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Context
Machine learning for \big data"

� Large-scale machine learning: large p, large n, large k

{ p : dimension of each observation (input)
{ n : number of observations
{ k : number of tasks (dimension of outputs)

� Examples: computer vision, bioinformatics, text processing

{ Ideal running-time complexity : O(pn + kn)

{ Going back to simple methods

{ Stochastic gradient methods (Robbins and Monro, 1951)
{ Mixing statistics and optimization
{ Using smoothness to go beyond stochastic gradient descent



Search engines - advertising



Advertising - recommendation



Object recognition



Learning for bioinformatics - Proteins

� Crucial components of cell life

� Predicting multiple functions and
interactions

� Massive data: up to 1 millions for
humans!

� Complex data

{ Amino-acid sequence
{ Link with DNA
{ Tri-dimensional molecule
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Outline

� Introduction: stochastic approximation algorithms

{ Supervised machine learning and convex optimization
{ Stochastic gradient and averaging
{ Strongly convex vs. non-strongly convex

� Fast convergence through smoothness and constant step-sizes

{ Online Newton steps (Bach and Moulines, 2013)
{ O(1=n) convergence rate for all convex functions

� More than a single pass through the data

{ Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
{ Linear (exponential) convergence rate for strongly convex functions



Supervised machine learning

� Data : n observations(x i ; yi ) 2 X � Y , i = 1 ; : : : ; n, i.i.d.

� Prediction as a linear functionh�; �( x)i of features�( x) 2 Rp

� (regularized) empirical risk minimization : �nd �̂ solution of

min
� 2 Rp

1
n

nX

i =1

`
�
yi ; h�; �( x i )i

�
+ � 
( � )

convex data �tting term + regularizer
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n

P n
i =1 `(yi ; h�; �( x i )i ) training cost

� Expected risk:f (� ) = E(x;y ) `(y; h�; �( x)i ) testing cost

� Two fundamental questions : (1) computing�̂ and (2) analyzing�̂

{ May be tackled simultaneously
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� A function g : Rp ! R is L -smooth if and only if it is twice
di�erentiable and

8� 2 Rp; g00(� ) 4 L � Id
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{ with g(� ) = 1
n
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i =1 `(yi ; h�; �( x i )i )

{ Hessian� covariance matrix1
n

P n
i =1 �( x i ) 
 �( x i )

{ Data with invertible covariance matrix(low correlation/dimension)

� Adding regularization by �
2k� k2

{ creates additional bias unless� is small



Iterative methods for minimizing smooth functions

� Assumption: g convex and smooth onRp

� Gradient descent: � t = � t � 1 � 
 t g0(� t � 1)

{ O(1=t) convergence rate for convex functions
{ O(e� �t ) convergence rate for strongly convex functions

� Newton method : � t = � t � 1 � g00(� t � 1) � 1g0(� t � 1)

{ O
�
e� � 2t �

convergence rate



Iterative methods for minimizing smooth functions

� Assumption: g convex and smooth onRp

� Gradient descent: � t = � t � 1 � 
 t g0(� t � 1)

{ O(1=t) convergence rate for convex functions
{ O(e� �t ) convergence rate for strongly convex functions

� Newton method : � t = � t � 1 � g00(� t � 1) � 1g0(� t � 1)

{ O
�
e� � 2t �

convergence rate

� Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error
2. In machine learning, cost functions are averages

) Stochastic approximation
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� Goal: Minimizing a functionf de�ned on Rp
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n (� n ) of its gradients f 0(� n ) at
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{ Observation off 0
n (� n ) = f 0(� n ) + "n , with "n = i.i.d. noise

{ Non-convex problems
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� Goal: Minimizing a functionf de�ned on Rp

{ given only unbiased estimatesf 0
n (� n ) of its gradients f 0(� n ) at

certain points� n 2 Rp

� Stochastic approximation

{ Observation off 0
n (� n ) = f 0(� n ) + "n , with "n = i.i.d. noise

{ Non-convex problems

� Machine learning - statistics

{ loss for a single pair of observations : f n (� ) = `(yn ; h�; �( xn )i )

{ f (� ) = Ef n (� ) = E `(yn ; h�; �( xn )i ) = generalization error
{ Expected gradient:f 0(� ) = Ef 0

n (� ) = E
�

`0(yn ; h�; �( xn )i ) �( xn )
	



Convex stochastic approximation

� Key assumption: smoothness and/or strongly convexity

� Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

� n = � n � 1 � 
 n f 0
n (� n � 1)

{ Polyak-Ruppert averaging:�� n = 1
n +1

P n
k=0 � k

{ Which learning rate sequence
 n ? Classical setting: 
 n = Cn� �

- Desirable practical behavior

- Applicable (at least) to least-squares and logistic regression
- Robustness to (potentially unknown) constants (L , � )
- Adaptivity to di�culty of the problem (e.g., strong convexity)



Convex stochastic approximation
Existing work

� Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

{ Strongly convex:O(( �n ) � 1)
Attained by averaged stochastic gradient descent with
 n / (�n ) � 1

{ Non-strongly convex:O(n� 1=2)
Attained by averaged stochastic gradient descent with
 n / n� 1=2

{ Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan
et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz
et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov
and Vial (2008); Nemirovski et al. (2009)
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Convex stochastic approximation
Existing work

� Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

{ Strongly convex:O(( �n ) � 1)
Attained by averaged stochastic gradient descent with
 n / (�n ) � 1

{ Non-strongly convex:O(n� 1=2)
Attained by averaged stochastic gradient descent with
 n / n� 1=2

� Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

{ All step sizes
 n = Cn� � with � 2 (1=2; 1) lead to O(n� 1) for
smoothstrongly convex problems

� A single algorithm for smooth problems with convergence rate
O(1=n) in all situations?



Least-mean-square algorithm

� Least-squares: f (� ) = 1
2E

�
(yn � h �( xn ); � i )2

�
with � 2 Rp

{ SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
{ usually studied without averaging and decreasing step-sizes
{ with strong convexity assumptionE

�
�( xn ) 
 �( xn )

�
= H < � � Id
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� Least-squares: f (� ) = 1
2E

�
(yn � h �( xn ); � i )2

�
with � 2 Rp

{ SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
{ usually studied without averaging and decreasing step-sizes
{ with strong convexity assumptionE

�
�( xn ) 
 �( xn )

�
= H < � � Id

� New analysis for averaging and constant step-size 
 = 1=(4R2)

{ Assumek�( xn )k 6 R and jyn � h �( xn ); � � ij 6 � almost surely
{ No assumption regarding lowest eigenvalues ofH

{ Main result: Ef ( �� n � 1) � f (� � ) 6
2
n

h
�

p
p + Rk� 0 � � � k

i 2

� Matches statistical lower bound (Tsybakov, 2003)



Markov chain interpretation of constant step sizes

� LMS recursion forf n (� ) = 1
2

�
yn � h �( xn ); � i

� 2

� n = � n � 1 � 

�
h�( xn ); � n � 1i � yn

�
�( xn )

� The sequence(� n )n is a homogeneous Markov chain

{ convergence to a stationary distribution� 
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R
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 (d� )



Markov chain interpretation of constant step sizes

� LMS recursion forf n (� ) = 1
2

�
yn � h �( xn ); � i

� 2

� n = � n � 1 � 

�
h�( xn ); � n � 1i � yn

�
�( xn )

� The sequence(� n )n is a homogeneous Markov chain
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{ with expectation�� 

def=

R
�� 
 (d� )

� For least-squares, �� 
 = � �

{ � n does not converge to� � but oscillates around it
{ oscillations of order

p



� Ergodic theorem:

{ Averaged iterates converge to�� 
 = � � at rate O(1=n)
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Simulations - benchmarks

� alpha(p = 500, n = 500 000), news(p = 1 300 000, n = 20 000)
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Beyond least-squares - Markov chain interpretation

� Recursion� n = � n � 1 � 
f 0
n (� n � 1) also de�nes a Markov chain

{ Stationary distribution� 
 such that
R

f 0(� )� 
 (d� ) = 0
{ When f 0 is not linear,f 0(

R
�� 
 (d� )) 6=

R
f 0(� )� 
 (d� ) = 0
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� Recursion� n = � n � 1 � 
f 0
n (� n � 1) also de�nes a Markov chain

{ Stationary distribution� 
 such that
R

f 0(� )� 
 (d� ) = 0
{ When f 0 is not linear,f 0(

R
�� 
 (d� )) 6=

R
f 0(� )� 
 (d� ) = 0

� � n oscillates around the wrong value �� 
 6= � �

{ moreover,k� � � � n k = Op(
p


 )

� Ergodic theorem

{ averaged iterates converge to�� 
 6= � � at rate O(1=n)
{ moreover,k� � � �� 
 k = O(
 ) (Bach, 2013)
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Restoring convergence through online Newton steps

� The Newton step forf = Ef n (� ) def= E
�
`(yn ; h�; �( xn )i )

�
at ~� is

equivalent to minimizing the quadratic approximation

g(� ) = f (~� ) + hf 0(~� ); � � ~� i + 1
2h� � ~�; f 00(~� )(� � ~� )i

= f (~� ) + hEf 0
n (~� ); � � ~� i + 1

2h� � ~�; Ef 00
n (~� )(� � ~� )i

= E
h
f (~� ) + hf 0

n (~� ); � � ~� i + 1
2h� � ~�; f 00

n (~� )(� � ~� )i
i
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� The Newton step forf = Ef n (� ) def= E
�
`(yn ; h�; �( xn )i )

�
at ~� is

equivalent to minimizing the quadratic approximation

g(� ) = f (~� ) + hf 0(~� ); � � ~� i + 1
2h� � ~�; f 00(~� )(� � ~� )i

= f (~� ) + hEf 0
n (~� ); � � ~� i + 1

2h� � ~�; Ef 00
n (~� )(� � ~� )i

= E
h
f (~� ) + hf 0

n (~� ); � � ~� i + 1
2h� � ~�; f 00

n (~� )(� � ~� )i
i

� Complexity of least-mean-square recursion for g is O(p)

� n = � n � 1 � 

�
f 0

n (~� ) + f 00
n (~� )( � n � 1 � ~� )

�

{ f 00
n (~� ) = `00(yn ; h~�; �( xn )i )�( xn ) 
 �( xn ) has rank one

{ New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

� Two-stage procedure

(1) Run n=2 iterations of averaged SGD to obtain~�
(2) Run n=2 iterations of averaged constant step-size LMS

{ Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
{ Provable convergence rate ofO(p=n) for logistic regression
{ Additional assumptions but nostrong convexity



Choice of support point for online Newton step

� Two-stage procedure

(1) Run n=2 iterations of averaged SGD to obtain~�
(2) Run n=2 iterations of averaged constant step-size LMS

{ Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
{ Provable convergence rate ofO(p=n) for logistic regression
{ Additional assumptions but nostrong convexity

� Update at each iteration using the current averaged iterate

{ Recursion: � n = � n � 1 � 

�
f 0

n ( �� n � 1) + f 00
n ( �� n � 1)( � n � 1 � �� n � 1)

�

{ No provable convergence rate (yet) but best practical behavior
{ Note (dis)similarity with regular SGD:� n = � n � 1 � 
f 0

n (� n � 1)
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Simulations - benchmarks

� alpha(p = 500, n = 500 000), news(p = 1 300 000, n = 20 000)
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� Stochastic approximation

{ Assumes in�nite data stream
{ Observations are used only once
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Going beyond a single pass over the data

� Stochastic approximation

{ Assumes in�nite data stream
{ Observations are used only once
{ Directly minimizestesting cost E(x;y ) `(y; h�; �( x)i )

� Machine learning practice

{ Finite data set(x1; y1; : : : ; xn ; yn )
{ Multiple passes
{ Minimizestraining cost 1

n

P n
i =1 `(yi ; h�; �( x i )i )

{ Need to regularize (e.g., by thè2-norm) to avoid over�tting

� Goal: minimizeg(� ) =
1
n

nX

i =1

f i (� )



Stochastic vs. deterministic methods

� Minimizing g(� ) =
1
n

nX

i =1

f i (� ) with f i (� ) = `
�
yi ; � > �( x i )

�
+ � 
( � )

� Batch gradient descent:� t = � t � 1� 
 t g0(� t � 1) = � t � 1�

 t

n

nX

i =1

f 0
i (� t � 1)

{ Linear (e.g., exponential) convergence rate inO(e� �t )
{ Iteration complexity is linear inn (with line search)



Stochastic vs. deterministic methods

� Minimizing g(� ) =
1
n

nX

i =1

f i (� ) with f i (� ) = `
�
yi ; � > �( x i )

�
+ � 
( � )

� Batch gradient descent:� t = � t � 1� 
 t g0(� t � 1) = � t � 1�

 t

n

nX

i =1

f 0
i (� t � 1)

{ Linear (e.g., exponential) convergence rate inO(e� �t )
{ Iteration complexity is linear inn (with line search)

� Stochasticgradient descent:� t = � t � 1 � 
 t f 0
i ( t ) (� t � 1)

{ Sampling with replacement:i (t) random element off 1; : : : ; ng
{ Convergence rate inO(1=t)
{ Iteration complexity is independent ofn (step size selection?)



Stochastic vs. deterministic methods

� Goal = best of both worlds : Linear rate withO(1) iteration cost
Robustness to step size
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Stochastic vs. deterministic methods

� Goal = best of both worlds : Linear rate withO(1) iteration cost
Robustness to step size
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

� Stochastic average gradient (SAG) iteration

{ Keep in memory the gradients of all functionsf i , i = 1 ; : : : ; n
{ Random selectioni (t) 2 f 1; : : : ; ng with replacement

{ Iteration: � t = � t � 1 �

 t

n

nX

i =1

yt
i with yt

i =

(
f 0

i (� t � 1) if i = i (t)

yt � 1
i otherwise



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

� Stochastic average gradient (SAG) iteration

{ Keep in memory the gradients of all functionsf i , i = 1 ; : : : ; n
{ Random selectioni (t) 2 f 1; : : : ; ng with replacement

{ Iteration: � t = � t � 1 �

 t

n

nX

i =1

yt
i with yt

i =

(
f 0

i (� t � 1) if i = i (t)

yt � 1
i otherwise

� Stochastic version of incremental average gradient (Blattet al., 2008)

� Extra memory requirement

{ Supervised machine learning
{ If f i (� ) = ` i (yi ; �( x i )> � ), then f 0

i (� ) = `0
i (yi ; �( x i )> � ) �( x i )

{ Only need to storen real numbers



Stochastic average gradient - Convergence analysis

� Assumptions

{ Eachf i is L -smooth, i = 1 ; : : : ; n
{ g= 1

n

P n
i =1 f i is � -strongly convex (with potentially � = 0 )

{ constant step size
 t = 1=(16L)
{ initialization with one pass of averaged SGD



Stochastic average gradient - Convergence analysis

� Assumptions

{ Eachf i is L -smooth, i = 1 ; : : : ; n
{ g= 1

n

P n
i =1 f i is � -strongly convex (with potentially � = 0 )

{ constant step size
 t = 1=(16L)
{ initialization with one pass of averaged SGD

� Strongly convex case (Le Roux et al., 2012, 2013)

E
�
g(� t ) � g(� � )

�
6

� 8� 2

n�
+

4Lk� 0 � � � k2

n

�
exp

�
� t min

n 1
8n

;
�

16L

o�

{ Linear (exponential) convergence rate withO(1) iteration cost

{ After one pass, reduction of cost byexp
�

� min
n 1

8
;

n�
16L

o�



Stochastic average gradient - Convergence analysis

� Assumptions

{ Eachf i is L -smooth, i = 1 ; : : : ; n
{ g= 1

n

P n
i =1 f i is � -strongly convex (with potentially � = 0 )

{ constant step size
 t = 1=(16L)
{ initialization with one pass of averaged SGD

� Non-strongly convex case (Le Roux et al., 2013)

E
�
g(� t ) � g(� � )

�
6 48

� 2 + Lk� 0 � � � k2
p

n
n
t

{ Improvement over regular batch and stochastic gradient
{ Adaptivity to potentially hidden strong convexity



Stochastic average gradient
Simulation experiments

� protein dataset (n = 145751, p = 74)

� Dataset split in two (training/testing)
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Stochastic average gradient
Simulation experiments

� covertype dataset (n = 581012, p = 54)

� Dataset split in two (training/testing)
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Conclusions

� Constant-step-size averaged stochastic gradient descent

{ Reaches convergence rateO(1=n) in all regimes
{ Improves on theO(1=

p
n) lower-bound of non-smooth problems

{ E�cient online Newton step for non-quadratic problems

� Going beyond a single pass through the data

{ Keep memory of all gradients for �nite training sets
{ Randomization leads to easier analysisand faster rates
{ Relationship with Shalev-Shwartz and Zhang (2012); Mairal(2013)

� Extensions

{ Non-di�erentiable terms,kernels, line-search,parallelization, etc.
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