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Abstract. We propose an algorithm for solving optimization problems defined on a subset
of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization
X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive
semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution.
The factorization X = Y Y T leads to a reformulation of the original problem as an optimization
on a particular quotient manifold. The present paper discusses the geometry of that manifold and
derives a second-order optimization method with guaranteed quadratic convergence. It furthermore
provides some conditions on the rank of the factorization to ensure equivalence with the original
problem. In contrast to existing methods, the proposed algorithm converges monotonically to the
sought solution. Its numerical efficiency is evaluated on two applications: the maximal cut of a graph
and the problem of sparse principal component analysis.
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1. Introduction. Many combinatorial optimization problems can be relaxed
into a convex program. These relaxations are mainly introduced as a tool to obtain
lower and upper bounds on the problem of interest. The relaxed solutions provide
approximate solutions to the original program. Even when the relaxation is convex,
computing its solution might be a demanding task in the case of large-scale problems.
In fact, some convex relaxations of combinatorial problems consist in expanding the
dimension of the search space by optimizing over a symmetric positive semidefinite
matrix variable of the size of the original problem. Fortunately, in many cases, the
relaxation is tight once its solution is rank one, and it is expected that the convex
relaxation, defined in terms of a matrix variable that is likely to be very large, presents
a low-rank solution. This property can be exploited to make a direct solution of the
convex problem feasible in large-scale problems.

The present paper focuses on the optimization problem,

(1)

min
X∈Sn

f(X)

s.t. Tr(AiX) = bi, Ai ∈ S
n, bi ∈ R, i = 1, . . . ,m,

X � 0,
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where f is a smooth function and S
n = {X ∈ R

n×n|XT = X} is the set of symmetric
matrices of Rn×n. Although the objective function f will be convex in most of the
applications discussed in this paper—in which case (1) is a convex program—this
assumption is not required by the proposed optimization algorithm, which computes
then a local solution of (1).

In general, the solution of the program (1) has to be searched in a space of
dimension O(n2). Solving such a problem becomes rapidly untractable for large n. In
this paper, we propose an approach for solving (1) at a reduced computational cost
once the following assumptions hold.

Assumption 1. The program (1) presents a low-rank solution X∗, i.e.,

rank(X∗) = r � n.

Assumption 2. Either the number m of equality constraints is one, or the sym-
metric matrices Ai satisfy

AiAj = 0

for any i, j ∈ {1, . . . ,m} such that i �= j.
By considering the compact eigenvalue decomposition Ai = ViDiV

T
i with the

rectangular matrix Vi having orthonormal columns and the full-rank diagonal matrix
Di, Assumption 2 implies the Vi’s to be mutually orthogonal, i.e., V T

i Vj = 0 for all
i �= j. As a consequence, there can be at most n equality constraints in (1), i.e.,
m ≤ n, in which case all matrices Ai are rank one. Assumption 2 is, for instance,
fulfilled by the spectahedron,

S = {X ∈ S
n|X � 0,Tr(X) = 1},

and the elliptope (also known as the set of correlation matrices),

(2) E = {X ∈ S
n|X � 0, diag(X) = 1}.

Assumption 1 suggests to factor the matrix variable X as the product

(3) X = Y Y T ,

where the number of independent columns of Y ∈ R
n×p fixes the rank of X . Solving

the nonlinear optimization program

(4)
min

Y ∈Rn×p
f(Y Y T )

s.t. Tr(Y TAiY ) = bi, Ai ∈ S
n, bi ∈ R, i = 1, . . . ,m

in terms of the new variable Y amounts to searching a space of dimension np, which
can be much lower than the dimension of the positive semidefinite matrices X . The
parameter p should ideally equal the rank r, which is usually unknown. The proposed
algorithm for solving (1) combines thus a method that finds a local minimizer Y of
(4) with an approach that increments p until a sufficient condition is satisfied for Y
to provide a solution Y Y T of (1). Note that even when the original program (1) is
convex, the low-rank reformulation (4) is not.

A further potential difficulty of (4) is that the solutions are not isolated. For
any solution Y and any orthogonal matrix Q of Rp×p, i.e., such that QTQ = I, the
matrix Y Q is also a solution. In other words, the program (4) is invariant by right
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multiplication of the unknown with an orthogonal matrix. This issue is not harmful for
simple gradient schemes but it greatly affects the convergence of second-order methods
that we would like to use here (see, e.g., [4] and [3]). In order to take into account
the inherent symmetry of the solution, the proposed method conceptually considers
a search space whose points are the equivalence classes {Y Q|Q ∈ R

p×p, QTQ = I}.
The minimizers of (4) can be isolated in that quotient space.

The idea of reformulating a convex program into a nonconvex one by factorization
of the matrix unknown is not new and was investigated in [5] for solving semidefinite
programs (SDP). While the setup considered in [5] is general but restricted to gradient
methods, the present paper further exploits the particular structure of the equality
constraints (Assumption 2) and proposes second-order methods (i.e., which exploit
second-order derivative information) that lead to a descent algorithm with guaranteed
quadratic convergence. More recently, the authors of [9] have proposed manifold-based
optimization algorithms to exploit the factorization (3) to efficiently solve optimization
problems that are defined on the elliptope (2), very much in the same spirit as in the
present paper. However, the quotient structure studied here is fundamentally different
from the embedded structure used in [9] and leads to very distinct algorithms and
numerical results.

Besides being based on quadratic second-order methods, the proposed algorithm
presents two further important features. First, in contrast to the algorithm of [5],
it converges monotonically toward the solution of (1). Second, it is provided with
an indicator of convergence able to control the accuracy of the results. This tool is
particularly convenient to find a reasonable trade-off between fidelity in the initial
program and computational efficiency.

The paper is organized as follows. In section 3, we derive conditions for an op-
timizer of (4) to represent a solution of the original problem (1). A meta-algorithm
for solving (1) based on the factorization (3) is built upon these theoretical results.
In section 4, we describe the geometry of the underlying quotient manifold and pro-
pose an algorithm for solving (4) based on second-order derivative information. In
sections 5 and 6, we evaluate the efficiency of the proposed algorithm on two applica-
tions: the maximal cut of a graph and three different formulations of the problem of
sparse principal component analysis, including a nonsmooth and nonconvex program.

2. Notations. Given a function f : Sn → R : X �→ f(X), we define the function

f̄ : Rn×p → R : Y �→ f̄(Y ) = f(Y Y T ).

For a differentiable function f , the notation ∇Xf(X0) refers to the gradient of f at
X0 with respect to the variable X ,

[∇Xf(X0)]i,j =
∂f

∂Xi,j
(X0).

The derivative of f at X0 in a direction Z is written

DXf(X0)[Z] = lim
t→0

f(X0 + tZ)− f(X0)

t
.

It holds that

DXf(X0)[Z] = 〈∇Xf(X0), Z〉,
where 〈·, ·〉 denotes the Frobenius inner product 〈Z1, Z2〉 = Tr(ZT

1 Z2).
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3. Optimality conditions. In this section, we derive and analyze the optimality
conditions of both problems (1) and (4). These conditions provide theoretical insight
about the rank p at which (4) should be solved as well as conditions for an optimizer
of (4) to represent a solution of the original problem (1). A meta-algorithm for solving
(1) is then derived from these results.

3.1. First-order optimality conditions.
Definition 1. A stationary point of (1) is a symmetric matrix X ∈ S

n for which
there exists a vector σ ∈ R

m and a symmetric matrix S ∈ S
n such that the first-order

optimality conditions hold:

(5)

Tr(AiX) = bi,
X � 0,
S � 0,

SX = 0,

S = ∇Xf(X)−
m∑
i=1

σiAi.

The optimality conditions (5) are necessary and sufficient for convex optimization
problems [6]. In the case of a nonconvex objective function f , we consider any sta-
tionary point of (1) as a solution of the problem. The local minimizers will, in fact,
be the only stable accumulation points of the optimization method proposed in the
sequel, which is a descent algorithm for f .

Lemma 2. If Y is a local optimum of (4), then there exists a vector λ ∈ R
m such

that

(6)

Tr(Y TAiY ) = bi,(
∇Xf(Y Y T )−

m∑
i=1

λiAi

)
Y = 0.

If the {AiY }i=1,...,m are linearly independent, the vector λ is unique.
Proof. These are the first-order KKT conditions of (4) (see, e.g., [14]).
Lemma 3. Under Assumption 2, the matrices {AiY }i=1,...,m are linearly inde-

pendent at any Y ∈ R
n×p provided that all bi �= 0.

Proof. The matrices {AiY }i=1,...,m are linearly independent if and only if the
equality

m∑
i=1

γiAiY = 0

implies that γi = 0 for all i = 1, . . . ,m. By virtue of Assumption 2,

Tr

(
Y TAj

m∑
i=1

γiAiY

)
= γjTr(Y

TA2
jY ) = γj‖AjY ‖2F = 0

for j = 1, . . . ,m. If bj �= 0 in the equality constraints of (4), AjY cannot be a zero
matrix; i.e., ‖AjY ‖F �= 0 and thus γj = 0.

Given a local minimizer Y of (4), one readily notices that all but one condition of
Definition 1 hold for the symmetric positive semidefinite matrix Y Y T . Comparison
of Definition 1 and Lemma 2 therefore provides the following relationship between
problems (4) and (1).
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Theorem 4. A local minimizer Y of the nonconvex problem (4) provides the
stationary point Y Y T of problem (1) if the matrix

(7) SY = ∇Xf(Y Y T )−
m∑
i=1

λiAi

is positive semidefinite for the Lagrangian multipliers λi that satisfy (6). This suffi-
cient condition is furthermore necessary if bi �= 0 for all i = 1, . . . ,m.

Proof. For the sufficient part, check the conditions of Definition 1 for the tuple
{X,S, σ} = {Y Y T , SY , λ}. For the necessary part, assume that X = Y Y T satisfies
the conditions (5) for some σ and S. By virtue of Lemmas 2 and 3, the vector λ is
unique and thus necessarily equal to σ; i.e., SY = S � 0.

Theorem 4 is a generalization of Proposition 3 in [5] to nonlinear objective func-
tions. Under Assumption 2, the Lagrangian multipliers in (6) have the closed-form
expression

(8) λi =
Tr(Y TAi∇Xf(Y Y T )Y )

Tr(Y TA2
i Y )

that is readily obtained from the identity

Tr

⎛
⎝Y TAi

⎛
⎝∇Xf(Y Y T )−

m∑
j=1

λjAj

⎞
⎠Y

⎞
⎠ = 0,

where the second condition in (6) is used. Hence, a closed-form expression is available
for the dual matrix SY in (7) at an optimizer Y of (4).

3.2. Second-order optimality conditions. Let L(Y, λ) denote the Lagrangian
of the nonconvex problem (4),

L(Y, λ) = f(Y Y T )−
m∑
i=1

λi(trace(Y
TAiY )− bi).

The optimality conditions (6) can be rewritten in the form

∇λL(Y, λ) = 0 and ∇Y L(Y, λ) = 0.

In the following, we consider the Lagrangian multipliers λi to be given by (8).
Lemma 5. For a local minimizer Y ∈ R

n×p of (4), it holds that

(9) Tr(ZTDY∇Y L(Y, λ)[Z]) ≥ 0

for any matrix Z ∈ R
n×p that satisfies

(10) Tr(ZTAiY ) = 0, i = 1, . . . ,m.

Proof. These are the second-order KKT conditions of (4) (see, e.g., [14]).
Lemma 6. For any matrix Z ∈ R

n×p such that Y ZT = 0, the following equality
holds:

1

2
Tr(ZTDY∇Y L(Y, λ)[Z]) = Tr(ZTSY Z).
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Proof. By noting that ∇Y L(Y, λ) = 2SY Y , one has

1

2
Tr(ZTDY∇Y L(Y, λ)[Z])

= Tr(ZTSY Z) + Tr(ZTDY (∇f(Y Y T ))[Z]Y )−
m∑
i=1

DY λi[Z]Tr(ZTAiY ),

where the two last terms cancel out by virtue of the condition Y ZT = 0.
Theorem 7. A local minimizer Y of problem (4) provides a stationary point

X = Y Y T of problem (1) if it is rank deficient.
Proof. For the matrix Y ∈ R

n×p to span an r-dimensional subspace in R
n (with

p > r), the following factorization has to hold:

(11) Y = Ỹ MT ,

with the full-rank matrices Ỹ ∈ R
n×r
∗ and M ∈ R

p×r
∗ . Let M⊥ ∈ R

p×(p−r) be
an orthogonal basis for the orthogonal complement of the column space of M; i.e.,
MTM⊥ = 0 and MT

⊥M⊥ = I. For any matrix Z̃ ∈ R
n×(p−r), the matrix Z = Z̃MT

⊥
satisfies

Y ZT = 0

such that the conditions (10) hold. By virtue of Lemmas 5 and 6,

Tr(ZTSY Z) ≥ 0

for all the matrices Z = Z̃MT
⊥ ; i.e., the matrix SY is positive semidefinite, and

X = Y Y T is a stationary point of problem (1).
Theorem 7 is a generalization of Proposition 4 in [5] to nonlinear objective func-

tions.
Corollary 8. In the case p = n, any local minimizer Y ∈ R

n×n of problem (4)
provides the stationary point X = Y Y T of problem (1).

Proof. If Y is rank deficient, the matrix X = Y Y T is optimal for (1) by virtue of
Theorem 7. Otherwise, the matrix SY is zero because of the second condition in (6)
and X is optimal for (1).

3.3. An algorithm for the initial problem. The proposed algorithm consists
of solving a sequence of nonconvex problems (4) of increasing dimension until the
resulting local minimizer Y represents a stationary point of problem (1), i.e., a solution
of (1) since it is a descent algorithm. Both Theorems 4 and 7 provide sufficient
conditions to check this fact. It should be noted that the conditions of Theorem 4
are furthermore necessary if all bi �= 0. When problem (4) is solved in a dimension
p smaller than the unknown rank r, none of these conditions can be fulfilled. The
dimension p is thus incremented after each resolution of (4). By virtue of Corollary
8, a stationary point of the initial problem (1) is obtained at the latest once p = n.
However, for the sake of numerical efficiency, the hope is to find such a point for a
dimension p that is much smaller than the problem dimension n. As we will see in
sections 5 and 6, this hope is perfectly fulfilled in each of our numerical experiments.

In order to ensure a monotone decrease of the objective function through the
iterations, the optimization algorithm that solves (4) is initialized with a matrix cor-
responding to Y with an additional zero column appended; i.e.,

Y0 = [Y |0n×1],
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where 0n×1 denotes the n-by-1 zero vector. It should be noted that if ∇Y L(Y, λ) = 0,
then ∇Y0L(Y0, λ) = 0 for the Lagrangian multipliers λi given by (8); i.e., Y0 is a
stationary point of problem (4) for the dimension p + 1. Since this reinitialization
occurs when the local minimizer Y ∈ R

n×p of (4) does not represent the solution of
(1) according to the necessary (if all bi �= 0) and sufficient conditions of Theorem 4,
Y0 is a saddle point of problem (4). This can be a critical issue for many optimization
algorithms. Fortunately, in the present case, a descent direction from Y0 can be
explicitly evaluated. From Lemma 6, the matrix Z = [0n×p|v], where 0n×p is a zero
matrix of the size of Y and v is the eigenvector of SY related to the smallest algebraic
eigenvalue, verifies

1

2
Tr(ZTDY∇Y L(Y0, λ)[Z]) = vTSY v ≤ 0

since Y0Z
T = 0 for the Lagrangian multipliers λ given in (8). All these elements lead

to the meta-algorithm displayed in Algorithm 1.1 The parameter ε fixes a threshold
on the eigenvalues of SY to decide about the nonnegativity of this matrix. ε is chosen
to be 10−6 in our implementation.

Algorithm 1. Meta-algorithm for solving problem (1)

input : Initial rank p0, initial iterate Y (0) ∈ R
n×p0 and parameter ε.

output: The solution X of problem (1).
begin

p←− p0
Yp ←− Y (0)

stop←− 0
while stop �= 1 do

Initialize an optimization scheme with Yp to find a local minimum Y ∗
p

of (4) by exploiting a descent direction Zp if available.
if p = p0 and rank(Y ∗

p ) < p then
stop = 1

else
Find the smallest eigenvalue λmin and the related eigenvector Vmin

of the matrix SY (7).
if λmin ≥ −ε then

stop = 1
else

p←− p+ 1
Yp ←− [Y ∗

p |0]
A descent direction from the saddle point Yp is given by
Zp = [0|Vmin].

X ←− Y ∗
p Y

∗T
p

end

It should be mentioned that, to check the optimality for the initial problem (1)
of a local minimizer Y ∗

p , the rank condition of Theorem 7 is computationally cheaper
to evaluate than the nonnegativity condition of Theorem 4. Nevertheless, the rank

1A MATLAB implementation of Algorithm 1 with the manifold-based optimization method of
section 4 can be downloaded from http://www.montefiore.ulg.ac.be/∼journee.
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condition does not provide a descent direction to escape saddle points. It furthermore
requires to solve the program (4) at a dimension that is strictly greater than r, the
rank of the solution of (1). Hence, this condition is used only at the initial rank p0
and is likely to hold if p0 is chosen larger than the unknown r. Numerically, the rank
of Y ∗

p0
is computed as the number of singular values that are greater than a threshold

fixed at 10−6. The algorithm proposed in [5] exploits exclusively the rank condition of
Theorem 7. For this reason, each optimization of (4) has to be randomly initialized,
and the algorithm in [5] is not a descent algorithm.

As mentioned above, Algorithm 1 stops at the latest once p = n. The numerical
experiments reported in sections 5 and 6 indicate that in practice, however, the algo-
rithm terminates at a rank p that is much lower than the dimension n. It furthermore
seems that the algorithm always terminates once p equals the rank r of the solution of
(1), provided that p0 ≤ r. These applications also illustrate that the magnitude of the
smallest eigenvalue λmin of the matrix SY can be used to monitor the convergence.
The value |λmin| indicates whether the current iterate is close to satisfying the KKT
conditions (5). This feature is of great interest once an approximate solution to (1)
is sufficient. The threshold ε set on λmin controls then the accuracy of the result.

A trust-region scheme based on second-order derivative information is proposed
in the next section for computing a local minimum of (4). This method is provided
with a convergence theory that ensures convergence of the iterates toward a local
minimizer.

Hence, the proposed algorithm presents the following notable features. First, it
converges toward the solution of problem (1) by ensuring a monotone decrease of the
objective function. Then the magnitude of the smallest eigenvalue of SY provides
a means to monitor the convergence. Finally the inner problem (4) is solved by
second-order methods featuring quadratic local convergence.

4. Manifold-based optimization. We now derive an optimization scheme that
locally solves the nonconvex and nonlinear program,

(12)
min

Y ∈Rn×p
f̄(Y )

s.t. Tr(Y TAiY ) = bi, Ai ∈ S
n, bi ∈ R, i = 1, . . . ,m,

where f̄(Y ) = f(Y Y T ) for some f : Sn → R.
As previously mentioned, problem (12) is invariant by right-multiplication of the

variable Y by orthogonal matrices. The critical points of (12) are thus nonisolated.
To get rid of this symmetry, letM define the set of all the equivalence classes of the
form

(13) [Y ] = {Y Q | Q ∈ R
p×p, QTQ = Ip},

where Y ∈ R
n×p
∗ satisfies the quadratic equality constraints in (12); i.e., Y belongs to

the manifold

M̄ = {Y ∈ R
n×p
∗ | trace(Y TAiY ) = bi, i = 1, . . . ,m},

which is embedded in the noncompact Stiefel manifold R
n×p
∗ , i.e., the set of full-

rank matrices in R
n×p. The full-rank condition is required to deal with differentiable

manifolds. The set M is the quotient of the manifold M̄ by the orthogonal group
O(p) = {Q ∈ R

p×p|QTQ = Ip},
M = M̄/O(p).
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It can be furthermore proven that the quotient M presents the structure of a Rie-
mannian manifold; i.e., it is a quotient manifold [4]. Let us turn problem (12) onto
the quotient manifoldM, i.e.,

(14) min
[Y ]∈M

φ([Y ]),

with the function φ : M → R : [Y ] �→ φ([Y ]) = f̄(Y ). If the minimizers of f are
isolated on the feasible set of (1), then the minimizers of φ are isolated on the search
spaceM.

Isolated minimizers can also be obtained by adding a suitable set of constraints
to problem (12) and optimizing on a submanifold of M̄. This is the alternative
considered in [9] in the case of the elliptope: the rotational invariance is removed by
imposing the matrix variable Y to be lower triangular, which defines the Cholesky
manifold embedded in R

n×p. Choosing the appropriate set of constraints to add to
(12) seems, however, somewhat arbitrary. We therefore prefer to keep the intrinsic
symmetry of the problem and to optimize on the quotient manifold M, although
this might be conceptually more complex. As shown in the forthcoming numerical
experiments (section 5), the quotient parametrization leads to better results.

Several unconstrained optimization methods have been generalized to search spaces
that are Riemannian manifolds. This is, e.g., the case of the trust-region approach [1],
which minimizes at each iteration a quadratic model of the objective on a trust-region
whose radius is adaptively chosen. Since this model is meant only locally, it is de-
fined for the elements of the tangent space to the manifoldM at the current iterate.
This tangent space is a Euclidean space, and thus the trust-region subproblem can be
solved by any available method. In the numerical experiments on which this paper
reports, we used the Steihaug–Toint truncated conjugate gradient method, as formu-
lated in [1, Alg. 2]. Once the direction solving the subproblem has been identified,
the trust-region radius is adapted in a similar manner as in the Euclidean case, and
the update consists of moving the iterate along a curve that is tangent to this direc-
tion; see [1, Alg. 1] for a detailed algorithm description. Hence, the main difference
between the classical and the Riemannian trust-region methods is that in the Rieman-
nian version, a different tangent space is considered at each iteration. Details on this
algorithm can be found in [1, 4]. It is important to mention that this algorithm has
convergence properties analogous to those of trust-region methods for unconstrained
optimization in R

n. In particular, trust-region methods on manifolds converge glob-
ally to stationary points of the objective function if the inner iteration produces a
model decrease that is better than a fixed fraction of the Cauchy decrease; such a
property is achieved, e.g., by the Steihaug–Toint inner iteration. Since the iteration
is moreover a descent method, convergence to saddle points or local maximizers is not
observed in practice. It is possible to obtain guaranteed convergence to a point where
the second-order necessary conditions of optimality hold by using inner iterations
that exploit the model more fully (e.g., the inner iteration of Moré and Sorensen),
but these inner iterations tend to be prohibitively expensive for large-scale problems.
For appropriate choices of the inner iteration stopping criterion (see eq. (10) in [1]),
trust-region methods converge locally superlinearly toward the nondegenerate local
minimizers of the objective function. In our numerical experiments, the parameter θ
in eq. (10) of [1] has been set to 1, which guarantees a quadratic convergence, and κ
has been set to 10−1.

To exploit the Riemannian trust-region algorithm of [1] in the context of problem
(14), a few important objects need to be specified. First, every equivalence class [Y ]
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is represented by one of its elements Y ∈ M̄; i.e., the algorithm works conceptually
on the entire quotient spaceM but numerically in R

n×p. Then the tangent space at
a point Y of the manifold M̄,

TY M̄ = {Z ∈ R
n×p : Tr(Y TAiZ) = 0, i = 1, . . . ,m},

has to be decomposed in two orthogonal subspaces, the vertical space VYM and
the horizontal space HYM. The vertical space VYM is the tangent space to the
equivalence classes

VYM = {YΩ : Ω ∈ R
p×p, ΩT = −Ω}.

The horizontal space HYM is the orthogonal complement of VYM in TY M̄; i.e.,

(15) HYM = {Z ∈ TY M̄ : ZTY = Y TZ}

for the Frobenius inner product 〈Z(1), Z(2)〉 = Tr(Z(1)TZ(2)) for all Z(1), Z(2) ∈ TY M̄.
Expression (15) results from the equality Tr(SΩ) = 0 that holds for any symmetric
matrix S and skew-symmetric matrix Ω of compatible dimension. The purpose of the
horizontal space is to provide a way of representing tangent spaces to the quotient
manifold M: given Y ∈ M̄ and a tangent vector Z[Y ] to M at [Y ], there exists a
unique ZY ∈ HYM, termed the horizontal lift of Z[Y ] at Y , such that, for all smooth
functions h onM, it holds that

Dh(Y )[Z[Y ]] = D(h ◦ π)(Y )[ZY ],

where π is the quotient map π : Y �→ [Y ]. A vector field Y ∈ M̄ �→ ZY ∈ HYM is a
horizontal lift of a tangent vector toM if and only if it satisfies ZY Q = ZY Q for all
Q ∈ O(p).

Let NY M̄ be the normal space to M̄ at Y , i.e., the orthogonal complement of
TY M̄ in R

n×p with respect to the Frobenius inner product,

NY M̄ =

{
m∑
i=1

αiAiY, α ∈ R
m

}
.

The Euclidean space R
n×p is then uniquely divided into three mutually orthogonal

subspaces:

R
n×p = HYM⊕VYM⊕NY M̄.

The trust-region algorithm proposed in [1] requires a projection PY from R
n×p to

HYM along VYM⊕NY M̄. The following theorem provides a closed-form expression.
Theorem 9. Let Y be a point on M̄. For a matrix Z ∈ R

n×p, the projection
PY : Rn×p → HYM is given by

PY (Z) = Z − YΩ−
m∑
i=1

αiAiY,

where Ω is the skew-symmetric matrix that solves the Sylvester equation,

ΩY TY + Y TY Ω = Y TZ − ZTY,
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and with the coefficients

αi =
Tr(ZTAiY )

Tr(Y TA2
iY )

.

Proof. Any vector Z ∈ R
n×p presents a unique decomposition

Z = ZVY M + ZHY M + ZNY M̄,

where each element ZX belongs to the vector space X . The orthogonal projection
PY (·) extracts the component that lies in the horizontal space,

PY (Z) = Z − YΩ−
m∑
i=1

αiAiY,

with Ω a skew-symmetric matrix. The parameters Ω and α are determined from the
linear equations

Y TPY (Z) = PY (Z)TY,

Tr(Y TAiPY (Z)) = 0, i = 1, . . .m,

which are satisfied by any element of the horizontal space.
The projection PY provides simple formulas to compute derivatives of the function

φ (defined on the quotient manifold) from derivatives of the function f̄ (defined in
the Euclidean space). First we consider the gradient of φ. For the gradient to be well
defined, we need a Riemannian metric onM, which we define by

〈Z(1)
[Y ], Z

(2)
[Y ]〉 = Tr(Z

(1)T
Y Z

(2)
Y ).

Then the horizontal lift of the gradient of φ is the projection on the horizontal space
of the gradient of f̄ ,

gradφ(Y ) = PY (∇f̄(Y )).

Similarly, the Riemannian Hessian of φ in a direction Z ∈ HYM is represented by

Hessφ(Y )[Z] = PY (D(gradφ(Y ))[Z]).

This follows from the theory of Riemannian submersions (see sections 3.6.2, 5.3.4, and
5.5 in [4]). The directional derivative D(ζ)[Z], where ζ = PY ζ̄ and ζ̄ is a vector field
on R

n×p
∗ , is performed in the Euclidean sense in R

n×p, i.e.,

D(PY (ζ̄))[Z] = Dζ̄[Z]− ZΩ− YDΩ[Z]−
m∑
i=1

αiAiZ −
m∑
i=1

Dαi[Z]AiY,

where DΩ[Z] is the solution of the Sylvester equation,

DΩ[Z]Y TY + Y TYDΩ[Z]

= ZT ζ̄ − ζ̄TZ + Y TDζ̄[Z]−Dζ̄[Z]TY − Ω(ZTY + Y TZ)− (ZTY + Y TZ)Ω,

and

Dαi[Z] =
1

trace(Y TA2
iY )

(Dζ̄[Z]AiY + ζ̄TAiZ)− trace(ZTAiY )

trace(Y TA2
iY )2

(ZTA2
iY +Y TA2

iZ).
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The trust-region subproblem is then written in the form

min
Z∈HY M

φ([Y ]) + Tr(ZT gradφ(Y )) +
1

2
Tr(ZThessφ(Y )[Z])

s.t. Tr(ZTZ) ≤ Δ2,

which minimizes a quadratic model of the objective φ on a trust-region of radius Δ.
Finally a last ingredient needed by the Riemannian trust-region algorithm in [1]

is a retraction R[Y ] : T[Y ]M→M, represented by a mapping

RY : HYM→ M̄,

satisfying the compatibility condition [RY Q(ZQ)] = [RY (Z)] for all Y ∈ M̄, all
Z ∈ HYM, and all Q ∈ O(p). Such a mapping can be derived from geodesics, which
are the curves of the shortest path on a manifold. The following theorem provides
some insight on the geodesic curves on M. Note that the additional assumptions
needed in this theorem are satisfied by the spectahedron and the elliptope.

Theorem 10. Under the assumption that bi �= 0 for i = 1, . . . ,m, let Āi =
ViDiV

T
i be the compact eigenvalue decomposition of the matrix Āi = 1

bi
Ai. If∑m

i=1 ViV
T
i is the identity matrix (i.e., the matrix [V1| . . . |Vm] is orthogonal), then

the curve

(16) Y (t) =

m∑
i=1

ViV
T
i

⎛
⎜⎜⎝cos

(√
Tr(Ẏ T

0 ĀiẎ0)t

)
Y0 +

sin

(√
Tr(Ẏ T

0 ĀiẎ0)t

)
√
Tr(Ẏ T

0 ĀiẎ0)
Ẏ0

⎞
⎟⎟⎠ ,

which passes through Y0 ∈ M̄ and is tangent to Ẏ0 ∈ HY0M at t = 0, is a curve on
M̄. In the specific case where Ai = γiViV

T
i with γi ∈ R for all i = 1, . . . ,m, the curve

[Y (t)] is a geodesic onM.
Proof. First one readily checks that Tr(Ẏ (t)TAiY (t)) = 0, and hence

Tr(Y (t)TAiY (t)) = Tr(Y T
0 AiY0) cos

(√
Tr(Ẏ T

0 ĀiẎ0)t

)2

+ bi sin

(√
Tr(Ẏ T

0 ĀiẎ0)t

)2

= bi,

which proves that Y (t) is a curve on M̄. Then

Ÿ (t) = −
m∑
i=1

ViV
T
i

(
Tr(Ẏ T

0 ĀiẎ0) cos

(√
Tr(Ẏ T

0 ĀiẎ0)t

)
Y0

+

√
Tr(Ẏ T

0 ĀiẎ0) sin

(√
Tr(Ẏ T

0 ĀiẎ0)t

)
Ẏ0

)

= −
m∑
i=1

ViV
T
i Tr(Ẏ T

0 ĀiẎ0)Y (t)

∈ NY (t)M̄, if Ai = γiViV
T
i with γi ∈ R for all i = 1, . . . ,m,

in which case PY (t)Ÿ (t) = 0; i.e., Y (t) is a geodesic on M̄. Because of the condition

Ẏ0 ∈ HY0M, one readily checks that Ẏ (t) ∈ HY (t)M; i.e., [Y (t)] is a geodesic on
M.
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The point at t = 1 of the curve (16) which passes through Y ∈ M̄ and that is
tangent to Z ∈ HYM provides a retraction. In the specific cases of the spectahedron
S and the elliptope E , this retraction is written as

RY (Z) = cos

(√
Tr(ZTZ)

)
Y +

sin
(√

Tr(ZTZ)
)

√
Tr(ZTZ)

Z

and

RY (Z) = cos

(√
Diag(ZZT )

)
Y +Diag(ZZT )

−1
2 sin

(√
Diag(ZZT )

)
Z,

respectively.
An alternative retraction is obtained by “projecting” the matrix Ȳ = Y +Z onto

M̄ as follows:

(17) RY (Z) = Ȳ +

m∑
i=1

αiAiȲ ,

where the coefficients αi are chosen such that the quadratic equality constraints in
(12) are satisfied by (17). This actually defines αi as a set-valued function of Z, an
ambiguity that is removed by considering the branch that satisfies αi(0) = 0. The
fact that this procedure defines a retraction (and even a second-order retraction) can
be deduced from [2]. Under Assumption 2, the coefficients αi are easily computed as
the solution of the quadratic polynomial,

α2
iTr(Ȳ

TA3
i Ȳ ) + 2αiTr(Ȳ

TA2
i Ȳ ) + Tr(Ȳ TAiȲ ) = bi.

For the spectahedron S, the retraction (17) is given by

RY (Z) =
Y + Z√

Tr((Y + Z)T (Y + Z))
.

In the case of the elliptope E , (17) becomes

RY (Z) = Diag((Y + Z)(Y + Z)T )−
1
2 (Y + Z),

where Diag(X) denotes the diagonal matrix whose diagonal elements are those of X .
In the forthcoming numerical experiments, we always choose these projection-based
retractions instead of those based on geodesics because of numerical stability. In
fact, when moving along geodesics, the iterate deviates with time from the equality
constraints because numerical errors accumulate. Retraction (17), on the other hand,
enforces these constraints at each iteration.

The per-iteration complexity of the manifold-based trust-region algorithm for
solving problem (12) is dominated by the computational cost required to evaluate
the objective f̄(Y ), the gradient ∇f̄(Y ), and the directional derivative D(∇f̄ (Y ))[Z].
Hence, the costly operations are performed in the Euclidean space R

n×p, whereas all
manifold-related operations, such as evaluating a metric, a projection, and a retrac-
tion, are of linear complexity with the dimension n.

Finally we stop the optimization algorithm once the norm of the gradient falls
below a small threshold, e.g.,√

Tr(gradφ(Y )T gradφ(Y )) < 10−6.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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5. Optimization on the elliptope: The maximum-cut SDP relaxation.
A first application of the proposed optimization method concerns the maximal cut of
a graph.

Problem statement. The maximal cut of an undirected and weighted graph
corresponds to the partition of the vertices in two sets such that the sum of the weights
associated to the edges crossing between these two sets is the largest. Computing the
maximal cut of a graph is an NP-complete problem. Several relaxations to that
problem have been proposed. The most studied one, which is the basis of a 0.878-
approximation algorithm [10], is the SDP

(18)

min
X∈Sn

Tr(AX)

s.t. diag(X) = 1,
X � 0,

where A = − 1
4L with L the Laplacian matrix of the graph, the dimension n is the

number of vertices of that graph, and 1 is the vector of all ones. This relaxation is
tight in the case of a rank one solution.

As previously mentioned, the elliptope,

E = {X ∈ S
n|X � 0, diag(X) = 1},

satisfies Assumption 2. Hence, program (18) is a good candidate for the proposed
framework. Using the factorization X = Y Y T , the optimization problem is defined
on the quotient manifoldME = M̄E/Op, where

M̄E = {Y ∈ R
n×p
∗ : diag(Y Y T ) = 1}.

The per-iteration complexity of Algorithm 1 with the inner problem (4) that is solved
by trust-region optimization is of orderO(n2p) in the present context. This complexity
is dominated by both the manifold-based optimization, which is O(n2p), and the
eigenvalue decomposition of the dual variable SY , which is O(n2). The computational
cost related to the manifold-based optimization is, however, reduced in the case of
matrices A that are sparse.

Competing methods. The proposed algorithm is compared in the sequel
against existing methods that also rest on the low-rank factorization X = Y Y T .

First the SDPLR algorithm that was proposed in [5] for solving SDPs uses a
limited memory BFGS method (L-BFGS) to solve the fixed-rank problem (4). Each
optimization of (4) is furthermore randomly initialized. Consequently, the SDPLR
algorithm in not a descent algorithm.

Then the conceptually simplest method for solving the fixed-rank problem (4)
is probably a gradient-descent method, which consists of moving the current iterate
with a certain step size in the direction of the gradient ∇f̄(Y ) projected onto the
tangent space TY M̄ of the feasible set M̄. The feasibility is then recovered after each
iteration by scaling the norm of the rows of the obtained matrix to one. This method
corresponds to the Riemannian gradient-descent approach discussed in [4, sect. 4.2].
To ensure convergence, the step size is computed at each iteration to satisfy the Armijo
condition (see, e.g., Def. 4.2.2 in [4] with parameters ᾱ = 1, β = 0.5, and σ = 0.01).

To sum up, six algorithms can be deduced from this discussion: the fixed-rank
problem (4) can be solved by projected gradient (Grad.), trust-region (TR) or limited
memory BFGS (L-BFGS), and each of such optimization problems can be initialized
either randomly (Random restart) or by using the descent direction proposed in sec-
tion 3.3 (Descent restart). The initial rank p0 is chosen to be two in the forthcoming
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Fig. 1. Convergence behavior of the method “Descent restart + TR” to compute the maximal
cut of the graph “toruspm3-15-50.” Left: Monotone decrease of the objective function f(Y ) =
Tr(Y TAY ) through the iterations (bottom abscissa) and with the rank p (top abscissa). Right:
Evolution of the smallest eigenvalue of the matrix SY .
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Fig. 2. Convergence behavior of the method “Random restart + L-BFGS” to compute the
maximal cut of the graph “toruspm3-15-50.” Left: Evolution of the objective function f(Y ) =
Tr(Y TAY ) through the iterations (bottom abscissa) and with the rank p (top abscissa). Right:
Evolution of the smallest singular value of the matrix Y .

experiments and is incremented by one after each resolution of (4). The algorithms
based on a descent restart are stopped once the dual variable SY is positive semidef-
inite (in accordance with Theorem 4), while the rank condition is used in the case of
random restart (in accordance with Theorem 7). All of these algorithms have been
implemented on our own in MATLAB by using the same levels of accuracies. The al-
gorithm proposed in this paper will be denoted “Descent restart + TR,” whereas the
combination “Random restart + L-BFGS” is the closest fit to the SDPLR algorithm
of [5].

The forthcoming computational results are obtained by using these algorithms to
compute the maximal cut of a set of graphs of various sizes. More details on these
graphs can be found in [5] and references therein.

Convergence plots. On Figures 1 and 2, we illustrate for both methods “De-
scent restart + TR” (i.e., the proposed algorithm) and “Random restart + L-BFGS”
(i.e., a close approximation of the SDPLR algorithm), respectively, the evolution of
the objective function as well as of the corresponding stopping criteria for comput-
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Table 1

Computational load of various methods to compute the maximal cut of the graphs “toruspm3-
8-50” (n = 512) and “toruspm3-15-50” (n = 3375). The same initialization and identical levels of
accuracy are used for all methods. The results are averages for five different initializations.

Descent restart Random restart
Grad. TR L-BFGS Grad. TR L-BFGS

to
ru

sp
m
3
-8
-5
0 # eval. f̄ 60535 166 9640 85524 235 14944

# eval. gradf̄ 30266 3167 2023 42772 5243 3116
# eval. Hessf̄ - 3043 - - 5029 -
CPU time (sec) 80.9 11.0 14.2 117.0 14.0 20.6

to
ru

sp
m
3
-1
5
-5
0 # eval. f̄ O(107) 599 62230 O(107) 900 102100

# eval. gradf̄ O(106) 24850 13410 O(106) 36480 21740
# eval. Hessf̄ - 24400 - - 35710 -
CPU time (sec) 44640 625 672 43860 531 713

ing the maximal cut of the graph “toruspm3-15-50,” which has 3375 vertices. The
monotone convergence of the proposed algorithm is depicted on the left-hand plot of
Figure 1, where the number of iterations is displayed on the bottom abscissa and the
top abscissa stands for the rank p. On the right-hand plot of Figure 1, the smallest
eigenvalue λmin of the dual matrix SY is shown to increase monotonically to zero. By
comparing the right-hand plots of Figures 1 and 2, the magnitude of λmin(SY ) seems
to provide better insight on the accuracy of the current iterate than the value of the
smallest singular value of Y (i.e., σmin(Y )).

Computational speed. In Table 1, we report for both graphs “toruspm3-8-50”
(512 vertices) and “toruspm3-15-50” (3375 vertices) the computational times as well
as the number of evaluations of the objective function, the gradient, and the Hessian
required by each of the six algorithms. These algorithms are systematically initialized
with the same matrix and are stopped according to the same criterion (i.e., once the
norm of the gradient gets below 10−6). These results are averages for five different
initializations. The conceptually simple projected gradient algorithms appear to have
the worst performance. We therefore discard them from the next experiments.

The average computational times needed by the remaining algorithms are listed
in Table 2 for a much larger set of graphs. The parameter n denotes the number of
vertices of these graphs and corresponds thus to the size of the variable X in (18). For
a given graph, the reached objective value and the rank of the computed solutions are
systematically identical for all methods. These ranks indicate that the factorization
X = Y Y T significantly reduces the size of the search space. Overall, the two methods
“Descent restart + TR” and “Random restart + L-BFGS” seem to perform similarly.

Proposed geometry versus the Cholesky manifold. In Table 3, we compare
the geometry discussed in section 4 of the manifoldME against the Cholesky manifold
proposed in [9]. Table 3 clearly highlights that the geometry derived in section 4
provides a much more efficient representation of the quotient manifold ME . The
reader will notice, however, that Table 3 does not compare the algorithm proposed
in this paper (trust-region on a quotient manifold) to the algorithm proposed in [9]
(Newton method on an embedded manifold).

6. Optimization on the spectahedron: The sparse PCA problem. This
section presents three nonlinear programs in the context of sparse principal component
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Table 2

Computational times of four methods based on the low-rank factorization X = Y Y T to compute
the maximal cut of a set of graphs. The rank of the obtained solution is denoted Rank(Y ). The
results are averages for five different initializations.

CPU time (sec)
Descent restart Random restart

Graph n Rank(Y ) TR L-BFGS TR L-BFGS
toruspm3-8-50 512 8 11.0 14.2 14.0 20.6
torusg3-8 512 7 12.6 14.6 12 19.5
toruspm3-15-50 3375 15 625 672 531 713
torusg3-15 3375 13 882 1062 742 898
G1 800 13 55 76 138 108
G11 800 5 58 58 158 162
G14 800 13 73 93 82 68
G22 2000 18 244 337 264 385
G32 2000 6 214 276 882 844
G35 2000 17 472 590 554 303
G36 2000 19 613 874 883 308
G43 1000 13 42 66 55 85
G51 1000 14 115 166 132 87
G52 1000 15 131 182 159 82
G55 5000 19 1086 1345 984 917
G57 5000 7 1882 1573 1521 1126
G58 5000 26 6013 8066 7985 2023

Table 3

Computational load of the Riemannian trust-region algorithm for two different parameteriza-
tions of the manifold ME for solving the inner problem (4) in two cases: graph “toruspm3-8-50”
(n = 512) at the rank p = 5 and graph “toruspm3-15-50” (n = 3375) with p = 10. Both algorithms
are initialized identically and are stopped according to the same criterion. The results are averages
for five different initializations.

Proposed geometry Cholesky manifold

to
ru

sp
m
3
-8
-5
0

fo
r
p
=

5 # eval. f̄ 33 49
# eval. gradf̄ 820 2181
# eval. Hessf̄ 790 2138
CPU time (sec) 2.0 4.2

to
ru

sp
m
3
-1
5
-5
0

fo
r
p
=

1
0 # eval. f̄ 54 284

# eval. gradf̄ 2811 161650
# eval. Hessf̄ 2765 161420
CPU time (sec) 55 2160

analysis (PCA) and that can be efficiently solved by means of the proposed low-rank
optimization approach.

PCA is a tool that reduces multidimensional data to lower dimensions. Given
a data matrix A ∈ R

m×n, the first principal component consists of the best rank
one approximation of the matrix A in the least square sense. This decomposition
is performed via estimation of the dominant eigenvector of the empirical covariance
matrix Σ = ATA. In many applications, it is of great interest to get sparse principal
components, i.e., components that yield a good low-rank approximation of A while
involving a limited number of nonzero elements. In the case of gene expression data,
where the matrix A represents the expression of n genes through m experiments,
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getting factors that involve just a few genes, but still explain a great part of the
variability in the data, appears to be a modeling assumption closer to the biology
than the regular PCA [15]. This trade-off between variance and sparsity is the central
motivation of sparse PCA methods. More details on the sparse PCA approach can
be found in [17, 8] and references therein.

Sparse PCA is the problem of finding the unit-norm vector x ∈ R
n that maximizes

the Rayleigh quotient of the matrix Σ = ATA but contains a fixed number of zeros,
i.e.,

(19)

max
x∈Rn

xTΣx

s.t. xTx = 1,
Card(x) ≤ k,

where k is an integer with 1 ≤ k ≤ n and Card(x) is the cardinality of x, i.e., the
number of nonzero components. Finding the optimal sparsity pattern of the vector x is
of combinatorial complexity. Several algorithms have been proposed in the literature
that find an approximate solution to (19). We refer to [8] for references on these
methods. Let us finally mention that the data matrix A does not necessarily have to
present a sparse pattern. In the context of compressed sensing, for example, one needs
to compute the sparse principal component of a matrix A that is full and sampled
from a Gaussian distribution [7].

Recently, two convex relaxations have been derived that require the minimiza-
tion of some nonlinear convex functions on the spectahedron S = {X ∈ S

m|X �
0,Tr(X) = 1}. Both of these relaxations consider a variation of (19), in which the
cardinality appears as a penalty instead of a constraint, i.e., either

(20)
max
x∈Rn

xTΣx− ρCard(x)

s.t. xTx = 1

or

(21)
max
x∈Rn

xTΣx− ρCard(x)2

s.t. xTx = 1

with the parameter ρ ≥ 0. The resolution of these two convex problems by Algorithm 1
is discussed in sections 6.1 and 6.2. A related nonconvex optimization problem, also
defined on a subset of the cone of positive semidefinite matrices, is then proposed
in section 6.3. We briefly report on numerical experiments for these problems; refer
to [11] for more details.

6.1. A first convex relaxation to the sparse PCA problem. In [8], problem
(21) is relaxed to a convex program in two steps. First a convex feasible set is obtained
by lifting the unit-norm vector variable x into a matrix variable X that belongs to
the spectahedron, i.e.,

(22)

max
X∈Sn

Tr(ΣX)− ρCard(X)

s.t. Tr(X) = 1,
X � 0.

The relaxation (22) is tight for rank one matrices. In such cases, the vector variable
x in (21) is related to the matrix variable X according to X = xxT . Then for (22) to
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be convex, the cardinality penalty is replaced by a convex l1 penalty, i.e.,

(23)

max
X∈Sn

Tr(ΣX)− ρ
∑
i,j

|Xij |

s.t. Tr(X) = 1,
X � 0.

The convex relaxation (23) can be solved by the DSPCA algorithm proposed in [8].
For Algorithm 1 to be used in this context, we still need to provide a smooth approx-
imation to (23). This is obtained, for example, by replacing the absolute value by
the differentiable function hκ(x) =

√
x2 + κ2 with the parameter κ that is very small.

A too small value of κ might, however, lead to ill-conditioned Hessians and thus to
numerical problems. The convex program,

(24)

max
X∈Sn

Tr(ΣX)− ρ
∑
i,j

hκ(Xij)

s.t. Tr(X) = 1,
X � 0,

finally fits within the framework (1). We therefore factor the variableX in the product
Y Y T and perform the optimization on the quotient manifoldMS = M̄S/Op, where

M̄S = {Y ∈ R
n×p
∗ : Tr(Y TY ) = 1}.

The computational complexity of Algorithm 1 with the inner problem solved by trust-
region optimization (i.e., the method denoted “Descent restart + TR” in section 5)
is of order O(n2p) in the context of program (24). It should be mentioned that the
DSPCA algorithm, which has been tuned to solve program (23), features a complexity
of order O(n3).

Convergence plots. Figure 3 illustrates the monotone convergence of Algorithm
1 for computing a sparse principal component of a random Gaussian matrix A of size
50×50. The sparsity weight factor ρ has been chosen to 5, and the smoothing parame-
ter κ equals 10−4. The algorithm is initialized with the dominant right singular vector
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Fig. 3. Left: Monotone increase of the objective function f(Y ) = Tr(Y TΣY ) −
ρ
∑

i,j hκ((Y Y T )ij ) through the iterations (bottom abscissa) and with the rank p (top abscissa).

The dashed horizontal line represents the maximum of the nonsmooth objective function in (23).
Right: Evolution of the smallest eigenvalue of SY .
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Fig. 4. Left: Evolution of the objective value in (24) with the smoothing parameter κ. The
dashed horizontal line represents the maximum of the nonsmooth objective function in (23). Right:
Evolution of the largest eigenvalue of the solution X of (24). Since X has nonnegative eigenvalues
whose sum is one, it is rank one if and only if its largest eigenvalue equals one.

of the data matrix, i.e., the solution of (24) in the case ρ = 0. The maximum of the
nonsmooth objective function in (23) has been computed with the DSPCA algorithm
[8]. One first notices that the smooth approximation in (24) slightly underestimates
the nonsmooth objective function (23). The maximizers of both (23) and (24) are,
however, almost identical. It should furthermore be mentioned that all numerical
experiments performed with the DSPCA algorithm for solving (23) resulted in a rank
one matrix. The solution of (24) is therefore expected to be close to rank one. This
intuition is confirmed by Figure 4, which shows that the solution of the smoothed
problem tends to a rank one matrix once the smoothing parameter κ gets sufficiently
close to zero. This explains why the improvement in terms of objective value on the
left-hand plot of Figure 3 is very small for ranks larger than one. A heuristic to speed
up the computations would thus consist of computing an approximate rank one so-
lution of (24); i.e., Algorithm 1 is stopped after the iteration p = 1. Finally, on the
right-hand plot of Figure 3, the smallest eigenvalue λmin of the matrix SY appears as
a way to monitor the convergence.

Computational speed. In Table 4, we compare the proposed algorithm against
the above-mentioned heuristic (i.e., to compute a rank one approximation) and the

Table 4

Comparison of three methods for computing a sparse principal component of Gaussian data with
increasing dimension. The smoothed objective function is denoted fκ (with κ chosen to be 10−4).
The notation f0 refers to the initial nonsmooth objective. Computational times are measured in
seconds. The rank of the obtained solution is denoted Rank(Y ). The results are averages on five
random data for each problem size.

Dimension Algorithm 1(Descent restart+TR) Heuristic DSPCA
of the data Rank(Y ) fκ f0 time fκ f0 time f0 time
10× 10 2 22.6 22.7 1 22.0 22.1 0.4 22.7 4
25× 25 5 46.9 47.3 3 46.3 46.8 0.8 47.3 12
50× 50 10 92.2 93.1 29 79.6 81.3 2 93.2 54
100 × 100 15 223.0 226.1 151 204.9 212.5 6 226.7 284
200 × 200 25 474.0 485.1 568 384.8 414.8 22 485.9 1585
300 × 300 31 734.4 764.4 1279 563.4 635.2 50 766.1 4843
400 × 400 34 1011.9 1072.9 2725 782.0 911.5 100 1075.5 10932
500 × 500 38 1259.7 1368.1 4720 935.1 1138.1 155 1372.5 20652
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Fig. 5. Left: Computational time of three methods for solving (24) (or (23) in the case of
DSPCA) versus the problem size in the case m = n. Right: Square root of the computational time
versus n for Algorithm 1.

DSPCA method. The first two methods solve the smoothed problem (24), whereas
the DSPCA algorithm deals with (23). The data are systematically drawn from a
Gaussian distribution of zero mean and unit variance, and the choices ρ = 5 and
κ = 10−4 are made. The computational times used by these methods are also plotted
on Figure 5. The quadratic complexity of Algorithm 1 with the problem size n is
clearly highlighted on the right-hand plot.

6.2. A second convex relaxation to the sparse PCA problem. Problem
(20) is shown in [7] to be equivalently written in the form

(25)
max
z∈R

m

n∑
i=1

((aTi z)
2 − ρ)+

s.t. zT z = 1,

where ai is the ith column of A and the function x+ corresponds to max(0, x). The
auxiliary variable z enables the reconstruction of the vector x: the component xi is
active if (aTi z)

2 − ρ ≥ 0. As for the relaxation previously derived in section 6.1, the
vector z is lifted into a matrix Z of the spectahedron,

(26)

max
Z∈Sm

n∑
i=1

(aTi Zai − ρ)+

s.t. Tr(Z) = 1,
Z � 0.

This program is equivalent to (25) in the case of rank one matrices Z = zzT . Program
(26) maximizes a convex function and is thus nonconvex. The authors of [7] have
shown that, in the case of rank one matrices Z, the convex objective function in (26)
equals the concave function

f(Z) =

n∑
i=1

Tr(Z
1
2 (aia

T
i − ρI)Z

1
2 )+,
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Fig. 6. Left: Monotone increase of the objective function (28) through the iterations (bottom
abscissa) and with the rank p (top abscissa). Right: Evolution of the smallest eigenvalue of SY .

where the function Tr(X)+ stands for the sum of the positive eigenvalues of X . This
gives the following nonsmooth convex relaxation of (20),

(27)

max
Z∈Sm

n∑
i=1

Tr(Z
1
2 (aia

T
i − ρI)Z

1
2 )+

s.t. Tr(Z) = 1,
Z � 0,

that is tight in the case of rank one solutions. This program is solved via the fac-
torization Z = Y Y T and optimization on the quotient manifold MS . In the case
Z = Y Y T , the objective function in (27) equals

(28) f(Y ) =

n∑
i=1

Tr(Y T (aia
T
i − ρI)Y )+,

which is a spectral function [7]. The evaluation of the gradient and Hessian of f(Y )
is based on explicit formulae derived in the papers [12, 13] to compute the first and
second derivatives of a spectral function. Since we are not aware of any smoothing
method that would preserve the convexity of (27), Algorithm 1 has been directly
applied in this nonsmooth context. In practice, no trouble has been observed since all
numerical simulations converge successfully to the solution of (27). The computational
complexity of Algorithm 1 for solving (27) is of order O(nm2p). The convex relaxation
(27) of the sparse PCA problem (20) appears thus well suited to treat large-scale data
with m� n, such as gene expression data.

Convergence plots. Figure 6 displays the convergence of Algorithm 1 (i.e.,
“Descent restart + TR”) for solving (27) with a random Gaussian matrix A of size
m = 100 and n = 500. The sparsity parameter ρ is chosen at 5 percent of the upper
bound ρ̄ = max

i
aTi ai that is derived in [7]. The smallest eigenvalue λmin of the matrix

SY presents a monotone decrease once it gets sufficiently close to zero.
Computational speed. Figure 7 plots the time used by our MATLAB im-

plementation of Algorithm 1 versus the dimension n of the matrix A to compute a
solution of (27). The dimension p has been fixed at 50, and A is chosen according to a
Gaussian distribution. Figure 7 illustrates the linear complexity in n of the proposed
sparse PCA method.
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Fig. 7. Computational time for solving (27) versus the problem size n in the case p = 50.

6.3. A nonconvex relaxation to the sparse PCA problem. In this section,
we use the proposed algorithm to solve the nonconvex problem,

(29)

max
Z∈Sm

μfcvx(Z) + (1− μ)fccv(Z)

s.t. Tr(Z) = 1,
Z � 0,

with the concave function,

fccv(Z) =

n∑
i=1

Tr(Z
1
2 (aia

T
i − ρI)Z

1
2 )+,

and the convex function,

fcvx(Z) =

n∑
i=1

(aTi Zai − ρ)+,

and for the parameter 0 ≤ μ ≤ 1. Problem (29) might not be convex once μ > 0. As
previously mentioned, the functions fccv(Z) and fcvx(Z) are identical and equal to
the objective function (25) in the case of rank one matrices Z = zzT .

The formulation (29) of sparse PCA is motivated by the fact that the convex
relaxation (27), which is identical to (29) with μ = 0, usually provides solutions with
a rank larger than one, although the initial problem (25) deals with unit-norm vectors.
Solving (27) at the rank p = 1 is, however, possible only through local maximizers.
Projecting the solution Z of the relaxation (27) onto a rank one matrix zzT might lead
to better solutions. This can be done, for instance, by solving a sequence of problems
of the form of (29) for an increasing value of μ from zero to one. The local solutions of
(29) in the case μ = 1 are, in fact, the extreme points of the spectahedron, which are
rank one matrices. The proposed homotopy method projects therefore the solution of
the convex relaxation (27) onto the set of rank one matrices of the spectahedron. It
should be noted that the authors of [16] propose a similar approach to project doubly
stochastic matrices onto permutation matrices.

Figure 8 presents computational results obtained on a random Gaussian matrix
A ∈ R

150×50. The homotopy method is compared with the usual approach that
projects the symmetric positive semidefinite matrix Z onto its dominant eigenvector,
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Fig. 8. Evolution of the functions fccv(Z) and fEV D(Z) in two situations. Continuous plots:
resolution of the convex program (27) (μ = 0 in (29)). Dashed plots: projection of the solution of
(27) on a rank one matrix by gradual increase of μ in (29).

i.e., Z̃ = zzT , where z is the unit-norm dominant eigenvector of Z. Let fEVD(Z)
denote the function2

fEVD(Z) = fccv(Z̃) = fcvx(Z̃).

Figure 8 uses the maximum eigenvalue of a matrix Z of the spectahedron to moni-
tor its rank. As previously mentioned, any rank one matrix Z of the spectahedron
satisfies λmax(Z) = 1. The continuous plots of Figure 8 display the evolution of the
functions fccv(Z) and fEVD(Z) during the resolution of the convex program (27), i.e.,
μ = 0 in (29). Point A represents the solution obtained with Algorithm 1 by solving
(27) at the rank p = 1, whereas B and B′ stand for the exact solution of (27), which is
of rank larger than one. The dashed plots illustrate the effect of the parameter μ that
is linearly increased by steps of 0.05 between the points B and C. For a sufficiently
large μ, program (29) presents a rank one solution, which is displayed by the point
C. One clearly notices that the objective function of the original problem (25), which
equals fEVD(Z), is larger at C than at both B′ and A. Hence, the projection method
based on (29) outperforms the projection based on the eigenvalue decomposition of
Z in terms of achieved objective value and improves the solution A that is locally
optimal for the rank one problem (25).

7. Conclusion. This paper is devoted to nonlinear, and often convex, optimiza-
tion problems defined on a subset of the cone of symmetric positive semidefinite ma-
trices and that are expected to present a low-rank solution. The proposed algorithm
rests on the factorization X = Y Y T , where the number of columns of Y fixes the rank
of the positive semidefinite variable X , and solves a sequence of nonconvex programs
of much lower dimension than the original one. It presents a monotone convergence
toward the sought solution, uses quadratic second-order optimization methods, and
provides a tool to monitor the convergence, which enables evaluation of the quality
of approximate solutions for the original problem. The efficiency of the approach
has been illustrated on several applications, involving convex as well as nonconvex
objective functions: the maximal cut of a graph and three problems in the context of
sparse principal component analysis.

2EVD stands for eigenvalue decomposition.
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