse principal component analysis algorithm on the data setsnuSection 6.2. For
dictionary learning, PCA and SPCA, the input vectors are first centardchormalized to have a
unit norm. Visual results are presented on figures 3, 4 and 5, resggdtr the data sets D, E and F.
The parametex for dictionary learning and SPCA was set so that the decomposition ofieach
signal has approximately 10 nonzero coefficients. The results for SBR€fresented for various
values of the parametgyyielding different levels of sparsity. The scafaindicates the percentage

of nonzero values of the dictionary.

Each image is composed btmall images each representing one learned feature vector. Nega-

tive values are blue, positive values are red and the zero valuegaeseated in white. Confirming
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earlier observations from Lee and Seung (2001), PCA systematicaliiyipes features spread out
over the images, whereas NMF produces more localized features orcthddtabases D and E.
However, neither PCA, nor NMF are able to learn localized features osethaf natural patches F.
On the other hand, the dictionary learning technique is able to learn locatiatd s on data set F,
and SPCA is the only tested method that allows controlling the level of sparsitygthe learned
matrices.

6.3.2 GENOMIC DATA

This experiment follows Witten et al. (2009) and demonstrates that our matbngposition tech-
nigue can be used for analyzing genomic data. Gene expression nmeastgeand DNA copy
number changes (comparative genomic hybridization CGH) are two polyples of data in ge-
nomic research, which can be used to characterize a set of abnormal s@m®ples for instance.
When these two types of data are available, a recent line of researclotaesalyze the correla-
tion between them—that is, to determine sets of expression genes whichrigiated with sets
of chromosomal gains or losses (see Witten et al., 2009 and referemcem}h Let us suppose
that forn tissue samples, we have a matixn R"*P of gene expression measurements and a ma-
trix Y in R"™% of CGH measurements. In order to analyze the correlation between thesetsaf
data, recent works have suggested the use of canonical correliadilysia (Hotelling, 1936), which
solve$

min_ cov(Xu,YV) s.t. ||[Xu][2<1 and||Yv|> < 1.
ucRP veRa

WhenX andY are centered and normalized, it has been further shown that with this tylaeao
good results can be obtained by treating the covariance ma¥icésandYTY as diagonal, leading
to a rank-one matrix decomposition problem

min_|[XTY —uv'|[|2 s.t. [|ull.<1, and |v||2< 1.
ucRP,veRA
Furthermore, as shown by Witten et al. (2009), this method can benefitdparse regularizers
such as the&; norm for the gene expression measurements and a fused lasso for thar@s,
which are classical choices used for these data. The formulation wehasen is slightly different
from the one used by Witten et al. (2009) and can be addressed usiatgotithm:

min |IYTX —vuT|[E +Alull2 s.t. []V|[3+a][v][1+V2FL(v) < 1. 17)
ueRP veRRYd

In order to assess the effectivity of our method, we have conducteduthe experiment as Witten
et al. (2009) using the breast cancer data set described by Chig28@8), consisting off = 2,148
gene expression measurements pral16,962 CGH measurements foe= 89 tissue samples. The
matrix decomposition problem of Eq. (17) was addressed once for é#of 23 chromosomes, us-
ing each time the CGH data available for the corresponding chromosome,eagértd expression
of all genes. Following the original choice of Witten et al. (2009), we hselected a regulariza-
tion parametel resulting in about 25 non-zero coefficientsunand selecteg; = y» = 1, which
results in sparse and piecewise-constant veatoiEhe original matrice$X, Y) are divided into a
training setXyr, Y ) formed with 3/4 of then samples, keeping the rest;e, Yte) for testing. This

9. Note that when more than one couple of factors are needed, twersszsu1, Uy, ... andvy, Vo, ... of factors can be
obtained recursively subject to orthogonality constraints of the seqa&ing, Xu», ... andYvy, Yvo,. ...
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experiment is repeated for 10 random splits, for each chromosome & aafufactors(u,v) are
computed, and the correlations qoff;u, Y, v) and cortXteU, YieV) are reported on Figure 6. The
average standard deviation of the experiments results Wa889for the training set and1891 for
the test set.

Comparing with the original curves reported by Witten et al. (2009) for iheralized matrix
decomposition (PMD) algorithm, our method exhibits in general a performsimitar as PMD
Nevertheless, the purpose of this section is more to demonstrate that oudroathbe used with
genomic data than comparing it carefully with PMD. To draw substantial cerria about the
performance of both methods, more experiments would of course becheede

Genomic Experiment: Correlation Analysis

Correlat
o
(@3]

o
~
T

0.3r .
-A- Train PMD
0.2r Test PMD |7
01l —8—Train OL
' —6—Test OL
0 l l l l
5 10 15 20

Chromosome

Figure 6: SPCA was applied to the covariance matrix obtained from thetlmaaser data (Chin
etal., 2006). A fused lasso regularization is used for the CGH d@taofthen samples
are used as a training set, keeping the rest for testing. Average tionslérom 10
random splits are reported for each of the 23 chromosomeBMDr(Witten et al., 2009)
and our method denoted oy

10. The curves for PMD were generated with the R software packagjelale atht t p: // cran. r- proj ect . or g/ web/
packages/ PMV i ndex. ht Ml and a script provided by Witten et al. (2009).
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Figure 7: Inpainting example on a 12-Megapixel image. Top: Damagedestolred images. Bot-
tom: Zooming on the damaged and restored images. Note that the picturegeudssre
have been scaled down for display. (Best seen in color).

6.4 Application to Large-Scale Image Processing

We demonstrate in this section that our algorithm can be used for a difficgl-tmale image
processing task, namely, removing the terpé&inting from the damaged 12-Megapixel image
of Figure 7. Using a multi-threaded version of our implementation, we havedda dictionary
with 256 elements from the roughly>710° undamaged 12 12 color patches in the image with
two epochs in about 8 minutes on a 2.4GHz machine with eight cores. Ondetibaaty has been
learned, the text is removed using the sparse coding technique for ingaihttairal et al. (2008b).
Our intent here is of courgeotto evaluate our learning procedure in inpainting tasks, which would
require a thorough comparison with state-the-art techniques on stasatardets. Instead, we just
wish to demonstrate that it can indeed be applied to a realistic, non-trivial ipragessing task on
a large image. Indeed, to the best of our knowledge, this is the first timeithaindry learning
is used for image restoration on such large-scale data. For comparisadictionaries used for
inpainting in Mairal et al. (2008b) are learned (in batch mode) on 200,a@hes only.
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7. Conclusion

We have introduced in this paper a new stochastic online algorithm for Igedidtionaries adapted
to sparse coding tasks, and proven its convergence. Experiments stest®ithat it is significantly
faster than batch alternatives such as Engan et al. (1999), Ahaabr{2006) and Lee et al. (2007)
on large data sets that may contain millions of training examples, yet it doesquiter a careful
learning rate tuning like regular stochastic gradient descent methodsoMar we have extended
it to other matrix factorization problems such as non negative matrix factoriz atnal we have pro-
posed a formulation for sparse principal component analysis whichecanlbed efficiently using
our method. Our approach has already shown to be useful for imaipeatésn tasks such as de-
noising (Mairal et al., 2009c); more experiments are of course neededtay assess its promise in
bioinformatics and signal processing. Beyond this, we plan to use theggdpearning framework
for sparse coding in computationally demanding video restoration taskdgiPand Elad, 2009),
with dynamic data sets whose size is not fixed, and extending this framewdifket@nt loss func-
tions (Mairal et al., 2009b) to address discriminative tasks such as imaggfickation, which are
more sensitive to overfitting than reconstructive ones.
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Appendix A. Theorems and Useful Lemmas

We provide in this section a few theorems and lemmas from the optimization arahjiliyditera-
ture, which are used in this paper.

Theorem 5 [Corollary of Theorem 4.1 from Bonnans and Shapiro (198), due to Danskin
(1967)].

Let f: RP x RY— R. Suppose that for ak € RP the function fXx,.) is differentiable, and that f and
Ou f(x,u) the derivative of fx,.) are continuous ofRP x RY. Let u) be the optimal value function
v(u) = minkec f(x,u), where C is a compact subset®f. Then yu) is directionally differentiable.
Furthermore, if forug € RY, f(.,up) has a unique minimizet then \u) is differentiable inug and
Ouv(up) = Oy f(Xo,Up).

Theorem 6 [Sufficient condition of convergence for a stochasticrpcess, see Bottou (1998) and
references therein (Metivier, 1983; Fisk, 1965)].

Let (Q,F,P) be a measurable probability space, tor t > 0, be the realization of a stochastic
process andf; be the filtration determined by the past information at time t. Let

5=l 1 0 Elu 11— w| %] >0,
0 otherwise.
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Ifforallt, uy > 0andy> 1 E[&(u1—u)] < o, then yis a quasi-martingale and converges almost
surely. Moreover,

Z\E[L}Hl— U|%]| < 4o as.
t=

Lemma 7 [A corollary of Donsker theorem see Van der Vaart, 1998¢hap. 19.2, lemma 19.36
and example 19.7].

Let F={fg:X — R,0 c O} be a set of measurable functions indexed by a bounded sBlus&¢.
Suppose that there exists a constant K such that

[fo (%) — fo, ()] < K[[B1—62][2,

for every8; and B, in © and x inx. Then, F is P-Donsker (see Van der Vaart, 1998, chap. 19.2).
Forany f in F, Let us defin®, f, Pf andG,f as

P,f = iif(m, Pf=Ex[f(X)], Gnf=A(Pnf—PF).

Let us also suppose that for all Pf? < 8 and||f||» < M and that the random elements,Xa, ...
are Borel-measurable. Then, we have

Ep||Gn||r = O(1),

where||Gn||r = supicg |Gnf|. For a more general variant of this lemma and additional explana-
tions and examples, see Van der Vaart (1998).

Lemma 8 [A simple lemma on positive converging sums].
Let &, b, be two real sequences such that for all §,2a0,b, > 0, S_1an = o, 37 1 anbp < o,
JK > 0 s.t. |bpy1 —bn| < Kan. Thenimy_ by =0.

Proof The proof is similar to Bertsekas (1999, prop 1.2.4). |

Appendix B. Efficient Projections Algorithms

In this section, we address the problem of efficiently projecting a vectortaio sets of constraints,
which allows us to extend our algorithm to various other formulations.

B.1 A Linear-time Projection on the Elastic-Net Constraint

Let b be a vector ofR™. We consider the problem of projecting this vector onto the elastic-net
constraint set:

1 y
min S[lb—ull3 st [Julli+Slullz <t (18)

ueRmM

To solve efficiently the casg> 0, we propose Algorithm 3, which extends Maculan and de Paula
(1989) and Duchi et al. (2008), and the following lemma which shows tisal\its our problem.

Lemma 9 [Projection onto the elastic-net constraint set].
Forbin R™ y> 0andt > 0, Algorithm 3 solves Eq. (18).
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Proof First, if b is a feasible point of (18), thelmis a solution. We suppose therefore that it is not
the case—that i§b||1 + ¥||b||3 > 1. Let us define the Lagrangian of (18)

1 y
L(uA) = 5/l —ulB+A(|jull+ 3 lul f-1).

For a fixed\, minimizing the Lagrangian with respectiuadmits a closed-form solutiast(A), and
a simple calculation shows that, for §ll

_ sign(b[j)([b[j][-A)"
1+Ay '

u*(A)[]]

Eqg. (18) is a convex optimization problem. Since Slater’s conditions aread&fid strong duality
holds, it is equivalent to the dual problem

maxL(u*(A),A).

max£(u(),A)

SinceA = 0 is not a solution, denoting by the solution, the complementary slackness condition
implies that

Iu ) s+ 3 1w () 3 = (19)

Using the closed form of*()) is possible to show that the functidn— ||u*(A)||1 + ¥||u*(A)]|3,
is strictly decreasing witih and thus Eq. (19) is a necessary and sufficient condition of optimality
for A. After a short calculation, one can show that this optimality condition is elgunitéo

1 : Y2 YA
——— 3 (Iblill+ 3l -Aa+2)) =1,
(1+W)2 &, ( 2 2 )
whereS(A) = {] s.t. |b[j]| > A}. Suppose theB(A*) is known, ther\* can be computed in closed-
form. To findS(A*), it is then sufficient to find the indekxsuch thatS(A*) = §(|b[k]|), which is the
solution of

max |b[K]| s.t. !

Y vibIK]
X u+mmm2ﬂ%mxmmu¢mM||mmu+ 5-)) <t

Lines 4 to 14 of Algorithm 3 are a modification of Duchi et al. (2008) to asslithis problem.
A similar proof as Duchi et al. (2008) shows the convergence to the solafithis optimization
problem inO(m) in the average case, and lines 15 to 18 of Algorithm 3) computdter thatS(A*)

has been identified. Note that settintp O leads exactly to the algorithm of Duchi et al. (2008.

As for the dictionary learning problem, a simple maodification to Algorithm 3 allows tmndle
the non-negative case, replacing the scglalfg| by maxblj],0) in the algorithm.

B.2 A Homotopy Method for Solving the Fused Lasso Signal Approximabn

Letb be a vector oR™. We define, following Friedman et al. (2007), the fused lasso sighabapp
imation problem?(y1,Y2,Ys):

1
min él\b*U!|5+V1||U||1+V2FL(U)+y*23||ul\§, (20)

ueRm
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Algorithm 3 Efficient projection on the elastic-net constraint.
Require: TeR;yeR; beR™;
1: if ||b[|1 + ¥||b[|3 < T then
2.  Returnu < b.
else
U—{1....m};s<—0;p0.
while U # 0do
Pickk € U at random.
PartitionU:

No g R

G={jeU st |b[j]| > [b[K]},
L={jeU st [b[j]| < [b[K]}.

8  Dp—|[GlAs— 3 icc|blj]| + 3[b[j]*

9: if S+AS—(p+Ap)(1+%|b[k]|)|b[k]\ <T(1+y|b[k]|)2then
10: S« S+As p«—Ap;U — L.

11: else

12: U — G\ {k}.

13: end if

14:  end while

15:  a«— YT+ p,
16: b 2yt+p,

17: C«—T-—S5,

18 A — —DivDdac

19:

. sign(b[j})(|b[j]| =A)"
1+ Ay

20: Return u.
21: end if

the only difference with Friedman et al. (2007) being the addition of the lzstirtic term. The
method we propose to this problem is a homotopy, which saR@s:, ty2, tys) for all possible
values oft. In particular, for alle, it provides the solution of the constrained problem

min b~ ull3 st villull+ voFLw) + 2 u3 <e. (21)
The algorithm relies on the following lemma
Lemma 10 Letu*(y1,Y2,Y3) be the solution of Eq. (20), for specific valuegnfy,, ys. Then
o U*(V1,2,8) = iU (V1,Y2,0).

e Foralli, u*(yi,Yz,0)[i] =sign(u*(0,y2,0)[i]) max(|u*(0,y2,0)[i]| — A1,0)—thatis,u*(y1, Y2, 0)
can be obtained by soft thresholdingusf 0, y», 0).
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The first point can be shown by short calculation. The second onei@mprin Friedman et al.
(2007) by considering subgradient optimality conditions. This lemma show§ thrae knows the
solution of P(0,y»,0), then?(y1,Y2,y3) can be obtained in linear time.

It is therefore natural to consider the simplified problem

1
min =||b—ul|3+y2FL(u). (22)
ueRm 2
With the change of variabM{1] = u[1] andv][i] = u[i] —u[i — 1] for i > 1, this problem can be recast
as a weighted Lasso
1 7 & .

min, 5110~ DvI3+ 3 wivil (23)
wherew; = 0 andw; =y, for i > 1, andDJi, j] =1 if i > j and O otherwise. We propose to use
LARS (Efron et al., 2004) and exploit the specific structure of the m&iria make this approach
efficient, by noticing that:

e For avectow in R™, computinge = Dw requiresO(m) operations instead @(n?), by using
the recursive formula[l] = w[1], e[i + 1] = w([i] + €[i].

e For a vectow in R", computinge = D"w requiresO(m) operations instead @d(n¥), by
using the recursive formulgn] = win|, efi — 1] = w[i — 1] + €]i].

o Letl = {a,...,ap} be an active set and suppase< ... < a,. Then(D{Dr)~! admits the
closed form value

C1 —C1 0 0 0
—C C1+C —C ... 0 0
0 —C2 Cr+C3z ... 0 0
(DIDr) = . . L :
0 0 0 cee Cp72+Cp71 —Cpfl
wherecp = - andc; = 5 fori <p.

This allows the implementation of this homotopy method without using matrix inversichalesky
factorization, solving Eq. (23) i®@(ms) operations, whergis the number of non-zero values of the
optimal solutionv.11

Adapting this method for solving Eq. (21) requires following the regularipapath of the
problems?(0,ty», 0) for all values oft, which provides as well the regularization path of the prob-
lem P(TA1,TA2,TA3) and stops whenever the constraint becomes unsatisfied. This precgiiur
requiresO(ms) operations.

Note that in the casg = 0 andys = 0, when only the fused-lasso term is present in Eq (20),
the same approach has been proposed in a previous work by HareimaoLevy-Leduc (2008),
and Harchaoui (2008) to solve Eg. (22), with the same tricks for improthiegefficiency of the
procedure.

11. To be more precise,is the number of kinks of the regularization path. In pract&e roughly the same as the
number of non-zero values of the optimal solution

54



ONLINE LEARNING FORMATRIX FACTORIZATION AND SPARSECODING

References

M. Aharon and M. Elad. Sparse and redundant modeling of image cargieigtan image-signature-
dictionary. SIAM Journal on Imaging Sciencel{3):228—-247, July 2008.

M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An algorithm fbesigning of overcom-
plete dictionaries for sparse representatiohsEE Transactions on Signal Processjrigl(11):
4311-4322, November 2006.

F. Bach. Consistency of the group Lasso and multiple kernel leardingnal of Machine Learning
Research9:1179-1224, 2008.

F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizatibeshnical report, 2008.
Preprint arXiv:0812.1869.

D. P. BertsekasNonlinear ProgrammingAthena Scientific Belmont, 1999.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lassdardzig selectorAnnals
of statistics 37(4):1705-1732, 2009.

J. F. Bonnans and A. Shapiro. Optimization problems with perturbations:ideduour. SIAM
Review 40(2):202-227, 1998.

J. F. Bonnans and A. ShapirBerturbation Analysis of Optimization ProblentSpringer, 2000.

J. M. Borwein and A. S. LewisConvex Analysis and Nonlinear Optimization: Theory and Exam-
ples Springer, 2006.

L. Bottou. Online algorithms and stochastic approximations. In David Sa#dr,&dnline Learning
and Neural Networks1998.

L. Bottou and O. Bousquet. The trade-offs of large scale learningClrRlatt, D. Koller, Y. Singer,
and S. Roweis, editorgydvances in Neural Information Processing Systaerokime 20, pages
161-168. MIT Press, 2008.

D. M. Bradley and J. A. Bagnell. Differentiable sparse coding. In Old¢pD. Schuurmans, Y. Ben-
gio, and L. Bottou, editorsAdvances in Neural Information Processing Systewotume 21,
pages 113-120. 2009.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decompositioralis lpursuit. SIAM
Journal on Scientific Computing0:33—-61, 1999.

K. Chin, S. DeVries, J. Fridlyand, P.T. Spellman, R. Roydasgupta, Wulb, A. Lapuk, R. M.
Neve, Z. Qian, T. Ryder, et al. Genomic and transcriptional aberraliikexd to breast cancer
pathophysiologiesCancer Cel] 10(6):529-541, 2006.

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado. Spars#i@as to linear inverse prob-
lems with multiple measurement vectofEEE Transactions on Signal Processji(7):2477—
2488, 2005.

55



MAIRAL , BACH, PONCE AND SAPIRO

J. M. Danskin. The theory of max-min, and its application to weapons allocatioblems.
Okonometrie und Unternehmensforschut®@c7.

A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriedifect formulation for sparse
PCA using semidefinite programmin§IAM Review49(3):434-448, 2007.

A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparsecipal component
analysis.Journal of Machine Learning Researc$1269-1294, 2008.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficimjegtions onto theé/1-ball for
learning in high dimensions. IRroceedings of the International Conference on Machine Learn-
ing (ICML), 2008.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least anglkess@gn.Annals of Statistics32
(2):407-499, 2004.

M. Elad and M. Aharon. Image denoising via sparse and redundargsesgations over learned
dictionaries.IEEE Transactions on Image Processing(12):3736—3745, December 2006.

K. Engan, S. O. Aase, and J. H. Husoy. Frame based signal congoressng method of opti-
mal directions (MOD). InProceedings of the 1999 IEEE International Symposium on Circuits
Systemsvolume 4, 1999.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zissermane HASCAL Visual
Object Classes Challenge 2006 (VOC2006) Results, 2006.

C. Fevotte, N. Bertin, and J. L. Durrieu. Nonnegative matrix factorization withithkura-saito
divergence: With application to music analydieural Computation21(3):793-830, 2009.

D. L. Fisk. Quasi-martingalesTransactions of the American Mathematical Sogié®0(3):359—
388, 1965.

J. Friedman, T. Hastie, H.®#fling, and R. Tibshirani. Pathwise coordinate optimizatiAnnals of
Applied Statistics1(2):302—-332, 2007.

W. J. Fu. Penalized regressions: The bridge versus the La¥sornal of Computational and
Graphical Statistics7:397-416, 1998.

J. J. Fuchs. Recovery of exact sparse representations in thexggesiebounded noiselEEE
Transactions on Information Theqry1(10):3601-3608, 2005.

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few ty:mlnmination cone
models for face recognition under variable lighting and poHeEE Transactions on Pattern
Analysis and Machine Intelligenc23(6):643—660, 2001.

G. H. Golub and C. F. Van LoaMatrix computationsJohn Hopkins University Press, 1996.

R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant spaoskng for audio classification.
In Proceedings of the Twenty-third Conference on Uncertainty in Artificigdlligence (UAI)
2007.

56



ONLINE LEARNING FORMATRIX FACTORIZATION AND SPARSECODING

Z. Harchaoui.Méthodesa Noyaux pour la Btection PhD thesis, €lécom ParisTech, 2008.

Z. Harchaoui and C. &vy-Leduc. Catching change-points with Lasso. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editorddvances in Neural Information Processing Systevod-
ume 20, pages 161-168. MIT Press, 2008.

H. Hotelling. Relations between two sets of variatBgmetrikg 28:321-377, 1936.

P. O. Hoyer. Non-negative sparse codingPhoc. IEEE Workshop on Neural Networks for Signal
Processing2002.

P. O. Hoyer. Non-negative matrix factorization with sparseness camtstralournal of Machine
Learning Researctb:1457-1469, 2004.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlap eagghd-asso. IfProceedings
of the International Conference on Machine Learning (ICiV2Q09.

R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selectthrsparsity-inducing norms.
Technical report, 2009a. Preprint arXiv:0904.3523v1.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principglanent analysis. Technical
report, 2009b. Preprint arXiv:0909.1440v1.

I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal commpent technique based on
the LassoJournal of Computational and Graphical Statistid®(3):531-547, 2003.

K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in spacling algorithms with
applications to object recognition. Technical report, Computational anddgéal Learning Lab,
Courant Institute, NYU, 2008.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques farxammender systemlEEE
Computer42(8):30-37, 2009.

H. J. Kushner and G. YinStochastic Approximation and Recursive Algorithms and Applications
Springer, 2003.

D.D. Lee and H. S. Seung. Algorithms for non-negative matrix factorinativAdvances in Neural
Information Processing Systepmages 556-562, 2001.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding atigors. In B. Scldlkopf,
J. Platt, and T. Hoffman, editor&dvances in Neural Information Processing Systemisime 19,
pages 801-808. MIT Press, 2007.

K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces fa@ facognition under variable
lighting. IEEE Transactions on Pattern Analysis and Machine IntelligeB@¢€5):684—-698, 2005.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete represengatideural Computation
12(2):337-365, 2000.

C.J. Lin. Projected gradient methods for nonnegative matrix factorizatienral Computation19
(10):2756-2779, 2007.

57



MAIRAL , BACH, PONCE AND SAPIRO

N. Maculan and J. R. G. Galdino de Paula. A linear-time median-finding algofihprojecting a
vector on the simplex of RrOperations Research Lettei®(4):219-222, 1989.

J. R. Magnus and H. Neudeckedvlatrix Differential Calculus with Applications in Statistics and
Econometrics, revised editiodohn Wiley, Chichester, 1999.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discrimibgarned dictionaries for

local image analysis. IRroceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPRR008a.

J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color imesgeration.|IEEE Trans-
actions on Image Processing7(1):53-69, January 2008b.

J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse repréwargtdor image and video
restoration.SIAM Multiscale Modelling and Simulatipi(1):214—-241, April 2008c.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learmnggdarse coding. In
Proceedings of the International Conference on Machine Learninil{l};2009a.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supdrdisgonary learning. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editokslvances in Neural Information
Processing Systemelume 21, pages 1033-1040. MIT Press, 2009b.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-gpzaise models for image
restoration. InProceedings of the IEEE International Conference on Computer Vi$s@@\(),
2009c.

S. Mallat. A Wavelet Tour of Signal Processing, Second Editidkcademic Press, New York,
September 1999.

M. Métivier. Semi-martingalesWalter de Gruyter, 1983.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremiesiaarse, and
other variantsLearning in Graphical Models89:355-368, 1998.

Y. Nesterov. Gradient methods for minimizing compaosite objective functiochriieal report, Cen-
ter for Operations Research and Econometrics (CORE), Catholic Witivef Louvain, 2007.

G. Obozinski, M. J. Wainwright, and M. |. Jordan. Union support vecy in high-dimensional
multivariate regressionJC Berkeley Technical Report 76August 2008.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selectidpant subspace selection for
multiple classification problemsStatistics and Computin@009. Published online.

B. A. Olshausen and D. J. Field. Sparse coding with an overcompleteseaisisstrategy employed
by V1? Vision Researc37:3311-3325, 1997.

M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach t@bker selection in least squares
problems.IMA Journal of Numerical Analysj20(3):389-403, 2000.

58



ONLINE LEARNING FORMATRIX FACTORIZATION AND SPARSECODING

G. Peye. Sparse modeling of texture¥ournal of Mathematical Imaging and Visip84(1):17-31,
May 2009.

M. Protter and M. Elad. Image sequence denoising via sparse andledurpresentationtEEE
Transactions on Image Processjrig(1):27-36, 2009.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught liegrntransfer learning from
unlabeled data. IProceedings of the International Conference on Machine Learninyjc
2007.

V. Roth and B. Fischer. The Group-Lasso for generalized linear modalgueness of solutions
and efficient algorithms. I®Proceedings of the International Conference on Machine Learning
(ICML), 2008.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Sticltasivex optimization. In
22nd Annual Conference on Learning Theory (CQLZ009.

K.-K. Sung.Learning and Example Selection for Object and Pattern Recogniibb thesis, MIT,
Artificial Intelligence Laboratory and Center for Biological and Computatidrearning, 1996.

R. Tibshirani. Regression shrinkage and selection via the Laksarnal of the Royal Statistical
Society. Series,B558(1):267-288, 1996.

R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection@ét data using the fused
Lasso.Biostatistics 9(1):18-29, 2008.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Spasitgmoothness via the fused
lasso.Journal of the Royal Statistical Society Serie$B(1):91-108, 2005.

J. A. Tropp. Algorithms for simultaneous sparse approximation. part iive&orelaxation.Signal
Processing, Special Issue "Sparse Approximations in Signal angeénfaocessing,’ 86:589—
602, April 2006.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultane@asse approximation.
part i: Greedy pursuitSignal Processing, Special Issue "Sparse Approximations in Sigrml a
Image Processing”86:572-588, April 2006.

B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous varialidetien. Technometrics
47(3):349-363, 2005.

A. W. Van der Vaart Asymptotic StatisticSCambridge University Press, 1998.

D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, ablications
to sparse principal components and canonical correlation anaBisistatistics 10(3):515-534,
20009.

T. T. Wu and K. Lange. Coordinate descent algorithms for Lasso pexdalegressionAnnals of
Applied Statistics2(1):224—-244, 2008.

59



MAIRAL , BACH, PONCE AND SAPIRO

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matchimggusparse coding for
image classification. IfProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPRR009.

M. Yuan and Y. Lin. Model selection and estimation in regression with grdwpeables.Journal
of the Royal Statistical Society SeriesdB:49—-67, 2006.

R. Zass and A. Shashua. Nonnegative sparse PCA. In Bili&xdf, J. Platt, and T. Hoffman,
editors,Advances in Neural Information Processing Systemlime 19, pages 1561-1568. MIT
Press, 2007.

H. H. Zhang, Y. Liu, Y. Wu, and J. Zhu. Selection for the multicategory sieradaptive sup-norm
regularization Electronic Journal of Statistic®:149-167, 2008.

M. Zibulevsky and B. A. Pearlmutter. Blind source separation by spaserdposition in a signal
dictionary. Neural Computation13(4):863—-882, 2001.

H. Zou and T. Hastie. Regularization and variable selection via the elastidmehal of the Royal
Statistical Society Series B7(2):301-320, 2005.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component sisaljournal of Computa-
tional and Graphical Statistigsl5(2):265—-286, 2006.

60



