Optimal convex optimization under Tsybakov noise through connections to active learning

Aarti Singh

Joint work with:

Aaditya Ramdas

Connections between convex optimization and active learning (a formal reduction)

Role of feedback

in convex optimization

minimize computational complexity

(# queries needed to find optimum)

in active learning

minimize sample complexity

(# queries needed to find decision boundary)

Active learning oracle model

• Oracle provides $\mathbf{Y} \in \{0, 1\}$

•
$$\mathbb{E}[Y|X] = P(Y=1|X)$$

Stochastic optimization oracle model (first-order)

• Oracle provides f(x), $g(x) = \nabla f(x)$

• $\mathbb{E}[\widehat{f}(x)] = f(x), \mathbb{E}[\widehat{g}(x)] = g(x)$ unbiased, variance σ^2

Connections in 1-dim noiseless setting

convex optimization

active learning

$$P(Y = \bullet | X)$$

$$\downarrow \downarrow \downarrow$$

$$P(\operatorname{sign}(g(X)) = + | X)$$

Connections in 1-dim noisy setting

convex optimization

active learning

$$P(Y = \bullet | X)$$

$$1$$

$$P(\operatorname{sign}(\widehat{g}(X)) = + | X)$$

Minimax active learning rates in 1-dim

If Tsybakov Noise Condition (TNC) holds

$$\kappa \geq 1$$

$$|P(Y = \bullet | X = x) - 1/2| \ge \lambda ||x - x^*||^{\kappa - 1}$$

then minimax optimal active learning rate in 1-dim is

$$\mathbb{E}[\|\widehat{x}_N - x^*\|] \asymp N^{-\frac{1}{2\kappa - 2}}$$

and under 0/1 loss + smoothness of P(Y|X)

$$\operatorname{Risk}(\widehat{x}_N) - \operatorname{Risk}(x^*) \simeq N^{-\frac{\kappa}{2\kappa-2}}$$

$$N^{-\frac{1}{2}}$$

$$N^{-1}$$

$$\kappa = 2$$

TNC and strong convexity

• Strong convexity \equiv TNC with $\kappa=2$

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \lambda \|x - y\|^{2}$$

$$\Rightarrow f(x) - f(x^{*}) \ge \lambda \|x - x^{*}\|^{2}$$

$$\Rightarrow \|g(x) - g(x^{*})\| \ge \lambda \|x - x^{*}\|$$

• If noise pmf grows linearly around its zero mean (Gaussian, uniform, triangular), then

$$|P(\operatorname{sign}(\widehat{g}(X))) = +|X = x| - 1/2| \ge \lambda ||x - x^*||$$

Algorithmic reduction (1-dim)

• In 1-dim, consider any active learning algorithm that is optimal for TNC exponent κ = 2. When given labels $Y = \mathrm{sign}(\widehat{g}(X))$, where f(x) is a strongly convex function with Lipschitz gradients, it yields

$$\mathbb{E}[\|\widehat{x}_T - x^*\|] = O(T^{-\frac{1}{2}})$$

$$\mathbb{E}[f(\widehat{x}_T) - f(x^*)] = O(T^{-1})$$

- Matches optimal rates for strongly convex functions
 Nemirovski-Yudin'83, Agarwal-Bartlett-Ravikumar-Wainwright'10
- What about d-dim?

1-dim vs. d-dim

Convex optimization

Minimizer: a point (0-dim)

$$T^{-1}$$

Active learning

Decision boundary: curve (d-1 dim)

$$N^{-rac{2}{2+rac{d-1}{\gamma}}}$$

Complexity of convex optimization in any dimension is same as complexity of active learning in 1 dimension.

Algorithmic reduction (d-dim)

Random coordinate descent with 1-dim active learning subroutine

For
$$e = 1, ..., E = d(\log T)^2$$

Choose coordinate j at random from $1, \ldots, d$

Do active learning along coordinate with sample budget $T_e = T/E$ treating sign $(\widehat{g}(X_t))$ as label Y_t

If f is strongly convex with Lipschitz gradients

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[\|\widehat{x} - x^*\|] = \tilde{O}(T^{-\frac{1}{2}})$$

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[f(\widehat{x}) - f(x^*)] = \tilde{O}(T^{-1})$$

Degree of convexity via Tsybakov noise condition (TNC)

Degree of convexity via TNC

• TNC for convex functions $\kappa \geq 1$

$$f(x) - f(x^*) \ge \lambda ||x - x^*||^{\kappa}$$

$$\Rightarrow ||g(x) - g(x^*)|| \ge \lambda ||x - x^*||^{\kappa - 1}$$

Controls strength of convexity around the minimum

• Uniformly convex function implies TNC $\kappa \geq 2$

$$f(y) \geq f(x) + \nabla f(x)^\top (y-x) + \frac{\lambda}{2} \|x-y\|^\kappa$$

Controls strength of convexity everywhere in domain

Minimax convex optimization rates

Theorem: If TNC for convex functions holds $\kappa>1$

$$f(x) - f(x^*) \ge \lambda ||x - x^*||^{\kappa}$$

and f is Lipschitz, then minimax optimal convex optimization rate over a bounded set (diam ≤ 1) is

$$\|\widehat{x}_T - x^*\| \asymp T^{-\frac{1}{2\kappa - 2}}$$
 d-dim

$$||f(\widehat{x}) - f(x^*)|| \approx T^{-\frac{\kappa}{2\kappa-2}} d-\dim$$

$$T^{-3/2}$$
 T^{-1}

$$T^{-1}$$

$$T^{-\frac{1}{2}}$$

Precisely the rates for 1-dim active learning!

$$\kappa = 3/2$$

$$\kappa = 3/2 \qquad \kappa = 2$$
 Strongly convex

$$\kappa o \infty$$

Lower bounds based on active learning

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[\|\widehat{x} - x_f^*\|] = \Omega(T^{-\frac{1}{2\kappa - 2}})$$

 f_1 f_0

$$S^* = [0, 1]^d \cap \{ ||x|| \le 1 \}$$

$$O^*: \widehat{f}(x) \sim \mathcal{N}(f(x), \sigma^2), \widehat{g}(x) \sim \mathcal{N}(g(x), \sigma^2 \mathbb{I}_d)$$

$$f_0(x) = c_1 \sum_{i=1}^{d} |x_i|^{\kappa}$$

$$f_1(x) = \begin{cases} c_1(|x_1 - 2a|^{\kappa} + \sum_{i=2}^d |x_i|^{\kappa}) + c_2 & x_1 \le 4a \\ f_0(x) & \text{otherwise} \end{cases}$$

$$P_0 = P(\{X_i, f_0(X_i), g_0(X_i)\}_{i=1}^T) \qquad P_1 = P(\{X_i, f_1(X_i), g_1(X_i)\}_{i=1}^T)$$

Lower bounds based on active learning

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[\|\widehat{x} - x_f^*\|] = \Omega(T^{-\frac{1}{2\kappa - 2}})$$

Fano's Inequality if
$$KL(P_0, P_1) \leq Constant$$

$$\inf_{\widehat{x}} \sup_{f} P(\|\widehat{x} - x_f^*\| > \|x_{f_0}^* - x_{f_1}^*\|/2) \ge \text{constant}$$

$$\operatorname{KL}(P_0, P_1) \leq \frac{T}{2} \left(\max_{x \in [0,1]^d} \|g_0(x) - g_1(x)\|^2 \right) + \frac{T}{2} \left(\max_{x \in [0,1]^d} (f_0(x) - f_1(x))^2 \right)$$

$$f_1 f_0$$
Query that yields max difference between function/gradient values
$$= O(Ta^{2\kappa - 2}) + O(Ta^{2\kappa})$$

$$\leq \operatorname{Constant} \qquad \text{if } \|x_{f_0}^* - x_{f_1}^*\|/2 = a = T^{-\frac{1}{2\kappa - 2}}$$

Lower bounds based on active learning

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[\|\widehat{x} - x_f^*\|] = \Omega(T^{-\frac{1}{2\kappa - 2}})$$

Fano's Inequality if
$$KL(P_0, P_1) \leq Constant$$

$$\inf_{\widehat{x}} \sup_{f} P(\|\widehat{x} - x_f^*\| > \|x_{f_0}^* - x_{f_1}^*\|/2) \ge \text{constant}$$

$$= O(Ta^{2\kappa-2}) + O(Ta^{2\kappa})$$

Also yields lower bounds for uniformly convex functions and zeroth-order oracle which match louditski-Nesterov'10, Jamieson-Nowak-Recht'12 18

Epoch-based gradient descent

Initialize
$$e=1,x_1^1,T_1,R_1,\eta_1$$
 until Oracle budget T is exhausted $\sum_{i=1}^e T_i \leq T$ for $t=1$ to T_e do Projected Gradient Descent $x_{t+1}^e = \prod_{S \cap B(x_1^e,R_e)} (x_t^e - \eta_e \hat{g}_t)$ $x_1^{e+1} = \frac{1}{T_e} \sum_{t=1}^{T_e} x_t^e$ Requires knowledge of κ $T_{e+1} = 2T_e, \, \eta_{e+1} = \eta_e \cdot 2^{-\frac{\kappa}{2\kappa-2}}, R_{e+1} \sim \eta_{e+1}^{\frac{1}{\kappa}}, \, e \leftarrow e+1$

• If f is a convex function that satisfies TNC(κ) and is Lipschitz

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[\|\widehat{x} - x^*\|] = \tilde{O}(T^{-\frac{1}{2\kappa - 2}})$$

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[f(\widehat{x}) - f(x^*)] = \tilde{O}(T^{-\frac{\kappa}{2\kappa - 2}})$$

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Run any optimization procedure that is optimal for convex functions, with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

Adapted from louditski-Nesterov'10

$$\exists \bar{e} \text{ s.t. } ||x_{\bar{e}} - x_{\bar{e}}^*|| \leq T^{-1/(2\kappa - 2)}$$

since

$$\lambda \|x_e - x_e^*\|^{\kappa} \le f(x_e) - f(x_e^*) \le \frac{R_e}{\sqrt{T}}$$
 rate for convex Lipschitz functions

Also,

$$x_{\bar{e}}^* = x^*$$

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Run any optimization procedure that is optimal for convex_{*} functions, with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

$$\exists \bar{e} \text{ s.t. } ||x_{\bar{e}} - x_{\bar{e}}^*|| \leq T^{-1/(2\kappa - 2)}$$

$$x_{\bar{e}}^* = x^*$$

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Run any optimization procedure that is optimal for convex_{*} functions, with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

$$\exists \bar{e} \text{ s.t. } ||x_{\bar{e}} - x_{\bar{e}}^*|| \leq T^{-1/(2\kappa - 2)}$$

$$x_{\bar{e}}^* = x^*$$

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Run any optimization procedure that is optimal for convex_e functions, with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

$$\exists \bar{e} \text{ s.t. } ||x_{\bar{e}} - x_{\bar{e}}^*|| \leq T^{-1/(2\kappa - 2)}$$

$$x_{\bar{e}}^* = x^*$$

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Run any optimization procedure that is optimal for convex_e functions, with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

$$\exists \bar{e} \text{ s.t. } ||x_{\bar{e}} - x_{\bar{e}}^*|| \leq T^{-1/(2\kappa - 2)}$$

$$x_{\bar{e}}^* = x^*$$

$$\forall e \ge \bar{e}, \ \|x_e - x_{\bar{e}}\| \le T^{-1/(2\kappa - 2)}$$

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Run any optimization procedure that is optimal for convex_{*} functions, with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

• If f is a convex function that satisfies TNC(κ) and is Lipschitz

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[\|\widehat{x} - x_f^*\|] = \tilde{O}(T^{-\frac{1}{2\kappa - 2}})$$

$$\sup_{O} \sup_{S} \inf_{\widehat{x}} \sup_{f} \mathbb{E}[f(\widehat{x}) - f(x^*)] = \tilde{O}(T^{-\frac{\kappa}{2\kappa - 2}})$$

Adaptive active learning

Adaptive 1-dim active learning

Robust Binary Search adaptive to κ

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Do passive learning with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

Adaptive 1-dim active learning

Robust Binary Search adaptive to κ

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)
Do passive learning with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

Adapted from louditski-Nesterov'10

$$\exists \bar{e} \text{ s.t. } ||x_{\bar{e}} - x_{\bar{e}}^*|| \leq T^{-1/(2\kappa - 2)}$$

since

$$c||x_e - x_e^*||^{\kappa} \le \operatorname{Risk}(x_e) - \operatorname{Risk}(x_e^*) \le \frac{R_e}{\sqrt{T}}$$
 passive rate for threshold classifiers

Also,
$$x_{\overline{e}}^* = x^*$$

Adaptive 1-dim active learning

Robust Binary Search adaptive to κ

For
$$e = 1, \dots, E = \log \sqrt{T/\log T}$$

(ignoring κ)

Do passive learning with sample budget $T_e = T/E$

$$R_{e+1} = R_e/2, e \leftarrow e + 1$$

Adapted from louditski-Nesterov'10

$$\exists \bar{e} \text{ s.t. } ||x_{\bar{e}} - x_{\bar{e}}^*|| \leq T^{-1/(2\kappa - 2)}$$
$$x_{\bar{e}}^* = x^*$$
$$\forall e \geq \bar{e}, ||x_{e} - x_{\bar{e}}|| \leq T^{-1/(2\kappa - 2)}$$

Much simpler than Hanneke'09

Reference & Future directions

- A. Ramdas and A. Singh, "Optimal rates for stochastic convex optimization under Tsybakov noise condition", to appear ICML 2013. (Available on arXiv)
- \triangleright Reduction from d-dim convex optimization to 1-dim active learning for κ -TNC functions ($\kappa \neq 2$)?
- Adaptive d-dimensional active learning/Model selection in active learning?
- Porting active learning results to yield non-convex optimization guarantees?

http://www.cs.cmu.edu/~aarti/