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Abstract
We consider the global minimization of smooth functions based solely on function
evaluations. Algorithms that achieve the optimal number of function evaluations for a
given precision level typically rely on explicitly constructing an approximation of the
function which is then minimized with algorithms that have exponential running-time
complexity. In this paper, we consider an approach that jointly models the function
to approximate and finds a global minimum. This is done by using infinite sums
of square smooth functions and has strong links with polynomial sum-of-squares
hierarchies. Leveraging recent representation properties of reproducing kernel Hilbert
spaces, the infinite-dimensional optimization problem can be solved by subsampling in
time polynomial in the number of function evaluations, andwith theoretical guarantees
on the obtained minimum. Given n samples, the computational cost is O(n3.5) in
time, O(n2) in space, and we achieve a convergence rate to the global optimum that is
O(n−m/d+1/2+3/d) wherem is the degree of differentiability of the function and d the
number of dimensions. The rate is nearly optimal in the case of Sobolev functions and
more generally makes the proposed method particularly suitable for functions with
many derivatives. Indeed, when m is in the order of d, the convergence rate to the
global optimum does not suffer from the curse of dimensionality, which affects only
the worst-case constants (that we track explicitly through the paper).

Keywords Global optimization · Polynomial optimization · Sum of squares ·
Semidefinite programming

Mathematics Subject Classification 90C26 · 47B32

B Alessandro Rudi
alessandro.rudi@inria.fr

Ulysse Marteau-Ferey
ulysse.marteau-ferey@inria.fr

Francis Bach
francis.bach@inria.fr

1 INRIA - Département d’Informatique de l’École Normale Supérieure, PSL Research University, 2
rue Simone Iff, 75012 Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-024-02081-4&domain=pdf
http://orcid.org/0000-0002-3879-7794


A. Rudi et al.

1 Introduction

We consider the general problem of unconstrained optimization. Let f : Rd → R be
a possibly non-convex function. Our goal is to solve the following problem

min
x∈Rd

f (x). (1.1)

In particular, we will consider the setting where (a) the function is smooth, that is,
f ∈ Cm(Rd) with m ∈ N+ ( f m-times continuously differentiable), and (b) we can
evaluate it on given points, without the need of computing the gradient. For this class
of problems there are known lower-bounds [1, 2] that show that it is not possible to
achieve a global minimum with error ε with less than O(ε−d/m) function evaluations.
In this paper, we want to achieve this lower bound in terms of function evaluations,
while having an optimization algorithm that has a running time that is polynomial in
the underlying dimension and the number of function evaluations.

Several methods are available to solve this class of problems. For example, the
function f can be approximated from its values at n sampled points, and the approxi-
mation of the function globally minimized instead of f . If the approximation is good
enough, then this can be optimal in terms of n, but computationally infeasible. Opti-
mal approximations can be obtained by multivariate polynomials [3] or functions
in Sobolev spaces [4], with potentially adaptive ways of selecting points where the
function is evaluated (see, e.g., [5] and references therein). Alternatively, when the
function is itself a polynomial, algorithms based on the “sum-of-squares” paradigm
can be used, but their computational complexity grows polynomially on dr/2, where
r is in the most favorable situations the order of the polynomial, but potentially larger
when so-called hierarchies are used [6–8].

It turns out that the analysis of lower bounds on the number of function evaluations
shows an intimate link between function interpolation and function minimization,
i.e., the lower bounds of one problem are the same for the other problem. However,
existing methods consider a two-step approach where (1) the function is approximated
optimally, and (2) the approximation is minimized. In this paper, we consider a joint
approach where approximation and optimization are done jointly.

We derive an algorithm that casts the possibly non-convex problem in Eq. (1.1)
in terms of a simple convex problem based on a non-parametric representation of
non-negative functions via positive definite operators [9]. As shown below, it can be
considered as an infinite-dimensional counter-part to polynomial optimization with
sums of squares, with two key differences: (1) the relaxation is always tight for the
direct formulation, and (2) the computational cost does not depend on the dimen-
sion of the model (here infinite anyway), by using a subsampling algorithm and a
computational trick common in statistics and machine learning.

The resulting algorithm with n sampled points will be able to achieve an error
of ε = O(n−m/d+3/d+1/2) as soon as m ≥ 3 + d/2, with n function evaluations
to reach the global minimum with precision ε, and a computational complexity of
O(n3.5 log(1/ε)) (with explicit constants). This is still not the optimal complexity in
terms of the number of function evaluations (which is ε = O(n−m/d)), but this is
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achieved with a polynomial-time algorithm in n. This is particularly interesting in the
contexts where the function to be optimized is very smooth, i.e.,m � d, possibly C∞
or a polynomial. For example, if the function is differentiable at least d + 3 times,
even if non-convex, the proposed algorithm finds the global minimum with error
O(n−1/2) and time O(n3.5 log n). Note that the (typically exponential) dependence
on the dimensionality d is only in the constants and tracked explicitly in the rest of
the paper.

Moreover, the algorithm is based on simple interior-point methods for semidefinite
programming, directly implementable, and based only on function evaluations and
matrix operations. It can thus leverage multiple GPU architectures to reach large
values of n, which are needed when the dimension grows.

2 Outline of contributions

In this section, we present our framework, our algorithm and summarize the associated
guarantees.

Denote by ζ ∈ R
d a global minimizer of f and assume to know a bounded open

region Ω ⊂ R
d that contains ζ . We start with a straightforward and classical convex

characterization of the problem in Eq. (1.1), with infinitely many constraints:

max
c∈R c such that ∀x ∈ Ω, f (x) ≥ c. (2.1)

Note that the solution c∗ of the problem above corresponds to c∗ = f (ζ ) = f∗, the
global minimum of f . The problem above is convex, but typically intractable to solve,
due to the dense set of inequalities that c must satisfy.

To solve Eq. (2.1) our main idea is to represent the dense set of inequalities in terms
of a dense set of equalities and then to approximate them by subsampling.

Tight relaxation. We start by introducing a quadratic form 〈φ(x), Aφ(x)〉 with A a
self-adjoint positive semidefinite operator fromH toH, for a suitablemapφ : Ω → H
and an infinite-dimensional Hilbert space H, to define the following problem

max
c∈R, A∈S+(H)

c such that ∀x ∈ Ω, f (x)− c = 〈φ(x), Aφ(x)〉 , (2.2)

where S+(H) is the set of bounded self-adjoint positive semi-definite operators onH.
Theproblem inEq. (2.2) has a smaller optimizedobjective function than theproblem

in Eq. (2.1) because we constrain A to be positive semi-definite and any feasible point
for Eq. (2.2) is feasible for Eq. (2.1). When f is a polynomial and φ(x) is composed
of monomials of degree less than half the degree of f (and thusH finite-dimensional),
then we recover the classical “sum-of-squares” relaxation of polynomial optimization.
In that situation, the relaxation is tight only if f − f∗ is itself a sum-of-squares, which
is known to not always be the case. Then, to make the relaxation tight in the limit,
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several hierarchies of polynomial optimization problems have been considered using
polynomials of increasing degrees [6–8].

In this paper, we consider awell-chosen infinite-dimensional spaceH, andwe prove
that if f is smooth enough (i.e., m-times differentiable with m > 3 + d/2), under
mild geometrical assumptions on f then there always exists a map φ, and a finite rank
A∗ ∈ S+(H) for which the problem in Eq. (2.1) and the one above are equivalent, that
is, the relaxation is tight.

Note that, the resulting φ, despite being infinite-dimensional, has an explicit and
easy-to-compute (O(d) in memory and time) inner product k(x, x ′) = 〈φ(x), φ(x ′)

〉

that will be the only quantity required to run the algorithm. We will thus use
Hilbert spaces H which are reproducing kernel Hilbert spaces [10], such as Sobolev
spaces [11].

Subsampling. We approximate the problem above as follows. Given a finite set
X̂ = {x1, . . . , xn} which is a subset of Ω , we restrict the equality in Eq. (2.2) to only
x1, . . . , xn .

Unlike the case of polynomial optimization where subsampling is exact if n is large
enough [12], in our case subsampling leads to an error that decreases in n and depends
on the regularity of f and of the map x 
→ 〈φ(x), Aφ(x)〉. While f is smooth enough
by assumption, we need to control the regularity of themap induced by A, to guarantee
that the constraints subsampled on X̂ well approximate the whole set of constraints
on Ω . Then we consider a penalization term based on the trace of A and solve the
following problem

max
c∈R, A∈S+(H)

c − λTr(A)

such that ∀i ∈ {1, . . . , n}, f (xi )− c = 〈φ(xi ), Aφ(xi )〉 ,
(2.3)

for some positive λ (with the implicit assumption that we optimize over operators A
with finite trace). We show in this paper that solving Eq. (2.3) leads to an approximate
optimum of the original problem in Eq. (2.1), when n is large enough and λ small
enough. Note that the value of c which we obtain after subsampling is not anymore a
lower bound on the global minimum, but we can provide both a priori and a posteriori
certificates of optimality (see Sect. 8.2).

Finite-dimensional algorithm. The problem in Eq. (2.3) is still formulated in an
infinite-dimensional space.Wecan leverage theparticular choice of penalty by the trace
of A and the choice of Hilbert space to obtain a finite-dimensional algorithm. Indeed,
for reproducing kernel Hilbert spaces, then, following [9], we only need to solve the
problem in the finite-dimensional Hilbert space spanned by φ(x1), . . . , φ(xn), that
is, we only need to look at A of the form A = ∑n

i, j=1 Ci jφ(xi ) ⊗ φ(x j ) for some
positive semi-definite matrix C ∈ R

n×n . We can then write Tr(A) = Tr(CK ), with
K ∈ R

n×n the matrix of dot-products with Ki j = 〈φ(xi ), φ(x j )〉 = k(xi , x j ), and
〈φ(xi ), Aφ(xi )〉 = (KCK )i i .
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Algorithm 1 Global minimum. Given f : Rd → R, Ω, n ∈ N+, λ > 0, s > d/2.
1: X̂ ← {x1, . . . , xn} � Sampled i.i.d. uniformly on Ω

2: f j ← f (x j ), ∀ j ∈ [n]
Features computation
3: Ki j ← k(xi , x j ) i, j ∈ [n] � k Sobolev kernel of smoothness s, Eq. (3.2)
4: R ← cholesky(K ) � upper triangular Cholesky
5: Φ j = j-th column of R, ∀ j ∈ [n]
Solution of the approximate problem (use any algorithm in Sect. 6)
6: ĉ ← maxc∈R,B∈S+(Rn ) c − λTr(B) such that ∀ j ∈ [n], f j − c = Φ�j BΦ j

7: return ĉ

Consider the Cholesky decomposition of K as K = R�R, with R ∈ R
n×n upper-

triangular. We can directly solve for B = RCR�, noting that KCK = R�BR and
Tr(CK ) = Tr(B). We can thus use a representation in terms of finite-dimensional
vectors Φ1, . . . , Φn ∈ R

n defined as the columns of R. We thus study the following
problem,

max
c∈R, B∈S+(Rn)

c − λTr(B)

such that ∀i ∈ {1, . . . , n}, f (xi )− c = Φ�
i BΦi .

(2.4)

From an algorithmic viewpoint, the problem above can be solved efficiently since this
is a semi-definite program. We show in Sect. 6 how we can apply Newton method
and classical interior-point algorithms, leading to a computational complexity of
O(n3.5 log(1/ε)) in time and O(n2) in space.

Note that in the context of sum-of-squares polynomials, the relationship with repro-
ducing kernel Hilbert spaces had been explored for approximation purposes after a
polynomial optimization algorithm is used [13]. In this paper, we propose to leverage
kernel methods within the optimization algorithm.

Why not simply subsampling the inequality? One straightforward algorithm is to
subsample the dense set of inequalities in Eq. (2.1). Doing this will simply lead
to outputting mini∈{1,...,n} f (xi ). This last algorithm, while easy to implement and
convergent, is very slow, with a rate of O(n−2/d) (see the discussion in Sect. 11).
Subsampling the dense set of equalities in Eq. (2.2) allows to use smooth interpolation
tools. When λ = 0, the optimal value is also mini∈{1,...,n} f (xi ) (if the kernel matrix
is invertible, see Sect. 6), but for λ > 0, we can leverage smoothness as shown below.

Theoretical guarantees. From a theoretical viewpoint, denoting by ĉ the minimizer
of Eq. (2.4), we provide upper bounds for | f∗ − ĉ| with explicit constants and that
hold under mild geometrical assumptions on f . We prove that the bound depends on
how the points in X̂ = {x1, . . . , xn} are chosen. In particular, we prove that when they
are chosen uniformly at random on Ω , the problem in Eq. (2.4) achieves the global
minimum with error ε with a precise dependence on n.
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The results in this paper hold under the following assumptions.

Assumption 1 (Geometric properties on Ω and f ). The following holds:

(a) Let Ω = ∪x∈S Br (x), where S is a bounded subset of R
d and Br (x) is the open

ball of radius r > 0, centered in x.
(b) The function f is in C2(Rd). Ω contains at least one global minimizer. The mini-

mizers in Ω are isolated points with strictly positive Hessian and their number is
finite. There is no minimizer on the boundary of Ω .

Note that Assumption 1(a) can be easily relaxed to Ω having locally Lipschitz-
continuous boundaries [11, Section 4.9]. Assumption 1(b) is satisfied if all global
minimizers of f are in Ω , and are second-order strict local minimizers. Note that
similar assumptions are made to show finite convergence for polynomial optimization
hierarchies [14].

Theorem 1 (Main result, informal). Let Ω ⊂ R
d be a ball of radius R > 0. Let s >

d/2 and let k be the Sobolev kernel of smoothness s (seeExample1). Let f ∈ Cs+3(Rd)

and that satisfies Assumption 1(b). Let ĉ be the result of Algorithm 1 executed with
n ∈ N+ points chosen uniformly at random in Ω and λ > 0. Let δ > 0. There exist
ns,d,δ,Cs,d > 0 such that, when n > ns,d,δ , and

λ ≥ Cs,d n−s/d+1/2
(
log n

δ

)s/d−1/2
,

then, with probability at least 1− δ,

|ĉ − f∗| ≤ 3 λ
(
Tr(A∗)+ | f |Ω,�s−d/2�

)
,

where A∗ is any solution of Eq. (2.2).

Note that A∗ exists since f ∈ Cs+3(Rd) and it satisfies the geometrical mild
condition in Assumption 1(b) (as we prove in Sect. 4), and that all constants can be
made explicit (see Theorem6). From the result above, andwithm = s+3, for s > d/2,
we can achieve an error of order n−s/d+1/2,which translates to ε = O(n−m/d+3/d+1/2)
as soon as m > d/2 + 3. We pay the additional exponent 3 since we construct the
candidate matrix representing the solution by requiring that each component of the
Hessian of f , which ism−2 times differentiable belongs to the RKHS. This accounts
for the 2 term, the last 1 is paid simply since s can be not integer. The rate for the class
of functionsCm(Ω) is sub-optimal by an exponent 1/2+3/d. In the following remark,
we are going to show that our algorithm achieves nearly-optimal convergence rates
when the function to optimize is in a Sobolev space. Denote by Ws

2 (Ω) the Sobolev
space of squared-integrable functions of smoothness s > 0, i.e., the space of functions
whose weak derivatives up to order s are square-integrable on Ω , (see [11]).

Remark 1 (Nearly optimal rates for Sobolev spaces.). IfΩ satisfiesAssumption 1(a),
f satisfies Assumption 1(b) and f ∈ Ws

2 (Ω), with s > d/2 + 3, then Algorithm 1
with Sobolev kernel of smoothnes s − 3 achieves the convergence rate

O
(
n−s/d+1/2+3/d

)
,
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modulo logarithmic factors, as proven in Theorem 6. When d is large, then the error
exponent is asymptotically optimal, since the term 3/d becomes negligible, leading
to the optimal exponent −s/d + 1/2 (see, e.g., [4, Prop. 1.3.11]).

Finding the global minimizer. In Sect. 7 we derive an extension of the problem in
Eq. (2.4), with the goal of finding the global minimizer. Under the additional assump-
tion that the minimizer is unique, we obtain a similar rate as Theorem 5 for the
localization of the global minimizer.

Warm restart scheme for linear rates. Applying a simple warm restart scheme, we
prove, in Sect. 7.2, that when f has a unique global minimum, then it is possible to
achieve it with error ε, with a number of observations that is only logarithmic in ε

n = O(Cd,m log(1/ε)),

for some constant Cd,m that can be exponential in d (note that the added assumption
of unique minimizer makes this result not contradict the lower bound in ε−d/m).

Relationship to polynomial optimization. When f is a polynomial of degree 2r ,
then it is natural to consider φ(x) composed of all monomials of degree less than
r , leading to a space H of dimension

(d+r
r

)
. All polynomials can be represented as

f (x) = c + φ(x)�Aφ(x) for some symmetric matrix A. When A � 0, by using its
eigendecomposition, we can see that the polynomial x 
→ φ(x)�Aφ(x) is a sum-of-
squares polynomial.

However, in general A may not be positive semi-definite, as non-negative polyno-
mials are not all sum-of-squares.Moreover, evenwhen there exists amatrix A � 0, the
corresponding c may not be the minimum of f (it only needs to be a lower bound)—
see, e.g., [6] and references therein.

If f (x)− f∗ is a sum of squares, then, with λ = 0 and n = (d+2r2r

)
points (to ensure

that subsampling is exact), we exactly get the minimum of f , as we are solving exactly
the usual optimization problem.

When f (x) − f∗ is not a sum of squares, then a variety of hierarchies have been
designed when optimization is performed on a compact constraint set described with
polynomial inequalities (such as taking an 	2-ball for Ω), that augment the prob-
lem dimensionality to reach global convergence [6–8]. In Sect. 9, we show how our
framework fits with one these hierarchies, and also can provide computational gains.

Note that our framework, by looking directly at an infinite-dimensional space cir-
cumvents the need for hierarchies, and solves a single optimization problem. The
difficulty is that it requires sampling. Moreover by using only kernel evaluations,
we circumvent the explicit construction of a basis for H, which is computationally
cumbersome when d grows.
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Organization of the paper. The paper is organized as follows: in Sect. 3, we
present the kernel setting our paper relies on; then, in Sect. 4, we analyze the infinite-
dimensional problem and show its equivalence with global minimization. Then, in
Sect. 5, we present our theoretical guarantee for the finite-dimensional algorithm,
as summarized in Theorem 1. In Sect. 6 we present the dual algorithm based on
self-concordant barriers and the damped Newton algorithm. In Sect. 7, we present
our extension to find the global minimizer, while in Sect. 8, we provide certificates
of optimality for potentially inexactly solved problems. In Sect. 9, we discuss fur-
ther relationships with polynomial hierarchies, and provide illustrative experiments
in Sect. 10. We conclude in Sect. 11 with a discussion opening up to many future
problems.

3 Setting

In this section, we first introduce some definitions and notation about reproducing
Kernel Hilbert spaces in Sect. 3.1 (for more details, see [15, 16]), and present our
detailed assumptions in Sect. 3.2. In Sect. 4 we show how our infinite-dimensional
sum-of-squares representation can be built, and in Sect. 5 we provide guarantees on
subsampling.

3.1 Definitions and notation

In this section we denote by u · v, a ◦ v respectively the pointwise multiplication
between the functions u and v, and the composition between the functions a and v.
We denote by N the set of natural numbers including 0, by N+ the set N+ = N \ {0}
and [n] the set {1, . . . , n} for n ∈ N+. We will always consider R

d endowed with
the Euclidean norm ‖ · ‖ if not specified otherwise. Moreover we denote by Br (z)
the open ball Br (z) = {x ∈ R

d | ‖x − z‖ < r}. Let Ω ⊆ R
d be an open set. Let

α ∈ N
d . We introduce the following multi-index notation |α| = α1 + · · · + αd and

∂α
x = ∂ |α|

∂x
α1
1 ...∂x

αd
d

[11]. For m ∈ N, and Ω an open set of R
d , denote by Cm(Ω) the

set of m-times differentiable functions on Ω with continuous m-th derivatives. For
any function u defined on a superset of Ω and m times differentiable on Ω , define the
following semi norm.

|u|Ω,m = max|α|=m sup
x∈Ω

∣∣∂αu(x)
∣∣. (3.1)

Positive definitematrices andoperators. LetH be aHilbert space, endowedwith the
inner product 〈·, ·〉. Let A : H→ H be a linear operator and denote by A∗ the adjoint
operator, by Tr(A) the trace of A and by ‖ · ‖F the Hilbert-Schmidt norm ‖A‖2F =
Tr(A∗A). We always endowR

p with the standard inner product x�y =∑p
i=1 xi yi for

any x, y ∈ R
p. In the caseH = R

p, with the standard inner product, then A ∈ R
p×p

is a matrix and the Hilbert-Schmidt norm corresponds to the Frobenius norm. We say
that A � 0 or A is a positive operator (positive matrix if H is finite dimensional),
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when A is bounded, self-adjoint, and 〈u, Au〉 ≥ 0, ∀u ∈ H. We denote by S+(H)

the space of positive operators on H. Moreover, we denote by A � 0, or A strictly
positive operator, the case 〈u, Au〉 > 0 for all u ∈ H such that u �= 0.

Kernels and reproducing kernel Hilbert spaces. For this section we refer to [15–17],
for more details (see also Appendix A.3). Let Ω be a set. A function k : Ω ×Ω → R

is called a positive definite kernel if all matrices of pairwise evaluations are positive
semi-definite, that is, if it satisfies the following equation

n∑

i, j=1
αiα j k(xi , x j ) ≥ 0, ∀n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ Ω.

Given a kernel k, the reproducing kernel Hilbert space (RKHS)H, with the associated
inner product 〈·, ·〉, is a space of real functions with domain Ω , with the following
properties.

(a) The function kx = k(x, ·) satisfies kx ∈ H for any x ∈ Ω .
(b) The inner product satisfies 〈 f , kx 〉 = f (x) for all f ∈ H, x ∈ Ω . In particular

〈kx ′ , kx 〉 = k(x ′, x) for all x, x ′ ∈ Ω .

In other words, function evaluations are uniformly bounded and continuous linear
forms and the kx are the evaluation functionals. The norm associated to H is the one
induced by the inner product, i.e., ‖ f ‖2 = 〈 f , f 〉. We remark that given a kernel on
Ω there exists a unique associated RKHS on Ω [10]. Moreover, the kernel admits a
characterization in terms of a feature map φ,

φ : Ω → H, defined as φ(x) = k(x, ·) = kx , ∀x ∈ Ω.

Indeed according to the point (b) above, we have k(x, x ′) = 〈φ(x), φ(x ′)
〉
for all

x, x ′ ∈ Ω . We will conclude the section with an example of RKHS that will be useful
in the rest of the paper.

Example 1 (Sobolev kernel [18]). Let s > d/2, with d ∈ N+, and Ω be a bounded
open set. Let

ks(x, x
′) = cs‖x − x ′‖s−d/2Ks−d/2(‖x − x ′‖), ∀x, x ′ ∈ Ω, (3.2)

whereK : R+ → R the Bessel function of the second kind (see, e.g., 5.10 in [18]) and

cs = 21+d/2−s
Γ (s−d/2) . The constant cs is chosen such that ks(x, x) = 1 for any x ∈ Ω . In the

particular case of s = d/2+1/2, we have k(x, x ′) = exp(−‖x−x ′‖). Note that a scale
factor is often added as k(x, x ′) = exp(−‖x − x ′‖/σ) in this last example. In such
case, all bounds that we derive in this paper would then have extra factors proportional
to powers of σ . To conclude, when Ω has locally Lipschitz boundary (a sufficient
condition isAssumption 1(a)) thenH = Ws

2 (Ω), whereWs
2 (Ω) is the Sobolev space of

functions whose weak-derivatives up to order s are square-integrable [11]. Moreover,
in this case ‖ · ‖H is equivalent to ‖ · ‖Ws

2 (Ω).
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Reproducing kernel Hilbert spaces are classically used in fitting problems, such
as appearing in statistics and machine learning, because of function evaluations
f 
→ f (x) are bounded operators for any x , and optimization problems involv-
ing f only through function evaluations at a finite number of points x1, . . . , xn ,
and penalized with the norm ‖ f ‖, can be solved by looking only a f of the form
f (x) = ∑n

i=1 αi k(x, xi ) [15, 16]. We will use an extension of this classical “repre-
senter theorem” to operators and spectral norms in Sect. 5.

3.2 Precise assumptions on reproducing kernel Hilbert space

On top ofAssumption 1 (made on the function f and the setΩ), wemake the following
assumptions on the space H and the associated kernel k.

Assumption 2 (Properties of the spaceH). Given a bounded open set Ω ⊂ R
d , letH

be a space of functions on Ω with norm ‖ · ‖H, satisfying the following conditions

(a) w|Ω ∈ H, ∀w ∈ C∞(Rd). Moreover there exists M ≥ 1 such that

‖u · v‖H ≤ M‖u‖H‖v‖H, ∀u, v ∈ H.

(b) a ◦ v ∈ H, for any a ∈ C∞(Rp), v = (v1, . . . , vp), v j ∈ H, j ∈ [p].
(c) Let z ∈ R

d , r > 0 s.t. the ball Br (z) is in Ω . For any u ∈ H, there exists gr ,z ∈ H
s.t.

gr ,z(x) =
∫ 1

0
(1− t)u(z + t(x − z))dt, ∀x ∈ Br (z).

(d) H is a RKHS with associated kernel k. For some m ∈ N+ and some Dm ≥ 1, the
kernel k satisfies

max|α|=m sup
x,y∈Ω

|∂α
x ∂α

y k(x, y)| ≤ D2
m < ∞.

Assumptions 2(a) to 2(c) above require essentially that functions in H (a) can be
multiplied by other functions in H, or by infinitely smooth functions, and still be in
H; (b) that can be composed with infinitely smooth functions, or (c) integrated, and
still be in H. Moreover Assumption 2(d) requires that H is a RKHS with a kernel
that is m-times differentiable. An interesting consequence of Assumption 2(d) is the
following remark (for more details, see, e.g., [17, Corollary 4.36]).

Remark 2 Assumption 2(d) guarantees that H ⊆ Cm(Ω) and |u|Ω,m ≤ Dm‖u‖H.

Note that Assumptions 2(a) to 2(c) are the only required in Sect. 4 to prove the
crucial decomposition in Theorem 2 and are satisfied by notable spaces (that are not
necessarily RKHS) like Cs(Ω) or Sobolev spaces Ws

p(Ω) with s > d/p and p ∈
[1,∞]. Instead, Assumption 2(d) is required for the analysis of the finite-dimensional
problem and in particular Theorems 4 and 5. In the following proposition we show
that Ws

2 (Ω) with s > d/2 and Ω satisfying Assumption 1(a) satisfy the whole of
Assumption 2.
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Proposition 1 (Sobolev kernels satisfy Assumption 2). Let Ω be a bounded open set
of R

d . The Sobolev kernel with s > d/2 recalled in Example 1 satisfies Assumption 2
for any m ∈ N+,m < s − d

2 and

M = (2π)d/22s+1/2, Dm = (2π)d/4

√
Γ (m + d/2)Γ (s − d/2− m)

Γ (s − d/2)Γ (d/2)
.

The proof of proposition above is in Appendix D.2. We make a last assumption
regarding the differentiability of f , namely that f and its second-derivatives are inH.

Assumption 3 (Analytic properties of f ). The function f satisfies f |Ω ∈ C2(Ω)∩H
and ∂2 f

∂xi ∂x j
|Ω ∈ H for all i, j ∈ [d].

4 Equivalence of the infinite-dimensional problem

In Theorem 2 and Corollary 1, we provide a representation of f − f∗ in terms of
an infinite-dimensional, but finite-rank, positive operator, under basic geometric con-
ditions on f and algebraic properties of H. In Theorem 3 we use this operator to
prove that Eq. (2.2) achieves the global minimum of f . In this section we analyze
the conditions under which the problem in (2.2) has the same solution as the one in
Eq. (2.1).

The proof follows by explicitly constructing a bounded positive operator A∗ (which
will have finite trace) that satisfy f (x) − f∗ = 〈φ(x), A∗φ(x)〉 for all x ∈ Ω . Note
that, by construction f − f∗ is a non-negative function. If w := √ f − f∗ ∈ H then
A∗ = w ⊗ w would suffice. However, denoting by ζ ∈ Ω a global minimizer, note
that f (ζ )− f∗ = 0 and the smoothness of

√
f − f∗ may degrade around ζ , making√

f − f∗ /∈ H even if f − f∗ ∈ H.
Here we follow a different approach. In Lemma 1 we provide a decomposition that

represents the function f − f∗ locally around each global optimum using the fact
that it is locally strongly convex around the minimizers. In the proof of Theorem 2
we provide a decomposition of the function far from the optimal points; we then glue
these different decompositions via bump functions.

Lemma 1 Let H be a space of functions on Ω that satisfy Assumptions 2(a) to 2(c).
Let ζ ∈ Ω and r , γ > 0. Let Br (ζ ) ⊂ Ω be a ball centered in ζ of radius r and

g ∈ C2(Ω) satisfy g(ζ ) = 0, ∇2g(x) � γ I for x ∈ Br (ζ ) and ∂2

∂xi ∂x j
g ∈ H for

i, j ∈ [d]. Then, there exists w j ∈ H, j ∈ [d] such that

g(x) =
d∑

j=1
w j (x)

2, ∀x ∈ Br (ζ ). (4.1)

Proof Let x ∈ Br (ζ ) and consider the function h(t) = g(ζ + t(x − ζ )) on [0, 1].
Note that h(0) = g(ζ ) and h(1) = g(x). Taking the Taylor expansion of h of order
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1, we have h(1) = h(0) + h′(0) + ∫ 10 (1 − t)h′′(t)dt , with h(0) = g(ζ ), h′(0) =
(x − ζ )�∇g(ζ ) and h′′(t) = (x − ζ )�∇2g(ζ + t(x − ζ ))(x − ζ ). Since g(ζ ) = 0
by construction and ∇g(ζ ) = 0 since ζ is a local minimizer of g, we have h(0) =
h′(0) = 0 leading to

g(x) = (x − ζ )�R(x)(x − ζ ), R(x) =
∫ 1

0
(1− t)∇2g(ζ + t(x − ζ ))dt . (4.2)

Note that for x ∈ Br (ζ ) we have ∇2g(x) � γ I and so R(x) � γ I . In par-
ticular, this implies that for any x ∈ Br (ζ ), S(x) = √

R(x) is well defined
(
√· : S+(Rd) → S+(Rd) is the spectral square root, where for any M ∈ S+(Rd) and
any eigen-decomposition M =∑d

j=1 λ j u j u�j ,
√
M =∑d

j=1
√

λ j u j u�j ). Thus,

∀x ∈ Br (ζ ), g(x) = (x − ζ )�S(x)S(x)(x − ζ ) =
d∑

i=1

(
e�i S(x)(x − ζ )

)2
.

The following steps prove the existence ofwi ∈ H such thatwi |Br (ζ ) = e�i S(·)(·−ζ ).
Let (e1, ..., ed) be the canonical basis ofRd andS(Rd) be the set of symmetricmatrices
on R

d endowed with Frobenius norm, in the rest of the proof we identify it with the
isometric space R

d(d+1)/2 (corresponding of taking the upper triangular part of the
matrix and reshaping it in form of a vector).
Step 1. There exists a function R : Ω → S(Rd), such that

∀i, j ∈ [d], e�i Re j ∈ H and R|Br (ζ ) = R.

This is a direct consequence of the fact that ∂2

∂xi ∂x j
g ∈ H for all i ≤ j ∈ [d], of

Assumption 2(c) and of the definition of R in Eq. (4.2).
Step 2. There exists a function S : Ω → S(Rd) such that

∀i, j ∈ [d], e�i Se j ∈ H and ∀x ∈ Br (ζ ), S(x) = √R(x).

Let τ := supx∈Br (ζ ) ‖R(x)‖op = ‖R(x)‖op, which is well defined because R is
continuous since g ∈ C2(Ω). Define the compact set K = {T ∈ S(Rd) | γ I  T  
τ I } and the open setU = {T ∈ S(Rd) | γ

2 I ≺ T ≺ 2τ I }. Note that K ⊂ U ⊂ S(Rd).
Fix i, j ∈ [d] and consider the function θi, j : U → R defined by θi, j (M) =

e�i
√
Mej . Since the square root

√· : S+(Rd) → S+(Rd) is infinitely differentiable
(see e.g. the explicit construction in [19] Thm. 1.1) and U ⊂ S+(Rd) then θi, j is
infinitely differentiable on U , i.e., θi, j ∈ C∞(U ). By Proposition 7, since K is a
compact set in U , there exists θ i, j ∈ C∞0 (S(Rd)) such that ∀T ∈ K , θ i, j (T ) =
θi, j (T ).

Define S(x) = ∑i, j∈[d] (θ i, j ◦ R)(x)ei e�j for any x ∈ Ω . Applying Assump-

tion 2(b), e�i Se j = θ i, j ◦ R ∈ H since the Rk,l ∈ H, k, l ∈ [d] and θ i, j is in
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C∞0 (S(Rd)). Moreover, by construction, for any x ∈ Br (ζ ), we have R(x) = R(x) ∈
K and so

Si, j (x) = θ i, j (R(x)) = θi, j (R(x)) = e�i
√
R(x)e j .

Note that here, we have applied Proposition 7 and Assumption 2(b) to S(Rd) and not
toR

d(d+1)/2; this can be made formal by using the linear isomorphism between S(Rd)

endowed with the Frobenius norm and R
d(d+1)/2 endowed with the Euclidean norm.

Step 3. There exists a function h = (h j ) j∈[d] : Ω → R
d such that

∀ j ∈ [d], h j ∈ H and ∀x ∈ Br (ζ ), h(x) = x − ζ.

Fix j ∈ [n]. Define Br (ζ ) = K ⊂ U = B2r (ζ ) and apply Proposition 7 to x ∈
U 
→ e�j (x − ζ ) to get h j ∈ C∞0 (Rd) which coincides with e�j (· − ζ ) on K hence

on Br (ζ ). Applying Assumption 2(a), the restriction h j = h j |Ω is in H, and hence
h =∑ j∈[d] h j e j satisfies the desired property.

Step 4. The wi = e�i S h, i ∈ [d] have the desired property.
It is clear that the wi are in H as a linear combination of products of functions in

H (see Assumption 2(a)), since wi =∑ j∈[d] Si j (x)h j (x) for any x ∈ Ω . Moreover,

∑

i∈[d]
w2
i = h

�
S
�
(

d∑

i=1
ei e

�
i

)

S h = h
�
S
2
h.

Using the previous points,

∀x ∈ Br (ζ ),
∑

i∈[d]
w2
i (x) = h

�
(x)S

2
(x)h(x) = (x − ζ )�R(x)(x − ζ ) = g(x).

"#
Now we are going to use the local representations provided by the lemma above to

build a global representation in terms of a finite-rank positive operator. Indeed far from
the global optima the function f − f∗ is strictly positive and so we can take a smooth
extension of the square root to represent it and glue it with the local representations
around the global optima via bump functions as follows.

Theorem 2 Let Ω be a bounded open set and letH be a space of functions on Ω that
satisfy Assumptions 2(a) to 2(c). Let f satisfy Assumptions 1(b) and 3. Then there exist
w1, . . . , wq ∈ H with q ≤ dp + 1 and p ∈ N+ the number of minimizers in Ω , such
that

f (x)− f∗ =
∑

j∈[q]
w j (x)

2, ∀ x ∈ Ω. (4.3)
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Proof Let Z = {ζ1, . . . , ζp}, p ∈ N+ be the non-empty set of global minima of f ,
according to Assumption 1(b). Denote by f∗ = minx∈Ω f (x) the global minimum
of f , and by g : Ω → R the function g = f |Ω − f∗1|Ω where 1 is the function
1(x) = 1 for any x ∈ R

d . Assumption 3 implies that ∇2g = ∇2 f |Ω is continuous,

an that ∂2g
∂xi ∂x j

∈ H for any i, j ∈ [d]. Moreover, g ∈ H. Indeed, by construction f∗1
is in C∞(Rd), and sinceH satisfies Assumption 2(a), f∗1|Ω ∈ H. Since f |Ω ∈ H by
Assumption 3, then g ∈ H.
Step 1. There exists r > 0 and α > 0 such that (i) the Br (ζl), l ∈ [p] are included in
Ω and (ii) for any x ∈⋃l∈[p] Br (ζl), it holds ∇2g(x) � α I .

By Assumption 1(b), for all ζ ∈ Z , ∇2g(ζ ) � 0. Since ∇2g is continuous, Z is a
finite set, and Ω is an open set, there exists a radius r > 0 and α > 0 such that for all
l ∈ [p], Br (ζl) ⊂ Ω and ∇2g|Br (ζl ) � α I . For the rest of the proof, fix r , α satisfying
this property. For any X ⊂ Ω denote with 1X the indicator function of a X in Ω . We
define χ0 = 1Ω\⋃l∈[p] Br/2(ζl ), and χl = 1Br (ζl ), l ∈ [p].
Step 2. There exists w0 ∈ H s.t. w2

0χ0 = gχ0.
Ω is bounded and by Assumption 1(b), the set of global minimizers of f included

inΩ is finite and there is no mimimizer of f on the boundary, i.e., there existsm1 > 0
and a compact K ⊂ Ω such that ∀x ∈ Ω \ K , g(x) ≥ m1.

Moreover, f has no global optima on the compact K \ ⋃ζ∈Z Br/2(ζ ) since
the set of global optima is Z , hence the existence of m2 > 0 such that ∀x ∈
K \ ⋃l∈[p] Br/2(ζl), g(x) ≥ m2. Taking m = min(m1,m2), it holds ∀x ∈
Ω \⋃l∈[p] Br/2(ζl), g(x) ≥ m > 0. Since f ∈ C2(Ω), f is also bounded above on
Ω hence the existence of M > 0 such that g ≤ M . Thus

∀x ∈ Ω \
⋃

l∈[p]
Br/2(ζl), g(x) ∈ I ⊂ (m/2, 2M), I = [m, M].

Since
√· ∈ C∞((m/2, 2M)), (m/2, 2M) is an open subset of R and I is compact,

applying Proposition 7, there exists a smooth extension sI ∈ C∞0 (R) such that sI (t) =√
t for any t ∈ I . Now since g ∈ H and sI ∈ C∞0 (R), by Assumption 2(b), w0 :=

sI ◦ g ∈ H. Since ∀x ∈ Ω \⋃l∈[p] Br/2(ζl), g ∈ I , this shows gχ0 = w2
0χ0.

Step 3. For all l ∈ [p], there exists (wl, j ) j∈[d] ∈ Hd s.t. g(x)χl =∑d
j=1 w2

l, j χl .

This is an immediate consequence of Lemma 1 since ∇2g(x) � α I on Br (ζl).
Step 4. There exists bl ∈ C∞(Rd) s.t. bl = bl χl for all l ∈ {0, 1, . . . , p} and∑p

l=0 b2l = 1. This corresponds to Lemma 7, Appendix A.4 applied to the balls
Br (ζl), l ∈ [p].
Step 5. Using all the previous steps

g =
p∑

l=0
g b2l =

p∑

l=0
g(χl bl)

2 =
p∑

l=0
(χl g) (χlb

2
l )

= (χ0w
2
0) (χ0 b

2
0)+

p∑

l=1

⎛

⎝χl

d∑

j=1
w2
l, j

⎞

⎠ χl b
2
l
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= ([b0 χ0] w0)
2 +

p∑

l=1

d∑

j=1
([bl χl ] wl, j )

2 = (b0 w0)
2 +

p∑

l=1

d∑

j=1
(bl wl, j )

2.

Applying Assumption 2(a) to each function inside the squares in the previous
expressions yields the result. "#

A direct corollary of the theorem above is the existence of A∗ ∈ S+(H) whenH is
a reproducing kernel Hilbert space satisfying the assumptions of Theorem 2.

Corollary 1 Let k be a kernel whose associated RKHS H satisfies Assumptions 2(a)
to 2(c) and let f satisfy Assumptions 1(b) and 3, then there exists A∗ ∈ S+(H) with
rank(A∗) ≤ d|Z | + 1 such that f (x)− f ∗ = 〈φ(x), A∗φ(x)〉 for all x ∈ Ω .

Proof By Theorem 2 we know that if f satisfies Assumptions 1(b) and 3 w.r.t. a
space H that satisfies Assumptions 2(a) to 2(c), there exists w1, . . . , wq ∈ H with
q ≤ d|Z | + 1 such that f (x) − f ∗ = ∑ j∈[q]w2

j (x) for any x ∈ Ω . Since H is a
reproducing kernel Hilbert space, for any h ∈ H, x ∈ Ω we have h(x) = 〈φ(x), h〉H.
Moreover, by the properties of the outer product in Hilbert spaces, for any h, v ∈ H,
it holds (〈h, v〉H)2 = 〈h, (v ⊗H v)h〉.

Thus, for any x ∈ Ω, j ∈ [q], it holds w j (x)2 =
〈
φ(x), (w j ⊗ w j )φ(x)

〉
and

hence

∀x ∈ Ω, f (x)− f ∗ = 〈φ(x), A∗φ(x)〉 , A∗ =
∑

j∈[q]
w j ⊗ w j .

"#
The following corollary corresponds to the application of Theorem 2 where

Assumptions 2(a) to 2(c) are satisfied by requiring only that f ∈ Cs+2(Rd) and shows
that any non-negative f ∈ Cs+2(Rd) satisfying the geometric conditions admits a
sum-of-squares decomposition (more details in Appendix G.2).

Corollary 2 Let Ω be a bounded open set and f ∈ Cs+2(Rd), s ∈ N, satisfying
Assumption 1(b). Then there exist w1, . . . , wp ∈ Cs(Rd), p ∈ N+, such that

∀x ∈ Ω, f (x)− f∗ =
∑

j∈[p]
w2

j (x).

To conclude the section we prove the problem in Eq. (2.2) admits a maximizer
whose non-negative operator is of rank at most d|Z | + 1.

Theorem 3 Let Ω ⊂ R
d be an open set, k be a kernel, H the associated RKHS, and

f : R
d → R. Under Assumptions 1 to 3, the problem in Eq. (2.2) admits an optimal

solution (c∗, A∗) with c∗ = f∗, and A∗ a positive operator on H with rank at most
d|Z | + 1.
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Proof Let p0 be the maximum of Eq. (2.1). Since A � 0 implies 〈φ(x), Aφ(x)〉 ≥ 0
for all x ∈ Ω , the problem in Eq. (2.1) is a relaxation of Eq. (2.2), where the constraint
f (x) − c = 〈φ(x), Aφ(x)〉 is substituted by f (x) − c ≥ 0,∀x ∈ Ω . Then p0 ≥ p∗
if a maximum p∗ exists for Eq. (2.2). Moreover if there exists A that satisfies the
constraints in Eq. (2.2) for the value c∗ = f∗, then p0 = p∗ and (c∗, A) is a maximizer
of Eq. (2.2). The proof is concluded by applyingCorollary 1 that shows that there exists
A satisfying the constraints in Eq. (2.2) for the value c = f∗. "#

In Corollary 1 and Theorem 3 we proved the existence of an infinite-dimensional
trace-class positive operator A∗ that satisfies 〈φ(x), A∗φ(x)〉 = f (x) − f∗ for any
x ∈ Ω andmaximizing Eq. (2.2). The proof is quite general, requiring some geometric
properties on f , the fact that f and its second derivatives belong to H and some
algebraic properties of the space H, in particular to be closed to multiplication with
a C∞ function, to integration, and to composition with a C∞ map. The generality of
the proof does not allow to derive an easy characterization of the trace of A∗.

5 Properties of the finite-dimensional problem

In the previous section we proved that there exists a finite rank positive operator A∗
minimizingEq. (2.2). In this sectionwe study the effect of the discretization ofEq. (2.2)
on a given a set of distinct points X̂ = {x1, . . . , xn}. First, we derive Theorem 4 which
is fundamental to prove Theorem 5, and is our main technical result (we believe it
can have a broader impact beyond the use in this paper as discussed in Sect. 11).
Given a smooth function g on Ω , in Theorem 4 we prove that if there exists a matrix
B ∈ S+(Rn) such that g(xi ) = Φ�

i BΦi for i ∈ [n] (the vectors Φ j ∈ R
n are

defined before Eq. (2.4)), then the inequality g(x) ≥ −ε holds for any x ∈ Ω for an
ε depending on the smoothness of the kernel, the smoothness of g and how well the
points in X̂ cover Ω . We denote by h X̂ ,Ω the fill distance [18],

h X̂ ,Ω = sup
x∈Ω

min
i∈[n] ‖x − xi‖, (5.1)

corresponding to the maximum distance between a point in Ω and the set X̂ . In
particular, if the kernel and g arem-times differentiable, Theorem 4 proves that g(x) ≥
−ε holds with ε = O(hm

X̂ ,Ω
) which is an improvement when m � 2 with respect

to standard discretization results that guarantee exponents of only 1 or 2. Then in
Lemma 3 we show that there exists a finite-dimensional positive definite matrix B ∈
S+(Rn) such that Tr(B) ≤ Tr(A∗) and Φ�

i BΦi = 〈φ(xi ), A∗φ(xi )〉 for all i ∈ [n].
Finally, in Theorem5,we combine Lemma 3with Theorem4, to show that the problem
in Eq. (2.4) provides a solution that is only O(hm

X̂ ,Ω
) distant from the solution of the

infinite dimensional problem in Eq. (2.2).
To start we recall some basic properties of Φi and φ(xi ), for i ∈ [n], already

sketched in Sect. 2. In particular, the next proposition shows that, by construction,
Φ�
i Φ j = φ(xi )�φ(x j ) for any i, j ∈ [n] and more generally that the map V that

maps f ∈ H 
→ R−�(〈φ(x1), f 〉 , . . . , 〈φ(xn), f 〉) ∈ R
n is a partial isometry and
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that Φi = Vφ(xi ). The map V will be crucial to characterize the properties of the
finite dimensional version of the operator A∗

Lemma 2 (Characterizing Φ j in terms of φ). Let k be a kernel satisfying Assump-
tion 2(a). There exists a linear operator V : H→ R

n such that

Φi = Vφ(xi ), ∀i ∈ [n].

Moreover V is a partial isometry: V V ∗ is the identity on R
n, P = V ∗V is a rank n

projection operator satisfying Pφ(xi ) = φ(xi ),∀i ∈ [n].

The proof of Proposition 2 is given in Appendix C.1 and is based on the fact that the
kernel matrix K is positive definite and invertible when k is universal [17], property
that is implied by Assumption 2(a), and that R is an invertible matrix that satisfies
K = R�R.

5.1 Uniform inequality from scattered constraints

In this section we derive Theorem 4. Here we want to guarantee that a function g
satisfies g(x) ≥ −ε on Ω , by imposing some constraints on g(xi ) for i ∈ [n]. If
we use the most natural discretization, that consists in the constraints g(xi ) ≥ 0, by
Lipschitzianity of g we can guarantee only ε = |g|Ω,1h X̂ ,Ω (recall the definition of
| · |Ω,m form ∈ N from Eq. (3.1)). In the case of equality constraints, instead, standard
results for functions with scattered zeros [18] (recalled in Appendix B) guarantee for
all x ∈ Ω

|u(x)| ≤ ε, ε = Chm
X̂ ,Ω

|u|Ω,m,

when u is m-times differentiable and satisfies u(xi ) = 0 for any i ∈ [n] (see [18, 20]
or Theorem 11 for more details). Thus, in this case the discretization leverages the
degree of smoothness of u, requiring much less points to achieve a given ε than in the
inequality case.

The goal here is to derive a guarantee for inequality constraints that is as strong
as the one for the equality constraints. In particular, given a function g defined on Ω

and that satisfies g(xi )−Φi BΦi = 0 on X̂ , with B � 0, we first derive a function u
defined on the whole Ω and matching g(xi )−Φi BΦi on X̂ . This is possible since we
know that Φi = Vφ(xi ), by Proposition 2, then u(x) = g(x)− 〈φ(x), V ∗BV φ(x)〉
satisfies u(xi ) = g(xi ) − Φi BΦi for any i ∈ [n]. Finally, we apply the results for
functions with scattered zeros on u. The desired result is obtained by noting that, since
〈φ(x), V ∗BV φ(x)〉 ≥ 0 for any x ∈ Ω , by construction, then for all x ∈ Ω

−g(x) ≤ −g(x)+ 〈φ(x), V ∗BV φ(x)
〉 ≤ |g(x)− 〈φ(x), V ∗BV φ(x)

〉 |
= |u(x)| ≤ ε,
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i.e., g(x) ≥ −ε for all x ∈ Ω with ε = Chm
X̂ ,Ω

|u|Ω,m . In the following theorem
we provide a slightly more general result, that allows for |g(xi )− Φi BΦi | ≤ τ with
τ ≥ 0.

Theorem 4 (Uniform inequality from scattered constraints). Let Ω satisfy Assump-
tions 1(a) for some r > 0. Let k be a kernel satisfying Assumptions 2(a) and
2(d) for some m ∈ N+. Let X̂ = {x1, . . . , xn} ⊂ Ω with n ∈ N+ such that
h X̂ ,Ω ≤ r min(1, 1

18(m−1)2 ). Let g ∈ Cm(Ω) and assume there exists B ∈ S+(Rn)

and τ ≥ 0 such that

|g(xi )−Φ�
i BΦi | ≤ τ, ∀i ∈ [n], (5.2)

where the Φi ’s are defined in Sect. 2. The following statement holds:

g(x) ≥ −(ε + 2τ) ∀x ∈ Ω, where ε = Chm
X̂ ,Ω

, (5.3)

and C = C0(|g|Ω,m +MDmTr(B)) with C0 = 3max(
√
d,3
√
2d(m−1))2m
m! . The constants

m,M,Dm, defined in Assumptions 2(a) and 2(d), do not depend on n, X̂ , h X̂ ,Ω, B or
g.

Proof Let the partial isometry V : H → R
n and the projection operator P = V ∗V

be defined as in Proposition 2. Given B ∈ S+(Rn) satisfying Eq. (5.2), define the
operator A ∈ S+(H) as A = V ∗BV and the functions u, rA : Ω → R as follows

rA(x) = 〈φ(x), Aφ(x)〉 , u(x) = g(x)− rA(x), ∀x ∈ Ω.

Since Φi = Vφ(xi ) for all i ∈ [n], then for all i ∈ [n]:

rA(xi ) =
〈
φ(xi ), V

∗BVφ(xi )
〉 = (Vφ(xi ))

�B(Vφ(xi )) = Φ�
i BΦi ,

and hence u(xi ) = g(xi )−Φ�
i BΦi . Thus, |u(xi )| ≤ τ for any i ∈ [n]. This allows to

apply one of the classical results on functions with scattered zeros [18, 20] to bound
supx∈Ω |u(x)|, which we derived again in Theorem 11 to obtain explicit constants.
Since we have assumed h X̂ ,Ω ≤ r/max(1, 18(m − 1)2), applying Theorem 11, the
following holds

sup
x∈Ω

|u(x)| ≤ 2τ + ε, ε = c Rm(u) hm
X̂ ,Ω

,

where c = 3max(1, 18(m − 1)2)m and Rm(v) =∑|α|=m 1
α! supx∈Ω |∂αv(x)| for any

v ∈ Cm(Ω) using the multi-index notation (recalled in Sect. 3.1). Since rA(x) =
〈φ(x), Aφ(x)〉 ≥ 0 for any x ∈ Ω as A ∈ S+(H), it holds :

g(x) ≥ g(x)− rA(x) = u(x) ≥ −|u(x)| ≥ −(2τ + ε), ∀x ∈ Ω. (5.4)
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The last step is bounding Rm(u). Recall the definition of | · |Ω,m from Eq. (3.1). First,
note that A = V ∗BV is finite rank (hence trace-class). Applying the cyclicity of the
trace and the fact that VV ∗ is the identity on R

n , it holds

Tr(A) = Tr(V ∗BV ) = Tr(BVV ∗) = Tr(B).

Since k satisfies Assumption 2(a), by Lemma 9, rA ∈ H and ‖rA‖H ≤ MTr(A) =
MTr(B) where M is fixed in Assumption 2(a). Moreover, since the kernel k satisfies
Assumption 2(d) with m and Dm , then |v|Ω,m ≤ Dm‖v‖H, for any v ∈ H as recalled
in Remark 2. In particular, this implies |rA|Ω,m ≤ Dm‖rA‖H ≤ DmMTr(B). To
conclude, note that, by the multinomial theorem,

Rm(u) =
∑

|α|=m

1

α! supx∈Ω

∣∣∂αu(x)
∣∣ ≤

∑

|α|=m

1

α! |u|Ω,m = dm

m! |u|Ω,m .

Since |u|Ω,m ≤ |g|Ω,m + |rA|Ω,m , combining all the previous bounds, it holds

ε ≤ C0 (|g|Ω,m + DmMTr(B)) hm
X̂ ,Ω

, C0 = 3
dm max(1, 18(m − 1)2)m

m! .

The proof is concluded by bounding ε in Eq. (5.4) with the inequality above. "#
In the theorem above we used a domain satisfying Assumption 1(a) and a version of

a bound for functions with scattered zeros (that we derived in Theorem 11 following
the analysis in [18]), to have explicit and relatively small constants. However, by using
different bounds for functions with scattered zeros, we can obtain the same result as
Theorem4, butwith different assumptions onΩ (anddifferent constants). For example,
we can use Corollary 6.4 in [20] to obtain a result that holds for Ω = [−1, 1]d or
Theorem 11.32 with p = q = ∞,m = 0 in [18] to obtain a result that holds for Ω

with locally Lipschitz-continuous boundary.

5.2 Convergence properties of the finite-dimensional problem

Now we use Theorem 4 to bound the error of Eq. (2.4). First, to apply Theorem 4 we
need to prove the existence of at least one finite-dimensional B � 0 that satisfies the
constraints of Eq. (2.4) and such that the trace of B is independent of n and h X̂ ,Ω .
This is possible since we proved in Theorem 3 that there exists at least one finite
rank operator A that solves Eq. (2.2) and thus satisfies its constraints, of which the
ones in Eq. (2.4) constitute a subset. In the next lemma we construct B ∈ S+(Rn),
such that 〈φ(xi ), Aφ(xi )〉 = Φ�

i BΦi . In particular, B = V A∗V ∗ = R−�CR−1,
with Ci, j =

〈
φ(xi ), A∗φ(x j )

〉
for i, j ∈ [n], where A∗ is one solution of Eq. (2.2)

with minimum trace-norm, since the bound in Theorem 4 depends on the trace of the
resulting matrix.

Lemma 3 Let Ω be an open set and {x1, . . . , xn} ⊂ Ω with n ∈ N+. Let g : Ω → R

and k be a kernel on Ω . Denote by H the associated RKHS and by φ the associated
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canonical feature map. Let A ∈ S+(H) satisfy Tr(A) < ∞ and 〈φ(x), Aφ(x)〉 =
g(x), x ∈ Ω . Then there exists B ∈ S+(Rn) such that Tr(B) ≤ Tr(A) and g(xi ) =
Φ�
i BΦi , ∀i ∈ [n].

Proof Let V : H→ R
n be the partial isometry defined in Proposition 2 and P = V ∗V

be the associated projection operator. Define B ∈ R
n×n as B = V AV ∗. Since by

Proposition 2, Φi = Vφ(xi ) and P satisfies Pφ(xi ) = φ(xi ) for i ∈ [n],

Φ�
i BΦi = (Vφ(xi ))

�(V AV ∗)(Vφ(xi )) =
〈
V ∗Vφ(xi ), AV

∗Vφ(xi )
〉

= 〈Pφ(xi ), APφ(xi )
〉 = 〈φ(xi ), Aφ(xi )〉 ∀i ∈ [n].

Note that B satisfies: (a) B ∈ S+(Rn), by construction; (b) the requirementΦ�
i BΦi =

g(xi ), indeed Φ�
i BΦi = 〈φ(xi ), Aφ(xi )〉 and 〈φ(x), Aφ(x)〉 = g(x) for any x ∈ Ω;

(c) Tr(B) ≤ Tr(A), indeed, by the cyclicity of the trace,

Tr(B) = Tr(V AV ∗) = Tr(AV ∗V ) = Tr(AP).

The proof is concluded by noting that, since A � 0 and ‖P‖op ≤ 1 because P is a
projection, then Tr(AP) ≤ ‖P‖opTr(|A|) = ‖P‖opTr(A) ≤ Tr(A). "#

Weare now ready to prove the convergence rates of Eq. (2.4) to the globalminimum.
We will use the bound for the inequality on scattered data that we derived Theorem 4
and the fact that there exists B � 0 that satisfies the constraints of Eq. (2.4) with a
trace bounded by Tr(A∗) as we proved in the lemma above (that is in turn bounded
by the the trace of the operator explicitly constructed in Theorem 2). The proof is
organized as follows. We will first show that Eq. (2.4) admits a minimizer, that we
denote by (ĉ, B̂). The existence of B allows to derive a lower-bound on ĉ− f∗. Using
Theorem 4 on the constraints of Eq. (2.4) and evaluating the resulting inequality in
one minimizer ζ of f allows to find an upper bound on ĉ − f∗ and an upper bound
for Tr(B̂).

Theorem 5 (Convergence rates of Eq. (2.4) to the global minimum). Let Ω be a set
satisfying Assumption 1(a) for some r > 0. Let n ∈ N+ and X̂ = {x1, . . . , xn} ⊂ Ω

with fill distance h X̂ ,Ω . Let k be a kernel and H the associated RKHS satisfying
Assumption 2 for some m ∈ N+. Let f be a function satisfying Assumption 1(b) and
Assumption 3 for H. The problem in Eq. (2.4) admits a solution. Let (ĉ, B̂) be any
solution of Eq. (2.4), for a given λ > 0. The following holds

|ĉ − f∗| ≤ 2η | f |Ω,m + λTr(A∗), η = C0 h
m
X̂ ,Ω

, (5.5)

whenh X̂ ,Ω ≤ r min(1, 1
18(m−1)2 )andλ ≥ 2MDmη.HereC0 = 3max(

√
d,3
√
2d(m−1))2m
m! ,

Dm,M are defined in Assumption 2 and A∗ is given by Theorem 3. Moreover, under
the same conditions

Tr(B̂) ≤ 2 Tr(A∗) + 2 η
λ
| f |Ω,m . (5.6)
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Proof We divide the proof in few steps.
Step 0. Problem Eq. (2.4) admits always a solution.
(a) On the one hand, c cannot be larger than c0 = mini∈[n] f (xi ), otherwise there
would be a point x j forwhich f (x j )−c < 0 and so the constraintΦ�

j BΦ j = f (x j )−c
would be violated, since does not exist any positive semi-definite matrix for which
Φ�

j BΦ j < 0.
(b) On the other, there exists an admissible point. Indeed let (c∗, A∗) be the solution
of Eq. (2.2) such that A∗ has minimum trace norm. By Theorem 3, we know that this
solution exists with c∗ = f∗, under Assumptions 1 to 3. Then, by Lemma 3 applied
to g(x) = f (x)− c∗ and A = A∗, given X̂ = {x1, . . . , xn} we know that there exists
B ∈ S+(Rn) satisfying Tr(B) ≤ Tr(A∗) such that the constraints of Eq. (2.4) are
satisfied for c = c∗. Then (c∗, B) is admissible for the problem in Eq. (2.4).
Thus, since there exists an admissible point for the constraints of Eq. (2.4) and its
functional cannot be larger than c0 without violating one constraint, the SDP problem
in Eq. (2.4) admits a solution (see [21]).
Step 1. Consequences of existence of A∗. Let (ĉ, B̂) be one minimizer of Eq. (2.4).
The existence of the admissible point (c∗, B) proven in the step above implies that

ĉ − λTr(B̂) ≥ c∗ − λTr(B) ≥ f∗ − λTr(A∗),

from which we derive,

λTr(B̂)− λTr(A∗) ≤ Δ, Δ := ĉ − f∗. (5.7)

Step 2. f |Ω ∈ Cm+2(Ω). Assumption 3 guarantees that f |Ω ∈ C2(Ω) and that for all
i, j ∈ [d], ∂

∂xi ∂x j
f |Ω ∈ H. Since under Assumption 2(d),H ⊂ Cm(Ω) by Remark 2,

we see that ∂
∂xi ∂x j

f |Ω ∈ Cm(Ω) for all i, j ∈ [d] and hence f |Ω ∈ Cm+2(Ω).

Step 3. L∞ bounddue to the scattered zeros.Let (ĉ, B̂) be oneminimizer of Eq. (2.4)
and define ĝ(x) = f (x) − ĉ for all x ∈ Ω . Note that ĝ(xi ) = Φ�

i B̂Φi for i ∈ [n].
Moreover, ĝ ∈ Cm(Ω) because f ∈ Cm(Ω) and ĉ is a constant. Considering that
h X̂ ,Ω ≤ r

max(1,18(m−1)2) , by assumption, then all the conditions in Theorem 4 are

satisfied for g = ĝ, τ = 0 and B = B̂. Applying Theorem 4, we obtain,

∀x ∈ Ω, f (x)− ĉ = ĝ(x) ≥ −η(|ĝ|Ω,m +MDmTr(B̂)), η = C0h
m
X̂ ,Ω

,

where C0 is defined in Theorem 4. Since the inequality above holds for any x ∈ Ω ,
by evaluating it in one global minimizer ζ ∈ Ω , we have f (ζ ) = f∗ and hence

−Δ = f∗ − ĉ = f (ζ )− ĉ = ĝ(ζ ) ≥ −η(|ĝ|Ω,m +MDmTr(B̂)).

Since ĝ = f − ĉ1Ω , and since for any m ∈ N+, |1Ω |Ω,m = 0, we have |ĝ|Ω,m ≤
| f |Ω,m + |1Ω |Ω,m = | f |Ω,m . Injecting this in the previous equation yields

Δ ≤ η| f |Ω,m + ηMDmTr(B̂). (5.8)
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Conclusion. Combining Eq. (5.8) with Eq. (5.7), and since λ ≥ 2MDmη by assump-
tion,

λ
2Tr(B̂) ≤ (λ−MDmη)Tr(B̂) ≤ η| f |Ω,m + λTr(A∗).

Note that Eq. (5.6) is obtained from the one above, by dividing by λ
2 . Finally the

inequality Eq. (5.5) is derived by bounding Δ from below as Δ ≥ −λTr(A∗) by
Eq. (5.7), since Tr(B̂) ≥ 0 by construction, and bounding it from above as

Δ ≤ 2η| f |Ω,m + λTr(A∗),

obtained by combining Eq. (5.8) with Eq. (5.6) and with the assumption MDmη ≤ λ
2 ."#

The result above holds for any kernel satisfying Assumption 2 and any function
f ,Ω satisfying the geometric conditions in Assumption 1 and with f ∈ C2(Ω) and
∂2 f

∂xi ∂x j
∈ H for i, j ∈ [d]. The latter requirement is quite easy to verify for example

whenH containsCs(Ω) and f ∈ Cs+2(Ω) for some s > 0 as in the case ofH being a
Sobolev spacewith s > d/2.Moreover the proposed result holds for any discretization
X̂ (random, or deterministic). We would like to conclude with the following remark
on the sufficiency of the assumptions on f .

Remark 3 (Sufficiency of Assumptions 1(b) and 3). Assumptions Assumptions 1(b)
and 3 are sufficient for Theorems 3 and 5 to hold. However, by inspecting their proof
it is clear that they hold by requiring only the existence of a trace-class operator
A∗ ∈ S+(H) such that f (x) − f∗ = 〈φ(x), A∗φ(x)〉 for any x ∈ Ω , where f∗ =
infx∈Ω f (x). Note that this is implied by Assumptions 1(b) and 3 via Corollary 1.

In the next subsection we are going to apply the theorem above to the specific
setting of Algorithm 1.

5.3 Result for Sobolev kernels and discussion

In this we are going to apply Theorem 5 to Algorithm 1 which corresponds toH be the
Sobolev space of smoothness s and the points X̂ selected independently and uniformly
at random. First, in the next lemma we bound in high probability the fill distance h X̂ ,Ω

with respect to the number of points n that we sample, i.e., the cardinality of X̂ .

Lemma 4 (Random sets of points). Let Ω ⊂ R
d be a bounded set with diameter

2R, for some R > 0, and satisfying Assumption 1(a) for a given r > 0. Let X̂ =
{x1, . . . , xn} independent points sampled from the uniform distribution on Ω . When
n ≥ 2( 6Rr )d

(
log 2

δ
+ 2d log 4R

r

)
, then the following holds with probability at least

1− δ:

h X̂ ,Ω ≤ 11R n−
1
d
(
log n

δ
+ d log 2R

r

)1/d
.
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The proof of Theorem 4 is in Appendix E.1 and is a simpler version (with explicit
constants) of more general results [22, Thm. 13.7]. In the next theorem we apply the
bound in the lemma above with the explicit constants for Sobolev spaces derived in
Proposition 1 to Theorem 5. The derivation of the theorem below is in Appendix E.2.

Theorem 6 (Convergence rates of Algorithm 1 to the global minimum). Let Ω ⊂ R
d

be a bounded set with diameter 2R, for some R > 0, and satisfying Assump-
tion 1(a) for a given r ∈ (0, R] (e.g. if Ω is a ball with radius R, then r = R).
Let s satisfying s > d/2. Let k be Sobolev kernel of smoothness s (see Exam-
ple 1). Assume that f satisfies Assumption 1(b) and that f |Ω ∈ Ws+2

2 (Ω). Let ĉ
be the result of Algorithm 1 executed with n ∈ N+ points chosen uniformly at ran-
dom in Ω and λ > 0. Let δ ∈ (0, 1]. When m ∈ N+ satisfies m < s − d/2 and

n ≥ max(4, 15(m − 1))2d
( R
r

)d (
2 log 2

δ
+ 4d log 20R m

r

)
choose any λ satisfying

λ ≥ n−
m
d
(
log 2dn

δ

)m
d RmCm,s,d ,

where Cm,s,d = 11mC0 max(1,MDm)with C0 defined in Theorem 5 andMDm defined
in Proposition 1. Note that Cm,s,d is explicitely bounded in the proof in terms of s,m, d.
Then, with probability at least 1− δ, the following holds

|ĉ − f∗| ≤ 3 λ
(
Tr(A∗)+ | f |Ω,m

)
.

Adirect consequenceof the theoremabove, already stated inRemark1, is the nearly-
optimality of Algorithm 1 for the cases of Sobolev functions. Indeed by applying
Theorem 6 with m equal to the largest integer strictly smaller than s − d/2 we have
that m ≥ s − d/2 − 1, and so Algorithm 1 achieves the global minimum with a

rate that is O(n− s
d+ 1

2+ 1
d ). The lower bounds from information based complexity state

that, by observing the functions in n points, it is not possible to find the minimum

with error smaller than n− s
d+ 1

2 for functions in Ws
2 (Ω) (see, e.g., [1], Prop. 1.3.11,

page 36). Since in Theorem 6 we assume f belongs to Ws+2
2 (Ω), the optimal rate

would be n− s
d+ 1

2− 2
d so we are a factor n3/d slower than the optimal rate. Note that this

factor is negligible if the function is very smooth, i.e., s � d, or d is very large. An
interesting corollary that corresponds to Theorem 1, can be derived considering that
Cs+2(Ω) ⊆ Ws+2

2 (Ω), since Ω is bounded.

6 Algorithm

We need to solve the following optimization problem:

max
B�0,c∈R c − λTr(B) such that f (xi )− c −Φ�

i BΦi = 0, ∀i ∈ [n].

This is a semi-definite programming problem with n constraints and a semi-definite
constraint of size n. It can thus be solvedwith precistion ε in time O(n3.5 log(1/ε)) and
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memory O(n2) by standard software packages [21]. However, to allow applications
to n = 1000 or more, and on parallel architectures, we provide a simple Newton
algorithm, which relies on penalization by a self-concordant barrier, that is, we aim to
solve

max
B�0,c∈R c − λTr(B)+ ε

n
log det(B) such that f (xi )− c −Φ�i BΦi = 0, ∀i ∈ [n],

for which we know that at optimum, the deviation with the optimal value is at most
ε [23, Sec. 4.4]. By standard Lagrangian duality, we get, with Φ ∈ R

n×n the matrix
with rows Φ1, . . . , Φn , so that ΦΦ� = K :

sup
B�0,c

inf
α∈Rn

c +
n∑

i=1
αi
(
f (xi )− c −Φ�i BΦi

)− λTr(B)+ ε

n
log det(B)

= inf
α∈Rn

n∑

i=1
αi f (xi )− ε

n
log det

(
Φ�Diag(α)Φ + λI

)+ ε

n
log

ε

n
− ε s. t. α�1n = 1.

With the barrier term, this thus defines a dual function H(α), and we get the following
gradient

H ′(α)i = fi − ε

n
Φ�i
(
Φ�Diag(α)Φ + λI

)−1
Φi = fi − ε

nαi

[
K (K + λDiag(α)−1)−1

]
i i ,

and Hessian

H ′′(α)i j = ε

n

[
Φ�
i

(
Φ�Diag(α)Φ + λI

)−1
Φ j
]2

,

which can be rewritten

H ′′(α)i j = ε

nα jαi

[
K (K + λDiag(α)−1)−1

]
i j

[
K (K + λDiag(α)−1)−1

]
j i .

We can then compute the step for the Damped Newton algorithm: α+ = α −
1

1+√ n
ε
λ(α)

Δ, where Δ = H ′′(α)−1H ′(α)− 1�n H ′′(α)−1H ′(α)

1�n H ′′(α)−11n H ′′(α)−11n and λ(α)2 =
Δ�H ′′(α)Δ is the Newton decrement (which can serve as a stopping criterion). Note
that the algorithm is always feasible, without a need for any eigenvalue decompo-
sition. The overall complexity is O(n3) per iteration due to matrix inversions and
linear systems. Note that the conditioning of these linear systems is at least as bad as
the conditioning of the kernel matrix K . Fortunately, for the s-th Sobolev kernels in
dimension d, the m-th eigenvalue of the kernel matrix typically decay as m−2s/d [24,
Sec. 2.3].
Retrieving c and B. From an optimal α, we can recover B = ε

n

(
Φ�Diag(α)Φ +

λI
)−1 = ε

nλ

(
I −Φ�(ΦΦ� + λDiag(α)−1)−1Φ

)
and c = 1

n H
′(α)�1n (since c is the
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Lagrangemultiplier for the constraintα�1n = 1). Thus, computing themodel for a test
point, can be done as ε

nλ

(
k(x, x)− q(x)�(K + λDiag(α)−1)−1q(x)

)
, where q(x)i =

k(x, xi ). Alternatively, when Φ is invertible, we can use q(x)�Φ−�BΦ−1q(x).

Retrieving aminimizer. Given the dual solution, based on our localizing arguments
presented in Sect. 7, a good candidate solution will be

ẑ =
n∑

i=1
αi xi (6.1)

Amore principled way to find aminimizer is provided in Sect. 7, of which the equation
above corresponds to the limit solution of Eq. (7.4) for ν → 0 (see Sect. 7.1).

Number of iterations. In order to reach a Newton decrement n1/2ε−1/2λ(α) ≤ κ , a
number of steps equal to a universal constant times n

ε
[H(α0)− H(α∗)] + log log 1

κ
is

sufficient. [23].
When initializing with α0 = 1

n 1n , we have H(α0) = 1
n

∑n
i=1 fi − ε

n log det
(
K +

nλI
)+ ε

n log ε−ε, and H(α∗) ≥ c∗−λTr(A∗)−ε. This leads to a number of Newton
steps less than

n

ε

[〈 f 〉 − inf f
]+ log det

(
K + nλI

)+ n

ε
λTr(A∗)+ log ε + log log

1

κ
.

In our experiments, we do not perform path following (that would lead the classical
interior-point method) and instead fixed value ε = 10−3, and a few hundred Newton
steps.

Behavior for λ = 0. If the kernel matrix K is invertible (which is the case almost
surely for Sobolev kernels and points sampled independently from a distributionwith a
densitywith respect to theLebesguemeasure), thenwe show that forλ = 0, the optimal
value of of the finite-dimensional problem in Eq. (2.4) is equal to mini∈[n] f (xi ).
Since f (xi ) ≥ c + Φ�

i BΦi implies f (xi ) ≥ c, the optimal value has to be less
than mini∈[n] f (xi ). We therefore just need to find a feasible B that achieves it. Since
K is assumed invertible (and thus its Cholesky factor as well), we can simply take
B = R−�Diag[( f (x j )−mini∈[n] f (xi )) j ]R−1.

7 Finding the global minimizer

In this section we provide and study the problem in Eq. (7.4), that is a variation of
the problem in Eq. (2.4), and allows to find also the minimizer of f as we prove in
Theorem 8. As in Sect. 2 we start from a convex representation of the optimization
problem and then we derive our sampled version, passing by an intermediate infinite-
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dimensional problem that is useful to derive the theoretical properties of the method.
While the problem in Eq. (2.1) can be seen as finding the largest constant c such that
f − c is still non-negative, in the problem below we find the parabola of the form
pz,γ (x) = ν

2‖x‖2− νx�z+ c = ν
2‖x − z‖2+ c− ν

2‖z‖2 with the highest vertex such
that f − pz,c is still non-negative. Since the height of the vertex of pz,c corresponds
to c − ν

2‖z‖2, the resulting optimization problem is the following,

max
c∈R,z∈Rd

c − ν
2‖z‖2 such that f (x)− ν

2‖x‖2 + νx�z − c ≥ 0 ∀x ∈ Ω. (7.1)

It is easy to see that if f ∈ C2(Rd) has a unique minimizer ζ that belongs to Ω and
is locally strongly convex around ζ then there exists a ν > 0 such that the problem
above achieves an optimum (c∗, z∗) with z∗ = ζ and c∗ = f∗ + ν

2‖ζ‖2. In particular,
to characterize ν explicitly we introduce the stronger assumption below.

Assumption 4 (Geometric assumption to find global minimizer). The function f :
R
d → R has a unique global minimizer in Ω .

If f satisfies Assumptions 1(b) and 4, denote with ζ the unique minimizer of f in
Ω and with f∗ = f (ζ ) the corresponding minimum.

Remark 4 Under Assumptions 1(b) and 4 f can be lower bounded by a parabola with
value f∗ at ζ , i.e., there exists β > 0 such that

∀x ∈ Ω, f (x)− f∗ ≥ β
2 ‖x − ζ‖2. (7.2)

The remark above is derived in Appendix F.1. In what follows, whenever f satisfies
Assumptions 1(b) and 4, then β will be assumed to be the supremum among the value
satisfying Eq. (7.2). Now we are ready to summarize the reasoning above on the fact
that Eq. (7.1) achieves the minimizer of f .

Lemma 5 Suppose f satisfies Assumptions 1 and 4. Let ζ be the unique minimizer of
f in Ω and f∗ = f (ζ ) be the corresponding minimum. Let β > 0 such that Eq. (7.2)
holds. If ν < β then the problem in Eq. (7.1) has a unique solution (c∗, z∗) such that
z∗ = ζ and c∗ = f∗ + ν

2‖ζ‖2.
The lemma above guarantees that the problem in Eq. (7.1) achieves the global

minimum and the global minimizer of f , when f satisfies the geometric conditions
Assumptions 1 and 4. Now, as we did for Eq. (2.1), we consider the following problem
of which Eq. (7.1) is a tight relaxation.

max
c∈R,z∈Rd ,A∈S+(H)

c − ν
2‖z‖2

such that f (x)− ν
2‖x‖2 + νx�z − c = 〈φ(x), Aφ(x)〉 ∀x ∈ Ω.

(7.3)

Indeed, since 〈φ(x), Aφ(x)〉 ≥ 0 for any x ∈ Ω and A ∈ S+(H), for any triplet
(c, z, A) satisfying the constraints in the problem above, the couple (c, z) satisfies the
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constraints in Eq. (7.1). The contrary may be not true in general. In the next theorem
we prove that whenH satisfies Assumption 2 and Ω, f satisfy Assumptions 1, 3 and
4, then the relaxation is tight and, in particular, when ν < β, there exists a finite rank
operator A∗ such that the triplet ( f∗ + ν

2‖ζ‖2, ζ, A∗) is optimal.

Theorem 7 LetΩ ⊂ R
d be an open set, k be a kernel,H the associated RKHS, and f :

R
d → R satisfying Assumptions 1 to 3, and Assumption 4. Let β satisfying Eq. (7.2).

For any ν < β, the problem in Eq. (7.3) admits an optimal solution (c∗, z∗, A∗) with
c∗ = f∗ + ν

2‖ζ‖2, z∗ = ζ , and A∗ a positive semi-definite operator on H with rank
at most d + 1.

The proof of the theorem above is essentially the same of Theorem 3 and is reported
for completeness inAppendix F.2. In particular, to prove the existence of A∗weapplied
Corollary 1 to the function f (x)− ν

2‖x − ζ‖2 that still satisfies Assumptions 1 and 3
when f does and ν < β. Now we are ready to consider the finite-dimensional version
of Eq. (7.3). Given a set of points X̂ = {x1, . . . , xn} with n ∈ N+,

max
c∈R,z∈Rd ,B∈S+(Rn)

c − ν
2‖z‖2 − λTr(B)

such that ∀i ∈ [n], f (xi )− ν
2‖xi‖2 + νx�i z − c = Φ�

i BΦi .

(7.4)

For the problem above we can derive similar convergence guarantees as for Eq. (2.4)
and also a convergence of the estimated minimizer z to ζ , as reported in the following
theorem.

Theorem 8 (Convergence rates of Eq. (7.4) to the global minimizer). Let Ω be a set
satisfying Assumption 1(a) for some r > 0. Let X̂ = {x1, . . . , xn} ⊂ Ω with fill
distance h X̂ ,Ω . Let k be a kernel satisfying Assumption 2 for some m ≥ 2 and f
satisfying Assumptions 1, 3 and 4. The problem in Eq. (7.4) admits a solution. Denote
by (ĉ, ẑ, B̂) any solution of Eq. (7.4), for a given λ > 0. Then

ν
2‖ẑ − ζ‖2 ≤ 3η(| f |Ω,m + ν)+ 2λTr(A∗), η = C hm

X̂ ,Ω
, (7.5)

when h X̂ ,Ω ≤ r
18(m−1)2 and λ ≥ 2MDmη. Here C = 3 (3

√
2d(m−1))2m

m! and Dm,M are
defined in Assumption 2. A∗ is from Theorem 7. Moreover under the same conditions

|ĉ − ν
2‖ẑ‖2 − f∗| ≤ 2η | f |Ω,m + λTr(A∗) + 2ην, (7.6)

Tr(B̂) ≤ 2 Tr(A∗) + 2 η
λ
| f |Ω,m + 2ν η

λ
. (7.7)

The proof of the theorem above is similar to the one of Theorem 5 and it is stated
for completeness in Appendix F.3. The same comments to Theorem 5 that we reported
in the related section and the rates for Sobolev functions, apply also in this case. In
the next section we describe the algorithm to solve the problem in Eq. (7.4).
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7.1 Algorithm

We can use the same dual technique as presented in Sect. 6, and obtain a dual problem
to Eq. (7.4) with the additional penalty ε

n log det B. The dual problem can readily be
obtained as (up to constants)

inf
α∈Rn

n∑

i=1
αi f (xi )− ε

n
log det

(
Φ�Diag(α)Φ + λI

)+ ν

2

⎛

⎝−
n∑

i=1
αi‖xi‖22 +

∥∥∥
n∑

i=1
αi xi
∥∥∥
2

2

⎞

⎠ ,

such that α�1n = 1, with the optimal z that can be recovered as z =∑n
i=1 αi xi . We

note that when ν tends to zero, we recover the dual problem from Sect. 6, and we keep
the candidate above in Ω even when ν = 0.

7.2 Warm restart scheme for linear rates

It is worth noting that Theorem 8 provides strong guarantees on the distance ‖ẑ − ζ‖
where ẑ is the solution of the problem Eq. (7.4) and ζ the global optimum of f . This
suggests that we can implement a warm restart scheme that leverage the additional
knowledge of the position of ζ . Assume indeed that Ω is a ball of radius R centered
in z0. For t = 1, . . . , T with T = �log 1

ε
�, we apply Eq. (7.4) to a set X̂t that

contains enough points sampled uniformly at random in the ball Brt−1(zt−1) such that
Theorem 8 guarantees that ‖zt − ζ‖ ≤ rt−1/e where zt is the solution of Eq. (7.4).
The cycle is repeated with rt = rt−1/e and the new center be zt . By plugging the
estimate of Theorem 4 for h X̂t ,Brt−1 (zt−1) in Theorem 8 for each step t , we obtain a

total number of points n to achieve ‖zT − ζ‖ ≤ ε with probability 1− T δ, that is

n = O

(

Cd/m
d,m

(F
ν

)d/m

Rd log
1

ε

)

modulo logarithmic terms in n and δ, where Cd,m = 3mCMDm with C defined in
Theorem 8 and F = | f |Ω,m + ν + Tr(A∗). This means that under the additional
assumption of a unique minimizer in Ω , we achieve a convergence rate that is only
logarithmic in ε, moreover when m � d also the dependence with respect to Cd,m

(which is exponential in m and d in the case of the Sobolev kernel) and F improves,
since d/m tends to 0.

8 Extensions

In this section we deal with two aspects: (a) the effect of solving approximately the
problem inEq. (2.4), and (b) howcanwe certify explicitly (no dependence onquantities
of theoretical interest as Tr(A∗)) how close is a given (approximate) solution to the
optimum;
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8.1 Approximate solutions

In this section we extend Theorem 5 to consider the case when we solve Eq. (2.4) in
an approximate way. In particular, let λ > 0, n ∈ N+ and X̂ = {x1, . . . , xn}. Denote
by pλ,n the optimal value achieved by Eq. (2.4) for such λ, n. We say that (c̃, B̃) is an
approximate solution of Eq. (2.4) with parameters θ1, θ2, τ1, τ2 ≥ 0 if it satisfies the
following inequalities

pλ,n − c̃ + λTr(B̃) ≤ θ1 + θ2Tr(B̃), (8.1)

| f (xi )− c̃ −Φ�
i B̃Φi | ≤ τ1 + τ2Tr(B̃), ∀i ∈ [n]. (8.2)

Theorem 9 (Error of approximate solutions of Eq. (2.4)).Let (c̃, B̃) be an approximate
solution of Eq. (2.4) for a given n ∈ N+, λ > 0 as defined in Eqs. (8.1) and (8.2)
w.r.t. τ1, τ2, θ1, θ2 ≥ 0. Under the same assumptions and notation of Theorem 5 and
Remark 3, when τ2, θ2 ≤ λ

8

|c̃ − f∗| ≤ 7(2τ1 + η| f |Ω,m)+ 6(θ1 + λTr(A∗)), (8.3)

Tr(B̃) ≤ 8Tr(A∗) + 8 η
λ
| f |Ω,m + 8 θ1+2τ1

λ
. (8.4)

The proof of the theorem above is reported for completeness in Appendix G.1, and
is a variation of the one of Theorem 5wherewe used Theorem 4with τ = τ1+τ2Tr(B̃)

andwe further bound pλ,n viaEq. (8.1). Fromapractical side, the theoremabove allows
to use a wide range ofmethods and techniques to approximate the solution of Eq. (2.4).
In particular, it is possible to use lower dimensional approximations of Φ1, . . . , Φn

and algorithms based on early stopping as described in Sect. 11, since τ1, τ2, θ1, θ2 will
take into account the error incurred in the approximations. An interesting application
of the theorem above, from a theoretical side is that it allows also to deal with situations
where f does not have a representer A∗ in S+(H) as we are going to discuss in the
next section.

8.2 Certificate of optimality

While in Theorem 5 we provide a bound on the convergence of Eq. (2.4) a priori,
i.e., only depending on properties of f ,Ω,H, in this section we provide a bound
a posteriori, that is a certificate of optimality. Indeed, the next theorem quantifies
f (z) − f ∗ for a candidate minimizer z, in terms of only (ĉ, B̂), an (approximate)
solution of Eq. (2.4) and | f |Ω,m . A candidate minimizer based on Eq. (2.4) is provided
in Eq. (6.1). In Sect. 7 we study a different algorithm Eq. (7.4) that explicitly provides
a minimizer and whose certificate is studied in Appendix G.3.

Theorem 10 (Certificate of optimality a minimizer from Eq. (2.4)). Let Ω satisfy
Assumption 1(a) for some r > 0. Let k be a kernel satisfying Assumptions 2(a) and
2(d) for some m ∈ N+. Let X̂ = {x1, . . . , xn} ⊂ Ω with n ∈ N+ such that h X̂ ,Ω ≤
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r
18(m−1)2 . Let f ∈ Cm(Ω) and let ĉ ∈ R, B̂ ∈ S+(Rn) and τ ≥ 0 satisfying

| f (xi )− ĉ − Φ�
i B̂Φi | ≤ τ, i ∈ [n], (8.5)

where theΦi ’s are defined in Sect. 2. Let f∗ = minx∈Ω f (x). Then the following holds

| f (z)− f∗| ≤ f (z)− ĉ + ε + 2τ, ∀z ∈ Ω, where ε = Chm
X̂ ,Ω

, (8.6)

and C = C0(| f |Ω,m + MDmTr(B̂)). The constants C0, defined in Theorem 4, and
m,M,Dm, defined in Assumptions 2(a) and 2(d), do not depend on n, X̂ , h X̂ ,Ω, ĉ, B̂
or f .

Proof By applying Theorem 4with g(x) = f (x)− ĉ, we have f (x)− ĉ ≥ −ε−2τ for
any x ∈ Ω . In particular this implies that f (ζ )− ĉ ≥ −ε− τ . The proof is concluded
by noting that f (z) ≥ f∗ by definition of f∗. "#

9 Relationship with polynomial hierarchies

The formulation as an infinite-dimensional sum-of-squares bears some strong similar-
ities with polynomial hierarchies. There are several such hierarchies allowing to solve
any polynomial optimization problem [6, 25, 26], but one has a clear relationship to
ours. The goal of the following discussion is to shed light on the benefits in terms
of condition number and dimensionality of the problem, deriving by using an infi-
nite dimensional feature map in the finite dimensional problem, instead of an explicit
finite-dimensional polynomial map as in the case considered by the papers cited above.

Adding small perturbations. We start this discussion from the following result from
Lasserre [25], that is, for any multivariate non-negative polynomial f on R

d , and for
any η > 0, there exists a degree r( f , η) such that the function

fη(x) = f (x)+ η

r( f ,ε)∑

k=0

1

k!
d∑

j=1
x2kj

is a sum of squares, and such that the 	1-norm between the coefficients of f and fη
tends to zero (here this 	1-norm is equal to ηd

∑r( f ,ε)
k=0

1
k! ≤ ηde).

This implies that for the kernel kr (x, y) = ∑r
k=0

(x�y)k
k! , with feature map φr (x)

composed of all weighted monomials of degree less than r , the function

f (x)+ η‖φr (x)‖22 = f (x)+ ηkr (x, x)

is a sum of squares, for any r ≥ r( f , η), with η arbitrarily close to zero (this
can be obtained by adding the required squares to go from

∑d
j=1 x2kj to ‖x‖2k =
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(
∑d

j=1 x2j )k). This result implies that minimizing f arbitrarily precisely over any
compact set K (such that supx∈K kr (x, x) is finite), can be done by minimizing
f (x) + ηk(x, x), with sum-of-squares polynomials of sufficiently large degree. We
already showed that in this paper that if f satisfies the geometric condition in Assump-
tion 1(b), our framework is able to find the global minimum by the finite dimensional
problem in Eq. (2.4), which, in turn, is based on a kernel associated to an infinite
dimensional space (as the Sobolev kernel, see Example 1). We now show how our
framework can provide approximation guarantees and potentially efficient algorithms
for the problem above even when Assumption 1(b) may not hold and we use a poly-
nomial kernel of degree r (with r that may not be large enough). However, in this case
the resulting problemwould suffer of a possibly infinite condition number and a larger
dimensionality than the one achievable with an infinite dimensional feature map.

Modified optimization problem. Given the representation of x 
→ f (x) − f∗ +
η‖φr (x)‖22 as a sum-of-squares, we can explicitly model the function as

f (x)− c + η‖φr (x)‖22 = 〈φr (x), Aφr (x)〉

with A positive definite and η ≥ 0. Note that if r is greater than twice the degree of f
this problem is always feasible by taking η sufficiently large. Moreover, for feasible
(c, η, A), we have for any x ∈ Ω ,

f (x) ≥ c − η‖φr (x)‖2 ≥ c − η sup
y∈Ω

‖φr (y)‖22.

Thus, a relaxation of the optimization problem is

sup
c∈R,A�0,η≥0

c − η sup
y∈Ω

‖φr (y)‖22 s. t. ∀x ∈ Ω, f (x)

= c + φr (x)
�Aφr (x)− η‖φ(x)‖22.

Moreover, if we choose r larger than r( f − f∗, η), we know that there exists a feasible
A which is positive semi-definite, with c = f∗ − η supy∈Ω ‖φr (y)‖22, and thus the
objective value is greater than f∗ − η supy∈Ω ‖φr (y)‖22. Thus, the objective value of
the problem above converges to f∗, when η go to zero (and thus r( f − f∗, η) goes
to infinity), while always providing a lower bound. Note that if f − f∗ is a sum of
squares, then the optimal value η can be taken to be zero, and we recover the initial
problem.

Subsampling and regularization. At this point, since r is finite, subsampling
( d
2r

)

points leads to an equivalent finite-dimensional problem. We can also add some reg-
ularization to sub-sample the problem and avoiding such a large number of points.
Note here that the kernel matrix will probably be ill-conditioned, and the problem
computationally harder to solve and difficult ro regularize.
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Infinite-degree polynomials. In the approach outlined above, we need to let r
increase to converge to the optimal value. We can directly take r = ∞, since

kr (x, y) = ∑r
k=0

(x�y)k
k! tends to the kernel exp(x�y), and here use subsampling.

Again, it may lead to numerical difficuties. However, we can use Sobolev kernels
(with guarantees on performance and controlled conditioning of kernel matrices), on
the function f (x)+ ηe‖x‖22 for which we now there exists a sum of squares represen-
tation as soon as f is a polynomial.

10 Experiments

In this section, we illustrate our results with experiments on synthetic data.

Finding hyperparameters. Given a function to minimize and a chosen kernel, there
are three types of hyperparameters: (a) the number n of sample points, (b) the regu-
larization parameter λ, and (c) the kernel parameters. Since n drives the running time
complexity of the method, we will always set it manually, while we will estimate the
other parameters (regularization and kernel), by “cross-validation” (i.e., selecting the
parameters of the algorithm that lead to the minimum value of f at the candidate opti-
mum, among a logarithmic range of parameters). This adds a few function evaluations,
but allows to choose good parameters.

Functions to minimize. We consider first a simple functions defined in R
2 with

their global minimimizer on [−1, 1]d , which is minus the sum of Gaussian bumps
(see Fig. 1). To go to higher even dimensions with the possibility of computing the
global minimumwith high precision by grid search, we consider functions of the form
f (x) = f (x1, x2)+ f (x3, x4)+ · · · + f (xd−1, xd). We also consider adding a high-
frequency cosine on the coordinate directions representing a more general scenario
for a non-convex function. Note that in this second setting the gradient based methods
cannot work properly (while ours can) as we are going to see in the simulations.

All results are reported by normalizing function values so that the range of values
is 1, that is, maxx∈[−1,1]d f (x) = 1 and minx∈[−1,1]d f (x) = 0.

Baseline algorithms. We compare our algorithm with the exponential kernel and
points sampled fromaquasi-randomsequence in [−1, 1]d , such as theHalton sequence
[27], to:

– Random search: select a quasi-random sequence in [−1, 1]d and take the point
with minimal function value.

– Random search with gradient descent: starting gradient descent for a certain num-
ber of iterations from quasi-random points, with a number of initialization divided
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Fig. 1 Top: 2D function without small-amplitude high-frequency components. Bottom: 2D function with
small-amplitude high-frequency components. Left: sampled points and the trajectory of the proposed algo-
rithm. Center: model reconstructed by the algorithm (see Eq. (10.1)). Right: the trajectory of gradient
descent starting from random points. As it is possible to see, even a small local non-convexity prevents the
random+GD algorithms to converge properly, while the proposed method is quite robust to it

by d + 1 and the number of gradient steps, to account for gradient evaluations
based on d + 1 function evaluations (by finite-difference). The step-size for gra-
dient descent is taken constant, but its values is optimized for smallest final value
while providing a descent algorithm.

Illustration in two dimensions. We show in Fig. 1 a function in two dimensions,
with sampled point in purple, the trajectory of the candidate optimum along Newton
iterations in red, and the final model of the function. We also compare to gradient
descent with random starting points. We consider two functions below, one without
extra high-frequency component (top), and one with (bottom). We can make the fol-
lowing observations:

– Our algorithm outperforms random search, that is, it improves on the function
values of the sampled points.

– For the smoother function, gradient descent performs quite well, but is not robust
when high-frequency components are added.

Note that the proposed algorithm provides also a model of the function reconstructed
starting from its evaluation on the sampled points. In particular, if (ĉ, B̂) is a solution
of the algorithm, the approximate function ĝ ≈ f − f ∗ corresponds to

ĝ(x) = 〈φ(x), V ∗BVφ(x)
〉 = v(x)�R−1 B̂ R−�v(x), ∀x ∈ Ω (10.1)

with v(x) = (k(x1, x), . . . , k(xn, x)) for x ∈ Ω and where V : H→ R
n is in Sect. 5.
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Fig. 2 Multivariate case d = 8. Minimization error of our algorithm (gloptikernel) compared with random
evaluations or random evaluations + GD. The function considered is built as described at the beginning
of this section with domain [−1, 1]d and shifted and rescaled to have minimum in 0 and output in [0, 1].
Left: function without small-amplitude high-frequency components. Right: function with small-amplitude
high-frequency components

Higher dimensions. We compare the algorithms on a problem in dimension d = 8,
as n increases, in order to assess how we approach the global optimum. We perform
4 replications with different random seeds for the sampling of points in [−1, 1]d . The
function to be minimized is built as described at the beginning of this section and
is shifted and rescaled to have output in [0, 1] and the minimum in 0. We can see
that as n gets large, the performance of the proposed algorithm improves, and that
with high frequency components, gradient descent with random restarts has worse
performance and seem to show a slower rate overall, even in the case of the function
without high-frequency components (Fig. 2).

10.1 Experiments on benchmarks for global optimization

In this section, we perform experiments using the algorithm described in the section
above on the more than 200 global optimization problems in multiple dimensions
constituting the well-known benchmark “Global Optimization Benchmarks” [28–30]
http://infinity77.net/global_optimization/index.html. The functions to optimize come
with their minimizer and their minimum to be used as a ground truth and with a region
of interest where to look for the minimizers.

In this section, we present only the results for dimensions 4 and higher, as our
method seems particularly interesting for these dimensions. The results for dimensions
2 and 3 can be found in Table 4, in the “Appendix”. In Table 1, we report the results
obtained by our algorithm. The algorithm we implemented is warm-restart scheme
described in Sect. 7.2. The implementation details are reported in Appendix H. The
algorithm was performed with N = 200 restart iterations, and was repeated 5 times
(we select the best estimator out of the 5 restarts, to take into account of the high-
probability factors). In Table 1, we report the following : (a) the problem name; (b) its
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Table 1 Results of our algorithm for functions in dimension greater than four

d iters thresh Final absolute error fevs/iter

Colville 4 32 1.87E−03 31

Corana 4 1 0.00E+00 31

Shekel07 4 20 9.54E−07 31

PowerSum 4 2 3.26E−04 31

Ratkowsky01 4 90 3.69E+02 31

MieleCantrell 4 3 9.03E−13 31

Powell 4 6 2.85E−07 31

Shekel10 4 18 0.00E+00 31

Shekel05 4 18 1.91E−06 31

BiggsExp04 4 12 7.88E−05 31

Gear 4 2 1.18E−09 31

Kowalik 4 15 4.87E−05 31

DeVilliersGlasser01 4 4 1.06E+03 31

DeVilliersGlasser02 5 NaN 2.28E+03 36

Dolan 5 2 3.78E−13 36

BiggsExp05 5 3 2.64E−03 36

Trid 6 10 0.00E+00 41

Watson 6 11 1.09E−03 41

Hartmann6 6 8 0.00E+00 41

LennardJones 6 2 0.00E+00 41

Thurber 7 125 9.70E+03 46

Xor 9 NaN 6.99E−03 56

Paviani 10 23 1.03E−04 61

Cola 17 68 3.35E−01 96

dimension; (c) the number of iterations needed to achieve a threshold of 0.01 relative
error; we define the relative error as r(x) = f (x)− f (x∗)

f (x1)− f (x∗) ; (d) the final absolute error
f (̂x) − f (x∗); (e) the number m of new function evaluations at each step (without
counting those in order to select λ).

Note that the dimension of the optimization problem is n = 3m and that the SDP
constraint is also of size n× n. Moreover, the choice we make to evaluate the relative
error is in order to avoid very high values of the function f ; comparing to f (x1)
somewhat shows the importance of the iterative scheme.

Discussion, interpretation The set of functions on which we have tested our algo-
rithm originally is a challenge allowing a maximum of 2000 function evaluations to
reach a precision in absolute error of order 10−6. We do not try to compete in this
specific challenge, which models the fact that the number of function evaluations in
certain real-life problems is very costly. In order to tackle this challenge, we would
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Table 2 Polynomials used in the experiments

Poly1 4x21 + x1x2 − 4x22 − 2.1x41 + 4x42 + x61/3

Poly2 x21 x4x6x7 + 4x1x
2
2 x6x8 + x1x2x3x4x6 − x42 x7 + 3x2x

3
4 x7 + 3x3x4x5x6x8

+x3x5x27 x8 +
∑8

i=1 x6i
Poly3 −9x22 + 8x3x7 + 2x1x4x5 + 3x3x5x6 + x41 + x42 + x43 + x44 + x45

+x46 + x47 + x61 + x2x
5
3

Poly4 −15x6 − 2x1x
2
7 − 3x22 x4 − x23 x4 + x41 + x42 + x43 + x44 + x45 + x46 + x47

Poly5 2x5x8 + 4x1x8x9 + 4x4x6x9 + x41 + x42 + x43 + x44 + x45
+x46 + x47 + x48 + x49 + x410

Poly6 −9x2x7x10 − 2x3x11x13 + 5x5x7x15 − 3x9x11x15 +
∑15

i=1 x4i
Poly7 8x2x8x11 + 3x2x14x15 − 5x4x7x13 − 13x212x17 +

∑17
i=1 x4i

Poly8 −11x2x6x11 − 4x3x4x11 + 3x4x10x11 − x5x8x10 +
∑12

i=1 x4i
Poly9 12x2x4x5x8 + 5x1x2x4x5x7 + 5x2x3x

2
4 x7 + x61 + x62 + x63 + x64 + x65

+x66 + x67 + x68 + x69

need to reduce the cost in function evaluations of certain steps such as that of the
selection of λ (which we believe can be done without much difficulty).

Note that the fact that we achieve a relative error of 0.01 in almost all cases shows
that the iterative scheme is indeed effective.

The performance on certain problems is bad, but this seems to be linked to the fact
that the functions at hand have very high oscillations (hence high derivatives).

Remark 5 (NaN values). NaN values simply mean that we never reach a relative pre-
cision of 0.01.

10.2 Comparison with SOS polynomials

In this section, we present a second set of experiments with the same setting as before
but optimizing polynomial functions.

One of the reference algorithms in order to optimize polynomials (on semi-algebraic
sets) is the Lasserre Hierarchy, implemented in the toolbox gloptipoly 3 [31].
Applying this toolboxon aminimization problemconstrained on a hyper-rectanglewill
yield either a lower bound (if the hierarchy does not converge) or the exact minimum
as well as a minimizer if the hierarchy does converge.

The idea of this section is not to compete with the Lasserre hierarchies, which are
tailored for polynomials. Rather, we wish to compare both methods, and show that
they can complement each other by providing an approximation of the minimizer
with a certificate (i.e. with an upper bound on its distance to the optimum). This is
particularly interesting in high dimensions, or with polynomials with high degree: in
that case, the size of the polynomial problem becomes intractable, while our algorithm
still runs and returns a solution.
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In this experiment, we consider polynomials whose expression can be found below,
and wish to find a minimizer for these polynomials in the hypercube [−2, 2]d . Note
that this domain is chosen such that we can easily sample from it (while Lasserre
hierarchies can adapt to much more flexible sets of constraints). In particular, when
using the gloptipoly 3 we imposed the additional constraint ‖x‖2 ≤ 4, that,
while redundant, improves the convergence behavior of the algorithm, as suggested
by an anonymous reviewer.

Selection of polynomials Almost all of the polynomials considered in these experi-
ments are of the form

P(x) =
d∑

i=1
x2ki + Q(x), deg(Q) ≤ 2k − 1.

We randomly select a few non-zero indices for the Q as well as a random integer. The
exact expressions of all the polynomials used can be found below in Table 2.

Results and Discussion. We report the results of these experiments in Table 3. The
following columns are reported: (a) the name of the polynomial function; (b) the
dimension d of the underlying domain; (c) the degree deg of the polynomial function;
(d) wether or not gloptipoly3 has converged (cv column); (e) the relaxation order we
have tested for before computational issues (relax column); (f) the dimensions of the
PSD constraints for the Lasserre hierarchy (PSD moment matrix + the ones due to the
constraints); (g) the gap between our solution and the Lasserre lower bound; (h) the
dimension of the PSD constraint in our method.

Our method is statistical and therefore does not enjoy the same precision that
gloptipoly3 achieves in the case when it converges. However, our method is
clearly more scalable in the sense that it returns an approximate solution for polyno-
mials of high degree and dimension, for any chosen dimension of the PSDmatrix, and
very small matrices allow to achieve already interesting precision, as it is possible to
see in Table 3.

11 Discussion

In this section, we discuss our results and propose a series of extensions.

Main technical contribution and extensions. We see that fromEq. (2.1), the problem
ofminimization can be easilywritten in terms of an infinite set of inequality constraints
on u(x) = f (x) − c that must hold for every x ∈ Ω . While it is well known how to
approximate efficiently an infinite set of equality constraints via a finite subset (e.g. via
bounds on functions with scattered zeros [18] from the field of approximation theory),
leading to optimal rates for the approximation problem, the situation is more difficult
in the case of an infinite set of inequality constraints. The main technical contribution
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of this paper, on which the whole result of the paper is based, is Theorem 4, which
allows to deal with an infinite set of inequality constraints as efficiently as in the
equality case as discussed in Sect. 5.1. In particular, we rewrite the infinite set of
inequalities g(x) ≥ 0, ∀x ∈ Ω in terms of a very sparse set of constraints of the form
g(xi ) = Φi BΦi , for some points x1, . . . , xn ∈ Ω and a matrix B ∈ S+(Rn), with n
in the same order of the one required by the equality case. Assume for simplicity that
Ω is contained in the unit ball and the points are uniformly distributed in Ω . From
Theorem 4 we derive that if B exists,

g(x) ≥ −C n−m/d (|g|Ω,m + Tr(B)),

modulo logarithmic factors, where m is the order of smoothness of g. This result
is particularly useful for two reasons. First, it recovers the same dependence on m,
the smoothness of g, and n the number of sample points, as in the case of equality
constraints. This is particularly convenient when m � d, e.g. with m ≥ d the rate
becomes O(n−1), that is independent from d in the exponent (the dependence of d is
still present in the hidden constants and it is exponential in the worst case). Second, if
used in an optimization problem, the matrix B can be found via a convex formulation,
by requiring u(xi ) = Φ�

i BΦi for i ∈ [n] and penalizing Tr(B) in the functional. This
technique allows, for example, to deal with more general optimization problems with
infinite constraints than the one considered in this paper, as

min
θ∈Θ

F(θ) such that g(θ, x) ≥ 0, ∀x ∈ Ω,

by translating it as follows

min
θ∈Θ,B�0 F(θ)+ λTr(B) such that g(θ, xi ) = Φi BΦi ∀i ∈ [n].

If F and u are convex in θ and Θ a convex set, then the second is a convex problem
that has the potential to approximate very efficiently the first, due to Theorem 4. From
this viewpoint this paper is an application of this principle to Eq. (2.1).

Duality. Beyond using duality in Sect. 6 for algorithmic purposes, there is also a
dual for the infinite-dimensional problem, which can be written as,

inf
p:Ω→R

∫

Ω

p(x) f (x)dx such that
∫

Ω

p(x)dx = 1 and
∫

Ω

p(x)φ(x)⊗φ(x)dx � 0.

Replacing the constraint
∫

Ω

p(x)φ(x)⊗φ(x)dx � 0 by ∀x ∈ Ω, p(x) ≥ 0 leads to

the usual relaxation of optimization with probability measures. Thus, like for polyno-
mial optimization [32], our formulation corresponds also to a relaxation in the dual
formulation to signed measures.
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Comparison with algorithms based on SOS polynomials. Our approach is related
to the field of optimization via polynomial sum-of-squares [6, 33]. Indeed we also
transform the problem of non-convex optimization to an SDP problem and we use
a sum-of-squares representation. Our analysis however takes a different path, indeed
(1) we select a given function space and define the infinite-dimensional cone of sum-
of-squares of functions belonging to it (2) then we derive sufficient conditions to
guarantee that a non-negative function belongs to such cone (Theorem 2) (3) at this
point the quantitative approximation results are built naturally in a modular way on
top of the approximation results of the original function class and can leverage the
ample literature of approximation theory, see Theorem 4 (here, in particular we use
the results related to scattered data approximation [18], but we could have used other
approximation results, e.g. the one based on wavelet or Fourier series approximation),
fromwhichwequantify explicitly the error of the optimization algorithm inTheorem5.

According to recent results on SOS polynomials (see [34] and references therein)
which apply to polynomial relaxations as described in Sect. 9, when f is a polyno-
mial, such algorithms can achieve the global mininumwith a rate O(1/r2) via an SDP
problem based on the representation of SOS polynomials of degree r in terms of pos-
itive definite matrices. Since the dimension of the corresponding matrix is n = (d+rr

)

corresponding to n = O(rd), by expressing the rate with respect to the dimensionality
of the matrix, such methods achieve the global minimum with an error that is in the
order of O(n−2/d). This can be compared with the approach proposed in this paper
as Algorithm 1. By sampling n points from the domain of interest, we cast an SDP
problem in terms of a n-dimensional positive definite matrix, achieving a rate that is
Cs,dn−s/d+1/2 (see Theorem 6) modulo logaritmic factors, by using a Sobolev kernel
ks+3 with s > d/2 (see Example 1). Since the polynomials are arbitrarily differen-
tiable, we can choose s arbitrarily large at the cost of a larger constantCs,d completely
characterized in Theorem 6. For example, by choosing s = 5d/2we achieve the global
minimumwith a rate O(n−2) that does not suffer of the curse of dimensionality except
in the constants, and that is faster than the one obtained by SOS polynomial methods
especially when d � 1. It must be noted that our result holds under the sufficient
assumption Assumption 1(b) that can be relaxed according to Remark 3, but that it
is not required by SOS polynomial methods. It would be of interest to know if such
methods can achieve our rates under the same assumption. The difference [33]

Comparison with simpler algorithms. Similar reasoning can be done with respect to
simple algorithms for global optimization.We consider here the algorithm that consists
in sampling n points at random inΩ and taking the one with minimum value. A simple
analysis, that we report below shows that this method achieves a rate of O(n−2/d).
So our method is strictly better than taking the minimum f (xi ) for i ∈ [n] when f
is at least 3-times differentiable. Note that even in the case when the function f is
infinitely differentiable, the algorithm that consists in sampling n points at random in
Ω and taking the one with minimum value cannot go faster that O(n−2/d). To see this,
consider Ω = [0, 1]d and the points xi to be chosen as a grid of step τ . This means
that n = O(τ−d). Now let f (x) = ‖x − y‖2 for some y ∈ [0, 1]d . This function is

123



Finding global minima via kernel approximations

infintely differentiable. Nevertheless, in general the best approximation of y on the
grid will be ỹ = τ'y/τ +1/2( (componentwise). Since, for any τ , there exists always
an y ∈ [0, 1]d such that 'y/τ + 1/2( − y/τ = 1/2, we have that in the worst case

f (ỹ)− f (y) = ‖ỹ − y‖2 = τ 2‖'y/τ + 1/2( − y/τ‖2 = τ 2/4.

Now if we express τ w.r.t., n, i.e., τ = n−1/d , we see that we obtain an error that is
in the order of n−2/d . So this simple algorithm cannot be better than n−2/d even if
the function is infinitely differentiable. A similar argument can be obtained when the
points are a generic covering of Ω .

Obtaining optimal rates. Our current analysis, even for functions f in Sobolev
spaces, does not lead to the optimal rate of convergence (we obtain an extra term of
2/d in the exponents). We conjecture, that this could be removed by a more refined
analysis (in particular in the construction of the operator A∗).

Modelling gradients. Our current framework only used function values. If gradients
are observed, it could be possible to use them to reduce the number of sampled points,
using tools from [35].

The choice of Ω . Sincewe assume that f has at least one globalminimum, then there
exists always an open set Ω that contains it and that satisfies the required properties.
In this work, we don’t discuss how to find Ω . While, in general, this could be not
an easy problem. In practice, many non-convex optimization problems come already
with a region of interest where to look for the global minimum. Such a region is
typically obtained by considering some basic properties of the function of interest.
For example, if are minimizing a polynomial of the form f (x) = B(x)+ p(x), where
B(x) = x2r1 +· · ·+x2rd for some r ∈ N and p(x) is a polynomial of degree q ≤ 2r−1.
Note that by construction f admits a global minimum, since it goes to+∞ at infinity
and has p(0) < ∞ (while any polynomial without this structure does not have a
minimizer). Now it is possible to easily derive a hypercube that contains the global
minimum. Indeed by construction f (x∗) ≤ f (0) = p(0). Denote by L the sum of
the absolute values of the coefficients of p. Now take the smallest R ≥ 1 such that
R2r − LRq ≥ p(0)+ ε for an ε > 0. For any x /∈ (−R, R)d , we have

f (x) = B(x)+ p(x) ≥ R2r − LRq > p(0) ≥ f (x∗).

Then the region (−R, R)d contains all the global minimizers.

Efficient kernel approximations. The current algorithm has a complexity of O(n3)
for n sampled points, partly due to the need to compute inverse of kernel matri-
ces. There is a large literature within machine learning aiming at providing low-rank
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approximations, either from approximations of K from a subset of its columns (see,
e.g., [36, 37] and references therein) or using random feature vectors (see, e.g., [38,
39] and references therein). This requires to relax the equality constraint on the subset
X̂ to an mean square deviations, as allowed by Sect. 8.

Constrained optimization. Following [6], we can apply the same algorithmic tech-
nique to constrained optimization, by formulating the problem of minimizing f (x)
such that g(x) ≥ 0 as maximizing c such that f (x) = c + p(x) + g(x)q(x), and
p, q non-negative functions. We can then replace the non-negative constraints by
p(x) = 〈φ(x), Aφ(x)〉 and q(x) = 〈φ(x), Bφ(x)〉 for positive operators A and B.
We can then subsample and penalize the traces of A and B to obtain an algorithm. A
detailed study of the approximation properties of this algorithm remains to be done.
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A Additional notation and definitions

We provide here some basic notation that will be used in the rest of the appendices.

Multi-index notation. Let α ∈ N
d , x ∈ R

d and f be an infinitely differentiable
function on R

d , we introduce the following notation

|α| =
∑

j∈[d]
αi , α! =

∏

j∈[d]
α j !, xα =

∏

j∈[d]
x

α j
j , ∂α f = ∂ |α| f

∂xα1
1 · · · ∂xαd

d

.

Some useful space of functions. Let Ω be an open set. In this paper we will denote
by Cs(Ω), s ∈ N, the set of s-times differentiable functions on Ω and by Cs

0(Ω)

the set of functions that are differentiable at least s times and that are supported on a
compact in Ω . Denote by L p(Ω) the Lebesgue space of p-integrable functions with
respect to the Lebesgue measure and denote by ‖ · ‖L p(Ω) the associated norm [11].

A.1 Fourier Transform

Given two functions f , g : Ω → R on some set Ω , we denote by f · g the function
corresponding to pointwise product of f , g, i.e.,

( f · g)(x) = f (x)g(x), ∀x ∈ Ω.
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Let f , g ∈ L1(Rd) we denote the convolution by f �g

( f �g)(x) =
∫

Rd
f (y)g(x − y)dy.

Let f ∈ L1(Rd). The Fourier transform of f is denoted by f̃ and is defined as

f̃ (ω) = (2π)−
d
2

∫

Rd
e−i ω�x f (x) dx,

We now recall some basic properties, that will be used in the rest of the appendix.

Proposition 2 (Basic properties of the Fourier transform [18], Chapter 5.2.).

(a) Let f ∈ L1(Rd) and let r > 0. Denote by f̃ its Fourier transform and by fr the
function fr (x) = f (x/r) for all x ∈ R

d , then

f̃r (ω) = rd f̃ (rω).

(b) Let f , g ∈ L1(Rd), then

f̃ · g = (2π)d/2 f̃ �g̃.

(c) Let α ∈ N
d
0 , f : Rd → R and f , ∂α f ∈ L1(Rd), then

∂̃α f (ω) = i |α|ωα f̃ (ω), ∀ω ∈ R
d .

(d) Let f ∈ L1(Rd), then

‖ f̃ ‖L∞(Rd ) ≤ (2π)−d/2‖ f ‖L1(Rd ).

(e) Let f ∈ L1(Rd) and assume that f̃ ∈ L1(Rd), then

f (x) = (2π)−
d
2

∫

Rd
ei ω�x f̃ (ω) dx, and ‖ f ‖L∞(Rd ) ≤ (2π)−d/2‖ f̃ ‖L1(Rd ).

(f) There exists a linear isometry F : L2(Rd) → L2(Rd) satisfying

F f = f̃ , f ∈ L2(Rd) ∩ L1(Rd).

The isometry is uniquely determined by the property in the equation above. For
any f ∈ L2(Rd) we denote by f̃ the function f̃ = F f .
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A.2 Sobolev Spaces

For this section we refer to [11]. For any α ∈ N
d
0 we say that vα ∈ L1

loc(R
d) is the

α-weak derivative of u ∈ L1
loc(R

d) if, for all compactly supported smooth functions
τ ∈ C∞0 (Rd), we have

∫

Rd
vα(x)τ (x)dx = (−1)|α|

∫

Rd
u(x)(∂ατ)(x)dx,

and we denote vα by Dαu. Let Ω ⊆ R
d be an open set. For s ∈ N, p ∈ [1,∞] the

Sobolev spaces Ws
p(Ω) are defined as

Ws
p(Ω) = { f ∈ L p(Ω) | ‖ f ‖Ws

p(Ω) < ∞}, ‖ f ‖Ws
p(Ω) =

∑

|α|≤s
‖Dα f ‖L p(Ω).

We now recall some basic results about Sobolev spaces that are useful for the proofs
in this paper. First we start by recalling the restriction properties of Sobolev spaces.
Let Ω ⊆ Ω ′ ⊆ R

d be two open sets. Let β ∈ N and p ∈ [1,∞]. By definition of the
Sobolev norm above we have

‖g|Ω‖Ws
p(Ω) ≤ ‖g‖Ws

p(Ω
′),

and so g|Ω ∈ Ws
p(Ω) for any g ∈ Ws

p(Ω
′). Now we recall the extension properties

of Sobolev spaces.

Proposition 3 (Extension operator, 5.24 in [11]). Let Ω be a bounded open subset of
R
d with locally Lipschitz boundary [11]. Let β ∈ N and p ∈ [1,∞]. There exists

a bounded operator E : Wβ
p (Ω) → Wβ

p (Rd) and a constants C3 depending only

on β, p,Ω such that for any h ∈ Wβ
p (Ω) the following holds (a) h = (Eh)|Ω (b)

‖Eh‖
Wβ

p (Rd )
≤ C3‖h‖Wβ

p (Ω)
with C3 = ‖E‖op.

A.3 Reproducing Kernel Hilbert spaces

For this section we refer to [15–17]. Let S be a set and k : S× S → R be a p.d. kernel.
We denote by Hk(S) the reproducing kernel Hilbert space (RKHS) associated to the
kernel k, and by 〈·, ·〉k the associated inner product. In particular, we will omit the
dependence in k fromH and 〈·, ·〉 when the used kernel is clear from the context. We
will omit also the dependence on S when S = Ω , the region we are using in this paper.
In particular we will use the following shortcutsH = Hk(Ω) andH(Rd) = Hk(R

d).

Concrete constructions and useful characterizations. In the rest of the section we
provide othermethods to build RKHS and some interesting characterizations ofHk(S)

and 〈·, ·〉k that will be useful int the rest of the appendix.
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Proposition 4 (Construction of RKHS given S, φ, Thm. 4.21 of [17]). Let φ : S → V
be a continuous map, where V is separable Hilbert space with inner product 〈·, ·〉V .
Let k(x, x ′) = 〈φ(x), φ(x ′)

〉
V for any x, x ′ ∈ S. Then k is a p.d. kernel and the

associated RKHS is characterized as follows

Hk(S) = {〈w,φ(·)〉V | w ∈ V }, ‖ f ‖Hk (S) = inf
u∈V ‖u‖V s.t . f = 〈u, φ(·)〉V .

Proposition 5 (Restriction of a RKHS Hk1(S1) on a subset S0 ⊂ S1 [15, 16]). Let k0
be the restriction on S0 of the kernel k1 defined on S1. Then the following holds

(a) k0 is a p.d. kernel,
(b) the RKHS Hk0(S0) is characterized as Hk0(S0) = { f |S0 | f ∈ Hk1(S1)},
(c) the norm ‖ · ‖Hk0 (S0) is characterized by

‖ f ‖Hk0 (S0) = inf
g∈Hk1 (S1)

‖g‖Hk1 (S1), s.t . f (x) = g(x) ∀x ∈ S0,

(d) there exist a linear bounded extension operator E : Hk0(S0) → Hk1(S1) such
that (E f )(x) = f (x) for any x ∈ S0 and f ∈ Hk0(S0) and such that

‖ f ‖Hk0 (S0) = ‖E f ‖Hk1 (S1), ∀ f ∈ Hk0(S0),

(e) there exist a linear bounded restriction operator R : Hk1(S1) → Hk0(S0) such
that (R f )(x) = f (x) for any x ∈ S0 and f ∈ Hk1(S1),

(f) R and E are partial isometries. In particular E = R∗ and RE is the identity on
Hk0(S0), while E R is a projection operator on Hk1(S1).

Proposition 6 (Translation invariant kernels on R
d ). Let v : R

d → R such that its
Fourier transform ṽ is integrable and satisfies ṽ ≥ 0 on R

d . Then

(a) The function k : R
d × R

d → R defined as k(x, x ′) = v(x − x ′) for any
x, x ′ ∈ R

d is a kernel and is called translation invariant kernel.
(b) The RKHS Hk(R

d) and the norm ‖ · ‖Hk (R
d ) are characterized by

Hk(R
d) = { f ∈ L2(Rd) | ‖ f ‖Hk (R

d ) < ∞}, ‖ f ‖2Hk (R
d )
= (2π)

− d
2

∫

Rd

|(F f )(ω)|2
ṽ(ω)

dω,

where F f is the Fourier transform of f (see Proposition 2 for more details on
F).

(c) The inner product 〈·, ·〉k is characterized by

〈 f , g〉k = (2π)
− d
2

∫

Rd

(F f )(ω)(Fg)(ω)

ṽ(ω)
dω.
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A.4 Auxiliary results on C∞ functions

Proposition 7 Let U be an open set of R
d and K ⊂ U be a compact set. Let u ∈

C∞(U ), then there exists v ∈ C∞0 (Rd) (with compact support), such that v(x) = u(x)
for all x ∈ K.

Proof By Thm. 1.4.1, pag. 25 of [40] there exists zK ,U ∈ C∞0 (U ), i.e., a smooth
functionwith compact support, such that zK ,U (x) ∈ [0, 1] for any x ∈ U and z(x) = 1
for any x ∈ K . Consider now the function vK ,U defined as vK ,U (x) = zK ,U (x)u(x)
for all x ∈ U . The function vK ,U is inC∞0 (U ), since it is the product of aC∞0 (U ) and a
C∞(U ) function, moreover vK ,U (x) = u(x) for all x ∈ K . The theorem is concluded
by defining v as the extension of vK ,U to R

d , i.e., the function vK (x) = zK ,U (x) for
any x ∈ U and vK (x) = 0 for any x ∈ R

d \ U . This is always possible since vK ,U

is supported on a compact set K ′ which is contained in the open set U , so vK ,U is
already identically zero in the open set U \ K ′. "#
Lemma 6 Given ζ ∈ R

d and r > 0, there exists u ∈ C∞0 (Rd) such that for any
x ∈ R

d , it holds

(i) u(x) ∈ [0, 1];
(ii) ‖x‖ ≥ r )⇒ u(x) = 0;
(iii) ‖x‖ ≤ r/2 )⇒ u(x) = 1.

Proof Assumewithout loss of generality that ζ = 0 and r = 1. Consider the following
functions :

u1(x) =
{
exp
(
− 1

1−‖x‖2
)

if ‖x‖ < 1

0 otherwise
, u2(x) =

{
exp
(
− 1
‖x‖2−1/4

)
if ‖x‖ > 1/2

0 otherwise
.

Both u1 and u2 belong toC∞(Rd)with values in [0, 1]. Moreover, u1 > α1 on B3/4(0)
and u2 ≥ α2 for some α1, α2 > 0 on R

d \ B3/4(0), which implies that u1 + u2 ∈ I
on R

d , where I = [min(α1, α2), 2]. Since (·)−1 is infinitely differentiable on (0,∞)

we see that 1/(u1 + u2) is well defined on all R
d and belongs to C∞(Rd), since

I ⊂⊂ (0,∞). Consider the function

u0 = u1
u1 + u2

.

It is non-negative, bounded by 1, and infinitely differentiable as a product. Moreover
:

∀x ∈ B1/2(0), u2(x) = 0 )⇒ u0(x) = 1,

∀x ∈ R
d , u1(x) = 0⇔ u0(x) = 0⇔ x ∈ R

d \ B1(0).

To conclude the proof, given r > 0 and ζ ∈ R
d we will take u(x) = u0((x − ζ )/r). "#
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Lemma 7 Let N ∈ N+, ζ1, ..., ζN ∈ R
d and r1, ..., rN > 0. For n ∈ {1, . . . , N }, let

Bn = Brn (ζn) be the open ball centered in ζn of radius rn and B ′n = Brn/2(ζn) ⊂ Bn be
the open ball centered in ζn of radius rn/2. Then there exists functions v0, v1, ..., vN ∈
C∞(Rd) such that

(i) v0 = v0 · 1Rd\⋃N
n=1 B′n

(ii) vn = vn · 1Bn , ∀n ∈ {1, . . . , N }
(iii)

∑N
n=0 v2n = 1.

Proof For all n ∈ [N ], take un as in Lemma 6 with r = rn, ζ = ζn and define
u0 = ∏N

n=1 (1− un). Since ∀n ∈ [N ], un ∈ [0, 1], we also have u0 ∈ [0, 1].
Moreover, let R = maxn∈[N ] ‖ζn‖ + rn , then

∀‖x‖ ≥ R, ∀1 ≤ n ≤ N , un(x) = 0 and u0(x) = 1.

Step 1. u0 · 1Rd\⋃n∈[N ] B′n = u0 and for all n ∈ [N ], un · 1Bn = un .

By point (iii) of Lemma 6, un = 1 on B ′n for all n ∈ [N ], which shows that u0 = 0
on
⋃N

n=1 B ′n and hence u0 · 1Rd\⋃n∈[N ] B′n = u0. On the other hand, for all n ∈ [N ],
point (ii) of Lemma 6 directly implies un · 1Bn = un .
Step 2. The function 1√∑N

n=0 u2i
is well defined and in C∞(Rd).

By definition of u0, if u0(x) = 0, then there exists n ∈ [N ] such that un(x) = 1.
Since all the un are non-negative, this shows that s := ∑N

n=0 u2n > 0. Moreover,
consider the closed ball B̄ of radius R and centered in 0. Since B̄ is compact, s is
continuous and s(x) > 0 for any x ∈ B̄, then there exists 0 < mR ≤ MR < ∞ such
that s(x) ∈ [mR, MR] for any x ∈ B̄. Moreover, since for any ‖x‖ ≥ R, u0(x) =
1 and ∀n ∈ [N ], un(x) = 0, we see that

∀x ∈ R
d \ BR(0),

N∑

n=0
u2n(x) = 1.

Then s ∈ [m, M] for any x ∈ R
d , where m = min(mR, 1) and M = max(MR, 1).

Since the interval I = [m, M] is a compact set included in the open set (0,∞)

and 1/
√· is infinitely differentiable on (0,∞) then by Proposition 7 there exists

qI ∈ C∞0 (R) such that qI (x) = 1/
√
x for any x ∈ I . Since s(x) ∈ I for any x ∈ R

d

we have

1
√∑N

n=0 u2i
= qI ◦ s.

Finally qI ◦ s ∈ C∞(Rd) since it is the composition of qI ∈ C∞0 (R) and s =
∑N

n=0 u2n ∈ C∞(Rd) (since all the un are in C∞(Rd)) and s ∈ [m, M].
Step 3.

Finally, defining vn = un√∑N
n=0 u2n

for all 0 ≤ n ≤ N , vn ∈ C∞(Rd) since it

is the product of two infinitely differentiable functions. Moreover,
∑N

n=0 v2i = 1 by
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construction and v0 = v0 ·1Rd\⋃N
n=1 B′n

since u0 satisfies the same equality and v0 is the

product of u0 by the strictly positive function 1/
√
s. Analogously vn = vn ·1Bn , ∀n ∈

{1, . . . , N }, since un satisfy the same equality and vn is the product of un by the strictly
positive function 1/

√
s. "#

B Fundamental results on scattered data approximation

Werecall here some fundamental results about local polynomial approximation. In par-
ticular, we report here the proofs to track explicitly the constants. The proof techniques
are essentially from [18, 20]. Denote by πk(R

d) the set of multivariate polynomials
of degree at most k, with k ∈ N. In this section Br (x) ⊂ R

d denotes the open ball of
radius r and centered in x .

Proposition 8 ([18], Corollary 3.11. Local polynomial reproduction on a ball). Let
k ∈ N, d,m ∈ N+ and δ > 0. Let Bδ be an open ball of radius δ > 0 in R

d .
Let Ŷ = {y1, . . . , ym} ⊂ Bδ be a non empty finite subset of Bδ . If either k = 0 or
hŶ ,Bδ

≤ δ
9k2

, there exist u j : Bδ → R with j ∈ [m] such that

(a)
∑

j∈[m] p(y j )u j (x) = p(x), ∀x ∈ Bδ, p ∈ πk(R
d)

(b)
∑

j∈[m] |u j (x)| ≤ 2, ∀x ∈ Bδ .

Lemma 8 (Bounds on functions with scattered zeros on a small ball [18, 20]). Let
k ∈ N, d,m ∈ N+ and δ > 0. Let Bδ ⊂ R

d be a ball of radius δ in R
d . Let

f ∈ Ck+1(Bδ). Let Ŷ = {y1, . . . , ym} ⊂ Bδ be a non empty finite subset of Bδ . If
either k = 0 or hŶ ,Bδ

≤ δ
9k2

, it holds:

sup
x∈Bδ

| f (x)| ≤ 3Cδk+1 + 2 max
i∈[m] | f (yi )|, C :=

∑

|α|=k+1

1

α! ‖∂
α f ‖L∞(Bδ).

Proof Note that since either k = 0 or hŶ ,Bδ
≤ δ

9k2
, then we can apply Proposition 8

obtaining u j with j ∈ [m] with the local polynomial reproduction property. Define
the function s f ,Ŷ =

∑
j∈[m] f (y j )u j and let τ = maxi∈[m] | f (yi )|. Now, by using

both Propositions 8(a) and 8(b), we have that for any p ∈ πk(R
d) and any x ∈ Bδ ,

| f (x)| ≤ | f (x)− p(x)| + |p(x)− s f ,Ŷ (x)| + |s f ,Ŷ (x)|
≤ | f (x)− p(x)| +

∑

j∈[m]
|p(y j )− f (y j )||u j (x)| + max

j∈[m] | f (y j )|
∑

j∈[m]
|u j (x)|

≤ ‖ f − p‖L∞(Bδ)

⎛

⎝1+
∑

j∈[m]
|u j (x)|

⎞

⎠+ τ
∑

j∈[m]
|u j (x)|

≤ 3‖ f − p‖L∞(Bδ) + 2τ.
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In particular, consider the Taylor expansion of f at the center x0 of Bδ up to order k
(e.g. [41] Eq. 4.2.5 pag 95). For any x ∈ Bδ , it holds

f (x) =
∑

|α|≤k

1

α!∂
α f (x0)(x − x0)

α

+
∑

|α|=k+1

k + 1

α! (x − x0)
α

∫ 1

0
(1− t)k∂α f ((1− t)x0 + t x)dt .

By choosing p(x) =∑|α|≤k 1
α!∂

α f (x0)(x − x0)α ∈ πk(R
d) it holds:

‖ f − p‖L∞(Bδ) ≤
∑

|α|=k+1

δk+1

α! ‖∂
α f ‖L∞(Bδ) = Cδk+1,

whereC =∑|α|=k+1 1
α! ‖∂α f ‖L∞(Bδ) is defined in the lemma. Gathering the previous

equations,

sup
x∈Bδ

| f (x)| ≤ 2τ + 3Cδk+1.

"#
Theorem 11 (Bounds on functions with scattered zeros [18, 20]). Let k,m ∈ N s.t.
k ≤ m andn, d ∈ N+. Let r > 0 andΩ an open set ofRd of the formΩ =⋃x∈S Br (x)
for some subset S of R

d . Let X̂ = {x1, . . . , xn} be a non-empty finite subset of Ω . Let
f ∈ Cm+1(Ω). If h X̂ ,Ω ≤ r max(1, 1

18k2
), then

sup
x∈Ω

| f (x)| ≤ CC f h
k+1
X̂ ,Ω

+ 2max
i∈[n] | f (xi )|,

where C = 3max(1, 18 k2)k+1 and C f =∑|α|=k+1 1
α! ‖∂α f ‖L∞(Ω).

Proof First, note that the condition that there exists a set S such thatΩ =⋃x∈S Br (x)
implies

∀δ ≤ r , Ω =
⋃

x0∈Sδ

Bδ(x0), Sδ = {x ′ ∈ Ω : ∃x ∈ S, ‖x − x ′‖ ≤ r − δ}.

We will now prove the theorem for k ≥ 1 and then the easier case k = 0, where we
will use essentially only the Lipschitzianity of f .
Proof of the case k ≥ 1. The idea of the proof is to apply Lemma 8 to a collection
of balls of radius δ for a well chosen δ ≤ r and centered in x0 ∈ Sδ defined above.
Given X̂ , to apply Lemma 8 on a ball of radius δ we have to restrict the points in X̂
to the subset belonging to that ball, i.e., Ŷx0,δ = X̂ ∩ Bδ(x0), x0 ∈ Sδ and δ > 0. The
set Ŷx0,δ will have a fill distance hx0,δ = hŶx0,δ ,Bδ(x0). First we are going to show that
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Ŷx0,δ is not empty, when r > δ > h X̂ ,Ω . To obtain this result we need to study also
the ball Bδ′(x0) with δ′ = δ − h X̂ ,Ω .
Step 1. Showing that Ŷx0,δ is not empty and for any y ∈ Bδ′(x0) there exists
z ∈ Ŷx0,δ satisfying ‖y − z‖ ≤ h X̂ ,Ω . Let x0 ∈ Sδ and δ ≤ r . This implies that
Bδ(x0) ⊆ Ω by the characterization of Ω in terms of Sδ we gave above. Define now
δ′ = δ − h X̂ ,Ω and note that Bδ′(x0) is non empty, since δ′ > 0, and that Bδ′(x0) ⊂
Bδ(x0) ⊆ Ω . Now note that by definition of fill distance, for any y ∈ Bδ′(x0) there
exists a z ∈ X̂ such that ‖z − y‖ ≤ h X̂ ,Ω . Moreover note that z ∈ Bδ(x0), since
‖x0 − z‖ ≤ ‖x0 − y‖ + ‖y − z‖ < δ − h X̂ ,Ω + h X̂ ,Ω = δ. Since z ∈ X̂ and also in
Bδ(x0), then z ∈ Ŷx0,δ by definition of Ŷx0,δ .
Step 2. Showing that hx0,δ ≤ 2h X̂ ,Ω . Let x ∈ Bδ(x0). We have seen in the previous
step that the ball Bδ′(x0) is well defined and non empty, with δ′ = δ−h X̂ ,Ω . Now note
that also BhX̂ ,Ω

(x)∩Bδ′(x0) is not empty, indeed the distance between the centers x, x0
is strictly smaller than the sum of the two radii, indeed ‖x − x0‖ < δ = δ′ + h X̂ ,Ω ,
since x ∈ Bδ(x0). Take w ∈ BhX̂ ,Ω

(x) ∩ Bδ′(x0). Since w ∈ Bδ′(x0) by Step 1 we

know that there exists z ∈ Ŷx0,δ with ‖w− z‖ ≤ h X̂ ,Ω . Since w ∈ BhX̂ ,Ω
(x), then we

know that ‖x − w‖ < h X̂ ,Ω . So ‖x − z‖ ≤ ‖x − w‖ + ‖w − z‖ < 2h X̂ ,Ω .
Step 3. Applying Lemma 8. Since, by assumption h X̂ ,Ω ≤ r/(18k2) and k ≥ 1, then
the choice δ = 18k2h X̂ ,Ω implies r ≥ δ > h X̂ ,Ω . So we can use the characterization
of Ω in terms of Sδ and the results in the previous two steps, obtaining that for any
x0 ∈ Sδ the set Bδ(x0) ⊆ Ω and moreover the set Ŷx0,δ is not empty and covers Bδ(x0)
with a fill distance hx0,δ ≤ 2h X̂ ,Ω . Since, hx0,δ ≤ 2h X̂ ,Ω ≤ δ/(9k2) then we can apply
Lemma 8 to each ball Bδ(x0) obtaining

sup
x∈Bδ(x0)

| f (x)| ≤ 3Cδ,x0δ
k+1 + 2 max

z∈Ŷx0,δ

| f (z)|,

Cδ,x0 :=
∑

|α|=k+1

1

α! ‖∂
α f ‖L∞(Bδ(x0)).

The proof is concluded by noting that Ω = ⋃x0∈Sδ
Bδ(x0) and that for any x0 ∈ Sδ

we have Cδ,x0 ≤ C f , δk+1 ≤ (18k2)k+1hk+1
X̂ ,Ω

and moreover that maxz∈Ŷx0,δ
| f (z)| ≤

maxi∈[n] | f (xi )|, since Ŷx0,δ ⊆ X̂ by construction.
Proof of the case k = 0 Since h X̂ ,Ω ≤ r , by assumption, then δ = h X̂ ,Ω implies
that Ω admits a characterization as Ω = ⋃x0∈Sδ

Bδ(x0). Now let x ∈ Ω and choose
x0 ∈ Sδ such that x ∈ Bδ(x0). One the one hand, since the segment [x0, x] is included
in Ω , by Taylor inequality, | f (x) − f (x0)| ≤ C f ‖x − x0‖ ≤ C f h X̂ ,Ω and C f =∑
|α|=1 1

α! ‖∂α f ‖L∞(Ω). One the other hand, by definition of h X̂ ,Ω , there exists z ∈
X̂ ⊂ Ω such that ‖z − x0‖ ≤ h X̂ ,Ω = δ. Since both the open segment [x0, z) ⊂
Bδ(x0) ⊂ Ω and z ∈ Ω , then the whole segment [x0, z] ⊂ Ω and hence we can apply
Taylor inequality to show ‖ f (x0)− f (z)‖ ≤ C f ‖z− x0‖ ≤ C f h X̂ ,Ω . Then we have

| f (x)| ≤ | f (x)− f (x0)| + | f (x)− f (z)| + | f (z)| ≤ 2C f h X̂ ,Ω +max
i∈[n] | f (xi )|.
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The proof of the step k = 0 is concluded by noting that the previous inequality holds
for every x ∈ Ω . "#

C Auxiliary results on RKHS

We recall that the nuclear norm of a compact linear operator A is defined as ‖A‖� =
Tr(
√
A∗A) or equivalently ‖A‖� =∑ j∈N σ j , where (σ j ) j∈N are the singular values

of A (Chapter 7 of [42] or [43] for the finite dimensional analogue).

Lemma 9 Let Ω be a set, k be a kernel andH the associated RKHS. Let A : H→ H
be a trace class operator. If H satisfies Assumption 2(a), then

‖rA‖H ≤ M‖A‖�, where rA(x) := 〈φ(x), Aφ(x)〉 , ∀x ∈ Ω,

and ‖A‖� is the nuclear norm of A. We recall that if A ∈ S+(H) then ‖A‖� = Tr(A).

Proof Since A is compact, it admits a singular value decomposition A =∑i∈N σi ui⊗
vi . Here, (σ j ) j∈N is a non-increasing sequence of non-negative eigenvalues converging
to zero, and (u j ) j∈N and (v j ) j∈N are two orthonormal families of corresponding
eigenvectors, (a family (e j ) is said to be orthonormal if for i, j ∈ N,

〈
ei , e j

〉 = 1
if i = j and

〈
ei , e j

〉 = 0 otherwise) [42]. Note that we can write rA using this
decomposition as rA(x) =∑i∈N σi ui (x)vi (x) =∑i∈N σi (ui · vi )(x), for all x ∈ Ω ,
wherewe denote by · the pointwisemultiplication between two functions (this equality
is justified by the following absolute convergence bound). By Assumption 2(a), the
fact that A is trace-class (i.e., ‖A‖� < ∞) and the fact that u j , v j satisfy ‖u j‖H =
‖v j‖H = 1, j ∈ N, the following holds

‖rA‖H =
∥∥∥∥∥∥

∑

j∈N
σ j (u j · v j )

∥∥∥∥∥∥H
≤
∑

j∈N
σ j‖u j · v j‖H

≤ M
∑

j∈N
σ j‖u j‖H‖v j‖H ≤ M

∑

j∈N
σ j = M‖A‖�.

In the case where A ∈ S+(H), we have ‖A‖� = Tr(
√
A∗A) = Tr(A). "#

C.1 Proof of Proposition 2

Given the kernel k, the associated RKHSH and the canonical featuremap φ : Ω → H
and a set of distinct points X̂ = {x1, . . . , xn} define the kernel matrix K ∈ R

n×n as
Ki, j =

〈
φ(xi ), φ(x j )

〉 = k(xi , x j ) for all i, j ∈ [n]. Note that, since k is a p.d. kernel,
then K is positive semidefinite, moreover when k is universal, then φ(x1), . . . , φ(xn)
are linearly independent, so K is full rank and hence invertible. Universality of k is
guaranteed since H contains the C∞0 (Ω) functions, by Assumption 1(a), and so can
approximate continuous functions over compacts in Ω [17]. Denote by R the upper
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triangular matrix corresponding to the Cholesky decomposition of K , i.e., R satisfies
K = R�R. We are ready to start the proof of Proposition 2.

Proof Denote by Ŝ : H→ R
n the linear operator that acts as follows

Ŝg = ( 〈φ(x1), g〉 , . . . , 〈φ(xn), g〉 ) ∈ R
n, ∀g ∈ H.

Define Ŝ∗ : Rn → H, i.e., the adjoint of Ŝ, as Ŝ∗β =∑n
i=1 βiφ(xi ) for β ∈ R

n . Note,
in particular, that K = Ŝ Ŝ∗ and that Ŝ∗e j = φ(xi ), where e j is the j-th element of the
canonical basis ofRn .We define the operator V = R−� Ŝ and its adjoint V ∗ = Ŝ∗R−1.
By using the definition of V , the fact that K = R�R by construction of R, and the
fact that K = Ŝ Ŝ∗, we derive two facts.
On the one hand,

VV ∗ = R−� Ŝ Ŝ∗R−1 = R−�K R−1 = R−�R�RR−1 = I .

On the other hand, P is a projection operator, i.e., P2 = P , P is positive definite and
its range is ranP = span{φ(xi ) | i ∈ [n]}, implying Pφ(xi ) = φ(xi ) for all i ∈ [n].
Indeed, using the equation above, P2 = V ∗VV ∗V = V ∗(VV ∗)V = V ∗V = P , and
the positive-semi-definiteness of P is given by construction since it is the product of
an operator and its adjoint. Moreover, the range of P is the same as that of V ∗ which
in turn is the same as that of S∗, since R is invertible : ranP = span{φ(xi ) | i ∈ [n]}.
Finally, note that since k(x, x ′) = 〈φ(x), φ(x ′)

〉
, for any x, x ′ ∈ Ω , then for any

j ∈ [n], Φ j is characterized by

Φ j = R−�(k(x1, x j ), . . . , k(xn, x j ))

= R−�(
〈
φ(x1), φ(x j )

〉
, . . . ,

〈
φ(xn), φ(x j )

〉
) = R−� Ŝφ(x j ) = Vφ(x j ).

"#

D The constants of translation invariant and Sobolev kernels

D.1 Results for translation invariant and Sobolev kernels

Lemma 10 Let Ω be a set and let k(x, x ′) = v(x − x ′) for all x, x ′ ∈ Ω , be a
translation invariant kernel for some function v : R

d → R. Denote by ṽ the Fourier
transform of v. Let H be the associated RKHS. For any f , g ∈ H we have

‖ f · g‖H ≤ C‖ f ‖H‖g‖H,

C = (2π)d/4
∥∥∥∥
ṽ�ṽ

ṽ

∥∥∥∥

1/2

L∞(Rd )

.

123



Finding global minima via kernel approximations

In particular, if there exists a non-increasing g : [0,∞] → (0,∞] s.t. ṽ(ω) ≤ g(‖ω‖),
then

C ≤ √2(2π)d/2v(0)1/2 sup
ω∈Rd

√
g( 12‖ω‖)

ṽ(ω)
.

Proof First note that by as recalled in Example 5, there exists an extension operator,
i.e., a partial isometry E : H → H(Rd) such that r = Eu satisfies r(x) = u(x) for
all x ∈ Ω and ‖u‖H = ‖r‖H, for any u ∈ H. Moreover there exists a restriction
operator R : H(Rd) → H, as recalled in Example 5, such that RE : H → H is the
identity operator and ER : H(Rd) → H(Rd) is a projection operator whose range is
H. Moreover, note that f · g = R(E f · Eg) since for any x ∈ Ω , (R(E f · Eg))(x) =
(E f )(x)(Eg)(x) = f (x)g(x) = ( f · g)(x). Since ER is a projection operator, then
‖ER‖op ≤ 1, hence

‖ f · g‖H = ‖R(E f · Eg)‖H = ‖ER(E f · Eg)‖H(Rd )

≤ ‖ER‖op‖E f · Eg‖H(Rd ) ≤ ‖E f · Eg‖H(Rd ).

Let a = E f and b = Eg. Denote by ã, b̃ their Fourier transform and by ã · b the
Fourier transform of a · b (see Proposition 2 for more details). By expanding the
definition of the Hilbert norm of translation invariant kernel

‖E f · Eg‖2H(Rd )
= ‖a · b‖2H(Rd )

= (2π)−d/2
∫

Rd

|̃a · b (ω)|2
ṽ(ω)

dω.

Now we bound ã · b. Since ã · b = (2π)d/2ã�b̃ (see Proposition 2) where � cor-
responds to the convolution, by expanding it and by applying Cauchy-Schwarz we
obtain

(2π)−d/2 |̃a · b(ω)|2 = |(ã�b̃)(ω)|2 =
(∫

Rd
ã(σ )b̃(ω − σ)dσ

)2

=
(∫

Rd

ã(σ )
√

ṽ(σ )

b̃(ω − σ)
√

ṽ(ω − σ)

√
ṽ(σ )

√
ṽ(ω − σ)dσ

)2

≤
∫

Rd

ã2

ṽ
(σ )

b̃2

ṽ
(ω − σ)dσ

∫

Rd
ṽ(σ )ṽ(ω − σ)dσ

=
(
ã2

ṽ
�
b̃2

ṽ

)

(ω) (ṽ�ṽ)(ω).

By using the bound above together with Hölder inequality and Young inequality for
convolutions, we have

(2π)−d/2
∫

Rd

|̃a · b (ω)|2
ṽ(ω)

dω ≤
∫

Rd

(
ã2

ṽ
�
b̃2

ṽ

)

(ω)
(ṽ�ṽ)(ω)

ṽ(ω)
dω
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≤
∥∥∥∥∥
ã2

ṽ
�
b̃2

ṽ

∥∥∥∥∥
L1(Rd )

∥∥∥∥
ṽ�ṽ

ṽ

∥∥∥∥
L∞(Rd )

≤
∥∥∥∥
ã2

ṽ

∥∥∥∥
L1(Rd )

∥∥∥∥∥
b̃2

ṽ

∥∥∥∥∥
L1(Rd )

∥∥∥∥
ṽ�ṽ

ṽ

∥∥∥∥
L∞(Rd )

= (2π)d/2
∥∥∥∥
ṽ�ṽ

ṽ

∥∥∥∥
L∞(Rd )

‖a‖2H(Rd )
‖b‖2H(Rd )

= C2,

where in the last step we used the definitions of inner products for translation invariant
kernels. The proof is concluded by noting that ‖a‖H(Rd ) = ‖E f ‖H(Rd ) = ‖ f ‖H and
the same holds for b, i.e., ‖b‖H(Rd ) = ‖g‖H. A final consideration is thatC can be fur-
ther bounded by applying Proposition 9 and noting that v(0) = (2π)−d/2

∫
ṽ(ω)dω =

(2π)−d/2‖ṽ‖L1(Rd ), via the characterization of v in terms of ṽ in Proposition 2(e), since
ṽ(ω) ≥ 0 and integrable. "#
Proposition 9 Let u ∈ L1(Rd) ∩ C(Rd) be u(x) ≥ 0 for x ∈ R

d and such that there
exists a non-increasing function g : [0,∞) → (0,∞) satisfying u(x) ≤ g(‖x‖) for
all x ∈ R

d . Then it holds :

∀x ∈ R
d , 0 ≤ (u�u)(x) ≤ 2‖u‖L1(Rd )g

( 1
2‖x‖

)
.

In particular, if u > 0, it holds

∥∥∥
u�u

u

∥∥∥
L∞(Rd )

≤ 2‖u‖L1(Rd ) sup
x∈Rd

g
( 1
2‖x‖

)

u(x)
.

Proof For any x ∈ R
d ,

(u�u)(x) = sup
x∈Rd

∫

Rd
u(y)u(x − y)dy.

Let Sx = {y | ‖x − y‖ ≤ 1
2‖x‖}. Note that, when y ∈ R

d \ Sx , then ‖x − y‖ > 1
2‖x‖.

Instead, when y ∈ Sx , then

1
2‖x‖ ≤ ‖x‖ − ‖x − y‖ ≤ ‖y‖.

Since g is non-increasing, for any x ∈ R
d we have

∫

Rd
u(y)u(x − y)dy =

∫

Sx
u(y)u(x − y)dy +

∫

Rd\Sx
u(y)u(x − y)dy

≤
∫

Sx
g(‖y‖)u(x − y)dy +

∫

Rd\Sx
u(y)g(‖x − y‖)dy

≤
∫

Sx
g
( 1
2‖x‖

)
u(x − y)dy +

∫

Rd\Sx
u(y)g

( 1
2‖x‖

)
dy
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≤
∫

Rd
g
( 1
2‖x‖

)
u(x − y)dy +

∫

Rd
u(y)g

( 1
2‖x‖

)
dy

=
∫

Rd
g
( 1
2‖x‖

)
u(y)dy +

∫

Rd
u(y)g

( 1
2‖x‖

)
dy

= 2 g
( 1
2‖x‖

) ∫

Rd
u(y)dy,

where: in the first inequality we bounded u(y) with g(‖y‖) and u(x − y) with g(‖x −
y‖), in the first and the second integral, respectively; in the second inequality we
bounded g(‖y‖) with g( 12‖x‖), since ‖y‖ ≥ 1

2‖x‖ when y ∈ Sx and we bounded
g(‖x − y‖) with g( 12‖x‖), since ‖x − y‖ ≥ 1

2‖x‖ when y ∈ R
d \ Sx ; in the third we

extended the integration domains to R
d . "#

D.2 Proof of Proposition 1

Proof We prove here that the Sobolev kernel satisfies Assumption 2. Let k = ks from
Eq. (3.2). As we have seen in Example 1H = Ws

2 (Ω) and ‖ · ‖Ws
2 (Ω) is equivalent to

‖ · ‖H, when s > d/2 and Ω satisfies Assumption 1(a) since this assumption implies
that Ω satisfies the cone condition [18].
Recall that k is translation invariant, i.e., k(x, x ′) = v(x− x ′) for any x, x ′ ∈ R

d , with
v defined in Example 1. The Fourier transform of v is ṽ(ω) = C0(1+ ‖ω‖2)−s with
C0 = 2d/2Γ (s)

Γ (s−d/2) [18]. In the rest of the proof, C0 will always refer to this constant.
We are going to divide the proof in one step per point of Assumption 2.
Proof of Assumption 2(d) for the Sobolev kernel. Let α ∈ N

d , m = |α|. Assume
m < s− d/2, i.e.,m ∈ {1, . . . , 's− (d+ 1)/2(}. Since k is translation invariant, then
∂α
x ∂α

y k(x, y) = (−1)m v2α(x − y) with v2α(z) = ∂2αz v(z) for all z ∈ R
d . So

sup
x,y∈Ω

|∂α
x ∂α

y k(x, y)| = sup
x,y∈Ω

|∂α
x ∂α

y v(x − y)| ≤ sup
z∈Rd

|∂2αz v(z)|

≤ (2π)−d/2‖ω2αṽ(z)‖L1(Rd ),

where in the last step we used elementary properties of the Fourier transform (in

particular the ones recalled in Proposition 2(c) and 2(e)). Let Sd−1 = 2 πd/2

Γ (d/2) be the
area of the d − 1 dimensional sphere. Since m < s − d/2 and ṽ ≥ 0,

‖ω2αṽ(z)‖L1(Rd ) ≤
∫

Rd
‖ω‖2m ṽ(ω)dω = C0Sd−1

∫ ∞

0

r2m+d−1

(1+ r2)s
dr

= C0Sd−1
∫ ∞

0

tm+d/2−1

2(1+ t)s
dt = C0Sd−1 Γ (m+d/2)Γ (s−d/2−m)

2Γ (s) ,

wherewe performed a change of variable r = √t and dr = dt
2
√
t
and applied Eq. 5.12.3

pag. 142 of [44] to the resulting integral. Thus, Assumption 2(d) holds with
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D2
m = C0

πd/2Γ (m + d/2)Γ (s − m − d/2)

Γ (d/2)Γ (s)
= (2π)d/2Γ (m + d/2)Γ (s − d/2− m)

Γ (s − d/2)Γ (d/2)
.

Proof of Assumption 2(a) for the Sobolev kernel. First, note that C∞(Rd)|Ω ⊂
Ws∞(Ω) ⊂ Ws

2 (Ω). Indeed, since Ω is bounded, for any f ∈ C∞(Rd),
‖∂α f |Ω‖L∞(Ω) < ∞ for any α ∈ N

d . This shows that f |Ω ∈ Ws∞(Ω). Moreover
Ws∞(Ω) ⊂ Ws

2 (Ω) since ‖·‖L2(Ω) ≤ vol(Ω)1/2‖·‖L∞(Ω) becauseΩ is bounded. Sec-
ond, since ṽ(ω) = gs(‖ω‖) with gs(t) = C0(1+ t2)−s , positive and non-increasing,
we can apply Lemma 10. Therefore, for C = √

2(2π)d/2v(0)1/2 supt≥0
( gs (t/2)

gs (t)

)1/2

it holds ‖ f · g‖H ≤ C‖ f ‖H‖g‖H. In particular we have supt≥0
( gs (t/2)

gs (t)

)1/2 ≤ 2s

and v(0) = 1, since limt→0 t s−d/2Ks−d/2(t) = Γ (s − d/2)/21+d/2−s = 1/C0 (
[44] Eq. 10.30.2 pag. 252) and v(x) = C0t s−d/2Ks−d/2(t), t = ‖x‖. Thus, Assump-
tion 2(a) holds with constant

M = πd/22(2s+d+1)/2.

Proof of Assumption 2(b) for the Sobolev kernel. First we recall from [11] that for
any s > d/2, there exists a constant Cs such that

∀h ∈ Ws
2 (Rd), ‖h‖L∞(Rd ) ≤ Cs‖h‖Ws

2 (Rd ).

In particular, this shows that Ws
2 (Rd) ⊂ L∞(Rd). Fix such a constant Cs in the rest

of the proof.
Let p ∈ N and g ∈ C∞(Rp) with g(0, 0, . . . , 0) = 0. From (i) of Thm. 11 in [45],

there exists a constant cg depending only on g, p, s such that for any h1, . . . , h p ∈
Ws

2 (Rd) ∩ L∞(Rd), it holds

‖g(h1, . . . , h p)‖Ws
2 (Rd ) ≤ cg sup

i∈[p]
‖hi‖Ws

2 (Rd )

(
1+ ‖hi‖max(0,s−1)

L∞(Rd )

)
.

Since s > d/2, the bound above shows, in particular, that for any h1, . . . , h p ∈
Ws

2 (Rd), it holds

‖g(h1, . . . , h p)‖Ws
2 (Rd ) ≤ c′g sup

i∈[p]

(
‖hi‖ + ‖hi‖max(1,s)

Ws
2 (Rd )

)
,

c′g = cg max
(
1,Cmax(0,s−1)

s

)
.

SinceWs
2 (Rd) = H(Rd) and ‖·‖Ws

2 (Rd ) and ‖·‖H(Rd ) are equivalent (see [11]), the
previous inequality holds for ‖ · ‖H(Rd ) with a certain constant c

′
g depending only on

g, p, s, d. In particular, this implies that g(h1, . . . , h p) ∈ H(Rd) for any h1, . . . , h p ∈
H(Rd). Now we are going to prove the same implication for the restriction on Ω .
First note that any function in a ∈ C∞(Rp) can be written as a(z) = q 1(z) + g(z),
z ∈ R

p where q = a(0, 0, · · · , 0) ∈ R, g ∈ C∞(Rp) with g(0, 0, · · · , 0) = 0
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and 1(z) = 1 for all z ∈ R
p. Recall the definition and basic results on the extension

operator E : H → H(Rd) from Example 5. For any f1, . . . , f p ∈ H, note that
g((E f1)(x), . . . , (E f p)(x)) = g( f1(x), . . . , f p(x)) for all x ∈ Ω . We can now apply
the results of Example 5 to show that g( f1, . . . , f p) ∈ H :

‖g( f1, . . . , f p)‖H = inf
u
‖u‖H(Rd ) s.t . u(x) = g( f1(x), . . . , f p(x)) ∀x ∈ Ω

≤ ‖g(E f1, . . . , E f p)‖H(Rd )

≤ c′g sup
j∈[p]

‖E f j‖H(Rd ) + ‖E f j‖max(1,s)
H(Rd )

= c′g sup
j∈[p]

‖ f j‖H + ‖ f j‖max(1,s)
H < ∞,

where in the last step we used the fact that ‖ · ‖H = ‖E · ‖H(Rd ). The proof of this
point is concluded by noting that, a( f1, . . . , f p) ∈ H, since 1 ∈ H, due to the Point
(a) above, and

‖a( f1, . . . , f p)‖H ≤ q‖1‖H + ‖g( f1, . . . , f p)‖H < ∞.

Proof of Assumption 2(c) for the Sobolev kernel. This proof is done in Lemma 11,
right below. "#

Before stating Lemma 11 we are going to recall some properties. First, recall the
Young inequality :

∀ f ∈ L2(Rd), ∀g ∈ L1(Rd), ‖ f �g‖L2(Rd ) ≤ ‖ f ‖L2(Rd ) ‖g‖L1(Rd ).

Moreover, by definition of the Sobolev kernel, it is a translation-invariant kernel with
v defined in Example 1, with Fourier transform ṽ(ω) = C0(1+ ‖ω‖2)−s . LetH(Rd)

be the reproducing kernel Hilbert space on R
d associated to the Sobolev kernel ks . As

recalled in Example 6, theH(Rd)-norm is characterized by

∀ f ∈ H(Rd), ‖ f ‖H(Rd ) = (2π)−d/4‖ f̃ /√ṽ‖L2(Rd ), (D.1)

where f̃ = F( f ) is the Fourier transform of f (see [11]). Then we recall that ṽ ∈
L1(Rd), since s > d/2, so for any f ∈ H(Rd)

‖ f̃ ‖L1(Rd ) = ‖
√

ṽ f̃ /
√

ṽ‖L1(Rd ) ≤ ‖
√

ṽ‖L2(Rd )‖ f̃ /
√

ṽ‖L2(Rd ) = C1‖ f ‖H(Rd ).

(D.2)

where C1 = (2π)d/4‖√ṽ‖L2(Rd ). A useful consequence of the inequality above is

obtained by considering that ‖ f ‖L∞(Rd ) is bounded by the L
1 norm of f̃ (see Propo-

sition 2(e)), then

‖ f ‖L∞ ≤ (2π)−d/2‖ f̃ ‖L1(Rd ) ≤ C2‖ f ‖H(Rd ), (D.3)

where C2 = (2π)−d/4‖√ṽ‖L2(Rd ).
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Lemma 11 (Assumption 2(c) for Sobolev Kernels). LetH be the RKHS associated to
the translation invariant Sobolev Kernel defined in Example 1, with s > d/2. Then
Assumption 2(c) is satisfied.

Proof For the rest of the proof we fix u : Ω → R with u ∈ H, r > 0 and z ∈ R
d such

that Br (z) ⊂ Ω . Let EΩ : H→ H(Rd) be the extension operator from Ω to R
d (its

properties are recalled in Example 5).Let χ ∈ C∞0 (Rd) be given by Lemma 6 such
that χ = 1 on Br (z), χ = 0 on R

d \ B2r (z) and χ ∈ [0, 1]. Define for any t ∈ R and
x ∈ R

d

ht (x) = χ(x)wt (x), wt (x) = w((1− t)z + t x), w = EΩu.

In particular we recall that, since EΩ is a partial isometry (see Example 5) then
‖w‖H(Rd ) = ‖u‖H.

Step 1. Fourier transform of wt . Denote with w̃ the Fourier transform of w which
is well defined since w ∈ H(Rd) ⊂ L2(Rd) (see [11]), with χ̃ the Fourier transform
of χ . Since For any t �= 0, denote with w̃t the Fourier transform of wt which is well
defined using the results of Proposition 2, and which satisfies

∀t �= 0, ∀ω ∈ R
d , w̃t (ω) = |t |−dei 1−tt z�ωw̃(ω/t).

Step 2. Separating low and high order derivatives of ht , and bounding the low
order terms. For t �= 0, denote with h̃t the Fourier transform of ht which is well
defined since χ is bounded and wt ∈ L2(Rd). We will now bound ‖ht‖H(Rd ) for all
t �= 0, by using the characterization in Eq. (D.1). Since (x+y)s ≤ 2max(s−1,0)(xs+ys)
for any x, y ≥ 0, s ≥ 0, then (1 + ‖ω‖2)s/2 ≤ c1(1 + ‖ω‖s) for any ω ∈ R

d , with
c1 = 2max(s/2−1,0) so using Eq. (D.1), we have

√
C0(2π)d/4‖ht‖H(Rd ) = ‖(1+ ‖ · ‖2)s/2h̃t‖L2(Rd )

≤ c1 ‖h̃t‖L2(Rd ) + c1 ‖ | · |sRd h̃t‖L2(Rd ).

Thefirst termon the right hand side can easily be bounded using the fact that the Fourier
transform is an isometry of L2(Rd) (see Proposition 2 for more details), indeed

‖h̃t‖L2(Rd ) = ‖ht‖L2(Rd ) = ‖χ · wt‖L2(Rd ) ≤ ‖wt‖L∞(Rd )‖χ‖L2(Rd ) < ∞.

since χ ∈ C∞0 (Rd) by definition, so it it bounded and has compact support, imply-
ing that ‖χ‖L2(Rd ) < ∞, moreover ‖wt‖L∞(Rd ) = ‖w‖L∞(Rd ) and ‖w‖L∞(Rd ) ≤
C2‖w‖H(Rd ) as recalled in Eq. (D.3) (the constant C2 is defined in the same equa-
tion).

Step 3. Decomposing the high order derivatives of ht . Note that since h̃t = χ̃ · wt ,
by property of the Fourier transform (see Proposition 2(b)), χ̃ · wt = (2π)d/2χ̃�w̃t .
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Moreover, since ‖ω‖s ≤ (‖ω−η‖+‖η‖)s ≤ cs(‖ω−η‖s+‖η‖s) for any ω, η ∈ R
d ,

with c = 2max(s−1,0), then, for all ω ∈ R
d we have

‖ω‖s |h̃t (ω)| = ‖ω‖s |χ̃ · wt (ω)| = ‖ω‖s(2π)
d
2 |(χ̃�w̃t )(ω)|

= (2π)
d
2 |
∫

Rd
‖ω‖s χ̃(η)w̃t (ω − η)dη|

≤ (2π)
d
2 c
∫

Rd
(|χ̃ (η)| ‖η‖s) |w̃t (ω − η)| dη

+ (2π)
d
2 c
∫

Rd
|χ̃ (η)| (|w̃t (ω − η)| ‖ω − η‖s) dη

= c ((Js |χ̃ |)�|w̃t |)(ω) + c (|χ̃ |�(Js |w̃t |))(ω),

wherewe denoted by Js the function Js(ω) = ‖ω‖s for anyω ∈ R
d . ApplyingYoung’s

inequality, it holds :

‖Js h̃t‖L2(Rd ) ≤ c ‖(Js |χ̃ |)�|w̃t |‖L2(Rd ) + c‖|χ̃ |�(Js |w̃t |)‖L2(Rd )

≤ c‖Js χ̃‖L2(Rd )‖w̃t‖L1(Rd ) + c‖Jsw̃t‖L2(Rd ) ‖χ̃‖L1(Rd ).

Step 4. Bounding the elements of the decomposition. Now we are ready to
bound the four terms of the decomposition of ‖Js h̃t‖L2(Rd ). First term, since χ ∈
C∞0 (Rd) ⊂ H(Rd), and Js(ω) ≤ √C0/ṽ(ω) for any ω ∈ R

d , then ‖Js χ̃‖L2(Rd ) ≤√
C0‖χ̃/

√
ṽ‖L2(Rd ) = (2π)d/4√C0‖χ‖H(Rd ),whereweusedEq. (D.1). Second term,

‖χ̃‖L1(Rd ) < ∞, since ‖χ̃‖L1(Rd ) ≤ C1‖χ‖H(Rd ), via Eq. (D.2) (the constant C1 is
defined in the same equation) and we have seen already that ‖χ‖H(Rd ) is bounded.
Third term, by a change of variable τ = ω/t ,

‖w̃t‖L1(Rd ) =
∫

Rd
|w̃t (ω)|dω =

∫

Rd
|t |−d |w̃(ω/t)|dω

=
∫

Rd
|w̃(τ )|dτ = ‖w̃‖L1(Rd ),

moreover ‖w̃‖L1(Rd ) ≤ C1‖w‖H(Rd ) = C1‖u‖H via Eq. (D.2) and the fact that
‖w‖H(Rd ) = ‖u‖H as recalled at the beginning of the proof. Finally, fourth term, for
t ∈ R \ {0},

‖Jsw̃t‖2L2(Rd )
=
∫

Rd
‖ω‖2s |w̃t (ω)|2 dω = t−2d

∫

Rd
‖ω‖2s |w̃(ω/t)|2dω

= t2s−d
∫

Rd
‖τ‖2s |w̃(τ )|2dτ ≤ t2s−d

∫

Rd
(1+ ‖τ‖2)s |w̃(τ )|2dτ

= t2s−d(2π)d/2C0‖w‖2H(Rd )
.

where we performed a change of variable ω = t τ , tddτ = dω and used the definition
in Eq. (D.1) and the fact that ‖τ‖2s ≤ (1 + ‖τ‖2)s for any τ ∈ R

d . The proof of
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the bound of the fourth term is concluded by recalling that ‖w‖H(Rd ) = ‖u‖H as
discussed in the proof of the bound for the previous term.

Conclusion. Putting all our bounds together, we get :

∀t ∈ R \ {0}, ‖ht‖H(Rd ) ≤ (A + B ts−d/2)‖χ‖H(Rd )‖u‖H,

where A = c1C2 + cc1C1(2π)d/4√C0 and B = cc1C1(2π)d/4√C0, where c =
2max(s−1,0), c1 = 2max(s/2−1,0), whileC1 is defined in Eq. (D.2),C2 in Eq. (D.3). Now
define

∀x ∈ R
d , gz,r (x) =

∫ 1

0
(1− t)ht (x)dt,

and note that, by construction gz,r (x) =
∫ 1
0 (1− t)u(t z + (1− t)x)dt for any x ∈ B

since u and χw coincide on B.
Note that the map t ∈ (0, 1) 
→ (1− t)‖ht‖H(Rd ) is measurable, using the expres-

sion in Eq. (D.1).
Moreover, since for all t ∈ (0, 1), it holds‖ht‖H(Rd ) ≤ (A+Bts−d/2)‖χ‖H(Rd )‖u‖H

≤ (A+ B)‖χ‖H(Rd )‖u‖H since s > d/2, the map t 
→ (1− t)ht is in integrable, and
thus

‖gz,r‖H(Rd ) =
∥∥
∫ 1

0
(1− t)htdt

∥∥H(Rd )
≤
∫ 1

0
|1− t |‖ht‖H(Rd )dt

≤ (A + B)‖χ‖H(Rd )‖u‖H < ∞,

which implies that the function gz,r belongs to H(Rd). Finally, denote by RΩ :
H(Rd) → H the restriction operator (see Example 5 for more details). By con-
struction (RΩg)(x) = g(x) for any g ∈ H(Rd) and x ∈ Ω , defining gz,r = RΩgz,r
the lemma is proven. "#

E Proofs for Algorithm 1

We start with two technical lemmas that will be used by the proofs in this section.

Lemma 12 (Technical result). Let α ≥ 1, β ≥ 2 and n ∈ N. If n ≥ 2α log(2βα), then
it holds

α log(βn)

n
≤ 1.

Proof Note that the function x 
→ log(βx)
x is strictly decreasing on [exp(1)/β,+∞].

Moreover, 2α log(2βα) ≥ 2 log 4 ≥ exp(1)/2 ≥ exp(1)/β since β ≥ 2 and α ≥ 1.
Now assume n ≥ cα with c = 2 log(2βα). It holds:

α log(βn)

n
≤ log(βcα)

c
≤ log( c2 )+ log(2αβ)

c
≤ 1

2
+ 1

2

2 log(2βα)

c
≤ 1,
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where we used the definition of c and the fact that log(c/2) ≤ c/2− 1 ≤ c/2. "#
Lemma 13 Let −→u ∈ Sd−1 = {x ∈ R

d | ‖x‖ = 1}, α ∈ [0, π/2], x0 ∈ R
d and t > 0.

Define the cone centered at x0, directed by −→u of radius t with aperture α:

Cα
x0,
−→u ,t

=
{
x ∈ Bt (x0) | x−x0‖x−x0‖ · −→u ≤ cos(α), x �= x0

}
,

where we denoted by · the scalar product among vectors. Then the volume of this cone
is lower bounded as

vol(Cα
x0,
−→u ,t

) ≥ (
√

π sin(α))d−1(t cosα)d

dΓ ((d + 1)/2)
.

Moreover, let x0 ∈ R
d and r > 0. Let x ∈ Br (x0) and 0 < t ≤ r . The intersection

Bt (x) ∩ Br (x0) contains the cone C
π/3
x,−→u ,t

, where −→u = x−x0‖x−x0‖ if x �= x0 and any unit
vector otherwise.

Proof 1. Bound on the volume of the cone.Without loss of generality, assume x0 = 0
and −→u = e1 since the Lebesgue measure is invariant by translations and rotations. A
simple change of variable also shows that vol(Cα

0,−→u ,t
) = tdvol(Cα

0,−→u ,1
). Now note

the following inclusion (the proof is trivial):

C̃ :=
{
x = (x1, z) ∈ R

d = R× R
d−1 : z ≤ cos(α), ‖z‖

Rd−1 ≤ x1 sin(α)
}
⊂ Cα

0,e1,1.

It is possible to compute the volume of the left hand term explicitly :

vol(C̃) =
∫

R

1x1≤cos(α)

(∫

Rd−1
1‖z‖≤x1 sin(α)dz

)
dx1

=
∫ cos(α)

0
Vd−1(sin αx1)

d−1 dx

= Vd−1
sind−1(α) cosd(α)

d
,

where Vd−1 = π(d−1)/2/Γ ((d−1)/2+1) denotes the volume of the d−1 dimensional
ball.

2. Proof of the second point The case where x = x0 is trivial since t ≤ r . Assume
therefore x �= x0 and note that by definition, C

π/3
x,−→u ,t

⊂ Bt (x). We will now show that

Cπ/3
x,−→u ,t

⊂ Br (x0). Let y ∈ Cπ/3
x,−→u ,t

and assume y �= x (if y = x then y ∈ Br (x0)).
Expanding the dot product

‖y − x0‖2 = ‖y − x‖2 + 2(y − x) · (x − x0)+ ‖x − x0‖2
= ‖y − x‖2 − 2‖y − x‖ ‖x0 − x‖ y−x

‖y−x‖ · −→u + ‖x − x0‖2
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≤ ‖x − y‖2 − ‖x − y‖ ‖x − x0‖ + ‖x − x0‖2,

where the last inequality comes from the definition of the cone and cosπ/3 = 1
2 . Let

us distinguish two cases:

– if t > ‖x0−x‖, we have−‖x−y‖‖x0−x‖ ≤ −t2 and hence ‖y−x0‖2 ≤ t2 ≤ r2;
– otherwise ‖x − y‖ ≤ t ≤ ‖x0 − x‖ and thus ‖y − x0‖2 ≤ ‖x − x0‖2 ≤ r2.

In any case, y ∈ Br (x0), which concludes the proof. "#

E.1 Proof of Theorem 4

Proof of Theorem 4 Fix Ω as in Theorem 4. Let U be the uniform probability over
Ω , i.e., U (A) = vol(A∩Ω)

vol(Ω)
for any Borel-measurable set A. Let P = U⊗n over Ωn .

Throughout this proof, we will use the notation Vd to denote the volume of the d-

dimensional unit ball (recall that Vd = πd/2

Γ (d/2+1) ).

Step 1. Covering Ω . Let t > 0. We say that a subset X of Ω is a t (interior) covering
of Ω if Ω ⊂ ⋃x∈X Bt (x). Denote with Nt the minimal cardinal |X | of a t interior
covering of Ω and fix Xt a t interior covering of Ω whose cardinal is minimum,
i.e., |Xt | = Nt . Since the diameter of Ω is bounded by 2R, it is known that Nt ≤
(1+ 2R/t)d

To prove this fact , one defines amaximal t/2-packing ofΩ as amaximal set Y t/2 ⊂ Ω

such that the balls Bt/2(y) are disjoint. It is then easy to check that if Y t/2 is a maximal
t/2-packing, then it is also a t-covering and hence Nt ≤ |Y t/2|. Finally, since Ω

is included in a ball of radius B2R(x0) for some x0 ∈ R
d and since Y t/2 ⊂ Ω , it

holds
⋃

y∈Y t ′ Bt (y) ⊂ BR+t/2(x0). Since the Bt (y) are two by two disjoint, the result
follows from the following equation:

|Y |t/2(t/2)dVd = vol
(
∪y∈Y t ′ Bt (y)

)
≤ vol(BR+t/2(x0)) = (R + t/2)dVd .

Step 2. Probabilistic analysis. Note that for any (x1, ..., xn) ∈ Ωn , writing X̂ =
{x1, .., xn}, it holds:

h X̂ ,Ω = max
x∈Ω

min
i∈[n] ‖x − xi‖ = max

x∈Xt

max
x∈Bt (x)∩Ω

min
i∈[n] ‖x − xi‖

≤ t + max
x∈Xt

min
i∈[n] ‖x − xi‖.

Define E to be the following event :

E = {(x1, . . . , xn) ∈ Ωn | max
j∈[m]min

i∈[n] ‖x j − xi‖ < t}.

123



Finding global minima via kernel approximations

The n tuple (x1, .., xn) belongs to E if for each x ∈ Xt there exists at least one i ∈ [n]
for which ‖x − xi‖ < t . E can therefore be rewritten as follows :

E =
⋂

x∈Xt

⋃

i∈[n]
{(x1, . . . , xn) ∈ Ωn | ‖x − xi‖ < t}.

In particular, note that

Ec = Ωn \ E =
⋃

x∈Xt

⋂

i∈[n]
{(x1, . . . , xn) ∈ Ωn | ‖x − xi‖ ≥ t} =

⋃

x∈Xt

(Ω \ Bt (x))
n .

Applying a union bound, we get

P(Ec) = P

⎛

⎝
⋃

x∈Xt

(Ω \ Bt (x))
n

⎞

⎠

≤
∑

x∈Xt

P
(
(Ω \ Bt (x))

n) =
∑

j∈[m]
U (Ω \ Bt (x)))

n,

where the last step is due to the fact that P is a product measure and so P(An) =
U⊗n(An) = U (A)n . Now we need to evaluate U (Ω \ Bt (x)) = 1 − U (Bt (x)) for
x ∈ Xt . Since Xt ⊂ Ω , it holds

∀x ∈ Xt , U (Bt (x)) = vol(Bt (x)∩Ω)
vol(Ω)

≥ minx∈Ω vol(Bt (x)∩Ω)
vol(Ω)

.

Step 3. Bounding vol(Bt (x) ∩ Ω) when t ≤ r . Let us now find a lower bound for
minx∈Ω vol(Bt (x) ∩ Ω). Recall that since Ω satisfies Assumption 1(a), Ω can be
written Ω = ∪z∈S Br (z). .Let t ≤ r , x ∈ Ω . By the previous point, there exists z ∈ S
such that x ∈ Br (z) ⊂ Ω and hence Bt (x)∩ Br (z) ⊂ Bt (x)∩Ω . LetCx,z,t denote the
cone centered in x and directed to z with aperture π/3. It is easy to see geometrically
that Br (z)∩Bt (x) contains the coneCx,z,t (this fact is proved in Lemma13).Moreover,
using the lower bound for the volume of this cone provided in Lemma 13, it holds:

vol(Ω ∩ Bt (x)) ≥ vol(Br (z) ∩ Bt (x)) ≥ vol(Cx,z,t )

≥ 2Vd−1√
3d

(√
3
4

)d
td .

Step 4. Expressing t with respect to n and δ and guaranteeing that t ≤ r . To

conclude, let C = Vd−1
2dvol(Ω)

(√
3
4

)d−1
. Since Nt ≤ (1+ 2R/t)d , and (1− c)x ≤ e−cx

for any x ≥ 0 and c ∈ [0, 1], then

P(E) ≥ 1− Nt
(
1− Ctd

)n ≥ 1− e−Ctdn+d log(1+2R/t) ≥ 1− δ,
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where the last step is obtained by setting

t = (Cn)−1/d
(
log

(1+ 2R(Cn)1/d)d

δ

)1/d
.

Then h X̂ ,Ω ≤ 2t with probability at least 1 − δ, when t ≤ r . The desired result is
obtained by further bounding C and t as follows.

Bounding C . It holds 2Vd−1√
3dVd

=
(

4
3d2π

)1/2
Γ (d/2+1)

Γ (d/2+1/2) . Using Gautschi’s inequality

and the fact that d ≥ 1,

( 2
3dπ

)1/2 ≤ 2Vd−1√
3dVd

≤
(
2(d+2)
3d2π

)1/2 ≤ 1.

Since
( 3dπ

2

)1/2d 4√
3
≤ 2

√
2π for all d ≥ 1, and since Vdrd ≤ vol(Ω) ≤ Vd Rd , it

holds

(2
√
2πR)−d ≤ C ≤ (4r/

√
3)−d )⇒ n1/d

2
√
2πR

≤ (Cn)1/d ≤
√
3n1/d

4r
≤ n1/d

2r
.

Bounding t. Since, (1 + x)d ≤ (2x)d for any x ≥ 1 and 2R(Cn)1/d ≤ R
r n

1/d , and
R
r n

1/d ≥ 1, it holds

t ≤ 2
√
2πRn−1/d(log n

δ
+ d log 2R

r )1/d .

Guaranteeing t ≤ r . Applying Lemma 12 to α = (2π)d/2(2R/r)d and β =
(2R/r)d/δ, it holds that if

n ≥ 2α log(2αβ) = 2 (2π)d/2(2R/r)d
(
log

2

δ
+ d/2 log(2π)+ 2d log(2R/r)

)
,

then α/n log(βn) ≤ 1, so

t ≤ 2
√
2πRn−1/d(log n

δ
+ d log 2R

r )1/d ≤ r(α/n log(βn)1/d ≤ r .

"#

E.2 Proof of Theorem 6

Proof Recall that s > d/2 and m < s − d
2 is a positive integer. Assume that Ω

satisfies Assumption 1(a) for a certain r and that the diameter of Ω is bounded by 2R.
In particular, if Ω is a ball of radius R, then Ω satisfies Assumption 1(a) with r = R.
In the first step of the proof we guarantee that n is large enough to apply Theorem 4
and that h X̂ ,Ω , controlled by Theorem 4, satisfies the assumptions of Theorem 5. Then
we apply Theorem 5.

123



Finding global minima via kernel approximations

Step 1. Guaranteeing n large enough and h X̂ ,Ω ≤ r/(18(m − 1)2). Applying

Lemma 12 to α = ( 2Rr
)d

max(3, 10(m − 1))2d and β = (2R)d

rd δ
, it holds that if

n ≥ 2α log(2αβ) =
(
2R

r

)d

max(3, 10(m − 1))2d
(
2 log

2

δ
+ 4d log

( R
r max(6, 20(m − 1))

))
,

then α/n log(βn) ≤ 1, which implies

n−1/d(log n

δ
+ d logβ)1/d ≤ r

2Rmax(3, 10(m − 1))2
.

In particular, n satisfying the condition above is large enough to satisfy the requirement
of Theorem 4 (since r ≤ R). Therefore, by applying Theorem 4 we have that with
probability at least 1− δ,

h X̂ ,Ω ≤ 11R n−
1
d (log (2R)d n

rd δ
)1/d ≤ r

max(1, 18(m − 1)2)
.

Step 2. Applying Theorem 5. In the previous step we provided a condition on n
such that h X̂ ,Ω satisfies h X̂ ,Ω ≤ r

max(1,18(m−1)2) . By Proposition 1, Assumption 2
holds for the Sobolev kernel with smoothness s, for any m ∈ N since m < s − d/2.
Then the conditions to apply Theorem 5 are satisfied. Applying Theorem 5 with

λ ≥ 2ηmax(1,MDm) and η = 3max(1,18(m−1)2)m dm

m! hm
X̂ ,Ω

, we have

|ĉ − f∗| ≤ 2η| f |Ω,m + λTr(A∗) ≤ 3λ(| f |Ω,m + Tr(A∗)),

Thus, under this condition, we have with probability at least 1− δ,

|ĉ − f∗| ≤ Cm,s,d R
mn−m/d(log

2dn

δ
),

where

Cm,s,d = 6× 11m × max(1, 18(m − 1)2)mdm

m! max(1,MDm).

Step 3. Bounding the constant term Cm,s,d in terms of m, s, d. Note that

Γ (m + d/2)

Γ (d/2)
= (d/2)...(d/2+ m − 1) ≤ (d/2+ m − 1)m−1

and

Γ (s − d/2− m)

Γ (s − d/2)
= 1

(s − d/2− m)....(s − d/2− 1)
≤
(

1

s − d/2− m

)m−1
,
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which yields:

Dm ≤ (2π)d/4
(
d/2+ m − 1

s − d/2− m

)(m−1)/2
.

Moreover, using the bound on M, we get

DmM ≤ 2s+1/2 (2π)3d/4
(
d/2+ m − 1

s − d/2− m

)(m−1)/2
.

This yields the following bound for Cm,s,d :

Cm,s,d ≤
6max(1, 18(m − 1)2)m(11d)m

m! max

(

1, 2s+1/2 (2π)3d/4
(
d/2+ m − 1

s − d/2− m

)(m−1)/2)
.

"#

F Global minimizer. Proofs

F.1 Proof of Remark 4

Proof Since f satisfies bothAssumptions 1(b) and 4, denote by ζ the uniqueminimizer
of f in Ω . Since ζ is a strict minimum by Assumption 1(b), there exists β1 > 0 such
that ∇2 f (ζ ) � β1 I . Thus, since f ∈ C2(Rd), there exists a small radius t > 0 such
that ∇2 f (x) � β1

2 I for all x ∈ Bt (ζ ) and hence

∀x ∈ Ω ∩ Bt (ζ ), f (x)− f∗ = f (x)− f (ζ )− ∇ f (ζ )�(x − ζ ) ≥ β1
4 ‖x − ζ‖2.

(F.1)

Moreover, since f has no minimizer on the boundary of Ω and since ζ is the unique
minimizer of f on Ω , f has no minimizer on K = Ω \ Bt (x) which is a compact set.
Denote by m the minimum of f on K . Since K is compact, this minimum is reached
and since f does not reach its global minimum f∗ on K , we have m − f∗ > 0. Let R
be a radius such that Ω ⊂ BR(ζ ), which exists since Ω is bounded. Then, since for
any x ∈ Ω , ‖x − ζ‖ < R, it holds for any x ∈ K :

f (x)− f∗ = f (x)− m + m − f∗ ≥ m − f∗ = 2(m − f∗)
2R2 R2 ≥ 2(m − f∗)

2R2 ‖x − ζ‖2.
(F.2)

Thus, taking β = min(β1
2 ,

2(m− f∗)
R2 ) and combining Eqs. (F.1) and (F.2), it holds

∀x ∈ Ω, f (x)− f∗ ≥ β

2
‖x − ζ‖2. "#
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F.2 Proof of Theorem 7

Proof Let us divide the proof into four steps.

Step 1: Extending the parabola outside of Ω Since Ω is an open set containing ζ ,
there exists t > 0 such that the ball Bt (ζ ) ⊂ Ω . Define δ = β−ν

2 t2. It holds :

∀x ∈ R
d \Ω,

β

2
‖x − ζ‖2 ≥ ν

2
‖x − ζ‖2 + δ. (F.3)

Now define the following open set :

Ω̃ =
{
x ∈ R

d : f (x)− f∗ − β
2 ‖x − ζ‖2 > −δ/2

}
.

It is open since f is continuous. Moreover, it contains the closure of Ω which we
denote with Ω which is compact since it is closed and bounded in R

d . Theorem 1.4.2
in [40] applied to X = Ω̃ and K = Ω shows the existence of χ : R

d → R such
that χ ∈ C∞(Rd), χ(x) ∈ [0, 1], χ = 1 on Ω and χ = 0 on R

d \ Ω̃ . Finally, define
pν(x) := ν

2‖x − ζ‖2χ(x). pν satisfies the following properties :

– pν ∈ C∞(Rd);
– for all x ∈ Ω , pν(x) = ν

2‖x − ζ‖2 ≤ β
2 ‖x − ζ‖2;

– for all x ∈ R
d \ Ω̃ , pν(x) = 0;

– for all x ∈ Ω̃ \Ω , f (x)− f∗ − pν(x) ≥ δ/2.

The first, second and third properties are direct consequences of the properties of χ

and the fact that ν < β. The last property comes from combining Eq. (F.3) with the
definition of Ω̃ and the fact that χ ∈ [0, 1] :

∀x ∈ Ω̃ \Ω, f (x)− f∗ − pν(x) = f (x)− f∗ − χ(x) ν
2‖x − ζ‖2

≥ f (x)− f∗ − ν
2‖x − ζ‖2

=
(
f (x)− f∗ − β

2 ‖x − ζ‖2
)

+
(

β
2 ‖x − ζ‖2 − ν

2‖x − ζ‖2
)

≥ −δ/2+ δ = δ/2.

Step 2: Extending x 
→ f (x)− ν
2‖x−ζ‖2 outside ofΩ . Define g(x) = f (x)− pν(x)

on R
d . Then g satisfies Assumption 1(b), g has exactly one minimizer in Ω which

is ζ , and its minimum is g(ζ ) = f∗. Indeed, the fact that g ∈ C2(Rd) comes from
the fact that f ∈ C2(Rd) by Assumption 1(b) on f and the fact that pν ∈ C∞(Rd).
Moreover, g ≥ f∗ on R

d and g− f∗ ≥ δ/2 on ∂Ω . Indeed, first note that since ν < β,
it holds

∀x ∈ Ω, g(x) = f (x)− pν(x) = f (x)− ν
2‖x − ζ‖2 ≥ f (x)− β

2 ‖x − ζ‖2 ≥ f∗,
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where the last inequality comes from Eq. (7.2). Second, since pν = 0 on R
d \ Ω̃ and

since f∗ is the minimum of f , for any x ∈ R
d \ Ω̃ , g(x) − f∗ = f (x) − f∗ ≥ 0.

Finally, by the last point of the previous step, we see that g(x) ≥ f∗+δ/2 > f∗ for any
x ∈ Ω̃ \Ω . In particular, g(x) ≥ f∗ + δ/2 for any x ∈ ∂Ω . Since g(ζ ) = f (ζ ) = f∗,
we see that f∗ is the minimum of g on R

d and that this minimum is reached at ζ and is
not reached on the boundary ofΩ . The fact that ζ is the unique minimum onΩ comes
from the fact that since ν < β and by Eq. (7.2) we have that for any x ∈ Ω \ {ζ } the
following holds

g(x) = f (x)− pν(x) = f (x)− ν
2‖x − ζ‖2

> f (x)− β
2 ‖x − ζ‖2 ≥ f∗. (F.4)

The fact that this minimum is not reached on the boundary of Ω comes from the fact
stated above that g(x) ≥ f∗ + δ/2 for any x ∈ ∂Ω . Finally, the fact that ζ is a strict
minimum of g also comes from Eq. (F.4) which implies that∇2g(ζ ) � (β−ν)I since
g reaches a minimum in ζ , g is C2 and ν < β.

Note that g also satisfies Assumption 3 since f satisfies Assumption 3 and pμ ∈
C∞(Rd) ⊂ C2(Rd) ∩H by Assumption 2(a).

Step 3: Applying Corollary 1 to g. The previous point shows that g satisfies Assump-
tions 1(b) and 3 and that g has a unique minimum in Ω . Moreover, H satisfies
Assumption 2. Hence, Corollary 1 to g and H, the following holds : there exists
A∗ ∈ S+(H) with rank(A∗) ≤ d + 1 such that g(x) − f ∗ = 〈φ(x), A∗φ(x)〉 for all
x ∈ Ω .

Step 4.Let p0 be themaximum of Eq. (7.1). In Lemma 5we have seen that the solution
of Eq. (7.1) is p0 = f∗. Since A � 0 implies 〈φ(x), Aφ(x)〉 ≥ 0 for all x ∈ Ω , the
problem in Eq. (7.1) is a relaxation of Eq. (7.3), where the constraint f (x)− ν

2‖x‖2+
νx�z−c = 〈φ(x), Aφ(x)〉 is substituted by f (x)− ν

2‖x‖2+νx�z−c ≥ 0,∀x ∈ Ω .
Then p0 ≥ p∗ if a maximum p∗ exists for Eq. (7.3). Thus, if there exists A that
satisfies the constraints in Eq. (7.3) for the value c∗ = f∗ + ν

2‖ζ‖2 and z∗ = ζ , then
p0 = p∗ and (c∗, ζ, A) is a minimizer of Eq. (7.3).
The proof is concluded by noting that indeed there exists A that satisfies the constraints
in Eq. (7.3) for the value c∗ = f∗+ ν

2‖ζ‖2 and z∗ = ζ and it is obtained by the previous
step. "#

F.3 Proof of Theorem 8

Proof The proof is a variation of the the one for Theorem 5, the main difference is
that we take care of the additional term z − ζ .

Step 0. The SDP problem in Eq. (7.4) admits a solution
(a) Under the constraints of Eq. (7.4), c− ν

2‖z‖2 cannot be larger than mini∈[n] f (xi ).
Indeed, for any i ∈ [n], since B � 0, the i-th constraint implies

f (xi )− ν
2‖xi − z‖2 − c + ν

2
‖z‖2 = f (xi )− ν

2‖xi‖2 + νx�i z − c = Φi BΦi ≥ 0.
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Hence, f (xi ) ≥ f (xi )− ν
2‖xi − z‖2 ≥ c+ ν

2‖z‖2. Thus, since B � 0, for any B, z, c
satisfying the constraint, c − ν

2‖z‖2 − λTr(B) ≤ maxi∈[i] f (xi ).

(b) There exists an admissible point. Indeed let (c∗, z∗, A∗) be the solution of Eq. (7.3)
such that A∗ hasminimum trace norm (by Theorem 7, we know that this solution exists
with c∗ = f∗ and z∗ = ζ , under Assumptions 1 to 4). Then, by Lemma 3 applied
to g(x) = f (x) − ν

2‖x‖2 − νx�z∗ − c∗ and A = A∗, given X̂ = {x1, . . . , xn} we
know that there exists B ∈ S+(Rn) satisfying Tr(B) ≤ Tr(A∗) s.t. the constraints
of Eq. (7.4) are satisfied for c = c∗ and z = z∗. Then (c∗, z∗, B) is admissible for
the problem in Eq. (7.4). Since there exists an admissible point for the constraints of
Eq. (7.4) and its functional cannot be larger thanmaxi∈[n] f (xi ), then the SDP problem
in Eq. (7.4) admits a solution [21].

Step 1. Consequences of existence of A∗. Let (ĉ, ẑ, B̂) one minimizer of Eq. (7.4).
The existence of the admissible point (c∗, z∗, B) implies that

ĉ − ν
2‖ẑ‖2 − λTr(B̂) ≥ c∗ − ν

2‖z∗‖2 − λTr(B) ≥ f∗ − λTr(A∗). (F.5)

From which we derive,

λTr(B̂)− λTr(A∗) ≤ Δ, Δ := ĉ − ν
2‖ẑ‖2 − f∗. (F.6)

Step 2. L∞ bound due to the scattered zeros.Note that the solution (ĉ, ẑ, B̂) satisfies
ĝ(xi ) = Φ�

i B̂Φi for i ∈ [n],where the function ĝ is defined as ĝ(x) = f (x)− ν
2‖x‖2+

νx� ẑ − ĉ for x ∈ Ω , moreover h X̂ ,Ω ≤ r
max(1,18(m−1)2) = r

18(m−1)2 by assumption,

since m ≥ 2. Then we can apply Theorem 4 with g = ĝ, τ = 0 and B = B̂ obtaining
for all x ∈ Ω

f (x)− ν
2‖x‖2 + νx� ẑ − ĉ = ĝ(x) ≥ −η(|ĝ|Ω,m +MDmTr(B̂)), η = C0h

m
X̂ ,Ω

,

where C0 is defined in Theorem 4 and C0 = 3 (18d)m(m−1)2m
m! since m ≥ 2. Since the

inequality above holds for any x ∈ Ω , by evaluating it in the global minimizer ζ ∈ Ω ,
we have f (ζ ) = f∗ and so

−Δ− ν
2‖ẑ − ζ‖2 = ĝ(ζ ) ≥ −η(|ĝ|Ω,m +MDmTr(B̂)).

Now we bound |ĝ|Ω,m . Since ĝ(x) = f (x)− pẑ,ĉ(x), where pẑ,ĉ is a second degree
polynomials defined as pẑ,ĉ = ν

2‖x‖2 − νx� ẑ + ĉ, we have

|ĝ|Ω,m ≤ | f |Ω,m + |pẑ,ĉ|Ω,m ≤ | f |Ω,m + ν, (F.7)

since for m = 2, we have |pẑ,ĉ|Ω,2 = supi, j∈[d],x∈Ω | ∂
2 pẑ,ĉ(x)
∂xi ∂x j

| = ν and also
|pẑ,ĉ|Ω,m = 0 for m > 2. Then

Δ ≤ Δ+ ν
2‖ẑ − ζ‖2 ≤ η| f |Ω,m + ηMDmTr(B̂)+ ην. (F.8)
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Conclusion. Combining Eq. (F.8) with Eq. (F.6), since ν
2‖ẑ − ζ‖2 ≥ 0 and since

λ ≥ 2MDmη by assumption, we have

λ
2Tr(B̂) ≤ (λ−MDmη)Tr(B̂) ≤ η| f |Ω,m + ην + λTr(A∗),

fromwhichwe obtain Eq. (7.7).Moreover, the inequality Eq. (7.6) is derived by bound-
ing Δ from below as Δ ≥ −λTr(A∗) by Eq. (F.6), since Tr(B̂) ≥ 0 by construction,
and bounding it from above as

Δ ≤ 2η| f |Ω,m + 2ην + λTr(A∗),

that is obtainedby combiningEq. (F.8)withEq. (7.7) andwith the assumptionMDmη ≤
λ/2. Finally from Eq. (F.8) we obtain

ν
2‖ẑ − ζ‖2 ≤ |Δ| + η| f |Ω,m + ηMDmTr(B̂)+ ην,

from which we derive the bound ν
2‖ẑ − ζ‖2 in Eq. (7.5), by bounding |Δ| and Tr(B̂)

via Eq. (7.6) and Eq. (7.7). "#

G Proofs for the extensions

G.1 Proof of Theorem 9

Proof Let (ĉ, B̂) be aminimum trace-norm solution of Eq. (2.4). Theminimum pλ,n of
Eq. (2.4) then corresponds to pλ,n = ĉ− λTr(B̂). Combining Eq. (8.1) with Eq. (5.7)
from the proof of Theorem 5 and the fact that θ2 ≤ λ/8, we have that

7
8λTr(B̃)− λTr(A∗)− θ1 ≤ Δ̃, Δ̃ := c̃ − f∗. (G.1)

Analogously to Step 3 of the proof of Theorem 5, by applying Theorem 4 to Eq. (8.2)
with g(x) = f (x)− c̃, B = B̃ and τ = τ1 + τ2Tr(B̃), we obtain for any x ∈ Ω

f (x)− c̃ ≥ − 2τ1 − 2τ2Tr(B̃) − η(|g|Ω,m +MDmTr(B̃)), η = C0h
m
X̂ ,Ω

,

with C0 defined in Theorem 4. Now evaluating the inequality above for x = ζ , noting
that |g|Ω,m = | f |Ω,m since m ≥ 1, and considering that by assumption τ2 ≤ λ/8 and
MDmη ≤ λ/2 we derive

Δ̃ = −( f (ζ )− c̃) ≤ 2τ1 + 3
4λTr(B̃)+ η| f |Ω,m . (G.2)

The desired result is obtained by combining Eq. (G.2) and Eq. (G.1) as we did in Step
3 of Theorem 5. "#
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G.2 Proof of Corollary 2

Proof Define H = {g ∈ Cs(Ω) : ∃ f ∈ Cs(Rd), f |Ω = g}, endowed with the
following norm :

∀g ∈ H, ‖g‖H = sup
|α|≤s

sup
x∈Ω

‖∂αg(x)‖.

Note that this norm is well defined since for any g ∈ H, since there exists f ∈ Cs(Rd)

such that g = f |Ω , since all the derivatives of f are continuous hence bounded on Ω

which is bounded, so are all the derivatives of g.
Now note that H satisfies Assumptions 2(a) to 2(c). Indeed, given u, v ∈ H the

first assumption is satisfied as a simple consequence of the Leibniz formula, since
for any x ∈ Ω , ∂α(u · v)(x) = ∑β≤α

(
α
β

)
∂βu(x)∂α−βv(x) which in turn implies

that for any |α| ≤ s and x ∈ Ω , ‖∂α(u · v)(x)‖ ≤ 2|α| ‖u‖H ‖v‖H and hence
‖u ·v‖H ≤ 2s‖u‖H ‖v‖H. Assumption 2(b) is trivially satisfied and Assumption 2(c)
is a simple consequence of the dominated convergence theorem. Indeed, if u ∈ H and
u ∈ Cs(Rd) such that u|Ω = u, define

∀x, z ∈ R
d , vz(x) =

∫ 1

0
(1− t)u(z + t(x − z))dt .

vz is inCs(Rd) by dominated convergence, and vz = v|Ω satisfies the desired property
(in this case, there is no need to depend on r and one can simply take gr ,z = vz).

Moreover, if f ∈ Cs+2(Rd), then in particular, for any i, j ∈ [d], ∂ f
∂xi ∂x j

∈ Cs(Rd)

and hence its restriction to Ω is in H. Moreover, in that case, it is obvious that since
s ≥ 0, f |Ω ∈ H. This shows that f satisfies Assumptions 1(b) and 3.

Therefore, Theorem 2 can be applied, and there exist w̃1, . . . , w̃pH, p ∈ N+, such
that

∀x ∈ Ω, f (x)− f∗ =
∑

j∈[p]
w2

j (x).

By definition of H, taking w1, ..., wp such that w j |Ω = w̃ j , the corollary holds. "#

G.3 Certificate of optimality for the global minimizer candidate of Eq. (7.4)

Theorem 12 (Certificate of optimality for Eq. (7.4)). Let Ω satisfy Assumption 1(a)
for some r > 0. Let k be a kernel satisfying Assumptions 2(a) and 2(d) for somem ≥ 2.
Let X̂ = {x1, . . . , xn} ⊂ Ω with n ∈ N such that h X̂ ,Ω ≤ r

18(m−1)2 . Let f ∈ Cm(Ω)

and let ĉ ∈ R, ẑ ∈ R
d , B̂ ∈ S+(Rn) and τ ≥ 0 satisfying

| f (xi )− ν
2‖xi‖2 + νx�i ẑ − ĉ − Φ�

i B̂Φi | ≤ τ, i ∈ [n] (G.3)
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where Φi are defined in Sect. 2. Let f∗ = minx∈Ω f (x) and f̂ = ĉ − ν
2‖ẑ‖2. Then,

| f (ẑ)− f∗| ≤ f (ẑ)− f̂ + 2τ + C1h
m
X̂ ,Ω

, (G.4)

ν
2‖ζ − ẑ‖2 ≤ f (ẑ)− f̂ + 2τ + C2h

m
X̂ ,Ω

. (G.5)

and C1 = C0(| f |Ω,m +MDmTr(B̂)+MDmĈ), C2 = C0(| f |Ω,m + ν +MDmTr(B̂)),
where Ĉ = ν

2‖R−�(X − 1n ζ̂�)‖2, with X ∈ R
n×d the matrix whose i-th row corre-

sponds to the point xi and 1n ∈ R
n the vector where each element is 1. The constants

C0, defined in Theorem 4, and m,M,Dm, defined in Assumptions 2(a) and 2(d), do not
depend on n, X̂ , h X̂ ,Ω, ĉ, B̂ or f .

Proof We divide the proof in two steps

Step 1. First note that

ĝ(x) := f (x)− ν
2‖x‖2 + νx� ẑ − ĉ = f (x)− ν

2‖x − ẑ‖2 − f̂ .

By applying Theorem 4 with g = ĝ and B = B̂ we have that for any x ∈ Ω

f (x)− ν
2‖x− ẑ‖2− f̂ = ĝ(x) ≥ −ε−2τ , where ε = C0(|ĝ|Ω,m+MDmTr(B̂))hm

X̂ ,Ω

and C0 is defined in Theorem 4. In particular this implies that

f (ζ )− f̂ − ν
2‖x − ẑ‖2 ≥ −ε − 2τ,

from which Eq. (G.5) is obtained by considering that f (ẑ) ≥ f (ζ ) since ζ is a
minimizer of f . To conclude the proof of Eq. (G.5) note that |ĝ|Ω,m ≤ | f |Ω,m + ν

since m ≥ 2.

Step 2. Now to obtain Eq. (G.4) we need to do a slightly different construction. Let
u j (x) = e�j (x − ẑ) for any x ∈ Ω . Note that since u j is the restriction to Ω of a

C∞ function on R
d , by Assumption 2(a), u j ∈ H. Moreover, note that ν

2‖x − ẑ‖2 =
ν
2

∑d
j=1 u j (x)2. Take û j ∈ R

n defined as û j = V ∗u j and note that

Φ�
i û j =

〈
Vφ(xi ), V

∗u j
〉 = 〈V ∗Vφ(xi ), u j

〉 = 〈Pφ(xi ), u j
〉 = u j (xi ).

Then, defining Ĝ = ν
2

∑d
i=1 û j û�j ∈ S+(Rn) we have

ν
2‖xi − ẑ‖2 = Φ�

i ĜΦi , ∀i ∈ [n].

Substituting − ν
2‖xi‖2 + νx�i ẑ with ν

2‖ẑ‖2 − Φ�
i ĜΦi in the inequality in Eq. (G.3),

we obtain

| f (xi )− f̂ − Φ�
i (B̂ + Ĝ)Φ�

i | ≤ τ, ∀i ∈ [n].

ByapplyingTheorem4with g(x) = f (x)− f̂ and B = B̂+Ĝwehave that f (x)− f̂ ≥
−ε− 2τ for all x ∈ Ω , where ε = C ′hm

X̂ ,Ω
with C ′ = C0(|g|Ω,m +MDmTr(B̂+ Ĝ)).
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In particular, f (ζ )− f̂ ≥ −ε−2τ , from which Eq. (G.4) is obtained considering that
f (ẑ) ≥ f∗ since ζ is a minimizer of f .
Finally, note that |g|Ω,m ≤ | f |Ω,m since m ≥ 1. The proof is concluded by noting

that using the definition of V we have û j = R−�v̂ j with v̂ j ∈ R
n corresponding

to v̂ j = (u j (x1), . . . , u j (xn)) for j ∈ [d] and that Tr(Ĝ) = ν
2

∑
j∈[d] ‖û j‖2. In

particular, some basic linear algebra leads to Tr(Ĝ) = ν
2‖R−�(X − 1n ẑ�)‖2. "#

H Details on the algorithmic setup used in the benchmark
experiments

In this section, we explain exactly the algorithmic setup which we used to perform
the experiments in Sect. 10.1. In all the following problems, the set Ω on which
we will minimize the function will be a hyper-rectangle. Given a hyper-rectangle
R, we will identify it with its center cR ∈ R

d and its width wR ∈ R
d , such that

R =∏d
i=1 ((cR)i − (wR)i/2, (cR)i + (wR)i/2).

Algorithm 2 Finding a minimizer given points X
function FindMinimizer( f , X , k(·, ·), λmin, λmax, ε)

K = (k(xi , x j ))1≤i, j≤n ∈ R
n×n

Φ such that Φ�Φ = K (cholesky decomposition)
f X = ( f (xi ))1≤i≤n ∈ R

n

function ScalarFunction(t)
λ = et

α̂ solution to Eq. (H.1) with λ, ε, Φ, f X
x̂ =∑n

i=1 α̂i xi
f̂ = f (̂x)
return f̂ , x̂

end function
f̂ , x̂ =MinimizeScalar(ScalarFunction ,tmin = log(λmin), tmax = log(λmax))
return f̂ , x̂

end function

We start by defining Algorithm 2 whose main goal is to find a global minimizer
as described in the previous sections given sample points (x1, ..., xn). Recall that the
algorithm introduced in Sects. 6 and 7.1 computes a minimizer by solving problem:

α̂ = argmin
α∈Rn

α�1n=1

n∑

i=1
αi f (xi )− ε

n
log det

(
Φ�Diag(α)Φ + λI

)+ ε

n
log

ε

n
− ε, (H.1)

where Φ satisfies Φ�Φ = K for K = (k(xi , x j ))1≤i, j≤n ∈ R
n×n , and choosing x̂ as

the approximation of the minimizer, defined by

x̂ =
n∑

i=1
α̂i xi . (H.2)
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However, the kernel k, and the hyper-parameters λ also have to be chosen. Therefore,
Algorithm 2 will use as inputs: 1) The function f to minimize; 2) the evaluation points
xi , 1 ≤ i ≤ n, summarized in a matrix X ∈ R

n×d ; 3) the kernel k; 4) two parameters
λmin and λmax such that we can choose λ in [λmin, λmax]; 5) The paramter ε, which con-
trols the log barrier. For simplicity, we hide the hyperparameters linked to the solving
of Eq. (H.1) through aNewtonmethod, as explained in Sect. 7.1. Algorithm 2 automat-
ically selects the hyperparameter λ by minimizing the function wich to λ associates
the function value of the resulting x̂ on a log scale (ScalarFunction). This function
is minimized in the range [λmin, λmax] through the functionMinimizeScalar. Hence,
the number of function evaluations inherent to running this algorithm is n+nmin where
nmin is a minimum number of evaluations (equal to 10).

In our experiments, we use ε = 10−3, λmin = 10−12, λmax = 1 and we use either
the Brent method or simply a grid search with a maximum number of 100 points. This
minimization does not have to be very precise. The full algorithmwe use is an iterative
scheme and is written down in Algorithm 3, computing a sequence (xk) of approx-
imations of a minimizer of f by iteratively reducing the size of the hyper-rectangle
from which the points used in Algorithm 2 are sampled. More precisely, we start from
points sampled from a hyper-rectangle with center x0 = cΩ and with width w0 = wΩ

(that is the hyper-rectangle Ω) to form m − 1 samples which, together with x0, form
the points X̃0 ∈ R

m×d used to compute the first approximation of the minimizer using
FindMinimizer : x1. Then at each step k, we use the last approximation of the mini-
mizer xk as the new center of the hyper-rectangle, with width wk which is set through
the predefined function Contraction as wk = Contraction(k)w0. As for the first
iteration, we then form the concatenation X̃k ∈ R

m×d of m − 1 samples from this
hyper-rectangle plus xk . In order to keep track of the previous points (as a kind of
momentum), we apply FindMinimizer with Xk = [X̃k, X̃k−1, X̃k−2], that is keeping
the two last set of points as well as the ones sampled for the k-th step.

Algorithm 3 Converging to the minimum
function FindMinimizerIter( f , Ω,m, N , k(·)(·, ·),Contraction)

ε = 10−3, λmin = 10−12, λmax = 1
X̃−2, X̃−1 = [], []
x0, w0 = cΩ, wΩ

for k = 0 to N − 1 do
wk = Contraction(k)×w0
σk = ‖wk‖/2
X̃k = [x�k ,Uniform(xk , wk ,m − 1)�]�
Xk = [X̃�k−2, X̃�k−1, X̃�k ]�
fk+1, xk+1 =FindMinimizer( f , Xk , kσk , λmin, λmax, ε)

end for
return fN , xN

end function

The function FindMinimizerIter uses the following parameters: 1) a kernel func-
tion x, x ′, σ 
→ kσ (x, x ′) such that σ is a parameter to adapt to the the typical width of
the data; 2) the initial hyper-rectangleΩ; 3) the function f ; 4) the contraction function
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Contraction to set the width of the successive hyper-rectangles; 5) the numberm of
new points sampled and used at each iteration; 6) the number N of iterations. In our
implementation, we use the following parameters.

– For σ > 0 and x, y ∈ R
d , wewill use the following kernel, which is amix between

the Gaussian (very regular functions) and the Abel kernel (Sobolev functions of
order s = (d + 1)/2 functions), plus a small term 0.01 which allows to handle the
constant component of a function more easily.

kσ (x, y) = 0.01+ exp(−‖x − y‖2/(2σ 2))+ exp(−‖x − y‖/σ). (H.3)

– We will use the following contraction function, which depends on the dimension
as well as the number of iterations :

Contraction(k) = max
((
1+ 1

d

)−k
, 1
1+k0.6

)
. (H.4)

– The number N of iterations will be set to N = 200 unless stated otherwise.
– m will be specified in the experiments : indeed, the higher the dimension, the larger
m has to be in order to get meaningful results. Note that one actually uses n = 3m
points (from the third iteration onwards) to form the optimization problem, hence
the dimension of the SDP solved with the Newton method will be 3m.

Remark 6 It is equivalent to minimize a function f and minimize the function f
f+c for

a positive constant c. This allows tominimize a function in [0, 1] instead ofminimizing
a real-valued function: however, this also makes higher derivatives behave differently
than those of the original function. In practice, instead of minimizing f directly,
we minimize f

f+c , where c is chosen such that
f

f+c will be spread evenly over [0, 1],
typically by selecting c as a quantile of the ( f (xi ))1≤i≤n (we choose the 0.25 quantile).
We performed experiments by comparing this renormalization method with simply
minimizing f , and this yields slightly better results.

H.1 Additional experiments for global optimization

See Table 4.
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