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Abstract

We present an algorithm to perform blind, one-microphoreesp sep-
aration. Our algorithm separates mixtures of speech withmdeling

individual speakers. Instead, we formulate the problempeksh sep-
aration as a problem in segmenting the spectrogram of thmalsigto

two or more disjoint sets. We build feature sets for our segerausing
classical cues from speech psychophysics. We then comiése fea-
tures into parameterized affinity matrices. We also takeathge of the
fact that we can generate training examples for segmentatoartifi-

cially superposing separately-recorded signals. Thugp#nameters of
the affinity matrices can be tuned using recent work on legrepectral
clustering [1]. This yields an adaptive, speech-specifigrentation al-
gorithm that can successfully separate one-microphorecspaixtures.

1 Introduction

The problem of recovering signals from linear mixtureshvanly partial knowledge of the
mixing process and the signals—a problem often referred biag source separatior-

is a central problem in signal processing. It has applioatim many fields, including
speech processing, network tomography and biomedicaling4g)]. When the problem is
over-determined, i.e., when there are no more signals itm&i (the sources) than signals
that are observed (the sensors), generic assumptions sstdttiatical independence of the
sources can be used in order to demix successfully [2]. Materesting applications,
however, involve under-determined problems (more soutices sensors), where more
specific assumptions must be made in order to demix. In pmubiavolving at least two
sensors, progress has been made by appealing to sparsity@Ems [3, 4].

However, the most extreme case, in which there is only onsos@md two or more sources,
is a much harder and still-open problem for complex signadf ss speech. In this setting,
simple generic statistical assumptions do not suffice. @pecach to the problem involves
areturn to the spirit of classical engineering methods sisehatched filters, and estimating
specific models for specific sources—e.g., specific speaketwicase of speech [5, 6].
While such an approach is reasonable, it departs significdmtin the desideratum of
“blindness.” In this paper we present an algorithm that iBradlseparation algorithm—our
algorithm separates speech mixtures from a single microphdathout requiring models
of specific speakers.



Our approach involves a “discriminative” approach to thebbem of speech separation.
That is, rather than building a complex model of speech, wtead focus directly on the
task of separation and optimize parameters that deterneiparation performance. We
work within a time-frequency representation (a spectragraand exploit the sparsity of
speech signals in this representation. That is, althoughspeakers might speak simul-
taneously, there is relatively little overlap in the tinrequency plane if the speakers are
different [5, 4]. We thus formulate speech separation aoblem in segmentation in the
time-frequency plane. In principle, we could appeal to silzsd segmentation methods
from vision (see, e.g. [7]) to solve this two-dimensionajrsentation problem. Speech
segments are, however, very different from visual segmeefiecting very different un-
derlying physics. Thus we must design features for segmgspeech from first principles.

It also proves essential to combine knowledge-based fedesign with learning methods.
In particular, we exploit the fact that in speech we can gateeftraining examples” by
artificially superposing two separately-recorded signdlgking use of our earlier work
on learning methods for spectral clustering [1], we use thming data to optimize the
parameters of a spectral clustering algorithm. This yieldsadaptive, “discriminative”
segmentation algorithm that is optimized to separate $psigoals.

We highlight one other aspect of the problem here—the majorpeational challenge
involved in applying spectral methods to speech separalioieed, four seconds of speech
sampled at 5.5 KHz yields 22,000 samples and thus we needtiputate affinity matrices
of dimension at leas?2, 000 x 22,000. Thus a major part of our effort has involved the
design of numerical approximation schemes that exploitlifierent time scales present in
speech signals.

The paper is structured as follows. Section 2 provides awewf basic methodology.
In Section 3 we describe our approach to feature design las&down cues for speech
separation [8, 9]. Section 4 shows how parameterized affindtrices based on these cues
can be optimized in the spectral clustering setting. Werilgssour experimental results in
Section 5 and present our conclusions in Section 6.

2 Speech separation as spectrogram segmentation

In this section, we first review the relevant properties ofexh signals in the time-
frequency representation and describe how our trainirggasetconstructed.

2.1 Spectrogram

The spectrogram is a two-dimensional (time and frequereyimdant representation of a
one-dimensional signal [10]. Let[t],t = 0,...,7 — 1 be a signal inrR”. The spectro-
gram is defined through windowed Fourier transforms and ismonly referred to as a
short-time Fourier transform or as Gabor analysis [10]. \f&dee (U f),,, of the spectro-

gram at time window: and frequencyn is defined agU f )., = ﬁ ZtT:’Ol fltlw[t —
nale??™™t/M ‘'wherew is a window of lengtif” with small support of length. We assume
that the number of sampl&sis an integer multiple ofi andc. There are theV = T'/a

different windows of lengtle. The spectrogram is thus @ x M image which provides a
redundant time-frequency representation of time sigr(atse Figure 1).

Inversion Our speech separation framework is based on the segmentétive spectro-
gram of a signaff[t] in S > 2 disjoint subsets{;, i =1,..., S of [0, N — 1] x [0, M —1].

In our simulations, the sampling frequencyfis = 5.5kHz and we use a Hanning window of
lengthc = 216 (i.e.,43.2ms). The spacing between window is equakte= 54 (i.e., 10.8ms). We
use &12-point FFT (M = 512). For a speech sample of lengtlsec, we havd” = 22, 000 samples
and thenNV = 407, which makes= 2 x 10° spectrogram pixels.
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Figure 1: Spectrogram of speech; (left) single speakeh{yitwo simultaneous speakers.
The gray intensity is proportional to the magnitude of thectppgram.

This leads toS spectrogramd/; such that(U;).., = Upny if (m,n) € A; and zero
otherwise—note that the phase is kept the same as the one ofigfireal mixed signal.
We now need to find5 speech signalg;[t] such that eaclyy; is the spectrogram of;.

In general there are no exact solutions (because the repatisa is redundant), and a
classical technique is to find the minimuba norm approximation, i.e., find; such that
||U; — Uf;||? is minimal [10]. The solution of this minimization problemvilves the
pseudo-inverse of the linear operafér[10] and is equal tof; = (U*U)~'U*U;. By
our choice of window (Hanning)/*U is proportional to the identity matrix, so that the
solution to this problem can simply be obtained by applymgadjoint operatol/*.

Normalization and subsampling There are several ways of normalizing a speech signal.
In this paper, we chose to rescale all speech signals asvillfor each time window,

we compute the total energy, = >, |U fmx|?, and its 20-point moving average. The
signals are normalized so that #@% percentile of those values is equal to one.

In order to reduce the number of spectrogram samples to aemsior a given pre-
normalized speech signal, we threshold coefficients whasmitudes are less than a value
that was chosen so that the distortion is inaudible.

2.2 Generating training samples

Our approach is based on a learning algorithm that optindzegymentation criterion. The
training examples that we provide to this algorithm are iolet@ by mixing separately-
normalized speech signals. That is, given two volume-nbzed speech signals, f- of

the same duration, with spectrograbisandU,, we build a training sample d$'"*" =

U, + Us, with a segmentation given by = argmin{U;,Us}. In order to obtain better
training partitions (and in particular to be more robusthie thoice of normalization),
we also search over all € [0, 1] such that the least square reconstruction error of the
waveform obtained from segmenting/reconstructing usiagarg min{aU, (1 — a)Us}

is minimized. An example of such a partition is shown in Feg@r(left).

3 Features and grouping cues for speech separation

In this section we describe our approach to the design aofifestfor the spectral segmen-
tation. We base our design on classical cues suggested funlies of perceptual group-
ing [11]. Our basic representation is a “feature map,” a thraensional representation that
has the same layout as the spectrogram. Each of these cusm@aded with a specific
time scale, which we refer to as “small” (less than 5 fram&agdium” (10 to 20 frames),
and “large” (across all frames). (These scales will be ofipalar relevance to the design
of numerical approximation methods in Section 4.3). Anyegifeature is not sufficient for
separating by itself; rather, it is the combination of sael&atures that makes our approach
successful.



3.1 Non-harmonic cues

The following non-harmonic cues have counterparts in Vviso@nes and for these cues we
are able to borrow from feature design techniques used igérsagmentation [7].

Continuity  Two time-frequency points are likely to belong to the sangmsmt if they
are close in time or frequency; we thus use time and frequdinegtly as features. This
cue acts at a small time scale.

Common fate cues Elements that exhibit the same time variation are likelyatohg to
the same source. This takes several particular forms. Ttaedisimplycommon offsesnd
common onsetWe thus build an offset map and an onset map, with elemeatstk zero
when no variation occurs, and are large when there is a slemgakse or increase (with
respect to time) for that particular time-frequency poifibe onset and offset maps are
built using oriented energy filters as used in vision (witke eertical orientation). These
are obtained by convolving the spectrogram with derivatoeGaussian windows [7].

Another form of the common fate cuefiequency co-modulatigrithe situation in which
frequency components of a single source tend to move in syaaapture this cue we
simply use oriented filter outputs for a set of orientatiomglas (8 in our simulations).
Those features act mainly at a medium time scale.

3.2 Harmonic cues

This is the major cue for voiced speech [12, 9, 8], and it attlladime scales (small,
medium and large): voiced speech is locally periodic andobe period is usually referred
to as the pitch.

Pitch estimation In order to use harmonic information, we need to estimaterlly
several pitches. We have developed a simple pattern matétamework for doing this
that we present in Appendix A. § pitches are sought, the output that we obtain from the
pitch extractor is, for each time framegthe S pitchesw,,1, . . ., w,s, as well as the strength
ynms Of the s-th pitch for each frequency..

Timbre The pitch extraction algorithm presented in Appendix A asitputs the spec-

tral envelope of the signal [12]. This can be used to desigadditional feature related

to timbre which helps integrate information regarding $eeadentification across time.

Timbre can be loosely defined as the set of properties of &dapeech signal once the
pitch has been factored out [8]. We add the spectral envedspe feature (reducing its
dimensionality using principal component analysis).

Building feature maps from pitch information We build a set of features
from the pitch information. Given a time-frequency poifiti, n), let s(m,n) =
arg max, (Zy4m denote the highest energy pitch, and define the featugs, .),

7 Ynm?s)?
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normalization with the square root to avoid including vesw lenergy signals, while allow-
ing a significant difference between the local amplitudehefg¢peakers.

Those features all come with some form of energy level anéealiures involving pitch
valuesw should take this energy into account when the affinity masrbuilt in Section 4.

Indeed, the values of the harmonic features have no mearkieg wo energy in that pitch
is present.

4 Spectral clustering and affinity matrices

Given the features described in the previous section, we stmw how to build affinity
(i.e., similarity) matrices that can be used to define a spestgmenter. In particular, our



approach buildparameterizedffinity matrices, and uses a learning algorithm to adjust
these parameters.

4.1 Spectral clustering

Given P data points to partition int¢ > 2 disjoint groups, spectral clustering methods
use anaffinity matrix W, symmetric of sizeP x P, that encodes topological knowledge
about the problem. Ondé is available, it is normalized and its fir§t (P-dimensional)
eigenvectors are computed. Then, formind®ax S matrix with these eigenvectors as
columns, we cluster the rows of this matrix as points iR® usingX -means (or a weighted
version thereof). These clusters define the final partitiori].

We prefer spectral clustering methods over other clugiexigorithms such a&’-means or
mixtures of Gaussians estimated by the EM algorithm becaesdo not have any reason
to expect the segments of interest in our problem to form eorshapes in the feature
representation.

4.2 Parameterized affinity matrices

The success of spectral methods for clustering dependd#yheavthe construction of the
affinity matrix . In [1], we have shown how learning can play a role in optimigi
over affinity matrices. Our algorithm assumes that fullytiianed datasets are available,
and uses these datasets as training data for optimizingattaengters of affinity matrices.
As we have discussed in Section 2.2, such training data aily ehtained in the speech
separation setting. It remains for us to describe how werpaterize the affinity matrices.

From each of the features defined in Section 3, we define a afigigy matrix W; =
W,(8;), whereg; is a (vector) parameter. We restrict ourselves to affinityrives whose
elements are between zero and one, and with unit diagonadistfaguish between har-
monic and non-harmonic features. For non-harmonic feafuve use a radial basis func-
tion to define affinities. Thus, if, is the value of the feature for data pointwe use a
basis affinity matrix defined a§/,;, = exp(—||f. — f5/|°), wheres > 1.

For an harmonic feature, on the other hand, we need to takedabunt the strength of the
feature: if f, is the value of the feature for data pointwith strengthy,,, we usel?,;, =
exp(~[g(yar yo) + B3| |1 fa — fol|%2), whereg(u,v) = (ues* + vesv) /(%5 4 )
ranges from the minimum af andv for 35 = —oo to their maximum fors; = +oc.

Given m basis matrices, we use the following parameterizationVof W =

Zszl YW x - x Wem  where the products are taken pointwise. Intuitively, if
we consider the values of affinity as soft boolean varialiédsgng the product of two affin-
ity matrices is equivalent to considering the conjunctibtwm matrices, while taking the
sum can be seen as their disjunction: our final affinity mataix thus be seen as a disjunc-
tive normal form. For our application to speech separatisaconsider a sum ok = 3
matrices, one matrix for each time scale. This has the adgentf allowing different
approximation schemes for each of the time scales, an iseusddress in the following
section.

4.3 Approximations of affinity matrices

The affinity matrices that we consider are huge, of size &t 188,000 by 50,000. Thus a
significant part of our effort has involved finding computatally efficient approximations
of affinity matrices.

Let us assume that the time-frequency plane is vectorizesidmking one time frame after
the other. In this representation, the time scale of a bffanéta matrix W exerts an effect
on the degree of “bandedness”Idf. The matrixi¥ is saidband-diagonaivith bandwidth



B, ifforall 7,7, i — j| > B = W;; = 0. On a small time scalé}” has a small bandwidth;
for a medium time scale, the band is larger but still small pared to the total size of the
matrix, while for large scale effects, the matiiX has no band structure. Note that the
bandwidthB can be controlled by the coefficient of the radial basis fiamcinvolving the
time featuren.

For each of these three cases, we have designed a particayaofwapproximating the
matrix, while ensuring that in each case the time and spapéresments ardéinear in the
number of time frames.

Small scale If the bandwidthB is very small, we use a simple direct sparse approxi-
mation. The complexity of such an approximation grows Ilihea the number of time
frames.

Medium and large scale We use a low-rank approximation of the matkix similar in
spirit to the algorithm of [13]. If we assume that the index §k ..., P} is partitioned
randomly into/ andJ, and thatd = W(I,1) andB = W(J,I), thenW (J,I) = BT
(by symmetry) and we approximate = W (J, J) by a linear combination of the columns
in I, i.e.,C = BE, whereE € RIIIxI7l. The matrixE is chosen so that when the linear
combination defined by is applied to the columns ih, the error is minimal, which leads
to an approximation ofi’ (J, J) by B(A%? + \XI)~'ABT.

If G is the dimension off, then the complexity of finding the approximation(§G* +
G?P), and the complexity of a matrix-vector product with the loank approximation is
O(G*P). The storage requirement@(GP). For large bandwidths, we use a const@nt
i.e., we make the assumption that the rank that is requireti¢ode a speaker is indepen-
dent of the duration of the signals.

For mid-range interactions, we need an approximation wiask grows with time, but
whose complexity does not grow quadratically with time.slisidone by using the banded
structure ofA andW. If p is the proportion of retained indices, then the complexity o
storage and matrix-vector multiplicationG® P B).

5 Experiments

We have trained our segmenter using data from four diffespatkers, with speech signals
of duration 3 seconds. There were 28 parameters to estirsatg aur spectral learning
algorithm. For testing, we have use mixes from five speakatsiere different from those
in the training set.

In Figure 2, for two speakers from the testing set, we showhenléft part an example
of the segmentation that is obtained when the two speeclalsigme known in advance
(obtained as described in Section 2.2), and on the right #idesegmentation that is output
by our algorithm. Although some components of the “black&ager are missing, the
segmentation performance is good enough to obtain audipiels of reasonable quality.
The speech samples for this example can de downloadedviramcs.berkeley.edu/
“fbach/speech/ . On this web site, there are additional examples of spequdration,
with various speakers, in French and in English.

An important point is that our method does not require to ktlegvspeaker in advance in
order to demix successfully; rather, it just requires thattivo speakers have distinct and
far enough pitches most of the time (another but less crgoiadlition is that one pitch is
not too close to twice the other one).

As mentioned earlier, there was a major computational ehgé# in applying spectral meth-
ods to single microphone speech separation. Using theitpamdescribed in Section 4.3,
the separation algorithm has linear running time compjexitd memory requirement and,
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Figure 2: (Left) Optimal segmentation for the spectrogranfrigure 1 (right), where the
two speakers are “black” and “grey;” this segmentation i&oted from the known sepa-
rated signals. (Right) The blind segmentation obtainet witr algorithm.

coded in Matlab and C, it takes 30 minutes to separate 4 searfrspeech on a 1.8 GHz
processor with 1GB of RAM.

6 Conclusions

We have presented an algorithm to perform blind source aéparof speech signals from a
single microphone. To do so, we have combined knowledgeysfipal and psychophysical
properties of speech with learning methods. The formerigeoparameterized affinity
matrices for spectral clustering, and the latter make useloébility to generate segmented
training data. The result is an optimized segmenter fortspgiams of speech mixtures.
We have successfully demixed speech signals from two speaking this approach.

Our work thus far has been limited to the setting of ideal atioa and equal-strength
mixing of two speakers. There are several obvious extendiuat warrant investigation.
First, the mixing conditions should be weakened and shdidd/aome form of delay or
echo. Second, there are multiple applications where spleasto be separated from a
non-stationary noise; we believe that our method can bandgteto this situation. Third,
our framework is based on segmentation of the spectrograinasnsuch, distortions are
inevitable since this is a “lossy” formulation [6, 4]. We aarrently working on post-
processing methods that remove some of those distortiomally while running time
and memory requirements of our algorithm are linear in thetilon of the signal to be
separated, the resource requirements remain a concerne\dareently working on further
numerical techniques that we believe will bring our methigdi§icantly closer to real-time.

Appendix A. Pitch estimation

Pitch estimation for one pitch In this paragraph, we assume that we are given one time
slice s of the spectrogram magnitudec R™. The goal is to have a specific pattern match
s. Since the speech signals are real, the spectrogram is syimaral we can consider only

M /2 samples.

If the signal is exactly periodic, then the spectrogram nitage for that time frame is ex-
actly a superposition of bumps at multiples of the fundamleneéquency, The patterns we
are considering have thus the following parameters: a “Bufomgtion « — b(u), a pitch
w € [0, M/2] and a sequence of harmonics ...,z g at frequencies); = w,...,wy =
Hw, whereH is the largest acceptable harmonic multiple, iFt.= | M /2w]. The pattern
5§ = §(x,b,w) is then built as a weighted sum of bumps.

By pattern matching, we mean to find the patt@as close ta in the L2-norm sense. We
impose a constraint on the harmonic strendthgs), namely, that they are samplesrat

of a functiong with small second derivative norng/2 |9® (w)|?dw. The functiong can



be seen as the envelope of the signal and is related to thbréfnof the speaker [8]. The
explicit consideration of the envelope and its smoothnes&cessary for two reasons: (a)
it will provide a timbre feature helpful for separation, (bhelps avoid pitch-halving, a
traditional problem of pitch extractors [12].

Givenb andw, we minimize with respect to, ||s — 3(z)|[2 + A [;/? |¢) (w)[2dw, where

xp, = g(hw). Sinces(zx) is linear function ofz, this is a spline smoothing problem, and the
solution can be obtained in closed form with complexityH3) [14].

We now have to search ovéiandw, knowing that the harmonic strengthh<an be found
in closed form. We use exhaustive search on a grid.fowhile we take only a few bump
shapes. The main reason for several bump shapes is to adootim¢ only approximate
periodicity of voiced speech. For further details and esitems, see [15].

Pitch estimation for several pitches If we are to estimaté& pitches, we estimate them
recursively, by removing the estimated harmonic signalshis paper, we assume that the
number of speakers and hence the maximum number of pitchkeswen. Note, however,
that since all our pitch features are always used with thengths, our separation method
is relatively robust to situations where we try to look foo tmany pitches.
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