Bayesian Nonparametric Models for Bipartite Graphs

François Caron

INRIA

March 20, 2013 Workshop IHES

- ► Scientists co-authoring the same paper
- Readers reading the same book
- ▶ Internet users posting a message on the same forum

Customers buying the same item

- ► Scientists co-authoring the same paper
- Readers reading the same book
- ▶ Internet users posting a message on the same forum

Customers buying the same item

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum

Customers buying the same item

- Scientists co-authoring the same paper
- ▶ Readers reading the same book
- ▶ Internet users posting a message on the same forum

Customers buying the same item

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum

Customers buying the same item

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum

Customers buying the same item

- Scientists co-authoring the same paper
- Readers reading the same book
- Internet users posting a message on the same forum

Customers buying the same item

Aims

- Bayesian nonparametric model for bipartite networks with a potentially infinite number of nodes of each type
- ► Each node is modelled using a positive rating parameter that represents its ability to connect to other nodes
- Captures power-law behavior
- ► Simple generative model for network growth
- ▶ Develop efficient computational procedure for posterior simulation.

Represent a bipartite network by a collection of atomic measures Z_i , $i=1,2,\ldots$ such that

$$Z_i = \sum_{j=1}^\infty z_{ij} \delta_{ heta_j}$$

- $z_{ij} = 1$ if reader i has read book j, 0 otherwise
- $\{\theta_i\}$ is the set of books
- Each book j is assigned a positive "popularity" parameter w_j
- ightharpoonup Each reader i is assigned a positive "interest in reading" parameter γ_i
- ightharpoonup The probability that reader i reads book j is

$$P(z_{ij}=1|\gamma_i,w_j)=1-\exp(-w_j\gamma_i)$$

Represent a bipartite network by a collection of atomic measures Z_i , $i=1,2,\ldots$ such that

$$Z_i = \sum_{j=1}^\infty z_{ij} \delta_{ heta_j}$$

- $z_{ij} = 1$ if reader i has read book j, 0 otherwise
- $\{\theta_i\}$ is the set of books
- ightharpoonup Each book j is assigned a positive "popularity" parameter w_j
- ightharpoonup Each reader i is assigned a positive "interest in reading" parameter γ_i
- ightharpoonup The probability that reader i reads book j is

$$P(z_{ij}=1|\gamma_i,w_j)=1-\exp(-w_j\gamma_i)$$

Represent a bipartite network by a collection of atomic measures Z_i , $i=1,2,\ldots$ such that

$$Z_i = \sum_{j=1}^\infty z_{ij} \delta_{ heta_j}$$

- $z_{ij} = 1$ if reader i has read book j, 0 otherwise
- $\{\theta_i\}$ is the set of books
- \triangleright Each book j is assigned a positive "popularity" parameter w_j
- lacktriangle Each reader i is assigned a positive "interest in reading" parameter γ_i
- ightharpoonup The probability that reader i reads book j is

$$P(z_{ij}=1|\gamma_i,w_j)=1-\exp(-w_j\gamma_i)$$

Represent a bipartite network by a collection of atomic measures Z_i , $i=1,2,\ldots$ such that

$$Z_i = \sum_{j=1}^\infty z_{ij} \delta_{ heta_j}$$

- $z_{ij} = 1$ if reader i has read book j, 0 otherwise
- $\{\theta_i\}$ is the set of books
- ightharpoonup Each book j is assigned a positive "popularity" parameter w_j
- lacktriangle Each reader i is assigned a positive "interest in reading" parameter γ_i
- ▶ The probability that reader i reads book j is

$$P(z_{ij} = 1 | \gamma_i, w_j) = 1 - \exp(-w_j \gamma_i)$$

Data Augmentation

- ▶ Latent variable formulation
 - ▶ Latent scores $s_{ij} \sim \text{Gumbel}(\log(w_j), 1)$
 - ightharpoonup All books with a score above $-\log(\gamma_i)$ are retained, others are discarded

Model for the book popularity parameters

► Random atomic measure

$$G = \sum_{j=1}^\infty w_j \delta_{ heta_j}$$

- lacktriangle Construction: two-dimensional Poisson process $N=\{w_j, heta_j\}_{j=1,...}$
- lacktriangle Completely Random Measure $G \sim \operatorname{CRM}(\lambda,h)$ characterized by a Lévy intensity $\lambda(w)$
- ► Conditions on Lévy intensity:

$$\int_0^\infty \lambda(w)dw = \infty$$

⇒ infinitely many books

$$\int_0^\infty (1 - e^{-w}) \lambda(w) dw < \infty$$

$$\Rightarrow$$
 finite total $\sum_{i=1}^{\infty} w_j$

$$\Rightarrow$$
 finite total $\sum_{i=1}^{\infty} z_{ij}$

[Kingman, 1967]

Model for the book popularity parameters

Random atomic measure

$$G = \sum_{j=1}^\infty w_j \delta_{ heta_j}$$

- lacktriangle Construction: two-dimensional Poisson process $N=\{w_j, heta_j\}_{j=1,...}$
- lacktriangle Completely Random Measure $G \sim \operatorname{CRM}(\lambda,h)$ characterized by a Lévy intensity $\lambda(w)$
- Conditions on Lévy intensity:

$$\int_0^\infty \lambda(w)dw = \infty$$

$$\int_0^\infty (1 - e^{-w}) \lambda(w) dw < \infty$$

$$\Rightarrow$$
 finite total $\sum_{j=1}^{\infty} w_{j}$

$$\Rightarrow$$
 finite total $\sum_{j=1}^{\infty} z_{ij}$

[Kingman, 1967]

Posterior characterization

- lacktriangle Observed bipartite network Z_1,\ldots,Z_n
- ightharpoonup Cannot derive directly the predictive of Z_{n+1} given Z_1,\ldots,Z_n
- Let

$$X_i = \sum_{j=1}^{\infty} x_{ij} \delta_{ heta_j}$$

where $x_{ij} = \max(0, s_{ij} + \log(\gamma_i)) \geq 0$ are latent positive scores.

Posterior Characterization

The conditional distribution of G given $X_1, \ldots X_n$ can be expressed as

$$G = G^* + \sum_{j=1}^K w_j \delta_{ heta_j}$$

where G^* and (w_j) are mutually independent with

$$G^* \sim \operatorname{CRM}(\lambda^*,h), \qquad \lambda^*(w) = \lambda(w) \exp\left(-w \sum_{i=1}^n \gamma_i \right)$$

and the masses are

$$P(w_j| ext{other}) \propto \lambda(w_j) w_j^{m_j} \exp\left(-w_j \sum_{i=1}^n \gamma_i e^{-x_{ij}}
ight)$$

Characterization related to that for ranked data [Caron and Teh, 2012] and normalized random measures [James et al., 2009].

Predictive distribution of Z_{n+1} given the latent process X_1, \dots, X_n

Books

Reader 1

 A_1

Predictive distribution of Z_{n+1} given the latent process X_1,\dots,X_n

Books

Predictive distribution of Z_{n+1} given the latent process X_1,\dots,X_n

Books

Reader 1 18 4 14 ...

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1 18 4 14 ...

Reader 2

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1 18 4 14

Reader 2

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1 18 4 14

Reader 2

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1

Reader 2

18	4	14				
12	0	8	13	4		

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1	18	4	14				
Reader 2	12	0	8	13	4		

Reader 3

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1	18	4	14				
Reader 2	12	0	8	13	4		
Reader 3							

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1 18 4 14 ...

Reader 2 12 0 8 13 4 ...

Reader 3 ...

Predictive distribution of Z_{n+1} given the latent process X_1,\ldots,X_n

Books

Reader 1	18	4	14					
Reader 2	12	0	8	13	4			
Reader 3	16	10	0	0	14	9	6	

Prior Draws

Generalized Gamma process with $\lambda(w)=rac{lpha}{\Gamma(1-\sigma)}w^{-\sigma-1}e^{- au w}$, au=1 , $\gamma_i=2$.

[Brix, 1999]

F. Caron 10 / 19

Properties of the model

- **Power-law behavior** for the generalized gamma process with $\sigma > 0$
 - ▶ The total number of books read by n readers is $O(n^{\sigma})$
 - Asympt., the proportion of books read by m readers is $O(m^{-1-\sigma})$

F. Caron 11/19

Bayesian Inference via Gibbs Sampling

- ▶ Popularity parameters w_j of observed books.
- Latent scores x_{ij} associated to observed edges.
- ▶ Sum w_* of popularity parameters of unobserved books.
- lacksquare Posterior distribution $P(\{w_j\}, w_*, \{x_{ij}\}|Z_1, \ldots, Z_n)$

Gibbs sampler for the GGP

```
x_{ij}|	ext{rest} \sim 	ext{Truncated Gumbel} w_j|	ext{rest} \sim 	ext{Gamma} w_*|	ext{rest} \sim 	ext{Exponentially tilted stable}
```

Model for the "interest in reading" parameters

- ▶ Still Poisson degree distribution for readers
- ightharpoonup Parametric: γ_i are indep. and identically distributed from a gamma distribution
- Nonparametric: γ_i are the points of a random atomic measure Γ
- ▶ Gibbs sampler can be derived in the same way as for books

F. Caron 13/19

Application

- Evaluate the fit of three models
 - Stable Indian Buffet Process
 - Proposed model where G follows a Generalized Gamma process of unknown parameters (α, σ, τ)
 - with shared and unknown $\gamma_i = \gamma$
 - with nonparametric prior where Γ follows a generalized gamma process of unknown parameters $(\alpha_{\gamma}, \tau_{\gamma}, \sigma_{\gamma})$

[Teh and Görür, 2009, Griffiths and Ghahramani, 2005]

14 / 19

F. Caron

Application: IMDB Movie Actor network

280 000 movies, 178 000 actors, 341 000 edges

Figure: Degree distributions for movies (a-d) and actors (e-h) for the IMDB movie-actor dataset with three different models. Data are represented by red plus Fandasamples from the model by blue crosses.

Application: Book-crossing community network

5 000 readers, 36 000 books, 50 000 edges

Figure: Degree distributions for readers (a-d) and books (e-h) for the book crossing dataset with three different models. Data are represented by red plus and FSAMPles from the model by blue crosses.

Application

► Log-likelihood on test dataset

Dataset	S-IBP	SG	GGP
Board	9.82(29.8)	8.3(30.8)	-68.6 (31.9)
Forum	-6.7e3	-6.7e3	-5.6e3
Books	83.1	214	4.4e4
Citations	-3.7e4	-3.7e4	-3.4e4
Movielens100k	-6.7e4	-6.7e4	-5.5e4
IMDB	-1.5e5	-1.5e5	-1.1e5

F. Caron 17 / 19

Summary

- Bayesian nonparametric model for bipartite networks with a potentially infinite number of nodes
- Captures power-law behavior
- Simple generative model for network growth
- Simple computational procedure for posterior simulation.
- Displays a good fit on a variety of social networks
- ► Future:
 - Latent feature model
 - ▶ Bayesian nonparametric (dynamic) recommender systems

BNP model for general (non-bipartite) networks

F. Caron 18 / 19

Summary

- Bayesian nonparametric model for bipartite networks with a potentially infinite number of nodes
- Captures power-law behavior
- Simple generative model for network growth
- Simple computational procedure for posterior simulation.
- Displays a good fit on a variety of social networks
- Future:
 - Latent feature model
 - ► Bayesian nonparametric (dynamic) recommender systems
 - BNP model for general (non-bipartite) networks

F. Caron 18 / 19

Bibliography

Brix, A. (1999).

Generalized gamma measures and shot-noise Cox processes. *Advances in Applied Probability*, 31(4):929–953.

Caron, F. and Teh, Y. W. (2012).

Bayesian nonparametric models for ranked data. In Neural Information Processing Systems (NIPS'2012).

Devroye, L. (2009).

Random variate generation for exponentially and polynomially tilted stable distributions. *ACM Transactions on Modeling and Computer Simulation (TOMACS)*, 19(4):18.

Griffiths, T. and Ghahramani, Z. (2005).

Infinite latent feature models and the Indian buffet process. In *NIPS*.

James, L., Lijoi, A., and Prünster, I. (2009).

Posterior analysis for normalized random measures with independent increments. *Scandinavian Journal of Statistics*, 36(1):76–97.

Kingman, J. (1967).

Completely random measures.

Pacific Journal of Mathematics, 21(1):59-78.

Teh, Y. and Görür, D. (2009).

Indian buffet processes with power-law behavior.

In Neural Information Processing Systems (NIPS'2009).