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Bipartite networks

Aims

»

F. Caron

Bayesian nonparametric model for bipartite networks with a
potentially infinite number of nodes of each type

Each node is modelled using a positive rating parameter that
represents its ability to connect to other nodes

Captures power-law behavior

Simple generative model for network growth

Develop efficient computational procedure for posterior simulation.
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Hierarchical model

» Represent a bipartite network by a collection of atomic measures Z;,
t = 1,2,... such that

oo
Z; = Z zij(s@j
j=1

» z;; = 1 if reader ¢ has read book j, 0 otherwise
» {6;} is the set of books
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Hierarchical model

» Represent a bipartite network by a collection of atomic measures Z;,
t = 1,2,... such that

oo
Z; = Z zij(s@j
j=1

» z;; = 1 if reader ¢ has read book j, 0 otherwise
» {6;} is the set of books

» Each book j is assigned a positive “popularity” parameter w;
» Each reader 7 is assigned a positive “interest in reading” parameter ~;
» The probability that reader ¢ reads book j is

P(zi; = 1|7, wj) = 1 — exp(—w;~vi)
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Data Augmentation

» Latent variable formulation

» Latent scores s;; ~ Gumbel(log(w;), 1)
» All books with a score above — log(+y;) are retained, others are
discarded
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Model for the book popularity parameters

» Random atomic measure
oo
G = E 'wjégj
j=1

» Construction: two-dimensional Poisson process N = {wj, 0;};j=1,...
» Completely Random Measure G ~ CRM(A, h) characterized by a
Lévy intensity A(w)

[Kingman, 1967]
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Model for the book popularity parameters

» Random atomic measure
oo
G = E 'wjégj
j=1

» Construction: two-dimensional Poisson process N = {wj, 0;};j=1,...

» Completely Random Measure G ~ CRM(A, h) characterized by a
Lévy intensity A(w)

» Conditions on Lévy intensity:

oo o
/ A(w)dw = oo / (1—-e")ANw)dw < oo
0 0 .
=> infinitely many books = finite total Z w;
j=1
oo
= finite total Z Zij
j=1

[Kingman, 1967]
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Posterior characterization

» Observed bipartite network Zy,...,Z,

» Cannot derive directly the predictive of Z,, 1 given Z4,...,Z,
> Let

oo
X; = Z :l:ijégj
j=1

where x;; = max(0, s;; + log(;)) > 0 are latent positive scores.
- log(y)

books

-2 3
score censored score
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Posterior Characterization

The conditional distribution of G given X7, ... X, can be expressed as

K
G=G"+ ) w;by,

i=1

where G* and (w;) are mutually independent with

@' CRMOE), Na) = M) o (3
i=1
and the masses are
P (wj|other) oc A(w;)w;™ exp <_“’j Z’)’ie_mij>
i=1

Characterization related to that for ranked data [Caron and Teh, 2012]
and normalized random measures [James et al., 2009].
F. Caron
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Generative Process for network growth
Predictive distribution of Z,, 1 given the latent process X1,..., X,
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Prior Draws

Generalized Gamma process with A(w) = g2 yw

Readers
Readers

(e) a =2,0 =0.5 fla=2,0 =0.9
[Brix, 1999]




Properties of the model

» Power-law behavior for the generalized gamma process with o > 0

» The total number of books read by n readers is O(n?)
» Asympt., the proportion of books read by m readers is O(m=17)
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Bayesian Inference via Gibbs Sampling

v

Popularity parameters w; of observed books.

v

Latent scores x;; associated to observed edges.

v

Sum w, of popularity parameters of unobserved books.
Posterior distribution P({w;}, w«, {xij}|Z1,...,2Zn)

v

Gibbs sampler for the GGP

x;j|rest ~ Truncated Gumbel
wj|rest ~ Gamma

wy|rest ~ Exponentially tilted stable

[Devroye, 2009]
F. Caron 12 /19



Model for the “interest in reading” parameters

v

Still Poisson degree distribution for readers

v

Parametric: ~y; are indep. and identically distributed from a gamma
distribution

» Nonparametric: -y; are the points of a random atomic measure I

v

Gibbs sampler can be derived in the same way as for books

F. Caron 13/19



Application

» Evaluate the fit of three models

» Stable Indian Buffet Process
» Proposed model where G follows a Generalized Gamma process of
unknown parameters (o, o, T)
» with shared and unknown ~; =«
> with nonparametric prior where T follows a generalized gamma process
of unknown parameters (O, T, O~)

[Teh and Goriir, 2009, Griffiths and Ghahramani, 2005]
F. Caron 14 /19



Application: IMDB Movie Actor network
280 000 movies, 178 000 actors, 341 000 edges

= =
g T .
. . -
B % X%‘%
(a) S-IBP (b) GS (c) GGP
w“;. ; % ‘5;*;-:
(d) S-IBP (e) GS (f) GGP

Figure: Degree distributions for movies (a-d) and actors (e-h) for the IMDB
movie-actor dataset with three different models. Data are represented by red plus
randssamples from the model by blue crosses. 15/19



Application: Book-crossing community network
5 000 readers, 36 000 books, 50 000 edges

20 %,
(a) S-IBP (b) GS (c) GGP

|
(d) S-IBP (e) GS (f) GGP

Figure: Degree distributions for readers (a-d) and books (e-h) for the book
crossing dataset with three different models. Data are represented by red plus and
rsamples from the model by blue crosses. 16/19



Application

> Log-likelihood on test dataset

F. Caron

Dataset ‘ S-IBP SG GGP

Board 9.82(29.8) 8.3(30.8) -68.6 (31.9)
Forum -6.7e3 -6.7e3 —5.6e3
Books 83.1 214 4.4e4
Citations -3.7¢4 -3.7e4 —3.4e4
Movielens100k | -6.7e4 -6.7¢4 —5.5e4
IMDB -1.5e5 -1.5e5 —1.1e5
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Summary

v

Bayesian nonparametric model for bipartite networks with a
potentially infinite number of nodes

v

Captures power-law behavior

v

Simple generative model for network growth

v

Simple computational procedure for posterior simulation.

v

Displays a good fit on a variety of social networks
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Summary

F. Caron

Bayesian nonparametric model for bipartite networks with a
potentially infinite number of nodes

Captures power-law behavior
Simple generative model for network growth
Simple computational procedure for posterior simulation.

Displays a good fit on a variety of social networks

Future:
» Latent feature model
» Bayesian nonparametric (dynamic) recommender systems
» BNP model for general (non-bipartite) networks
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