Bayesian Nonparametric Models for Bipartite Graphs

François Caron

INRIA

March 20, 2013
Workshop IHES

Bipartite networks

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum
- Customers buying the same item

Bipartite networks

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum
- Customers buying the same item

Bipartite networks

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum
- Customers buying the same item

Bipartite networks

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum
- Customers buying the same item

Bipartite networks

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum
- Customers buying the same item

Bipartite networks

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum
- Customers buying the same item

Bipartite networks

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum
- Customers buying the same item

Bipartite networks

Aims

- Bayesian nonparametric model for bipartite networks with a potentially infinite number of nodes of each type
- Each node is modelled using a positive rating parameter that represents its ability to connect to other nodes
- Captures power-law behavior
- Simple generative model for network growth
- Develop efficient computational procedure for posterior simulation.

Hierarchical model

- Represent a bipartite network by a collection of atomic measures Z_{i}, $i=1,2, \ldots$ such that

$$
Z_{i}=\sum_{j=1}^{\infty} z_{i j} \delta_{\theta_{j}}
$$

- $z_{i j}=1$ if reader i has read book $j, 0$ otherwise
- $\left\{\theta_{j}\right\}$ is the set of books
- Each book j is assigned a positive "popularity" parameter w_{j}
- Each reader i is assigned a positive "interest in reading" parameter γ_{i}
- The probability that reader i reads book j is

$$
P\left(z_{i j}=1 \mid \gamma_{i}, w_{j}\right)=1-\exp \left(-w_{j} \gamma_{i}\right)
$$

Hierarchical model

- Represent a bipartite network by a collection of atomic measures Z_{i}, $i=1,2, \ldots$ such that

$$
Z_{i}=\sum_{j=1}^{\infty} z_{i j} \delta_{\theta_{j}}
$$

- $z_{i j}=1$ if reader i has read book $j, 0$ otherwise
- $\left\{\theta_{j}\right\}$ is the set of books
- Each book \boldsymbol{j} is assigned a positive "popularity" parameter $\boldsymbol{w}_{\boldsymbol{j}}$
- Each reader i is assigned a positive
'interest in reading"
- The probability that reader i reads book j is

$$
\boldsymbol{P}\left(z_{i j}=1 \mid \gamma_{i}, w_{j}\right)=1-\exp \left(-w_{j} \gamma_{i}\right)
$$

Hierarchical model

- Represent a bipartite network by a collection of atomic measures Z_{i}, $i=1,2, \ldots$ such that

$$
Z_{i}=\sum_{j=1}^{\infty} z_{i j} \delta_{\theta_{j}}
$$

- $z_{i j}=1$ if reader i has read book $j, 0$ otherwise
- $\left\{\theta_{j}\right\}$ is the set of books
- Each book \boldsymbol{j} is assigned a positive "popularity" parameter $\boldsymbol{w}_{\boldsymbol{j}}$
- Each reader \boldsymbol{i} is assigned a positive "interest in reading" parameter γ_{i}
- The probability that reader i reads book j is

$$
P\left(z_{i j}=1 \mid \gamma_{i}, w_{j}\right)=1-\exp \left(-w_{j} \gamma_{i}\right)
$$

Hierarchical model

- Represent a bipartite network by a collection of atomic measures Z_{i}, $i=1,2, \ldots$ such that

$$
Z_{i}=\sum_{j=1}^{\infty} z_{i j} \delta_{\theta_{j}}
$$

- $z_{i j}=1$ if reader i has read book $j, 0$ otherwise
- $\left\{\theta_{j}\right\}$ is the set of books
- Each book \boldsymbol{j} is assigned a positive "popularity" parameter $\boldsymbol{w}_{\boldsymbol{j}}$
- Each reader \boldsymbol{i} is assigned a positive "interest in reading" parameter γ_{i}
- The probability that reader i reads book j is

$$
P\left(z_{i j}=1 \mid \gamma_{i}, w_{j}\right)=1-\exp \left(-w_{j} \gamma_{i}\right)
$$

Data Augmentation

- Latent variable formulation
- Latent scores $s_{i j} \sim \operatorname{Gumbel}\left(\log \left(w_{j}\right), \mathbf{1}\right)$
- All books with a score above $-\log \left(\gamma_{i}\right)$ are retained, others are discarded

Model for the book popularity parameters

- Random atomic measure

$$
G=\sum_{j=1}^{\infty} w_{j} \delta_{\theta_{j}}
$$

- Construction: two-dimensional Poisson process $N=\left\{w_{j}, \theta_{j}\right\}_{j=1, \ldots}$
- Completely Random Measure $\boldsymbol{G} \sim \operatorname{CRM}(\boldsymbol{\lambda}, \boldsymbol{h})$ characterized by a Lévy intensity $\boldsymbol{\lambda}(\boldsymbol{w})$
- Conditions on Lévy intensity:

[Kingman, 1967]

Model for the book popularity parameters

- Random atomic measure

$$
G=\sum_{j=1}^{\infty} w_{j} \delta_{\theta_{j}}
$$

- Construction: two-dimensional Poisson process $N=\left\{w_{j}, \theta_{j}\right\}_{j=1, \ldots}$
- Completely Random Measure $\boldsymbol{G} \sim \operatorname{CRM}(\boldsymbol{\lambda}, \boldsymbol{h})$ characterized by a Lévy intensity $\boldsymbol{\lambda}(\boldsymbol{w})$
- Conditions on Lévy intensity:

$$
\begin{array}{ll}
\int_{0}^{\infty} \lambda(w) d w=\infty & \int_{0}^{\infty}\left(1-e^{-w}\right) \lambda(w) d w<\infty \\
\Rightarrow \text { infinitely many books } & \Rightarrow \text { finite total } \sum_{j=1}^{\infty} w_{j} \\
& \Rightarrow \text { finite total } \sum_{j=1}^{\infty} z_{i j}
\end{array}
$$

Posterior characterization

- Observed bipartite network Z_{1}, \ldots, Z_{n}
- Cannot derive directly the predictive of Z_{n+1} given Z_{1}, \ldots, Z_{n}
- Let

$$
\boldsymbol{X}_{i}=\sum_{j=1}^{\infty} x_{i j} \delta_{\theta_{j}}
$$

where $x_{i j}=\max \left(0, s_{i j}+\log \left(\gamma_{i}\right)\right) \geq 0$ are latent positive scores.

Posterior Characterization

The conditional distribution of \boldsymbol{G} given $\boldsymbol{X}_{1}, \ldots \boldsymbol{X}_{\boldsymbol{n}}$ can be expressed as

$$
G=G^{*}+\sum_{j=1}^{K} w_{j} \delta_{\theta_{j}}
$$

where G^{*} and $\left(w_{j}\right)$ are mutually independent with

$$
G^{*} \sim \operatorname{CRM}\left(\lambda^{*}, h\right), \quad \lambda^{*}(w)=\lambda(w) \exp \left(-w \sum_{i=1}^{n} \gamma_{i}\right)
$$

and the masses are

$$
P\left(w_{j} \mid \text { other }\right) \propto \lambda\left(w_{j}\right) w_{j}^{m_{j}} \exp \left(-w_{j} \sum_{i=1}^{n} \gamma_{i} e^{-x_{i j}}\right)
$$

Characterization related to that for ranked data [Caron and Teh, 2012] and normalized random measures [James et al., 2009].

Generative Process for network growth

Predictive distribution of \boldsymbol{Z}_{n+1} given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$
Books

Reader 1

Generative Process for network growth

Predictive distribution of \boldsymbol{Z}_{n+1} given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$
Books

Generative Process for network growth

Predictive distribution of \boldsymbol{Z}_{n+1} given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$
Books

Generative Process for network growth

Predictive distribution of \boldsymbol{Z}_{n+1} given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$
Books

Reader 2

Generative Process for network growth

Predictive distribution of \boldsymbol{Z}_{n+1} given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$
Books

Generative Process for network growth

Predictive distribution of \boldsymbol{Z}_{n+1} given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$
Books

Generative Process for network growth
Predictive distribution of $\boldsymbol{Z}_{\boldsymbol{n + 1}}$ given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$
Books

| Reader 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reader 2 |\quad| 18 | 4 | 14 | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | \cdots |
| 12 | 0 | 8 | 13 | 4 |
| | | | \cdots | |

Generative Process for network growth
Predictive distribution of $\boldsymbol{Z}_{\boldsymbol{n + 1}}$ given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$
Books

| Reader 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reader 2 |\quad| 18 | 4 | 14 | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | \cdots |
| 12 | 0 | 8 | 13 | 4 |
| | | | \cdots | |

Reader 3

Generative Process for network growth
Predictive distribution of $\boldsymbol{Z}_{\boldsymbol{n + 1}}$ given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$
Books

Reader 1	18	4	14						\cdots
Reader 2	12	0	8	13	4				\cdots
	Reader 3								

Generative Process for network growth
Predictive distribution of $\boldsymbol{Z}_{\boldsymbol{n + 1}}$ given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$
Books

Generative Process for network growth
Predictive distribution of $\boldsymbol{Z}_{\boldsymbol{n + 1}}$ given the latent process $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$
Books

Reader 1	18	4	14					\ldots
Reader 2	12	0	8	13	4			\cdots
Reader 3	16	10	0	0	14	9	6	\cdots

Prior Draws

Generalized Gamma process with $\lambda(w)=\frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-\tau w}, \tau=1, \gamma_{i}=2$.

Properties of the model

- Power-law behavior for the generalized gamma process with $\sigma>0$
- The total number of books read by \boldsymbol{n} readers is $\boldsymbol{O}\left(\boldsymbol{n}^{\sigma}\right)$
- Asympt., the proportion of books read by m readers is $O\left(m^{-1-\sigma}\right)$

Bayesian Inference via Gibbs Sampling

- Popularity parameters $\boldsymbol{w}_{\boldsymbol{j}}$ of observed books.
- Latent scores $\boldsymbol{x}_{\boldsymbol{i j}}$ associated to observed edges.
- Sum \boldsymbol{w}_{*} of popularity parameters of unobserved books.
- Posterior distribution $P\left(\left\{w_{j}\right\}, w_{*},\left\{x_{i j}\right\} \mid Z_{1}, \ldots, Z_{n}\right)$

Gibbs sampler for the GGP

$$
\begin{aligned}
\boldsymbol{x}_{\boldsymbol{i}} \mid \text { rest } & \sim \text { Truncated Gumbel } \\
\boldsymbol{w}_{\boldsymbol{j}} \mid \text { rest } & \sim \text { Gamma } \\
\boldsymbol{w}_{*} \mid \text { rest } & \sim \text { Exponentially tilted stable }
\end{aligned}
$$

Model for the "interest in reading" parameters

- Still Poisson degree distribution for readers
- Parametric: γ_{i} are indep. and identically distributed from a gamma distribution
- Nonparametric: γ_{i} are the points of a random atomic measure $\boldsymbol{\Gamma}$
- Gibbs sampler can be derived in the same way as for books

Application

- Evaluate the fit of three models
- Stable Indian Buffet Process
- Proposed model where G follows a Generalized Gamma process of unknown parameters (α, σ, τ)
- with shared and unknown $\gamma_{i}=\gamma$
- with nonparametric prior where Γ follows a generalized gamma process of unknown parameters $\left(\alpha_{\gamma}, \tau_{\gamma}, \sigma_{\gamma}\right)$

Application: IMDB Movie Actor network

280000 movies, 178000 actors, 341000 edges

Figure: Degree distributions for movies (a-d) and actors (e-h) for the IMDB movie-actor dataset with three different models. Data are represented by red plus fandnsamples from the model by blue crosses.

Application: Book-crossing community network

5000 readers, 36000 books, 50000 edges

Figure: Degree distributions for readers (a-d) and books (e-h) for the book crossing dataset with three different models. Data are represented by red plus and Fsamples from the model by blue crosses.

Application

- Log-likelihood on test dataset

Dataset	S-IBP	SG	GGP
Board	$\mathbf{9 . 8 2 (2 9 . 8)}$	$\mathbf{8 . 3 (3 0 . 8)}$	$-68.6(31.9)$
Forum	-6.7 e 3	-6.7 e 3	$\mathbf{- 5 . 6 e \mathbf { 3 }}$
Books	83.1	214	$\mathbf{4 . 4 e} \mathbf{4}$
Citations	-3.7 e 4	$-3.7 e 4$	$\mathbf{- 3 . 4 e 4}$
Movielens100k	-6.7 e 4	-6.7 e 4	$\mathbf{- 5 . 5 e 4}$
IMDB	-1.5 e 5	-1.5 e 5	$\mathbf{- 1 . 1} \boldsymbol{e 5}$

Summary

- Bayesian nonparametric model for bipartite networks with a potentially infinite number of nodes
- Captures power-law behavior
- Simple generative model for network growth
- Simple computational procedure for posterior simulation.
- Displays a good fit on a variety of social networks
- Future:
- Latent feature model
- Bayesian nonparametric (dynamic) recommender systems
- BNP model for general (non-bipartite) networks

Summary

- Bayesian nonparametric model for bipartite networks with a potentially infinite number of nodes
- Captures power-law behavior
- Simple generative model for network growth
- Simple computational procedure for posterior simulation.
- Displays a good fit on a variety of social networks
- Future:
- Latent feature model
- Bayesian nonparametric (dynamic) recommender systems
- BNP model for general (non-bipartite) networks

Bibliography

Brix, A. (1999).
Generalized gamma measures and shot-noise Cox processes.
Advances in Applied Probability, 31(4):929-953.
Caron, F. and Teh, Y. W. (2012).
Bayesian nonparametric models for ranked data.
In Neural Information Processing Systems (NIPS'2012).
Devroye, L. (2009).
Random variate generation for exponentially and polynomially tilted stable distributions.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 19(4):18.
Griffiths, T. and Ghahramani, Z. (2005).
Infinite latent feature models and the Indian buffet process.
In NIPS.
James, L., Lijoi, A., and Prünster, I. (2009).
Posterior analysis for normalized random measures with independent increments.
Scandinavian Journal of Statistics, 36(1):76-97.
Ringman, J. (1967).
Completely random measures.
Pacific Journal of Mathematics, 21(1):59-78.
宣
Teh, Y. and Görür, D. (2009).
Indian buffet processes with power-law behavior.
In Neural Information Processing Systems (NIPS'2009).

