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Connections between convex optimization and
active learning (a formal reduction)



Role of feedback

in convex optimization
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Raginsky-Rakhlin’09 :



Active learning oracle model

e Oracle provides Y € {0, 1}




Stochastic optimization oracle model
(first-order)

e Oracle provides f(x), g(x) = / f(x)

Query X,

f(a1),g(a1)

Query X,

AN

f(x2), g(w2)




Connections in 1-dim noiseless setting

* convex optimization . active learning
f(X) P(Y =o|X)
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Connections in 1-dim noisy setting

* convex optimization e active learning
f(X) P(Y =¢[X)

zero-mean noise P(sign(g(X)) = 4|X)
|
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Minimax active learning rates in 1-dim

If Tsybakov Noise Condition (TNC) holds
k>1 1

P(Y =e|X)

IP(Y =o|X =2) —1/2] > N||l&z — 2*||"*

0

X X
then minimax optimal active learning rate in 1-dimis
E[|Zy — 2*]|] < N~z -
N2
and under 0/1 loss + smoothness of P(Y|X) - K= 2
Risk(Zn) — Risk(z*) < N~ 22 N~t

Castro-Nowak’'07 .



TNC and strong convexity

» Strong convexity = TNC with K = 2

f( ) f( )“I‘Vf( ) ( _17)_{_)\“1?_1]”2

= llg(z) = gla™)|| = Allz — 2

e If noise pmf grows linearly around its zero mean (Gaussian,
uniform, triangular), then

| P(sign(g(X)) = +|X = @) — 1/2] = Alla — 27|



Algorithmic reduction (1-dim)

* In 1-dim, consider any active learning algorithm that is optimal
for TNC exponent kK = 2. When given labels Y = sign(g(X)),
where f(x) is a strongly convex function with Lipschitz gradients,

it yields )
O(T™2)

oT 1

Elllzr —27|]

Elf(zr) — f(z")]

* Matches optimal rates for strongly convex functions
Nemirovski-Yudin’83, Agarwal-Bartlett-Ravikumar-Wainwright’10

e What about d-dim?
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1-dim vs. d-dim

Active learning
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Decision boundary: curve (d-1 dim

Minimizer: a point (0-dim)
_ 2
d—1

71! N 775
Complexity of convex optimization in any dimension is
same as complexity of active learning in 1 dimension. .



Algorithmic reduction (d-dim)

Random coordinate descent with 1-dim active learning subroutine

Fore=1,...,E =d(logT)?
Choose coordinate 5 at random from 1,...,d

Do active learning along coordinate with sample budget T, =T/FE
treating sign(g(X;)) as label Y;
J

e If fisstrongly convex with Lipschitz gradients
supsup inf sup E[||Z — 2™ ||] = O(T_%)
o s z £

sup supinf sup E[f(Z) — f(z™)] = O(T_l)
O S§ T ¥ 12




Degree of convexity via Tsybakov noise
condition (TNC)
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Degree of convexity via TNC

e TNC for convex functions K >1

flz) = f(a®) > Al|lz — 2" U
= lg(z) — g(z®)|| = Ao — ™"~

Controls strength of convexity around the minimum

* Uniformly convex function implies TNC x > 2

f0) > () + V(@) (w—2) + Sl — vi]*

Controls strength of convexity everywhere in domain
14



Minimax convex optimization rates

Theorem: If TNC for convex functions holds k > 1

fla) = f(@) = Mz — 27" U

and f is Lipschitz, then minimax optimal convex T X

optimization rate over a bounded set (diam < 1) is

Z—a2*| < T 7= d-dim

[(@)— fa)|| = T7== d-dim T7%* 771 773

Strongly
CONvVex Convex

K= 2 K — 0O
15

Precisely the rates for 1-dim k= 3/2
active learning!



Lower bounds based on active learning

sup sup inf sup E[||Z — z%|] = Q(T~z-2)
O S T J1 fo

§* = 10,1]" N {[l=|| < 1}

0" : f(x) ~ N(f(z),0%), glz) ~ N(g(z),0%1q)
0 2a 4a

d
folz) =c1 Y |zl
1=1

_J aler —2af + X, i) e w1 <da
fi(x) = -
fo(x) otherwise

Po=P({X;, fo(Xi),90(Xi)} i)  Pr=P{Xi, f1(Xi), g1 (Xi)}imy)
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Lower bounds based on active learning

sup sup inf sup E[||Z — z%|] = Q(T~z-2)
O S ¥ f

* Fano’s Inequality if KL(Py, P;) < Constant

i%fs?cp P(||x — 23| > ||}, — 2%, ||/2) > constant

KL(Po, P1) < 2 ( max_[|go(z) —gl(:r)n?) +Z( max (fo(x) —h(m))?)

re0,1]4 2 \zel0,1]4
fl Jo k Query that yields max difference )
between function/gradient values Castro-Nowak’07
= O(Ta**~?) + O(Ta*")
. _ 1
< Constant if Hx}io — iﬁ}l /2 =a=T 22

0 2a4a 17



Lower bounds based on active learning

sup sup inf sup E[||Z — z%|] = Q(T~z-2)
O S ¥ f

* Fano’s Inequality if KL(Py, P;) < Constant

i%fSI}p P(||x — 23| > ||}, — 2%, ||/2) > constant

KL(Py. P1) < T ( max loo(e) — ss@)I?) +5 (max (o) — 1:0))°)

ze[0,1)d 2 \ze[0,1)¢

L Query that yields max difference
between function/gradient values

= O(Ta*"?)+ O(Ta*)

Castro-Nowak’07

Also yields lower bounds for uniformly convex functions and zeroth-order
oracle which match louditski-Nesterov’10, Jamieson-Nowak-Recht’12 s



Epoch-based gradient descent

Initialize e = 1,271, Th, R1, m
until Oracle budget T" is exhausted Y ;_,7; <T
fort=1to 1. do

Projected Gradient Descent wy,; = H (xy — Meqt)
SNB(z§,Re)
e+1 _ Z e .
T t=1"1 Requires knowledge of «

1
27R6+1 ~ 77£°+17 e<—e+1

Te+1 — 2T€7 Tle+1 = MNe - 2_2:_

* If fis a convex function that satisfies TNC(k) and is Lipschitz
supsupinfsupE|||z — 2™ ||]] = O(T_%%)
O S T f

supsup inf sup E[f(Z) — f(a")] = O(T~ ==
o s X f 19




Adapting to degree of convexity

20



Adapting to degree of convexity

Fore=1,...,E=1log+\/T/logT
(ignoring x)
Run any optimization procedure that is optimal for convex,

functions, with sample budget T, =T /FE
R€_|_1 = Re/2,e —e—+1

Adapted from louditski-Nesterov’10

Je s.t. ||zs — k|| < T~/ 72)
since
)‘er - ZC:HKJ < f(xe) — f(xZ) =
Also,
%k b S

ajé:x 21

R, rate for convex
Lipschitz functions
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Adapting to degree of convexity

Fore=1,...,E=1log+\/T/logT
(ignoring x)
Run any optimization procedure that is optimal for convex,

functions, with sample budget T, =T /FE
R€_|_1 = Re/2,e —e—+1

Adapted from louditski-Nesterov’10

Je s.t. ||zs — k|| < T~/ 72)

xf:x* —0-
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Adapting to degree of convexity

Fore=1,...,E=1log+\/T/logT
(ignoring x)
Run any optimization procedure that is optimal for convex,

functions, with sample budget T, =T /FE
R€_|_1 = Re/2,e —e—+1

Adapted from louditski-Nesterov’10

Je s.t. ||zs — k|| < T~/ 72)

B B8

T- —= —0-
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Adapting to degree of convexity

Fore=1,...,E=1log+\/T/logT
(ignoring x)
Run any optimization procedure that is optimal for convex,

functions, with sample budget T, =T /FE
R€_|_1 = Re/2,e —e—+1

Adapted from louditski-Nesterov’10

B B B T-1/(2h—2)
Je s.t. ||xs — x| < T~/ (2+=2) -
g
r:=ux" ——s—
L Teg
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Adapting to degree of convexity

Fore=1,...,E=1log+\/T/logT
(ignoring x)

Run any optimization procedure that is optimal for convex,
functions, with sample budget T, =T /FE

R€_|_1 :Re/2,€F€+1

Adapted from louditski-Nesterov’10

B B B T-1/(2h—2)
Je s.t. ||xs — x| < T~/ (2+=2) >
. . e>e
Leg =& *
L |Teg

Ve > e, ||lze — xa|| = T~ 1/(2r=2) xr b,
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Adapting to degree of convexity

Fore=1,...,E=1log+\/T/logT
(ignoring x)
Run any optimization procedure that is optimal for convex,

functions, with sample budget T, =T /FE
R€_|_1 = Re/2,e —e—+1

* If fis a convex function that satisfies TNC(k) and is Lipschitz
supsup inf sup E[||z — 2% [|] = O(T_%%)
O S T f

supsupinf sup E[f(Z) — f(2™)] = ON(T_ 25_2)
O s T

26




Adaptive active learning
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Adaptive 1-dim active learning

Robust Binary Search adaptive to k

Fore=1,...,E=1log+\/T/logT

(ignoring x)
Do passive learning,with sample budget T, =T /E

Rey1 = Re/2,e+e+1

Adapted from louditski-Nesterov’10

28




Adaptive 1-dim active learning

Robust Binary Search adaptive to k

Fore=1,...,E=1log+\/T/logT

(ignoring x)
Do passive learning,with sample budget T, =T /E

Re—l—l :Re/2,e%e—|—l

Adapted from louditski-Nesterov’10
Je s.t. ||zs — k|| < T~/ 72)

since

R ] f
¢l — 2*||F < Risk(z,) — Risk(z*) < e Passive rate for

\/T threshold classifiers

Also,

k%
Lz =X o



Adaptive 1-dim active learning

Robust Binary Search adaptive to k

Fore=1,...,E=1log+\/T/logT

(ignoring x)
Do passive learning,with sample budget T, =T /E

Rey1 = Re/2,e+e+1

Adapted from louditski-Nesterov’10

e 7-1/(26-2)
Je s.b. ||lwe — xpl| < T/ R
* %
Leg =& x* Le
Ve > €, ||z, — xg| < T/ (2572 T b,

Much simpler than Hanneke’09
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Reference & Future directions

 A.Ramdas and A. Singh, “Optimal rates for stochastic convex
optimization under Tsybakov noise condition”, to appear ICML
2013. (Available on arXiv)

» Reduction from d-dim convex optimization to 1-dim active
learning for k-TNC functions (k # 2)?

» Adaptive d-dimensional active learning/Model selection in
active learning?

» Porting active learning results to yield non-convex
optimization guarantees?

http://www.cs.cmu.edu/~aarti/
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