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• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

• Series of “hypes”

Big data → Data science → Machine Learning

→ Deep Learning → Artificial Intelligence

• Healthy interactions between theory, applications, and hype?
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Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)
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Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input) or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

– Ideal running-time complexity: O(dn)

• Going back to simple methods

− Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present recent progress



Advertising



Object / action recognition in images

car under elephant person in cart

person ride dog person on top of traffic light

From Peyré, Laptev, Schmid and Sivic (2017)



Bioinformatics

• Predicting multiple functions and

interactions of proteins

• Massive data: up to 1 millions for

humans!

• Complex data

– Amino-acid sequence

– Link with DNA

– Tri-dimensional molecule
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Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input), or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

• Ideal running-time complexity: O(dn)

• Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present classical algorithms and some recent progress



Outline

1. Introduction/motivation: Supervised machine learning

− Machine learning ≈ optimization of finite sums

− Batch optimization methods

2. Fast stochastic gradient methods for convex problems

– Variance reduction: for training error

– Constant step-sizes: for testing error

3. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks
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Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1

– Neural networks (n, d > 106): h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer
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Usual losses

• Regression: y ∈ R, prediction ŷ = h(x, θ)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − h(x, θ))2

• Classification : y ∈ {−1, 1}, prediction ŷ = sign(h(x, θ))

– loss of the form ℓ(y h(x, θ))

– “True” 0-1 loss: ℓ(y h(x, θ)) = 1y h(x,θ)<0

– Usual convex losses:

−3 −2 −1 0 1 2 3 4
0
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2

3
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0−1
hinge
square
logistic



Main motivating examples

• Support vector machine (hinge loss): non-smooth

ℓ(Y, h(Xθ)) = max{1− Y h(X, θ), 0}

• Logistic regression: smooth

ℓ(Y, h(Xθ)) = log(1 + exp(−Y h(X, θ)))

• Least-squares regression

ℓ(Y, h(Xθ)) =
1

2
(Y − h(X, θ))2

• Structured output regression

– See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)



Usual regularizers

• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved if h(x, θ) = θ⊤Φ(x)
– Representer theorem and kernel methods : θ =

∑n
i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)
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• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved if h(x, θ) = θ⊤Φ(x)
– Representer theorem and kernel methods : θ =

∑n
i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)

• Sparsity-inducing norms

– Main example: ℓ1-norm ‖θ‖1 =
∑d

j=1 |θj|
– Perform model selection as well as regularization

– Non-smooth optimization and structured sparsity

– See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012a,b)
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Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost



Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and
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d,

∣

∣eigenvalues
[

g′′(θ)
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∣ 6 L
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Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
d,

∣

∣eigenvalues
[

g′′(θ)
]∣

∣ 6 L

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Smooth prediction function θ 7→ h(xi, θ) + smooth loss

– (see board)
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Board

• Function g(θ) =
1

n

n
∑

i=1

ℓ(yi, θ
⊤Φ(xi))

• Gradient g′(θ) =
1

n

n
∑

i=1

ℓ′(yi, θ
⊤Φ(xi))Φ(xi)

• Hessian g′′(θ) =
1

n

n
∑

i=1

ℓ′′(yi, θ
⊤Φ(xi))Φ(xi)Φ(xi)

⊤

– Smooth loss ⇒ ℓ′′(yi, θ⊤Φ(xi)) bounded
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Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

– Condition number κ = L/µ > 1

(small κ = L/µ) (large κ = L/µ)
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• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• Relevance of convex optimization

– Easier design and analysis of algorithms

– Global minimum vs. local minimum vs. stationary points

– Gradient-based algorithms only need convexity for their analysis
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• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)
– Invertible covariance matrix 1

n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d (board)

– Even when µ > 0, µ may be arbitrarily small!



Board

• Function g(θ) =
1

n

n
∑

i=1

ℓ(yi, θ
⊤Φ(xi))

• Gradient g′(θ) =
1

n

n
∑

i=1

ℓ′(yi, θ
⊤Φ(xi))Φ(xi)

• Hessian g′′(θ) =
1

n

n
∑

i=1

ℓ′′(yi, θ
⊤Φ(xi))Φ(xi)Φ(xi)

⊤

– Smooth loss ⇒ ℓ′′(yi, θ⊤Φ(xi)) bounded

• Square loss ⇒ ℓ′′(yi, θ⊤Φ(xi)) = 1

– Hessian proportional to 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)
– Invertible covariance matrix 1

n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d (board)

– Even when µ > 0, µ may be arbitrarily small!

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small, but reduces variance

– Typically L/
√
n > µ > L/n



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O(e−t(µ/L)) = O(e−t/κ)

(small κ = L/µ) (large κ = L/µ)



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O((1−µ/L)t) = O(e−t(µ/L)) if µ-strongly convex

(small κ = L/µ) (large κ = L/µ)
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• Quadratic convex function: g(θ) = 1
2θ

⊤Hθ − c⊤θ

– µ and L are the smallest and largest eigenvalues of H

– Global optimum θ∗ = H−1c (or H†c) such that Hθ∗ = c

• Gradient descent with γ = 1/L:

θt = θt−1 −
1

L
(Hθt−1 − c) = θt−1 −

1

L
(Hθt−1 −Hθ∗)

θt − θ∗ = (I − 1

L
H)(θt−1 − θ∗) = (I − 1

L
H)t(θ0 − θ∗)

• Strong convexity µ > 0: eigenvalues of (I − 1
LH)t in [0, (1− µ

L)
t]

– Convergence of iterates: ‖θt − θ∗‖2 6 (1− µ/L)2t‖θ0 − θ∗‖2
– Function values: g(θt)− g(θ∗) 6 (1− µ/L)2t

[

g(θ0)− g(θ∗)
]

– Function values: g(θt)− g(θ∗) 6
L
t ‖θ0 − θ∗‖2



Gradient descent - Proof for quadratic functions

• Quadratic convex function: g(θ) = 1
2θ

⊤Hθ − c⊤θ

– µ and L are the smallest and largest eigenvalues of H

– Global optimum θ∗ = H−1c (or H†c) such that Hθ∗ = c

• Gradient descent with γ = 1/L:

θt = θt−1 −
1

L
(Hθt−1 − c) = θt−1 −

1

L
(Hθt−1 −Hθ∗)

θt − θ∗ = (I − 1

L
H)(θt−1 − θ∗) = (I − 1

L
H)t(θ0 − θ∗)

• Convexity µ = 0: eigenvalues of (I − 1
LH)t in [0, 1]

– No convergence of iterates: ‖θt − θ∗‖2 6 ‖θ0 − θ∗‖2
– Function values: g(θt)−g(θ∗) 6 maxv∈[0,L] v(1−v/L)2t‖θ0−θ∗‖2
– Function values: g(θt)− g(θ∗) 6

L
t ‖θ0 − θ∗‖2 (board)
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• g(θt)− g(θ∗) =
1
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1
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• No convergence of iterates: ‖θt − θ∗‖2 6 ‖θ0 − θ∗‖2

• g(θt)− g(θ∗) =
1
2(θt − θ∗)⊤H(θt − θ∗), which is equal to

1

2
(θ0 − θ∗)

⊤H(I − 1

L
H)2t(θ0 − θ∗)

• Function values: g(θt)− g(θ∗) 6 maxv∈[0,L] v(1− v/L)2t‖θ0 − θ∗‖2

v(1− v/L)2t 6 v exp(−v/L)2t = v exp(−2tv/L)

6 (2tv/L) exp(−2tv/L)× L

2t

6 max
α>0

α exp(−α)× L

2t
= O(

L

2t
)



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate (see board)



Board

• Second-order Taylor expansion

g(θ) ≈ g(θt−1)+g′(θt−1)
⊤(θ−θt−1)+

1

2
(θ−θt−1)

⊤g′′(θt−1)(θ−θt−1)

– Minimization by zeroing gradient:

g′(θt−1) + g′′(θt−1)(θ − θt−1) = 0

– Iteration: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

• Local quadratic convergence: ‖θt − θ∗‖ = O(‖θt−1 − θ∗‖2)



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ O(κ log 1
ε) iterations

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ O(log log 1
ε) iterations
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2. Cost functions are averages

3. Testing error is more important than training error



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ complexity = O(nd · κ log 1
ε)

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ complexity = O((nd2 + d3) · log log 1
ε)

• Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error

2. Cost functions are averages

3. Testing error is more important than training error



Outline

1. Introduction/motivation: Supervised machine learning

– Machine learning ≈ optimization of finite sums

– Batch optimization methods

2. Fast stochastic gradient methods for convex problems

− Variance reduction: for training error

− Constant step-sizes: for testing error

3. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost



Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu



Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu

• Convergence rate if each fi is convex L-smooth and g µ-strongly-

convex:

Eg(θ̄t)− g(θ∗) 6

{

O(1/
√
t) if γt = 1/(L

√
t)

O(L/(µt)) = O(κ/t) if γt = 1/(µt)

– No adaptivity to strong-convexity in general

– Running-time complexity: O(d · κ/ε)



Impact of averaging (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γt = Ct−α

• Strongly convex smooth objective functions

– Non-asymptotic analysis with explicit constants

– Forgetting of initial conditions

– Robustness to the choice of C



Impact of averaging (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γt = Ct−α

• Strongly convex smooth objective functions

– Non-asymptotic analysis with explicit constants

– Forgetting of initial conditions

– Robustness to the choice of C

• Convergence rates for E‖θt − θ∗‖2 and E‖θ̄t − θ∗‖2

– no averaging: O
(σ2γt

µ

)

+O(e−µtγt)‖θ0 − θ∗‖2

– averaging:
trH(θ∗)−1

t
+O

(‖θ0 − θ∗‖2
µ2t2

)

(see board)



Board

• Leaving initial point θ0 to reach θ∗

• Impact of averaging
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θ̄n



Robustness to wrong constants for γt = Ct−α

• f(θ) = 1
2|θ|2 with i.i.d. Gaussian noise (d = 1)

• Left: α = 1/2

• Right: α = 1
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• See also http://leon.bottou.org/projects/sgd



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n
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fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
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– Linear (e.g., exponential) convergence rate in O(e−t/κ)

– Iteration complexity is linear in n
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate in O(e−t/κ)

– Iteration complexity is linear in n

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Convergence rate in O(κ/t)

– Iteration complexity is independent of n



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)



Stochastic vs. deterministic methods

• Goal = best of both worlds: Linear rate with O(d) iteration cost

Simple choice of step size
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Accelerating gradient methods - Related work

• Generic acceleration (Nesterov, 1983, 2004)

θt = ηt−1 − γtg
′(ηt−1) and ηt = θt + δt(θt − θt−1)
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θt = ηt−1 − γtg
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– Good choice of momentum term δt ∈ [0, 1)

g(θt)− g(θ∗) 6 O(1/t2)
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κ) if µ-strongly convex

– Optimal rates after t = O(d) iterations (Nesterov, 2004)



Accelerating gradient methods - Related work

• Generic acceleration (Nesterov, 1983, 2004)

θt = ηt−1 − γtg
′(ηt−1) and ηt = θt + δt(θt − θt−1)

– Good choice of momentum term δt ∈ [0, 1)

g(θt)− g(θ∗) 6 O(1/t2)

g(θt)− g(θ∗) 6 O(e−t
√

µ/L) = O(e−t/
√
κ) if µ-strongly convex

– Optimal rates after t = O(d) iterations (Nesterov, 2004)

– Still O(nd) iteration cost: complexity = O(nd · √κ log 1
ε)
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• Constant step-size stochastic gradient

– Solodov (1998); Nedic and Bertsekas (2000)

– Linear convergence, but only up to a fixed tolerance
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– Similar linear rate but limited choice for the fi’s

– Extensions without duality: see Shalev-Shwartz (2016)



Accelerating gradient methods - Related work

• Constant step-size stochastic gradient

– Solodov (1998); Nedic and Bertsekas (2000)

– Linear convergence, but only up to a fixed tolerance

• Stochastic methods in the dual (SDCA)

– Shalev-Shwartz and Zhang (2013)

– Similar linear rate but limited choice for the fi’s

– Extensions without duality: see Shalev-Shwartz (2016)

• Stochastic version of accelerated batch gradient methods

– Tseng (1998); Ghadimi and Lan (2010); Xiao (2010)

– Can improve constants, but still have sublinear O(1/t) rate



Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise
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Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise

• Stochastic version of incremental average gradient (Blatt et al., 2008)

• Extra memory requirement: n gradients in R
d in general

• Linear supervised machine learning: only n real numbers

– If fi(θ) = ℓ(yi,Φ(xi)
⊤θ), then f ′

i(θ) = ℓ′(yi,Φ(xi)
⊤θ)Φ(xi)



Running-time comparisons (strongly-convex)

• Assumptions: g(θ) = 1
n

∑n
i=1 fi(θ)

– Each fi convex L-smooth and g µ-strongly convex, κ = L/µ

Stochastic gradient descent d×
∣

∣

∣

L
µ × 1

ε

Gradient descent d×
∣

∣

∣
nL
µ × log 1

ε

Accelerated gradient descent d×
∣

∣

∣
n
√

L
µ × log 1

ε

SAG d×
∣

∣

∣
(n+ L

µ) × log 1
ε

NB: slightly different (smaller) notion of condition number for batch methods



Running-time comparisons (strongly-convex)

• Assumptions: g(θ) = 1
n

∑n
i=1 fi(θ)

– Each fi convex L-smooth and g µ-strongly convex, κ = L/µ

Stochastic gradient descent d×
∣

∣

∣

L
µ × 1

ε

Gradient descent d×
∣

∣

∣
nL
µ × log 1

ε

Accelerated gradient descent d×
∣

∣

∣
n
√

L
µ × log 1

ε

SAG d×
∣

∣

∣
(n+ L

µ) × log 1
ε

• Beating two lower bounds (Nemirovski and Yudin, 1983; Nesterov,

2004): with additional assumptions

(1) stochastic gradient: exponential rate for finite sums

(2) full gradient: better exponential rate using the sum structure



Running-time comparisons (non-strongly-convex)

• Assumptions: g(θ) = 1
n

∑n
i=1 fi(θ)

– Each fi convex L-smooth

– Ill conditioned problems: g may not be strongly-convex (µ = 0)

Stochastic gradient descent d×
∣

∣

∣

∣

1/ε2

Gradient descent d×
∣

∣

∣

∣

n/ε

Accelerated gradient descent d×
∣

∣

∣

∣

n/
√
ε

SAG d×
∣

∣

∣

∣

√
n/ε

• Adaptivity to potentially hidden strong convexity

• No need to know the local/global strong-convexity constant



Stochastic average gradient

Implementation details and extensions

• Sparsity in the features

– Just-in-time updates ⇒ replace O(d) by number of non zeros

– See also Leblond, Pedregosa, and Lacoste-Julien (2016)

• Mini-batches

– Reduces the memory requirement + block access to data

• Line-search

– Avoids knowing L in advance

• Non-uniform sampling

– Favors functions with large variations

• See www.cs.ubc.ca/~schmidtm/Software/SAG.html



Experimental results (logistic regression)

quantum dataset rcv1 dataset

(n = 50 000, d = 78) (n = 697 641, d = 47 236)
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Before non-uniform sampling

protein dataset sido dataset

(n = 145 751, d = 74) (n = 12 678, d = 4 932)
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After non-uniform sampling

protein dataset sido dataset
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From training to testing errors

• rcv1 dataset (n = 697 641, d = 47 236)

– NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost Testing cost

Effective Passes

0 10 20 30 40 50

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
u
m

10
-20

10
-15

10
-10

10
-5

10
0

AGD
L-BFGS

SG-C

ASG

IAG

S
A
G



From training to testing errors

• rcv1 dataset (n = 697 641, d = 47 236)

– NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost Testing cost

Effective Passes

0 10 20 30 40 50

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
u
m

10
-20

10
-15

10
-10

10
-5

10
0

AGD
L-BFGS

SG-C

ASG

IAG

S
A
G

Effective Passes

0 10 20 30 40 50

T
e
s
t
 
L
o
g
i
s
t
i
c
 
L
o
s
s

�10
5

0

0.5

1

1.5

2

2.5

AGD

L-BFGS

SG-C

ASG

IAG

SAG



Linearly convergent stochastic gradient algorithms

• Many related algorithms

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SDCA (Shalev-Shwartz and Zhang, 2013)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– MISO (Mairal, 2015)

– Finito (Defazio et al., 2014b)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

– · · ·

• Similar rates of convergence and iterations

– Different interpretations and proofs / proof lengths

– Lazy gradient evaluations

– Variance reduction
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– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– MISO (Mairal, 2015)

– Finito (Defazio et al., 2014b)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

– · · ·

• Similar rates of convergence and iterations

• Different interpretations and proofs / proof lengths

– Lazy gradient evaluations

– Variance reduction



Acceleration

• Similar guarantees for finite sums: SAG, SDCA, SVRG (Xiao and

Zhang, 2014), SAGA, MISO (Mairal, 2015)

Gradient descent d×
∣

∣

∣
nL
µ × log 1

ε

Accelerated gradient descent d×
∣

∣

∣
n
√

L
µ × log 1

ε

SAG(A), SVRG, SDCA, MISO d×
∣

∣

∣
(n+ L

µ) × log 1
ε

Accelerated versions d×
∣

∣

∣

∣

(n+
√

nL
µ) × log 1

ε

• Acceleration for special algorithms (e.g., Shalev-Shwartz and

Zhang, 2014; Nitanda, 2014; Lan, 2015; Defazio, 2016)

• Catalyst (Lin, Mairal, and Harchaoui, 2015a)

– Widely applicable generic acceleration scheme



SGD minimizes the testing cost!

• Goal: minimize f(θ) = Ep(x,y)ℓ(y, h(x, θ))

– Given n independent samples (xi, yi), i = 1, . . . , n from p(x, y)

– Given a single pass of stochastic gradient descent

– Bounds on the excess testing cost Ef(θ̄n)− infθ∈Rd f(θ)
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SGD minimizes the testing cost!

• Goal: minimize f(θ) = Ep(x,y)ℓ(y, h(x, θ))

– Given n independent samples (xi, yi), i = 1, . . . , n from p(x, y)

– Given a single pass of stochastic gradient descent

– Bounds on the excess testing cost Ef(θ̄n)− infθ∈Rd f(θ)

• Optimal convergence rates: O(1/
√
n) and O(1/(nµ))

– Optimal for non-smooth losses (Nemirovski and Yudin, 1983)

– Attained by averaged SGD with decaying step-sizes

• Constant-step-size SGD

– Linear convergence up to the noise level for strongly-convex

problems (Solodov, 1998; Nedic and Bertsekas, 2000)

– Full convergence and robustness to ill-conditioning?



Robust averaged stochastic gradient

(Bach and Moulines, 2013)

• Constant-step-size SGD is convergent for least-squares

– Convergence rate in O(1/n) without any dependence on µ

– Simple choice of step-size (equal to 1/L) (see board)
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Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

- For least-squares, θ̄γ = θ∗

θ̄γ

θ0

θn
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Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

– θn does not converge to θ∗ but oscillates around it

– oscillations of order
√
γ

• Ergodic theorem:

– Averaged iterates converge to θ̄γ = θ∗ at rate O(1/n)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Robust averaged stochastic gradient

(Bach and Moulines, 2013)

• Constant-step-size SGD is convergent for least-squares

– Convergence rate in O(1/n) without any dependence on µ

– Simple choice of step-size (equal to 1/L)

• Constant-step-size SGD can be made convergent

– Online Newton correction with same complexity as SGD

– Replace θn = θn−1 − γf ′
n(θn−1)

by θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′(θ̄n−1)(θn−1 − θ̄n−1)

]

– Simple choice of step-size and convergence rate in O(1/n)



Robust averaged stochastic gradient

(Bach and Moulines, 2013)

• Constant-step-size SGD is convergent for least-squares

– Convergence rate in O(1/n) without any dependence on µ

– Simple choice of step-size (equal to 1/L)

• Constant-step-size SGD can be made convergent

– Online Newton correction with same complexity as SGD

– Replace θn = θn−1 − γf ′
n(θn−1)

by θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′(θ̄n−1)(θn−1 − θ̄n−1)

]

– Simple choice of step-size and convergence rate in O(1/n)

• Multiple passes still work better in practice

– See Pillaud-Vivien, Rudi, and Bach (2018)
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Perspectives

• Linearly-convergent stochastic gradient methods

– Provable and precise rates

– Improves on two known lower-bounds (by using structure)

– Several extensions / interpretations / accelerations

• Extensions and future work

– Lower bounds for finite sums (Lan, 2015)

– Sampling without replacement (Gurbuzbalaban et al., 2015)

– Bounds on testing errors for incremental methods

– Parallelization (Leblond, Pedregosa, and Lacoste-Julien, 2016;

Hendrikx, Bach, and Massoulié, 2019)

– Non-convex problems (Reddi et al., 2016)

– Other forms of acceleration (Scieur, d’Aspremont, and Bach, 2016)

– Pre-conditioning



Outline

1. Introduction/motivation: Supervised machine learning

– Machine learning ≈ optimization of finite sums

– Batch optimization methods

2. Fast stochastic gradient methods for convex problems

– Variance reduction: for training error

– Constant step-sizes: for testing error

2. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Actual goal: minimize test error Ep(x,y)ℓ(y, h(x, θ))
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• Convexity in machine learning

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)
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Exponentially convergent SGD for smooth finite sums

• Finite sums: min
θ∈Rd

1

n

n
∑

i=1

fi(θ) =
1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

• Non-accelerated algorithms (with similar properties)

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SDCA (Shalev-Shwartz and Zhang, 2013)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– MISO (Mairal, 2015), Finito (Defazio et al., 2014b)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014a), etc...

θt = θt−1 − γ
[

∇fi(t)(θt−1)+
1

n

n
∑

i=1

yt−1
i − yt−1

i(t)

]
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• Finite sums: min
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• Non-accelerated algorithms (with similar properties)
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Exponentially convergent SGD for smooth finite sums

• Finite sums: min
θ∈Rd

1

n

n
∑

i=1

fi(θ) =
1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

• Non-accelerated algorithms (with similar properties)

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SDCA (Shalev-Shwartz and Zhang, 2013)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– MISO (Mairal, 2015), Finito (Defazio et al., 2014b)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014a), etc...

• Accelerated algorithms

– Shalev-Shwartz and Zhang (2014); Nitanda (2014)

– Lin et al. (2015b); Defazio (2016), etc...

– Catalyst (Lin, Mairal, and Harchaoui, 2015a)



Exponentially convergent SGD for finite sums

• Running-time to reach precision ε (with κ = condition number)

Stochastic gradient descent d×
∣

∣

∣
κ × 1

ε

Gradient descent d×
∣

∣

∣
nκ × log 1

ε

Accelerated gradient descent d×
∣

∣

∣
n
√
κ × log 1

ε
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Exponentially convergent SGD for finite sums

• Running-time to reach precision ε (with κ = condition number)

Stochastic gradient descent d×
∣

∣

∣
κ × 1

ε

Gradient descent d×
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∣

∣
nκ × log 1

ε
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Accelerated versions d×
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√
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NB: slightly different (smaller) notion of condition number for batch methods



Exponentially convergent SGD for finite sums

• Running-time to reach precision ε (with κ = condition number)

Stochastic gradient descent d×
∣

∣

∣
κ × 1

ε

Gradient descent d×
∣

∣

∣
nκ × log 1

ε

Accelerated gradient descent d×
∣

∣

∣
n
√
κ × log 1

ε

SAG(A), SVRG, SDCA, MISO d×
∣

∣

∣
(n+ κ) × log 1

ε

Accelerated versions d×
∣

∣

∣

∣

(n+
√
nκ) × log 1

ε

• Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)



Exponentially convergent SGD for finite sums

From theory to practice and vice-versa
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• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

– Non-uniform sampling, acceleration

– Matching upper and lower bounds



Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements



Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

• Many other well-understood areas

– Single pass SGD and generalization errors

– From least-squares to convex losses

– High-dimensional inference

– Non-parametric regression

– Randomized linear algebra

– Bandit problems

– etc...



Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

• Many other well-understood areas

– Single pass SGD and generalization errors

– From least-squares to convex losses

– High-dimensional inference

– Non-parametric regression

– Randomized linear algebra

– Bandit problems

– etc...

• What about deep learning?



Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤r σ(θ
⊤
r−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

– NB: already a simplification



Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤r σ(θ
⊤
r−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

– NB: already a simplification

• Main difficulties

1. Non-convex optimization problems

2. Generalization guarantees in the overparameterized regime



Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
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• What can go wrong with non-convex optimization problems?

– Local minima
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– Bad initialization
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• Generic local theoretical guarantees

– Convergence to stationary points or local minima

– See, e.g., Lee et al. (2016); Jin et al. (2017)
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Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
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• General global performance guarantees impossible to obtain

• Special case of (deep) neural networks

– Most local minima are equivalent (Choromanska et al., 2015)

– No spurrious local minima (Soltanolkotabi et al., 2018)



Gradient descent for a single hidden layer

• Predictor: h(x) = 1
mθ⊤2 σ(θ

⊤
1 x) =

1
m

∑m
j=1 θ2(j) · σ

[

θ1(·, j)⊤x
]

- Family: h =
1

m

m
∑

j=1

Ψ(wj) with Ψ(wj)(x) = θ2(j) ·σ
[

θ1(·, j)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

h(x; θ)x

θ1

θ2
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Gradient descent for a single hidden layer

• Predictor: h(x) = 1
mθ⊤2 σ(θ

⊤
1 x) =

1
m

∑m
j=1 θ2(j) · σ

[

θ1(·, j)⊤x
]

– Family: h =
1

m

m
∑

j=1

Ψ(wj) with Ψ(wj)(x) = θ2(j) ·σ
[

θ1(·, j)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

• Main insight

– h =
1

m

m
∑

j=1

Ψ(wj) =

∫

W
Ψ(w)dµ(w) with dµ(w) =

1

m

m
∑

j=1

δwj
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µ(w)



Gradient descent for a single hidden layer

• Predictor: h(x) = 1
mθ⊤2 σ(θ

⊤
1 x) =

1
m

∑m
j=1 θ2(j) · σ

[

θ1(·, j)⊤x
]

– Family: h =
1

m

m
∑

j=1

Ψ(wj) with Ψ(wj)(x) = θ2(j) ·σ
[

θ1(·, j)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

• Main insight

– h =
1

m

m
∑

j=1

Ψ(wj) =

∫

W
Ψ(w)dµ(w) with dµ(w) =

1

m

m
∑

j=1

δwj

– Overparameterized models withm large ≈ measure µ with densities

– Barron (1993); Kurkova and Sanguineti (2001); Bengio et al.

(2006); Rosset et al. (2007); Bach (2017)



Optimization on measures

• Minimize with respect to measure µ: R
(

∫

W
Ψ(w)dµ(w)

)

– Convex optimization problem on measures

– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice
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• Minimize with respect to measure µ: R
(

∫

W
Ψ(w)dµ(w)

)

– Convex optimization problem on measures

– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice

• Represent µ by a finite set of “particles” µ = 1
m

∑m
j=1 δwj

– Backpropagation = gradient descent on (w1, . . . , wm)

• Three questions:

– Algorithm limit when number of particles m gets large

– Global convergence to a global minimizer

– Prediction performance (see Chizat and Bach, 2020)
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• General framework: minimize F (µ) = R
(

∫

W
Ψ(w)dµ(w)

)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m

m
∑

j=1

Ψ(wj)
)

– Gradient flow Ẇ = −m∇Fm(W ), with W = (w1, . . . , wm)

– Idealization of (stochastic) gradient descent

1. Single pass SGD on the unobserved expected risk

2. Multiple pass SGD or full GD on the empirical risk



Many particle limit and global convergence

(Chizat and Bach, 2018a)

• General framework: minimize F (µ) = R
(

∫

W
Ψ(w)dµ(w)

)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m

m
∑

j=1

Ψ(wj)
)

– Gradient flow Ẇ = −m∇Fm(W ), with W = (w1, . . . , wm)

– Idealization of (stochastic) gradient descent

• Limit when m tends to infinity

– Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and

Bach, 2018a; Mei, Montanari, and Nguyen, 2018; Sirignano and

Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)

• NB: for more details on gradient flows, see Ambrosio et al. (2008)



Many particle limit and global convergence

(Chizat and Bach, 2018a)

• (informal) theorem: when the number of particles tends to infinity,

the gradient flow converges to the global optimum



Many particle limit and global convergence

(Chizat and Bach, 2018a)

• (informal) theorem: when the number of particles tends to infinity,

the gradient flow converges to the global optimum

– See precise definitions and statement in paper

– Two key ingredients: homogeneity and initialization



Many particle limit and global convergence

(Chizat and Bach, 2018a)

• (informal) theorem: when the number of particles tends to infinity,
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– See precise definitions and statement in paper

– Two key ingredients: homogeneity and initialization
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– Full or partial, e.g., Ψ(wj)(x) = mθ2(j) · σ
[

θ1(·, j)⊤x
]

– Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions



Many particle limit and global convergence

(Chizat and Bach, 2018a)

• (informal) theorem: when the number of particles tends to infinity,

the gradient flow converges to the global optimum

– See precise definitions and statement in paper

– Two key ingredients: homogeneity and initialization

• Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

– Full or partial, e.g., Ψ(wj)(x) = mθ2(j) · σ
[

θ1(·, j)⊤x
]

– Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions

• Only qualititative!



Simple simulations with neural networks

• ReLU units with d = 2 (optimal predictor has 5 neurons)

5 neurons 10 neurons 100 neurons

h(x) =
1

m

m
∑

j=1

Ψ(wj)(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)⊤x
)

+

(plotting |θ2(j)|θ1(·, j) for each hidden neuron j)

NB : also applies to spike deconvolution



Simple simulations with neural networks

• ReLU units with d = 2 (optimal predictor has 5 neurons)

5 neurons 10 neurons 100 neurons

h(x) =
1

m

m
∑

j=1

Ψ(wi)(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, i)⊤x
)

+

( |θ2(j)|θ1(·, j) video!

NB : also applies to spike deconvolution



From qualitative to quantitative results ?

• Adding noise (Mei, Montanari, and Nguyen, 2018)

– On top of SGD “à la Langevin” ⇒ convergence to a diffusion

– Quantitative analysis of the needed number of neurons

– Recent improvement (Mei, Misiakiewicz, and Montanari, 2019)

– Only applies to a single hidden layer
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– On top of SGD “à la Langevin” ⇒ convergence to a diffusion

– Quantitative analysis of the needed number of neurons

– Recent improvement (Mei, Misiakiewicz, and Montanari, 2019)

– Only applies to a single hidden layer

• Recent bursty activity on ArXiv

– https://arxiv.org/abs/1810.02054

– https://arxiv.org/abs/1811.03804

– https://arxiv.org/abs/1811.03962

– https://arxiv.org/abs/1811.04918

– etc.
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From qualitative to quantitative results ?

• Adding noise (Mei, Montanari, and Nguyen, 2018)

– On top of SGD “à la Langevin” ⇒ convergence to a diffusion

– Quantitative analysis of the needed number of neurons

– Recent improvement (Mei, Misiakiewicz, and Montanari, 2019)

– Only applies to a single hidden layer

• Recent bursty activity on ArXiv

– Global quantitative linear convergence of gradient descent

(Du et al., 2018)

– Extends to deep architectures and skip connections

(Du et al., 2019; Allen-Zhu et al., 2018)

• Any link?
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From qualitative to quantitative results ?

• Mean-field limit: h(W ) = 1
m

∑m
i=1Ψ(wi)

– With wi initialized randomly (with variance independent of m)

– Dynamics equivalent to Wasserstein gradient flow

– Convergence to global minimum of R(
∫

Ψdµ)

• Recent bursty activity on ArXiv

– Corresponds to initializing with weights which are
√
m times larger

– Where does it converge to?

• Equivalence to “lazy” training (Chizat and Bach, 2018b)

– Convergence to a positive-definite kernel method

– Neurons move infinitesimally

– Extension of results from Jacot et al. (2018)



Lazy training (Chizat and Bach, 2018b)

• Generic criterion G(W ) = R(h(W )) to minimize w.r.t. W

– Example: R loss, h(W ) = 1
m

∑m
i=1Ψ(wi) prediction function

– Introduce (large) scale factor α > 0 and Gα(W ) = R(αh(W ))/α2

– Initialize W (0) such that αh(W (0)) is bounded

(using, e.g., EΨ(wi) = 0)
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m
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i=1Ψ(wi) prediction function

– Introduce (large) scale factor α > 0 and Gα(W ) = R(αh(W ))/α2

– Initialize W (0) such that αh(W (0)) is bounded

(using, e.g., EΨ(wi) = 0)

• Consequence: around W (0), Gα(W ) has

– Gradient “proportional” to ∇R(αh(W (0)))/α

– Hessian “proportional” to ∇2R(αh(W (0)))
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– Gradient flow Ẇ = −∇Gα(W ) is such that

‖W (t)−W (0)‖ = O(1/α) and αh(W (t)) → argmin
h

R(h) “linearly”
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Lazy training (Chizat and Bach, 2018b)

• Generic criterion G(W ) = R(h(W )) to minimize w.r.t. W

– Example: R loss, h(W ) = 1
m

∑m
i=1Ψ(wi) prediction function

– Introduce (large) scale factor α > 0 and Gα(W ) = R(αh(W ))/α2

– Initialize W (0) such that αh(W (0)) is bounded

(using, e.g., EΨ(wi) = 0)

• Proposition (informal, see paper for precise statement)

– Assume differential of h at W (0) is surjective

– Gradient flow Ẇ = −∇Gα(W ) is such that

‖W (t)−W (0)‖ = O(1/α) and αh(W (t)) → argmin
h

R(h) “linearly”

⇒ Equivalent to a linear model

h(W ) ≈ h(W (0)) + (W −W (0))⊤∇h(W (0))



From lazy training to neural tangent kernel

• Neural tangent kernel (Jacot et al., 2018; Lee et al., 2019)

– Linear model: h(x,W ) ≈ h(x,W (0))+(W−W (0))⊤∇h(x,W (0))

– Corresponding kernel k(x, x′) = ∇h(x,W (0))⊤∇h(x′,W (0))

– Direct effect of scaling of the model (Chizat and Bach, 2018b)

– Applies to all differentiable models, including deep models



From lazy training to neural tangent kernel

• Neural tangent kernel (Jacot et al., 2018; Lee et al., 2019)

– Linear model: h(x,W ) ≈ h(x,W (0))+(W−W (0))⊤∇h(x,W (0))

– Corresponding kernel k(x, x′) = ∇h(x,W (0))⊤∇h(x′,W (0))

– Direct effect of scaling of the model (Chizat and Bach, 2018b)

– Applies to all differentiable models, including deep models

• Two questions:

– Does this really “demystify” generalization in deep networks?

(are state-of-the-art neural networks in the lazy regime?)

– Can kernel methods beat neural networks?

(is the neural tangent kernel useful in practice?)
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• Evidence 1: the first layer of trained CNNs looks like Gabor filters

From Goodfellow, Bengio, and Courville (2016)
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Are state-of-the-art neural networks

in the lazy regime?

• Lazy regime: Neurons move infinitesimally

• Evidence 1: the first layer of trained CNNs looks like Gabor filters

• Evidence 2, by Zhang et al. (2019)

– Neurons from first layers do move

– Neurons of other layers do not need to move

• Evidence 3: Take a state-of-the-art CNN and make it lazier

– Chizat, Oyallon, and Bach (2019)



Lazy training seen in practice?

• Convolutional neural network

– “VGG-11”: 10 millions parameters

– “CIFAR10” images: 60 000 32×32 color images and 10 classes

– (almost) state-of-the-art accuracies
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Is the neural tangent kernel useful in practice?

• Fully connected networks

– Gradient with respect to output weights: classical random features

(Rahimi and Recht, 2007)

– Gradient with respect to input weights: extra random features

– Non-parametric estimation but no better than usual kernels

(Ghorbani et al., 2019; Bietti and Mairal, 2019)
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– Can achieve state-of-the-art performance with additional

tricks (Mairal, 2016; Novak et al., 2018) on the CIFAR10 dataset (Li
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– Going further without explicit representation learning?
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Healthy interactions between

theory, applications, and hype?

• Empirical successes of deep learning cannot be ignored

• Scientific standards should not be lowered

– Critics and limits of theoretical and empirical results

– Rigor beyond mathematical guarantees

• Some wisdom from physics:

Physical Review adheres to the following policy with respect to use of terms such

as “new” or “novel:” All material accepted for publication in the Physical Review

is expected to contain new results in physics. Phrases such as “new,” “for the

first time,” etc., therefore should normally be unnecessary; they are not in keeping

with the journal’s scientific style. Furthermore, such phrases could be construed as

claims of priority, which the editors cannot assess and hence must rule out.
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Conclusions

Optimization for machine learning

• Well understood

– Convex case with a single machine

– Matching lower and upper bounds for variants of SGD

– Non-convex case: SGD for local risk minimization

• Not well understood: many open problems

– Step-size schedules and acceleration

– Dealing with non-convexity

(global minima vs. local minima and stationary points)

– Distributed learning: multiple cores, GPUs, and cloud (see, e.g.,

Hendrikx, Bach, and Massoulié, 2019, and references therein)
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