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BNP Modeling Discrete nonparametric priors

The Bayesian nonparametric framework

de Finetti’s representation theorem: a sequence of X–valued observations
(Xn)n≥1 is exchangeable if and only if for any n ≥ 1

Xi | P̃
iid∼ P̃ i = 1, . . . , n

P̃ ∼ Q

=⇒ Q, defined on the space of probability measures P, is the de Finetti
measure of (Xn)n≥1 and acts as a prior distribution for Bayesian inference being
the law of a random probability measure P̃.

If Q is not degenerate on a subclass of P indexed by a finite dimensional
parameter, it leads to a nonparametric model

=⇒ natural requirement (Ferguson, 1974): Q should have “large” support
(possibly the whole P)
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BNP Modeling Discrete nonparametric priors

Discrete nonparametric priors

If Q selects (a.s.) discrete distributions i.e. P̃ is a discrete random probability
measure

P̃ =
∑
i≥1

p̃iδZi , (♦)

then a sample (X1, . . . ,Xn) will exhibit ties with positive probability i.e. feature
Kn distinct observations

X ∗1 , . . . ,X
∗
Kn

with frequencies N1, . . . ,NKn such that
∑Kn

i=1 Ni = n.

1. Species sampling: model for species distribution within a population
• X ∗i is the i–the distinct species in the sample;
• Ni is the frequency of X ∗i ;
• Kn is total number of distinct species in the sample.
=⇒ Species metaphor

2. Density estimation and clustering of latent variables: model for a latent
level of a hierarchical model; many successful applications can be traced
back to this idea due to Lo (1984) where the mixture of Dirichlet process
is introduced.
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BNP Modeling Discrete nonparametric priors

Probability of discovering a new species

A key quantity is the probability of discovering a new species

P[Xn+1 = “new” | X (n)] (∗)

where throughout we set X (n) := (X1, . . . ,Xn).

Discrete P̃ can be classified in 3 categories according to (∗):

(a) P[Xn+1 = “new” | X (n)] = f (n,model parameters)

⇐⇒ depends on n but not on Kn and Nn = (N1, . . . ,NKn )

⇐= Dirichlet process (Ferguson, 1973);

(b) P[Xn+1 = “new” | X (n)] = f (n,Kn,model parameters)

⇐⇒ depends on n and Kn but not on Nn = (N1, . . . ,NKn )

⇐⇒ Gibbs–type priors (Gnedin and Pitman, 2006);

(c) P[Xn+1 = “new” | X (n)] = f (n,Kn,Nn,model parameters)

⇐⇒ depends on all information conveyed by the sample i.e. n, Kn and
Nn = (N1, . . . ,NKn )

⇐⇒ serious tractability issues.
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BNP Modeling Gibbs–type priors

Complete predictive structure

P̃ is a Gibbs-type random probability measure of order σ ∈ (−∞, 1) if and only
if it gives rise to predictive distributions of the form

P
[

Xn+1 ∈ A

∣∣∣∣ X (n)

]
=

Vn+1,Kn+1

Vn,Kn

P∗(A) +
Vn+1,Kn

Vn,Kn

Kn∑
i=1

(Ni − σ) δX∗
i

(A), (◦)

where {Vn,j : n ≥ 1, 1 ≤ j ≤ n} is a set of weights which satisfy the recursion

Vn,j = (n − jσ)Vn+1,j + Vn+1,j+1. (♦)

=⇒ completely characterized by choice of σ < 1 and a set of weights Vn,j ’s.

If Vn,j =
∏k−1

i=1 (θ+iσ)

(θ+1)n−1
(with σ ≥ 0 and θ > −σ or σ < 0 and θ = r |σ| with

r ∈ N) one obtains the two parameter Poisson–Dirichlet (PD) process
(Perman, Pitman & Yor, 1992) aka Pitman–Yor process, for which

P
[

Xn+1 ∈ A

∣∣∣∣X (n)

]
=
θ + Knσ

θ + n
P∗(A) +

1

θ + n

Kn∑
i=1

(Ni − σ)δX∗
i

(A).

=⇒ if σ = 0, the PD reduces to the Dirichlet process and θ+Knσ
θ+n

to θ
θ+n

.
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BNP Modeling Gibbs–type priors

Who are the members of this class of priors?

Gnedin and Pitman (2006) provided also a characterization of Gibbs–type
priors according to the value of σ:

I σ = 0 =⇒ Dirichlet process or Dirichlet process mixed over its total
mass parameter θ > 0;

I 0 < σ < 1 =⇒ random probability measures closely related to a
normalized σ–stable process (Poisson–Kingman models based on the
σ-stable process) characterized by σ and a probability distribution γ.

Special cases: in addition to the PD process another noteworthy example
is given by the normalized generalized gamma process (NGG) for which

Vn,j =
eβ σj−1

Γ(n)

n−1∑
i=0

(
n − 1

i

)
(−1)i β i/σ Γ

(
j − i

σ
; β

)
,

where β > 0, σ ∈ (0, 1) and Γ(x , a) denotes the incomplete gamma
function (see Lijoi et al., 2007). If σ = 1/2 it reduces to the normalized
inverse Gaussian process (N–IG) (Lijoi et al., 2005).
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BNP Modeling Gibbs–type priors

I σ < 0 =⇒ mixtures of symmetric k–variate Dirichlet distributions

(p̃1, . . . , p̃K ) ∼ Dirichlet(|σ|, . . . , |σ|) (∗)
K ∼ π(·)

Special cases:

I If π is degenerate on r ∈ N one has symmetric r–variate Dirichlet
distributions which corresponds to a PD process with σ < 0 and
θ = r |σ|.

I An interesting model (Gnedin, 2010) arises if, for r = 1, 2, . . . with
γ ∈ (0, 1),

π(r) =
γ(1− γ)r−1

r !

Remark.

I If σ ≥ 0 the model assumes the existence of an infinite number of species

I If σ < 0 (and π not degenerate) the model assumes a random but finite
number of species. Interestingly, in Gnedin’s model it will have infinite
mean!
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Distribution on the number of clusters Prior distribution on the number of clusters

Induced distribution on number of clusters

An alternative definition of Gibbs–type priors is as species sampling models (i.e.
discrete nonparametric priors

∑
i≥1 p̃iδZi in which the weights pi ’s and locations

Zi are independent) which induce a random partition of the form

Πn
k(n1, . . . , nj) = Vn,j

j∏
i=1

(1− σ)ni−1 (M)

for any n ≥ 1, j ≤ n and positive integers n1, . . . , nj such that
∑j

i=1 ni = n,
where σ < 1 and the Vn,j ’s satisfy the recursion (♦).

Intepretation of (M): probability of observing a specific sample X1, . . . ,Xn

featuring j distinct observations with frequencies n1, . . . , nj =⇒ exchangeable
partition probability function (EPPF), a concept introduced in Pitman (1995).

Consequently, one obtains the (prior) distribution of the number of clusters by
summing over all possible partitions of a given size

P(Kn = j) =
Vn,j

σj
C (n, j ;σ)

with C (n, j ;σ) denoting a generalized factorial coefficient.
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Distribution on the number of clusters Prior distribution on the number of clusters

Prior distribution of the number of clusters as σ varies

00

0.20.2
1010 0.30.3

0.40.42020

0.10.1

kk σσ0.50.5
3030

0.60.6

4040 0.70.7

0.20.2

0.80.85050

0.30.3

Prior distributions on the number of clusters corresponding to the
NGG process with n = 50, β = 1 and σ = 0.2, 0.3, . . . , 0.8.
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Distribution on the number of clusters Prior distribution on the number of clusters

In general, the dependence of the distribution of Kn on the prior parameters is:

I σ controls the “ flatness ” (or variability) of the (prior) distribution of Kn.

I the possible second parameter (θ in the PD and β in the NGG case)
controls the location of the (prior) distribution of Kn

Comparative example of different Gibbs–type priors:

I n = 50 and the prior expected number of clusters is 25 =⇒ fix the prior
parameters s.t. E(K50) = 25.

I 5 different models:

I Dirichlet process with θ = 19.233;
I PD processes with (σ, θ) = (0.73001, 1) and (σ, θ) = (0.25, 12.2157);
I NGG processes with (σ, β) = (0.7353, 1) and (0.25, 48.4185).

=⇒ Dirichlet process implies a highly peaked distribution of Kn
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Distribution on the number of clusters Prior distribution on the number of clusters

Prior distribution of the number of clusters

DP(e=19.233) 
NGG(m , `)=(0.25,48.4185) 
PY(m , e)=(0.25,12.2157) 
NGG(m , `)=(0.7353,1) 
PY(m , e)=(0.73001,1) 
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]
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NGG(m , `)=(0.7353,1) 
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Prior distributions on the number of clusters corresponding to the
Dirichlet, the PD and the NGG processes. The values of the
parameters are set in such a way that E(K50) = 25.
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Distribution on the number of clusters Posterior distribution on the number of cluster

Toy mixture example

I n = 50 observations are drawn from a uniform mixture of two
well-separated Gaussian distributions, N(1, 0.2) and N(10, 0.2);

I nonparametric mixture model

(Yi | mi , vi )
ind∼ N(mi , vi ), i = 1, . . . , n

(mi , vi | P̃)
iid∼ P̃ i = 1, . . . , n

P̃ ∼ Q

with Q a Gibbs–type prior and standard specifications for P∗;

I The distribution of Kn represents the prior distribution on the number of
mixture components; some summary statistics of its posterior distribution
of (Kn|Y (n)) is then used as estimate of the number of mixture
components.

I As Q we consider the previous 5 priors (chosen so that E(K50) = 25),
which in this case correspond to a prior opinion on K50 remarkably far
from the true number of components, namely 2.

Are the models flexible enough to shift a posteriori towards the correct number
of components?

=⇒ the larger σ the better is the posterior estimate of Kn.
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Distribution on the number of clusters Posterior distribution on the number of cluster

Posterior distribution of the number of clusters
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Posterior distributions on the number of clusters corresponding to
various choices of Gibbs–type priors with n = 50 and E(K50) = 25.
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Further distributional properties

Some further properties of Gibbs–type priors

I Asymptotics for Kn:

I In the Dirichlet case Kn/ log n
a.s.−→ θ (Korwar and Hollander, 1973)

=⇒ inappropriate in e.g. linguistics (Teh, 2006) and species
sampling (Lijoi et al., 2007).

I For Gibbs–type priors with σ > 0 (Gnedin and Pitman, 2006)

Kn

nσ
a.s.−→ Sσ as n→∞

=⇒ by tuning σ whole spectrum of growth rates

I Full weak support property: Gibbs–type priors with σ < 0 & supp(π) = N
or σ ≥ 0 (“ genuinely nonparametric Gibbs–type priors ”) imply that weak
neighborhoods of any given distribution have a priori positive probability
(De Blasi et al., 2013).

I Stick–breaking representation: can be derived and the stick–breaking
weights will be dependent (with the exception of the PD process and
Dirichlet process for which they become independent and iid,
respectively); N–IG case is the first example of explicit stick–breaking
representation with dependent weights (Favaro et al., 2012).
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Discovery probability

Data structure in species sampling problems

I X (n) = basic sample of draws from a population containing different
species (plants, genes, animals,...). Information:

� sample size n and number of distinct species in the sample Kn;

� a collection of frequencies N = (N1, . . . ,NKn ) s.t.
∑Kn

i=1 Ni = n;

� the labels (names) X ∗i ’s of the distinct species, for i = 1, . . . ,Kn.

I The information provided by N can also be coded by M := (M1, . . . ,Mn)

Mi = number of species in the sample X (n) having frequency i .

Note that
∑n

i=1 Mi = Kn and
∑n

i=1 iMi = n.

I Example: Consider a basic sample such that
� n = 10 with j = 4 and frequencies (n1, n2, n3, n4) = (2, 5, 2, 1).
� equivalently we can code this information as

(m1,m2, . . . ,m10) = (1, 2, 0, 0, 1, . . . , 0),

meaning that 1 species appears once, 2 appear twice and 1 five times.

Gibbs–type priors 16 / 27



Discovery probability

Data structure in species sampling problems

I X (n) = basic sample of draws from a population containing different
species (plants, genes, animals,...). Information:

� sample size n and number of distinct species in the sample Kn;

� a collection of frequencies N = (N1, . . . ,NKn ) s.t.
∑Kn

i=1 Ni = n;

� the labels (names) X ∗i ’s of the distinct species, for i = 1, . . . ,Kn.

I The information provided by N can also be coded by M := (M1, . . . ,Mn)

Mi = number of species in the sample X (n) having frequency i .

Note that
∑n

i=1 Mi = Kn and
∑n

i=1 iMi = n.

I Example: Consider a basic sample such that
� n = 10 with j = 4 and frequencies (n1, n2, n3, n4) = (2, 5, 2, 1).
� equivalently we can code this information as

(m1,m2, . . . ,m10) = (1, 2, 0, 0, 1, . . . , 0),

meaning that 1 species appears once, 2 appear twice and 1 five times.

Gibbs–type priors 16 / 27



Discovery probability

Prediction problems

Given the basic sample X (n), the inferential goal consists in prediction about
various features of an additional sample X (m) := (Xn+1, . . . ,Xn+m).

Discovery probability =⇒ estimation of

1. the probability of discovering at the (n+1)–th sampling step either a new
species or an “ old ” species with frequency r ;

2. the probability of discovering at the (n+m+1)–th step either a new
species or an “ old ” species with frequency r without observing X (m).

Remark. These can be, in turn, used to obtain straightforward estimates of:

I the discovery probability for rare species i.e. the probability of discovering
a species which is either new or has frequency at most τ at the
(n+m+1)–th step =⇒ rare species estimation

I an optimal additional sample size: sampling is stopped once the
probability of sampling new or rare species is below a certain threshold
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Discovery probability Frequentist nonparametric estimators

Frequentist nonparametric estimators

I Turing estimator (Good, 1953; Mao & Lindsay, 2002): probability of
discovering a species with frequency r in X (n) at (n+1)–th step is

(r + 1)
mr+1

n
(?)

and for r = 0 one obtains the discovery probability of a new species m1
n
.

=⇒ depends on mr+1 (number of species with frequency r + 1):
counterintuitive! It should be based on mr . E.g. if mr+1 = 0, the
estimated probability of detecting a species with frequency r would be 0.

I Good–Toulmin estimator (Good & Toulmin, 1956; Mao, 2004): estimator
for the probability of discovering a new species at (n+m+1)–th step.

=⇒ unstable if the size of the additional unobserved sample m is larger
than n (estimated probability becomes either < 0 or > 1).

I No frequentist nonparametric estimator for the probability of discovering a
species with frequency r at (n+m+1)–th sampling step is available.
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Discovery probability BNP approach to discovery probability estimation

BNP approach to discovery probability estimation

We assume the data (Xn)n≥1 are exchangeable and a Gibbs–type prior as
corresponding de Finetti measure. In applications we will use the PD process as
specific prior since it allows for completely explicit expressions.

The resulting estimators are:

I BNP analog to Turing estimator: probability of discovering a species with
frequency r in X (n) at the (n+1)–th sampling step

P[Xn+1 = species with frequency r | X (n)] =
Vn+1,k(r − σ)

Vn,k
mr[

PD case
=

r − σ
θ + n

mr

]
,

and the discovery probability of a new species

P[Xn+1 = “new” | X (n)] =
Vn+1,k+1

Vn,k

[
PD case

=
θ + σk

θ + n

]
.

Remark 1. Probability of sampling a species with frequency r depends, in
agreement with intuition, on mr and also on Kn = k.
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Discovery probability BNP approach to discovery probability estimation

I BNP analog of the Good–Toulmin estimator: estimator for the probability
of discovering a new species at the (n+m+1)–th step

P[Xn+m+1 = “new” | X (n)] =
m∑
j=0

Vn+m+1,k+j+1

Vn,k

C (m, j ;σ,−n + kσ)

σj[
PD case

=
θ + kσ

θ + n

(θ + n + σ)m
(θ + n + 1)m

]
,

where C (m, j ;σ,−n + kσ) is the non–central generalized factorial
coefficient.

I BNP estimator for the probability of discovering a species with frequency
r at the (n+m+1)–th sampling step

P[Xn+m+1 = species with frequency r | X (n)]

is available in closed form.
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Discovery probability BNP approach to discovery probability estimation

Discovery probability in an additional sample of size m.
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EST data from Naegleria gruberi aerobic and anaerobic cDNA
libraries with basic sample n ∼= 950: Good–Toulmin (GT) and PD
process (PD) estimators of the probability of discovering a new gene
at the (n + m + 1)–th sampling step for m = 1, . . . , 2000.
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Discovery probability BNP approach to discovery probability estimation

Some remarks on BNP models for species sampling problems

I BNP models correspond to large probabilistic models in which all objects
of potential interest are modeled jointly and coherently thus leading to
intuitive predictive structures
=⇒ avoids ad–hoc procedures and incoherencies sometimes connected

with frequentist nonparametric procedures.

I Gibbs–type priors with σ > 0 (recall that they assume an infinite number
of species) are ideally suited for populations with large unknown number
of species =⇒ typical case in Genomics.

I In Ecology “∞” assumption often too strong =⇒ Gibbs–type priors with
σ < 0 (work in progress).
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Consistency

Frequentist Posterior Consistency

“ What if ” or frequentist approach to consistency (Diaconis and Freedman,
1986): What happens if the data are not exchangeable but i.i.d. from a “true”
P0? Does the posterior Q( · |X (n)) accumulate around P0 as the sample size
increases?

Q is weakly consistent at P0 if for every Aε

Q(Aε|X (n))
n→∞−→ 1 a.s.− P∞0

with Aε a weak neighbourhood of P0 and P∞0 the infinite product
measure.

We investigate consistency for Gibbs–type priors with σ ∈ (−∞, 0)

Key quantity in this study is once again

P[Xn+1 = “new” | X (n)] = Vn+1,k+1/Vn,k

which we need to converge to 0 a.s.–P∞0 (i.e. “ washing out of the prior ”) to
achieve consistency.
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Consistency Discrete “ true ” distribution

The case of discrete “ true ” data generating distribution P0

Two cases according to the type of “ true ” data generating distribution P0:

Case I: P0 is discrete (with either finite or infinite support points):

Let Q be a Gibbs–type prior with σ < 0 and P0 a discrete “ true ”
distribution. Then, under an extremely mild technical condition, Q is
consistent at P0.

=⇒ frequentist consistency is guaranteed when modeling data coming from a
discrete distribution like in species sampling problems

m

Discrete nonparametric priors are consistent
for data generated by discrete distributions.
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Consistency Diffuse “ true ” distribution

The case of diffuse “ true ” data generating distribution P0

Case II: P0 is diffuse (i.e. P0({x}) = 0 for every x ∈ X )

Erratic example: For Gnedin’s model with σ = −1 and parameter γ ∈ (0, 1)

P[Xn+1 = “new” | X (n)] = Vn+1,n+1/Vn,n =
n(n − γ)

n(γ + n)
n→∞−→ 1

=⇒ concentrates around the prior guess P∗ meaning that no learning at all
takes place: “ total ” inconsistency!

One can still establish a general consistency result for diffuse P0:

Let Q be a Gibbs–type prior with σ < 0 and P0 a diffuse “ true ”
distribution. Then, Q is consistent at P0 provided for sufficiently
large x and for some M <∞

π(x + 1)

π(x)
≤ M

x
.
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Consistency Diffuse “ true ” distribution

Should we worry?

NO, discrete nonparametric priors are designed to model discrete distributions
and should not be used to model data from diffuse distributions.

Remark. Dirichlet process enjoys:
� full weak support property
� weak consistency for diffuse P0 =⇒ misleading!

But as the sample size n diverges:
� P0 generates (Xn)n≥1 containing no ties with probability 1
� a discrete P̃ generates (Xn)n≥1 containing no ties with probability 0
=⇒ model and data generating mechanism are incompatible!

For discrete Q it is:
� irrelevant to be consistent at diffuse P0 (it is just a coincidence if they are
e.g. Dirichlet, Gibbs with Poisson mixing);
� important to be consistent at discrete P0 and they are!
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Consistency Diffuse “ true ” distribution
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