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Basic ABC

Data: y?, prior p(θ), model p(y |θ). Likelihood p(y |θ) cannot be
computed, but we can sample from it.

Repeat:

1 Sample θ ∼ p(θ)

2 Sample y ∼ p(y |θ)

3 Accept θ i� ‖s(y)− s(y?)‖ ≤ ε
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ABC target

The previous algorithm targets:

pε(θ|y?) ∝ p(θ)

ˆ
p(y |θ)1{‖s(y)−s(y?)‖≤ε} dy

which approximates the true posterior p(θ|y). Two levels of
approximation:

1 Non-parametric error, governed by �bandwidth� ε;
pε(θ|y?)→ p(θ|s(y?)) as ε→ 0. (Curse of dimensionality
with respect to d = dim(s).

2 Bias introduced by summary stat. s, since
p(θ|s(y?)) 6= p(θ|y?).

Note that p(θ|s(y?)) ≈ p(θ|y?) may be a reasonable
approximation, but p(y?) and p(s(y?)) have no clear relation:
hence standard ABC cannot reliably approximate the evidence.
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How to choose s (and ε)?

1 Mostly trial and error.

2 Di�cult trade-o�: increasing the dimension of s reduces the
bias (point 2 above), but increases the NP-error (point 1
above). This may be compensated by decreasing ε, but then
the CPU costs increases.

3 No clear theory on how to choose s so that
p(θ|s(y?)) ≈ p(θ|y?).
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Divide and conquer

Main idea behind EP-ABC: cut our `big' ABC problems into n

`small' ABC problems.
Say, data y decomposes into (y1, . . . , yn), leading to some
factorisation of the likelihood

p(y |θ) =
n∏

i=1

li (θ)

where:

• li (θ) = p(yi |θ) (IID model)

• li (θ) = p(yi |yi−1,θ) (Markov model)

• or more generally, something like li (θ) = p(yi |y1:i−1,θ)

Clearly, doing ABC on one single factor should be much easier
(provided we can sample from the likelihood factor); that is (a)
easier to design a summary statistics for yi only (perhaps even
si (yi ) = yi ); and (b) easier to implement ABC (rejection).
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EP-ABC target

pε(θ|y?) ∝ p(θ)
n∏

i=1

{ˆ
p(yi |y?1:i−1,θ)1{‖si (yi )−si (y?i )‖≤ε} dyi

}
(1)

Take si (yi ) = yi for now. Standard ABC cannot target this
approximate posterior, because the probability that ‖yi − y?i ‖ ≤ ε
for all i simultaneously is exponentially small w.r.t. n. But it does
not depend on some summary stats s, and pε(θ|y?)→ p(θ|y?) as
ε→ 0 (one level of approximation).
The EP-ABC algorithm computes a Gaussian approximation of (1).
In order to do so, it essentially runs n ABC algorithms, each
treating separately the constraint ‖yi − y?i ‖ ≤ ε.
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EP (Minka, 2001)

Consider a generic posterior:

π(θ) = p(θ|y) ∝ p (θ)
n∏

i=1

li (θ) (2)

where the li are n contributions to the likelihood. Aim is to
approximate π with

q(θ) ∝
n∏

i=0

fi (θ) (3)

where the fi 's are the �sites�. To obtain a Gaussian approximation,
take fi (θ) ∝ exp

(
−1
2θ

tQ iθ + rti θ
)
, so that:

q(θ) ∝ exp

{
−1

2
θt

(
n∑

i=0

Qi

)
θ +

(
n∑

i=0

ri

)t

θ

}
(4)

where Qi and ri are the site parameters.
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Site update

We wish to minimise KL(π‖q). To that aim, we update each site
(Q i , r i ) in turn, as follows. Consider the hybrid:

hi (θ) ∝ q−i (θ)li (θ), q−i (θ) =
∏
j 6=i

fj(θ)

and adjust (Q i , r i ) so that KL(hi‖q) is minimal. One may easily
prove that this may be done by moment matching, i.e. calculate:

µh = Ehi [θ] , Σh = Ehi
[
θθT

]
− µiµ

T
i

set Qh = Σ−1h , rh = Σ−1h µh, then adjust (Q i , r i ) so that (Qh, rh)
and (Q, r) = (

∑n
i=0Q i ,

∑n
i=0 r i ) (the moments of q) match.

Q i ← Σ−1h −Q−i , r i ← Σ−1h µh − r−i .
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EP quick summary

• Convergence is usually obtained after a few complete cycles
over all the sites.

• We use the Gaussian family for q, but one may take another
exponential family.

• Feasiblity of EP is determined by how easy it is to compute
the moments of order 1 and 2 of the hybrid distribution (i.e. a
Gaussian density q−i times a single likelihood contribution li ).
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EP-ABC

Going back to the EP-ABC target:

pε(θ|y?) ∝ p(θ)
n∏

i=1

{ˆ
p(yi |y?1:i−1,θ)1{‖yi−y?i ‖≤ε} dyi

}
(5)

we take

li (θ) =

ˆ
p(yi |y?1:i−1,θ)1{‖yi−y?i ‖≤ε} dyi .

In that case, the hybrid distribution is a Gaussian times li . The
moments are not available in close-form (obviously), but they are
easily obtained, using some form of ABC for a single observation.
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EP-ABC site update

Inputs: ε, y?, i , and the moment parameters µ−i , Σ−i of the
Gaussian pseudo-prior q−i .

1 Draw M variates θ[m] from a N(µ−i ,Σ−i ) distribution.

2 For each θ[m], draw y
[m]
i ∼ p(yi |y?1:i−1,θ[m]).

3 Compute the empirical moments

Macc =
M∑

m=1

1{
‖y [m]

i
−y?

i
‖≤ε

}, µ̂h =

∑M
m=1 θ

[m]1{
‖y [m]

i
−y?

i
‖≤ε

}
Macc

(6)

Σ̂h =

∑M
m=1 θ

[m]
{
θ[m]

}t
1{
‖y [m]

i
−y?

i
‖≤ε

}
Macc

− µ̂(hi )µ̂(hi )
t . (7)

Return Ẑ (hi ) = Macc/M, µ̂(hi ) and Σ̂(hi ).
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Numerical stability

We are turning a deterministic, �xed-point algorithm, into a
stochastic algorithm, hence numerical stability may be an issue.
Solutions:

• We adjust dynamically M the number of simulated points at a
given site, so that the number of accepted points exceeds
some threshold.

• We use Quasi-Monte Carlo in the θ dimension.

• Slow EP updates may also be used.

12 / 27



Acceleration in the IID case

In the IID case, p(yi |y1:i−1,θ) = p(yi |θ), and the simulation step

y
[m]
i ∼ p(yi |θ[m]) is the same for all the sites, so it is possible to
recycle simulations, using importance sampling.
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First example: alpha-stable distributions

An IID univariate model taken from Peters et al. (2010). The
observations are alpha-stable, with common distribution de�ned
through the characteristic function

ΦX (t) =

{
exp
{
iδt − γα |t|α

[
1 + iβ tan πα

2 sgn(t)(|γt| − 1)
]}

α 6= 1

exp
{
iδt − γ |t|

[
1 + iβ 2

π sgn(t) log |γt|
]}

α = 1

Density is not available in close-form.
Data: n = 1200 AUD/GBP log-returns computed from daily
exchange rates.
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Results from alpha-stable example
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Marginal posterior distributions of α, β, γ and δ for alpha-stable
model: MCMC output from the exact algorithm (histograms, 60h),
approximate posteriors provided by EP-ABC (40min, solid line),
kernel density estimates from MCMC-ABC based on summary
statistic of Peters et al (50× more simulations, dashed line).
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Second example: Lokta-Volterra processes

The stochastic Lotka-Volterra process describes the evolution of
two species Y1 (prey) and Y2 (predator):

Y1
r1→ 2Y1

Y1 + Y2
r2→ 2Y2

Y2
r3→ ∅

We take θ = (log r1, log r2, log r3), and we observe the process at
discrete times. Model is Markov, p(y?i |y?1:i−1,θ) = p(y?i |y?i−1,θ).
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Simulated data
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Results
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PMCMC approximations of the ABC target (histograms) for ε = 3
(top), EP-ABC approximations, for ε = 3 (top) and ε = 1
(bottom).
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Third example: reaction times

Subject must choose between k alternatives. Evidence ej(t) in
favour of choice j follows a Brownian motion with drift:

τdej(t) = mjdt + dW j
t .

Decision is taken when one evidence �wins the race�; see plot.
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Data

1860 Observations, from a single human being, who must choose
between �signal absent�, and �signal present�.
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Results
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Generalisations

For simplicity, I considered cases where the n factors were simple
enough to allow (a) to take si (yi ) = yi ; and (b) to use
rejection-ABC at each site. But the same approach may be used to
combine more complex factors. Opens the door to applications on
repeated experiments and hierarchical models.

More generally, to obtain factorisable likelihoods, one may:

• include latent variables in θ;

• work conditionally on some hyper-parameter;

• use composite likelihood approximations (at the price of an
extra level of approximation).
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EP-ABC on an HMM composite likehood

Consider a Hidden Markov model:

xt+1|xt ,θ ∼ p(xt+1|xt ,θ), yt |xt ,θ ∼ p(yt |xt ,θ).

A possible CL approximation of the true likelihood is

pCL(y |θ) = p(y1:L|θ)× p(yL+1:2L|θ)× · · ·

where the L−dim marginals may be computed as:

p(yt+1:t+L|θ) =
ˆ

p(xt+1|θ)
L∏

k=2

p(xt+k |xt+k−1,θ)
L∏

k=1

p(yt+k |xt+k ,θ) dxt+1:t+L

and p(xt+1|θ)is the stationary dist. of Markov chain (xt). It is easy
to sample from this likelihood factor.
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Numerical illustration
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Alpha-stable stochastic volatility model, n = 120, results obtained
in one minute (vs 3 days with PMCMC-ABC). Note that
complexity of EP-ABC-CL is O(n), vs O(n2) for PMCMC-ABC.
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CL and spatial models?

CL is often used in certain class of spatial models; however some of
these models (e.g. spatial extremes) are such that higher-order
marginals are intractable. EP-ABC could be used here as well.
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Conclusion

• EP-ABC o�ers a principled way to combine n local ABC
approximations (provided the likelihood may be cut into n

pieces).

• EP-ABC cannot be used in all ABC scenarios, but on the other
hand, it can be used in situations where standard ABC is not
suitable.

• In certain cases, we may get rid of summary stats entirely.

• EP-ABC is fast (minutes), because it integrates one data
chunk at a time (not all of them together). Typically, gain is
×100.

• EP-ABC also approximates the evidence.

• Convergence of EP-ABC is an open problem (Mike?)
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Quote, references

�It seems quite absurd to reject an EP-based approach, if the only

alternative is an ABC approach based on summary statistics, which

introduces a bias which seems both larger (according to our

numerical examples) and more arbitrary, in the sense that in

real-world applications one has little intuition and even less

mathematical guidance on to why p(θ|s(y)) should be close to

p(θ|y) for a given set of summary statistics.�

• Barthelmé, S. and Chopin, N. (2011). ABC-EP: Expectation
Propagation for Likelihood-free Bayesian Computation, ICML
2011 (Proceedings of the 28th International Conference on
Machine Learning), L. Getoor and T. Sche�er (eds), 289-296.

• Barthelmé, S. & Chopin, N. (2011). Expectation-Propagation
for Summary-Less, Likelihood-Free Inference, arxiv:1107.5959.
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