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Hidden Markov Models

z0 z1 z2 zτ

x1 x2 xτ

p(zt+1 = j |zt = i) = Tij p(xt = k |zt = i) = Eik

speech recognition, time series, dynamical models, natural
language processing...

efficient inference and learning: forward-backward, Baum-Welch.
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Continuous-Time Hidden Markov Models

Natural in models of physical, chemical and other
continuous-time processes.

z0 z1 z2 zτ

x1 x2 xτ

p(zt+dt = j |zt = i) = (1− dt)δ(i , j) + Aijdt
−A11 A12 . . . A1n

A21 −A22 . . . A2n
...

...
. . .

...
An1 An2 . . . −Ann


Aij : rate of leaving state i for j

Aii =
n∑

j=1,j 6=i

Aij

Aii : rate of leaving state i
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Predator-Prey (Lotka-Volterra) Model

Wolf Rabbit

p(Rt+dt = r + 1|Rt = r) = αrdt

p(Wt+dt = w − 1|Wt = w) = βwdt

p(Wt+dt = w + 1|Wt = w ,Rt = r) = γrwdt

p(Rt+dt = r − 1|Wt = w ,Rt = r) = δrwdt

suppose an ecologist collects data on animal populations at
certain time points.

can she infer the likely trajectories of population sizes?

can she estimate the parameters α, β, γ, δ?
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Overview

The simplest example: the Poisson process on the real line.

Markov jump processes

Continuous time Bayesian networks.

These relate back to the basic Poisson process via the idea of
uniformization.

We use this connection to develop tractable models and efficient
MCMC sampling algorithms.
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The Poisson process (on the real line)

The homogeneous Poisson process with rate λ:

the probability of an event in a small interval dt is λdt

time between successive events has distribution exp(λ)

The inhomogeneous Poisson process with rate λ(t):

the probability of an event in a small interval dt is λ(t)dt
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Thinning [Lewis and Shedler, 1979]

Thinning: to sample from a Poisson process with rate λ(t).

Choose Ω > λ(t) ∀t.

Sample from a Poisson process with rate Ω.

Keep each point with probability λ(t)
Ω

, otherwise ‘thin’.

Follows from the complete randomness of the Poisson process.

Other continuous time processes like Markov jump processes and
renewal processes are not completely random: Uniformization—thin
points by running a Markov chain.
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Uniformization (at a high level)

Define Ω larger than the fastest rate at which ‘events occur’.

Draw a set of ‘potential jump times’ from a Poisson process with
rate Ω.

Construct a discrete-time Markov chain with transition times
given by the drawn point set.

The Markov chain is subordinated to the Poisson process.

Keep a point t with probability λ(t|state)/Ω.
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Markov jump processes (MJPs)

An MJP S(t), t ∈ R+ is a right-continuous piecewise-constant
stochastic process taking values in some finite space S = {1, 2, ...n}.
It is parametrized by an initial distribution π and a rate matrix A.


−A11 A12 . . . A1n

A21 −A22 . . . A2n
...

...
. . .

...
An1 An2 . . . −Ann


Aij : rate of leaving state i for j

Aii =
n∑

j=1,j 6=i

Aij

Aii : rate of leaving state i
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Gillespie’s Algorithm

∆

1

2

4

S(t) = 3

set t = 0.

draw S(0) ∼ π from the initial state distribution.

while t < τ :
I set i = S(t).
I draw ∆ ∼ Exp(Aii ).
I set S(t ′) = i for t < t ′ < t + ∆.
I set t = t + ∆.
I draw S(t) ∼ (Ai1 · · ·Ai ,i−1, 0,Ai ,i+1 · · ·Ai ,n)/Aii .
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Uniformization for MJPs

Alternative to Gillespie’s algorithm.

Sample a set of times from a Poisson process with rate
Ω ≥ maxi |Aii | on the interval [tstart , tend ].

Run a discrete time Markov chain with initial distribution π and
transition matrix B = (I + 1

Ω
A) on these times.

The matrix B allows self-transitions.
[Jensen, 1953]
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Uniformization for MJPs [Jensen, 1953]

Proposition

For any Ω ≥ maxi |Aii |, the (continuous time) sequence of states
obtained by the uniformized process is a sample from a MJP with
initial distribution π and rate matrix A.
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Posterior inference

Given noisy observations of an MJP, obtain samples from the
posterior.

Observations can include:

State values at the end points of an interval.

Observations x(t) ∼ F (S(t)) at a finite set of times t.

More complicated likelihood functions that depend on the entire
trajectory, e.g. Markov modulated Poisson processes and
continuous time Bayesian networks (later).
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Auxiliary variable Gibbs sampler

Inference via MCMC.
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Auxiliary variable Gibbs sampler

Inference via MCMC.
State space of Gibbs sampler consist of:

Trajectory of MJP S(t).

Auxiliary set of points rejected via self-transitions.

[Rao and Teh, 2011]
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Auxiliary variable Gibbs sampler

Inference via MCMC.
Given current MJP path, we need to resample the set of rejected
points. Conditioned on the path, these are:

I independent of the observations,
I produced by ‘thinning’ a rate Ω Poisson process with probability

1− AS(t)S(t)

Ω (diagonal of the transition matrix B = (I + 1
ΩA)),

I thus, distributed according to a inhomogeneous Poisson process
with piecewise constant rate (Ω− AS(t)S(t)).
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Auxiliary variable Gibbs sampler

Inference via MCMC.
Given all potential transition points, the MJP trajectory is
resampled using the forward-filtering backward-sampling
algorithm.

The likelihood of the state between 2 successive points must
include all observations in that interval.
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Comments

Complexity: O(n2P), where P is the (random) number of points.

Can take advantage of sparsity in transition rate matrix A.

Sampler is ergodic for any Ω > maxi |Aii |.
Only dependence between successive samples is via the
transition times of the trajectory.

Increasing Ω reduces this dependence, but increases
computational cost.
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Existing approaches to sampling

[Fearnhead and Sherlock, 2006, Hobolth and Stone, 2009] produce
independent posterior samples, marginalizing over the infinitely many
MJP paths using matrix exponentiation.

scale as O(n3 + n2P).

any structure, e.g. sparsity, in the rate matrix A cannot be
exploited in matrix exponentiation.

cannot be easily extended to complicated likelihood functions
(e.g. Markov modulated Poisson processes, continuous time
Bayesian networks).
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Continuous-time Bayesian networks (CTBNs)

Compact representations of large state space MJPs with
structured rate matrices.

Applications include ecology, chemistry, network intrusion
detection, human computer interaction etc.

The rate matrix of a node at time is determined by the
configuration of its parents at that time.

[Nodelman et al., 2002]
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Gibbs sampling CTBNs via uniformization

?

NP C

The trajectories of all nodes are piecewise constant.

In a segment of constant parent (P) values, the dynamics of N
are controlled by a fixed rate matrix AP .

Each child (C) trajectory is effectively a continuous-time
observation when resampling the trajectory of N.
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Gibbs sampling CTBNs via uniformization

?

NP C

Sample potential jump times from a Poisson process with rate
ΩP − AP

ii .

Between two successive potential jump times, N remains in a
constant state.

I This state must account for the likelihood of children’s states.
I The state must also explain relevant observations.

With the resulting ‘likelihood’ function and transition matrix
B = (I + 1

Ω
AP), sample new trajectory using forward-filtering

backward-sampling.
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Existing approaches to inference

[El-Hay et al., 2008] describe a Gibbs sampler involving time
discretization, which is expensive and approximate.

[Fan and Shelton, 2008] uses particle filtering which can be
inaccurate for long time intervals.

[Nodelman et al., 2002, Nodelman et al., 2005,
Opper and Sanguinetti, 2007, Cohn et al., 2010] use deterministic
approximations (mean-field and expectation propagation) which are
biased and can be inaccurate.
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Experiments

We compare our uniformization-based sampler with a
state-of-the-art CTBN Gibbs sampler of [El-Hay et al., 2008].
search on the time interval.

When comparing running times, we measured times required to
produce same effective sample sizes.
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Experiments
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Figure: CPU time vs length of
CTBN chain.
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Figure: CPU time vs number
of states of CTBN nodes.

The plots above were produced for a CTBN with a chain topology,
increasing the number of nodes in the chain (left) and the number of
states of each node (right).
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Experiments
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Produced for the standard ‘drug network’.
Left: required CPU time as length of the time interval increases.
Right: (normalized) absolute error in estimated parameters of the
network as the (absolute) number of samples increases.

V Rao and Y W Teh (Mar 2013) Fast MCMC for MJPs 22 / 41



Experiments

Compared against the mean-field approximation of
[Opper and Sanguinetti, 2007], for the predator-prey model, a CTBN
describing the Lotka-Volterra equations.
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Posterior (mean and 90% confidence intervals) over predator paths
(observations (circles) only until 1500).
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Conclusions

The idea of uniformization relates more complicated continuous
time discrete state processes to the basic Poisson process.

We demonstrated how this connection can be used to develop
tractable models and efficient MCMC inference schemes.

We have extended the work here in a number of directions:
I renewal processes (Rao and Teh NIPS 2011),
I semi-Markov jump processes (NIPS 2012),
I Markov-modulated Poisson processes, inhomogeneous MJPs,

MJPs with infinite state spaces etc (Vinayak’s thesis).

Stochastic processes are an important mathematical language
for modelling many physical and biological phenomena. There is
a need for effective algorithms for inference in these models.
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Renewal processes

Renewal processes: point processes on the real line (‘time’).

Inter-event times drawn i.i.d. from some renewal density.

Homogeneous Poisson process: exponential renewal density.

Can capture burstiness or refractoriness.
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Renewal processes

0 tau

Associated with the renewal density g is a hazard function h.

For an infinitesimal ∆, h(τ)∆ is the probability of the inter-event
interval being in [τ, τ + ∆] conditioned on it being at least τ :

h(τ) =
g(τ)

1−
∫ τ

0
g(u)du
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Modulated renewal processes

0
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Modulated renewal processes

0

Modulate the hazard function by some time-varying intensity
function λ(t):

h(τ, t) ≡ m(h(τ), λ(t))

m(·, ·) is some interaction function.

We use multiplicative interactions, h(τ, t) = h(τ)λ(t).
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Direct sampling from prior

The modulated renewal density is:

g(τ |tprev ) = λ(tprev + τ)h(τ) exp

(
−
∫ τ

0

λ(tprev + u)h(u)du

)
where tprev is the previous event time.
Näıvely, need to numerically evaluate integrals to generate samples.

can be time consuming and introduce approximation errors.
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Sampling via uniformization
Assume the intensity function λ(t) and the hazard function h(τ)
are bounded: ∃Ω ≥ maxt,τ h(τ)λ(t)

Sample T = {t0 = 0, t1, t2, . . .} from a rate Ω Poisson process.

Run {Y0 = 0,Y1,Y2, . . .}, an integer-valued Markov chain E
I Yi = Yi−1 → reject ti ,
I Yi = i → keep ti .

0

For i > j ≥ 0, define

p(Yi = i |Yi−1 = j) =
h(ti − tj )λ(ti )

Ω

Define X = {ti ∈ T s.t. Yi = i}.
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Sampling via uniformization

Proposition

For any Ω ≥ maxt,τ h(τ)λ(t), X is a sample from a modulated
renewal process with hazard h(·) and modulating intensity λ(·).

Generalizes [Shanthikumar, 1986] for the stationary case. See also
[Ogata, 1981].
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Reduction to thinning of Poisson processes

For a Poisson process, the hazard function is a constant:

h(τ) = h

Then, the transition probabilities of the Markov chain becomes:

p(Yi = i |Yi−1 = j) =
hλ(tj )

Ω

This reduces to independent thinning [Adams et al., 2009].
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Model specification

We place a Gaussian Process prior on the intensity function
λ(t), transformed via a sigmoidal link function.

The generative process is:

l(·) ∼ GP(µ,K )

λ(·) = λ̂σ(l(·))

X ∼ R(λ(·), h(·))

We use a gamma family for the hazard function:

h(τ) =
xγ−1e−x∫∞

x
uγ−1e−udu

where γ is the shape parameter.

We place hyperpriors on λ̂, γ and the GP hyperparameters
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Inference

Given a set of event times X , obtain samples from the modulating
function λ(·) (and hyperparameters).

As before, directly sampling from the GP posterior is impossible.

Introduce the rejected events as auxiliary variables and proceed by
alternately sampling the rejected events given X and the intensity
function, and then the intensity function given X and rejected events.
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Inference (details)
Assume the modulating function λ(t) is known for all t.

In the interval (Xi−1,Xi ), events from a rate Ω Poisson process were
rejected with probability:

1− λ(t)h(t − Xi−1)

Ω

Under the posterior, these rejected events are distributed as an
inhomogeneous Poisson process with rate:

Ω− λ(t)h(t − Xi−1)

Catch: we know λ(t) only at a discrete set of times. Use
uniformization (thinning in fact). We resample the GP on the events

and the rejected points using elliptical slice sampling
[Murray et al., 2010].
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Inference cartoon
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Computational considerations

Complexity: O(N3), where N = |X |+ 2|E |, |X | is the number of
observations and |E | is the number of rejected points.

For large X , we must resort to approximate inference for
Gaussian processes [Rasmussen and Williams, 2006].
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Experiments
We compare our uniformization based blocked Gibbs sampler with
the sampler of [Adams et al., 2009].

Synthetic dataset 1

Mean ESS Minimum ESS Time(sec)

Gibbs 93.45± 6.91 50.94± 5.21 77.85

MH 56.37± 10.30 19.34± 11.55 345.44

Coalmine dataset

Mean ESS Minimum ESS Time(sec)

Gibbs 53.54± 8.15 24.87± 7.38 282.72

MH 47.83± 9.18 18.91± 6.45 1703

Table: Sampler comparisons. Numbers are per 1000 samples.

Besides mixing faster our sampler:

is simpler and more natural to the problem,

does not require any external tuning.
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Algorithm 1 Blocked Gibbs sampler for GP-modulated renewal pro-
cess on the interval [0,T ]

Input: Set of event times X , set of thinned times X̃prev and l instanti-
ated at X ∪ X̃prev .
Output: A new set of thinned times X̃new and a new instantiation
lX∪X̃new

of the GP on X ∪ X̃new .

1: Sample A ⊂ [0,T ] from a Poisson process with rate Ω.
2: Sample lA|lX∪X̃prev

.
3: Thin A, keeping element a ∈ A ∩ [Xi−1,Xi ] with probability(

1− λ̂σ(l(a))h(a−Xi−1)
Ω

)
.

4: Let X̃new be the resulting set and lX̃new
be the restriction of lA to

this set. Discard X̃prev and lX̃prev
.

5: Resample lX∪X̃new
using, for example, elliptical slice sampling.
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