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From sparsity...

Empirical risk: for w ∈ Rd ,

L(w) =
1

2n

n∑
i=1

(yi − x>i w)2

Support of the model:

Supp(w) = {i | wi 6= 0}.

Penalization for variable selection

min
w∈Rd

L(w) + λ |Supp(w)|

Lasso

min
w∈Rd

L(w) + λ‖w‖1

|Supp(w)| =
n∑

i=1

1{wi 6=0}
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... to Structured Sparsity

The support is not only sparse, but, in addition,
we have prior information about its structure.

Examples

The variables should be selected in groups.

The variables lie in a hierarchy.

The variables lie on a graph or network and the support should be
localized or densely connected on the graph.
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Difficult inverse problem in Brain Imaging

L R

y=-84 x=17

L R

z=-13

-5.00e-02 5.00e-02
Scale 6 - Fold 9

Jenatton et al. (2012)
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Hierarchical Dictionary Learning

Figure: Hierarchical dictionary of image
patches Figure: Hierarchical Topic model

Mairal, Jenatton, Obozinski and Bach (2010)
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Ideas in structured sparsity
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Group Lasso and `1/`p norm (Yuan and Lin, 2006)

Group Lasso

Given G = {A1, . . . ,Am} a partition of V := {1, . . . , d} consider

‖w‖`1/`p =
∑
A∈G

δA ‖wA‖p

Overlapping groups: direct extension of Jenatton et al. (2011).

Interesting induced structures

→ Induce patterns of rooted subtree

→ Induce “convex” patterns on a grid
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Hierarchical Norms (Zhao et al., 2009; Bach, 2008)

11

22 33

44 55 66

(Jenatton, Mairal, Obozinski and Bach, 2010a)

A covariate can only be selected after its ancestors

Structure on parameters w

Hierarchical penalization: Ω(w) =
∑

g∈G ‖wg‖2 where groups g in
G are equal to the set of descendants of some nodes in a tree.
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A new approach based on combinatorial
functions
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General framework

Let V = {1, . . . , d}.
Given a set function F : 2V 7→ R+

consider

min
w∈Rd

L(w) + F (Supp(w))

Examples of combinatorial functions

Use recursivity or counts of structures (e.g. tree) with DP

Block-coding (Huang et al., 2011)

G̃ (A) = min
Bi

F (B1) + . . .+ F (Bk) s.t. B1 ∪ . . . ∪ Bk ⊃ A

Submodular functions (Work on convex relaxations by Bach (2010))
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A relaxation for F ...?

How to solve?
min
w∈Rd

L(w) + F (Supp(w))

→ Greedy algorithms

→ Non-convex methods

→ Relaxation

|A| F (A)

L(w) + λ |Supp(w)| L(w) + λF (Supp(w))

↓ ↓ ?

L(w) + λ ‖w‖1 L(w) + λ ...?...
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Previous relaxation result

Bach (2010) showed that if F is a submodular function, it is possible to
construct the “tightest” convex relaxation of the penalty F for vectors
w ∈ Rd such that ‖w‖∞ ≤ 1.

Limitations and open issues:

The relaxation is defined on the unit `∞ ball.

Seems to implicitly assume that the w to be estimated is in a fixed
`∞ ball

The choice of `∞ seems arbitrary

The `∞ relaxation induces undesirable clustering artifacts of the
coefficients absolute values.

What happens in the non-submodular case?
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Penalizing and regularizing...

Given a function F : 2V → R̄+, consider for ν, µ > 0 the combined
penalty:

pen(w) = µF (Supp(w)) + ν ‖w‖pp.

Motivations

Compromise between variable selection and smooth regularization

Required for F allowing large supports such as A 7→ 1{A6=∅}

Leads to a penalty which is coercive so that a convex relaxation on
Rd will not be trivial.
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A convex and homogeneous relaxation

Looking for a convex relaxation of pen(w).

Require as well that it is positively homogeneous → scale invariance.

Definition (Homogeneous extension of a function g)

gh : x 7→ inf
λ>0

1

λ
g(λx).

Proposition

The tightest convex positively homogeneous lower bound of a function g
is the convex envelope of gh.

Leads us to consider:

penh(w) = inf
λ>0

1

λ

(
µF (Supp(λw)) + ν ‖λw‖pp

)
∝ Θ(w) := ‖w‖p F (Supp(w))1/q with

1

p
+

1

q
= 1.
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Envelope of the homogeneous penalty Θ
Consider Ωp with dual norm

Ω∗p(s) = max
A⊂V ,A 6=∅

‖sA‖q
F (A)1/q

.

with unit ball: BΩ∗
p

:=
{
s ∈ Rd | ∀A ⊂ V , ‖sA‖qq ≤ F (A)

}
Proposition

The norm Ωp is the convex envelope (tightest convex lower bound) of
the function w 7→ ‖w‖p F (Supp(w))1/q.

Proof.

Denote Θ(w) = ‖w‖p F (Supp(w))1/q:

Θ∗(s) = max
w∈Rd

w>s − ‖w‖p F (Supp(w))1/q

= max
A⊂V

max
wA∈RA

w>A sA − ‖wA‖p F (A)1/q

= max
A⊂V

ι{‖sA‖q6F (A)1/q} = ι{Ω∗
p (s)61}
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Graphs of the different penalties for w ∈ R2

F (Supp(w))

pen(w) = µF (Supp(w)) + ν ‖w‖2
2
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Graphs of the different penalties for w ∈ R2

Θ(w) =
√
F (Supp(w))‖w‖2

ΩF (w)
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A large latent group Lasso (Jacob et al., 2009)

V = {v = (vA)A⊂V ∈
(
RV
)2V

s.t. Supp(vA) ⊂ A}

Ωp(w) = min
v∈V

∑
A⊂V

F (A)
1
q ‖vA‖p s.t. w =

∑
A⊂V

vA,

w

v{1} v{2} v{1,2} v{1,2,3,4}... ...

+ + + + + + + + + + + + + +=
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Some simple examples

F Ωp

|A| ‖w‖1

1{A6=∅} ‖w‖p
If G is a partition of {1, . . . , d}:

∑
B∈G 1{A∩B 6=∅}

∑
B∈G ‖wB‖p

When p =∞ and F is submodular, our relaxation coincides with
that of Bach (2010).

However, when G is not a partition and p <∞, Ωp is not in general
an `1/`p-norms !

→ New norms... e.g. the k-support norm of Argyriou et al. (2012).
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Example

Consider V={1, 2, 3}.

G = {{1, 2}, {1, 3}, {2, 3}}

F ({1, 2}) = 1,

F ({1, 3}) = 1,

F ({2, 3}) = 1,

F (A) =∞ or defined by
block-coding.
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How tight is the relaxation? Example: the range function

Consider V = {1, . . . , p} and the function

F (A) = range(A) = max(A)−min(A) + 1.

→ Leads to the selection of interval patterns.

What is its convex relaxation?

⇒ ΩF
p (w) = ‖w‖1

The relaxation fails

New concept of Lower Combinatorial envelope provides a tool to
analyze the tightness of the relaxation.
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Submodular penalties

A function F : 2V 7→ R is submodular if

∀A,B ⊂ V , F (A) + F (B) ≥ F (A ∪ B) + F (A ∩ B) (1)

For these functions ΩF
∞(w) = f (|w |) for f the Lovász extension of F .

Properties of submodular function

f is computed efficiently (via the so-called “greedy” algorithm)

decomposition (“weak” separability) properties

F and f can be minimized in polynomial time.

... leads to properties of the corresponding submodular norms

Regularized empirical risk minimization problems solved efficiently

Statistical guarantees in terms of consistency and support recovery.
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Consistency for the Lasso (Bickel et al., 2009)

Assume that y = Xw∗ + σε, with ε ∼ N (0, Idn)

Let Q = 1
nX
>X ∈ Rd×d .

Denote J = Supp(w∗).

Assume the `1-Restricted Eigenvalue condition:

∀∆ s.t. ‖∆Jc‖1 6 3 ‖∆J‖1, ∆>Q∆ > κ ‖∆J‖2
1.

Then we have

1

n
‖Xŵ − Xw∗‖2

2 6
72|J|σ2

κ

(2 log p + t2

n

)
,

with probability larger than 1− exp(−t2).
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Support Recovery for the Lasso (Wainwright, 2009)

Assume y = Xw∗ + σε, with ε ∼ N (0, Idn)

Let Q = 1
nX
>X ∈ Rd×d .

Denote by J = Supp(w∗).

Define ν = minj ,w∗
j 6=0 |w∗j | > 0

Assume κ = λmin(QJJ) > 0

Assume the Irrepresentability Condition, i.e., that for η > 0,

|||Q−1
JJ QJJc |||∞,∞ 6 1− η.

Then, if 2
η

√
2σ2 log(p)

n < λ < κν
|J| , the minimizer ŵ is unique and has

support equal to J, with probability larger than 1− 4 exp(−c1nλ
2).
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An example: penalizing the range
Structured prior on support (Jenatton et al., 2011):

the support is an interval of {1, . . . , p}

Natural associated penalization:
F (A) = range(A) = imax(A)− imin(A) + 1.

→ F is not submodular...

→ G (A) = |A|
But F (A) : = d − 1 + range(A) is submodular !

In fact F (A) =
∑

B∈G 1{A∩B 6=∅} for B of the form:

Jenatton et al. (2011) considered Ω(w) =
∑

B∈B ‖wB ◦ dB‖2.
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Experiments
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Figure: Signals

S1 constant

S2 triangular shape

S3 x 7→ | sin(x) sin(5x)|
S4 a slope pattern

S5 i.i.d. Gaussian pattern

Compare:

Lasso

Elastic Net

Naive `2 group-Lasso

Ω2 for F (A) = d − 1 + range(A)

Ω∞ for F (A) = d − 1 + range(A)

The weighted `2 group-Lasso of
(Jenatton et al., 2011).
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Constant signal
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Triangular signal
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(x1, x2) 7→ | sin(x1) sin(5x1) sin(x2) sin(5x2)| signal in 2D
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i.i.d Random signal in 2D
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Summary

A convex relaxation for functions penalizing

(a) the support via a general set function
(b) the `p norm of the parameter vector w .

Principled construction of:

known norms like the group Lasso or `1/`p-norm
many new sparsity inducing norms

Caveat: the relaxation can fail to capture the structure
(e.g. range function)

For submodular functions we can obtain efficient algorithms, and
theoretical results such as consistency and support recovery
guarantees.
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