Breaking the Curse of Dimensionality with Convex Neural Networks

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

CIFAR meeting, Montréal - December 2014

Curse of dimensionality (supervised learning)

- Goal: Learning a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with minimal risk

$$
R(f)=\mathbb{E}[\ell(y, f(x))]
$$

- Minimizer f^{*} only assumed to be Lipshitz-continuous
- Need $n=\Omega\left(\varepsilon^{-d}\right)$ observations to achieve $R(f)-R\left(f^{*}\right) \leqslant \varepsilon$

Curse of dimensionality (supervised learning)

- Goal: Learning a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with minimal risk

$$
R(f)=\mathbb{E}[\ell(y, f(x))]
$$

- Minimizer f^{*} only assumed to be Lipshitz-continuous
- Need $n=\Omega\left(\varepsilon^{-d}\right)$ observations to achieve $R(f)-R\left(f^{*}\right) \leqslant \varepsilon$
- Reducing sample complexity by exploiting structure

Linear function
Generalized additive model
One-hidden layer neural network
Projection pursuit
Subspace dependence

$$
\begin{array}{ll}
w^{\top} x+b & d \varepsilon^{-2} \\
\sum_{j=1}^{d} f_{j}\left(x_{j}\right) & k^{4} d^{2} \varepsilon^{-4} \\
\sum_{i=1}^{k} \eta_{i} \sigma\left(w_{i}^{\top} x+b\right) & k^{2} d \varepsilon^{-2} \\
\sum_{i=1}^{k} f_{i}\left(w_{i}^{\top} x\right) & k^{4} d^{2} \varepsilon^{-4} \\
g\left(W^{\top} x\right) & \left(\frac{\varepsilon}{k \sqrt{d}}\right)^{-\operatorname{rank}(\mathrm{W})+3}
\end{array}
$$

Goals

$$
f(x)=\sum_{i=1}^{k} \eta_{i} \max \left\{w_{i}^{\top} x+b_{i}, 0\right\}=\sum_{i=1}^{k} \eta_{i}\left(w_{i}^{\top} x+b_{i}\right)_{+}
$$

- Generalization properties?
- Adaptivity to structure
- Non-linear variable selection
- Learning or sampling weights $\left(w_{i}, b_{i}\right) \in \mathbb{R}^{d+1}$?
- Convexification by letting $k \rightarrow+\infty$
- Selection $\left(\ell_{1}\right)$ vs. random sampling $\left(\ell_{2}\right)$
- Hard or easy to optimize?
- Polynomial time algorithms ...
- ... with same guarantees on unseen data

Convex neural networks (Bengio, Le Roux, Vincent, Delalleau, and Marcotte, 2006)

 Main idea

 Main idea}

- Replace the sum $\sum_{i=1}^{k} \eta_{i}\left(w_{i}^{\top} x+b_{i}\right)_{+}$by an integral

$$
f(x)=\int_{\mathbb{R}^{d+1}}\left(w^{\top} x+b\right)_{+} \eta(w, b) d \tau(w, b)
$$

- Equivalence when $\eta d \tau$ is a weighted sum of Diracs: $\sum_{i=1}^{k} \eta_{i} \delta_{w_{i}, b_{i}}$
- Promote sparsity with an ℓ_{1}-norm: $\int_{\mathbb{R}^{d+1}}|\eta(w, b)| d \tau(w, b)$

Convex neural networks Formalization

- Several points of views (Barron, 1993; Kurkova and Sanguineti, 2001; Bengio et al., 2006; Rosset et al., 2007)
- Define space \mathcal{F}_{1} of functions f that can be decomposed as

$$
f(x)=\int_{\mathbb{R}^{d+1}}\left(w^{\top} x+b\right)_{+} \eta(w, b) d \tau(w, b)
$$

Convex neural networks Formalization

- Several points of views (Barron, 1993; Kurkova and Sanguineti, 2001; Bengio et al., 2006; Rosset et al., 2007)
- Define space \mathcal{F}_{1} of functions f that can be decomposed as

$$
f(x)=\int_{\mathbb{R}^{d+1}}\left(w^{\top} x+b\right)_{+} \eta(w, b) d \tau(w, b)
$$

- Define the variation norm $\gamma_{1}(f)$ on \mathcal{F}_{1} as

$$
\gamma_{1}(f)=\inf \int_{\mathbb{R}^{d+1}}|\eta(w, b)| d \tau(w, b) \quad \text { such that }(\bullet) \text { holds }
$$

Variation norm and finite decomposition

- Property 1 (Leshno et al., 1993): \mathcal{F}_{1} is dense in L^{2}

Variation norm and finite decomposition

- Property 1 (Leshno et al., 1993): \mathcal{F}_{1} is dense in L^{2}
- Property 2 (Barron, 1993): for any $f \in \mathcal{F}_{1}$, there exists a finite decomposition $\hat{f}(x)=\sum_{i=1}^{k} \eta_{i}\left(w_{i}^{\top} x+b_{i}\right)_{+}$such that
- $\|f-\hat{f}\| \leqslant \varepsilon$ in L^{2}-norm
$-k=O\left(\gamma_{1}(f)^{2} \varepsilon^{-2}\right)$
- NB: constructive proof by conditional gradient algorithm

Conditional gradient algorithm

- Minimizing $J(f)$ such that $\gamma_{1}(f) \leqslant \delta$
- J smooth and convex
- Frank-Wolfe, conditional gradient, gradient boosting, etc. (Frank and Wolfe, 1956; Dem'yanov and Rubinov, 1967; Dudik et al., 2012; Harchaoui et al., 2013; Jaggi, 2013)
- Iteration: $f_{t+1}=\left(1-\rho_{t}\right) f_{t}+\rho_{t} \operatorname{argmin}\left\langle J^{\prime}\left(f_{t}\right), f\right\rangle$

$$
\gamma_{1}(f) \leqslant \delta
$$

Conditional gradient algorithm

- Minimizing $J(f)$ such that $\gamma_{1}(f) \leqslant \delta$
- J smooth and convex
- Frank-Wolfe, conditional gradient, gradient boosting, etc. (Frank and Wolfe, 1956; Dem'yanov and Rubinov, 1967; Dudik et al., 2012; Harchaoui et al., 2013; Jaggi, 2013)
- Iteration: $f_{t+1}=\left(1-\rho_{t}\right) f_{t}+\rho_{t} \operatorname{argmin}\left\langle J^{\prime}\left(f_{t}\right), f\right\rangle$

$$
\gamma_{1}(f) \leqslant \delta
$$

- Line search or $\rho_{t}=2 /(t+1)$
- Convergence rate: $J(f)-\inf _{\gamma_{1}(g) \leqslant \delta} J(g)=O\left(\delta^{2} / t\right)$
- $f_{t}=$ convex combination of t extreme points

Conditional gradient algorithm Extreme points

- Iteration: $f_{t+1}=\left(1-\rho_{t}\right) f_{t}+\rho_{t} \operatorname{argmin}\left\langle J^{\prime}\left(f_{t}\right), f\right\rangle$

$$
\gamma_{1}(f) \leqslant \delta
$$

- $f_{t}=$ convex combination of t extreme points
- ℓ_{1}-ball: extreme points are 1 -sparse vectors
- The set $\left\{\gamma_{1}(f) \leqslant \delta\right\}$ is the convex hull of all functions

$$
x \mapsto \pm \delta\left(w^{\top} x+b\right)_{+}, \text {for }(w, b) \in \mathbb{R}^{d+1}
$$

Conditional gradient algorithm Extreme points

- Iteration: $f_{t+1}=\left(1-\rho_{t}\right) f_{t}+\rho_{t} \operatorname{argmin}\left\langle J^{\prime}\left(f_{t}\right), f\right\rangle$

$$
\gamma_{1}(f) \leqslant \delta
$$

- $f_{t}=$ convex combination of t extreme points
- ℓ_{1}-ball: extreme points are 1 -sparse vectors
- The set $\left\{\gamma_{1}(f) \leqslant \delta\right\}$ is the convex hull of all functions

$$
x \mapsto \pm \delta\left(w^{\top} x+b\right)_{+}, \text {for }(w, b) \in \mathbb{R}^{d+1}
$$

- Extreme points are single neurons/units

$$
\underset{\gamma_{1}(f) \leqslant \delta}{\operatorname{argmin}}\left\langle J^{\prime}\left(f_{t}\right), f\right\rangle= \pm \delta\left(w_{t}^{\top} \cdot+b_{t}\right)_{+}
$$

- for $\left(w_{t}, b_{t}\right)=-\operatorname{argmax}_{(w, b) \in \mathbb{R}^{d+1}}\left|\left\langle J^{\prime}\left(f_{t}\right),\left(w^{\top} \cdot+b\right)_{+}\right\rangle\right|$

Conditional gradient algorithm Supervised learning from finite data set

- Goal: $\min _{\gamma_{1}(f) \leqslant \delta} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)$
- Adding a new unit/neuron/basis function:

$$
\underset{(w, b) \in \mathbb{R}^{d+1}}{\operatorname{argmax}}\left|\frac{1}{n} \sum_{i=1}^{n} g_{i} \cdot\left(w^{\top} x_{i}+b\right)_{+}\right| \quad \text { with } g_{i}=\ell^{\prime}\left(y_{i}, f_{t}\left(x_{i}\right)\right)
$$

- Computational difficulty?

Adding extra neuron/unit for ReLUs

- Reformulation with $v=(w, b) \in \mathbb{R}^{d+1}$ and $z=(x, 1) \in \mathbb{R}^{d+1}$:

$$
\max _{\|v\|_{2} \leqslant 1}\left|\sum_{i=1}^{n} g_{i}\left(v^{\top} z_{i}\right)_{+}\right|=\max _{\|v\|_{2} \leqslant 1}\left|\sum_{i \in I_{+}}\left(v^{\top} t_{i}\right)_{+}-\sum_{i \in I_{-}}\left(v^{\top} t_{i}\right)_{+}\right|
$$

with $I_{+}=\left\{i, g_{i} \geqslant 0\right\}$ and $I_{-}=\left\{i, g_{i}<0\right\}$, and $t_{i}=\left|g_{i}\right| z_{i} \in \mathbb{R}^{d+1}$,

Adding extra neuron/unit for ReLUs
 Hausdorff distance between zonotopes

- Reformulation with $v=(w, b) \in \mathbb{R}^{d+1}$ and $z=(x, 1) \in \mathbb{R}^{d+1}$:

$$
\max _{\|v\|_{2} \leqslant 1}\left|\sum_{i=1}^{n} g_{i}\left(v^{\top} z_{i}\right)_{+}\right|=\max _{\|v\|_{2} \leqslant 1}\left|\sum_{i \in I_{+}}\left(v^{\top} t_{i}\right)_{+}-\sum_{i \in I_{-}}\left(v^{\top} t_{i}\right)_{+}\right|
$$

with $I_{+}=\left\{i, g_{i} \geqslant 0\right\}$ and $I_{-}=\left\{i, g_{i}<0\right\}$, and $t_{i}=\left|g_{i}\right| z_{i} \in \mathbb{R}^{d+1}$,

- By convex duality, equivalent to

$$
\max \left\{\min _{u_{+} \in K_{+}} \max _{u_{-} \in K_{-}}\left\|u_{+}-u_{-}\right\|_{2}, \min _{u_{-} \in K_{-}} \max _{u_{+} \in K_{+}}\left\|u_{+}-u_{-}\right\|_{2}\right\}
$$

with $K_{+}=\left\{\sum_{i \in I_{+}} b_{i} t_{i}, b_{i} \in[0,1]\right\}$ and $K_{-}=\left\{\sum_{i \in I_{-}} b_{i} t_{i}, b_{i} \in[0,1]\right\}$

Hausdorff distance between zonotopes

- Zonotopes $K=\left\{\sum_{i} b_{i} t_{i}, b_{i} \in[0,1]\right\}$ and zonoids (Bolker, 1969)

- Affine projections of hypercubes
- Zonoids are limits of zonotopes
- In $d=2$ (only), all centrally symmetric convex sets are zonoids

Hausdorff distance between zonotopes

- Zonotopes $K=\left\{\sum_{i} b_{i} t_{i}, \quad b_{i} \in[0,1]\right\}$ and zonoids (Bolker, 1969)

- Hausdorff distance computation, still hard...

Hausdorff distance between zonotopes

- Zonotopes $K=\left\{\sum_{i} b_{i} t_{i}, b_{i} \in[0,1]\right\}$ and zonoids (Bolker, 1969)

- Hausdorff distance computation, approximation by ellipsoids?

Convex relaxations and polynomial-time algorithms

- Many possibilities (SDP, ellipsoids, etc.), no success (yet)...
- (conjectured) Impossible result: for any $g \in \mathbb{R}^{n}$, find \hat{v} such that $\|\hat{v}\|_{2}=1$ and

$$
\left|\sum_{i=1}^{n} g_{i}\left(\hat{v}^{\top} z_{i}\right)_{+}\right| \geqslant \frac{1}{\kappa} \max _{\|v\|_{2}=1}\left|\sum_{i=1}^{n} g_{i}\left(v^{\top} z_{i}\right)_{+}\right|
$$

Convex relaxations and polynomial-time algorithms

- Many possibilities (SDP, ellipsoids, etc.), no success (yet)...
- (conjectured) Impossible result: for any $g \in \mathbb{R}^{n}$, find \hat{v} such that $\|\hat{v}\|_{2}=1$ and

$$
\left|\sum_{i=1}^{n} g_{i}\left(\hat{v}^{\top} z_{i}\right)_{+}\right| \geqslant \frac{1}{\kappa} \max _{\|v\|_{2}=1}\left|\sum_{i=1}^{n} g_{i}\left(v^{\top} z_{i}\right)_{+}\right|
$$

- Sufficient result for matching generalization bounds
- Only in expectation for g standard Gaussian vector
- Reduction to simple non-convex problem
- NB: similar to linear binary classification (which is NP-hard)

Why not sampling weights?

- Sampling m weights $\left(w_{i}, b_{i}\right)$ and use features $\left(w_{i}^{\top} x+b_{i}\right)_{+}$
- Linear combination and ℓ_{2}-regularizer
- Equivalent to a kernel $k(x, y)=\frac{1}{m} \sum_{i=1}^{m}\left(w_{i}^{\top} x+b_{i}\right)_{+}\left(w_{i}^{\top} y+b_{i}\right)_{+}$

Why not sampling weights?

- Sampling m weights $\left(w_{i}, b_{i}\right)$ and use features $\left(w_{i}^{\top} x+b_{i}\right)_{+}$
- Linear combination and ℓ_{2}-regularizer
- Equivalent to a kernel $k(x, y)=\frac{1}{m} \sum_{i=1}^{m}\left(w_{i}^{\top} x+b_{i}\right)_{+}\left(w_{i}^{\top} y+b_{i}\right)_{+}$
- Letting $m \rightarrow \infty$
- $k(x, y)$ tends to $\int_{\mathbb{R}^{d+1}}\left(w^{\top} x+b\right)_{+}\left(w^{\top} y+b\right)_{+} d \mu(w, b)$
- Random kernel expansion (Neal, 1995; Rahimi and Recht, 2007)
- Can be computed in closed form (Le Roux and Bengio, 2007; Cho and Saul, 2009)
- Defines a Hilbert space \mathcal{F}_{2} with norm γ_{2} such that:
$\gamma_{2}(f)^{2}=\inf \int_{\mathbb{R}^{d+1}}|\eta(w, b)|^{2} d \tau(w, b)$ s.t. $f(x)=\int_{\mathbb{R}^{d+1}}\left(w^{\top} x+b\right)_{+} \eta(w, b) d \tau(w, b)$

Generalization properties

- Minimization of empirical risk $\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)$
- subject to $\gamma_{1}(f) \leqslant \delta$: learning weights $\left(w_{j}, b_{j}\right)$
- subject to $\gamma_{2}(f) \leqslant \delta$: sampling weights $\left(w_{j}, b_{j}\right)$
- NB: $\gamma_{1} \leqslant \gamma_{2}$, i.e., $\mathcal{F}_{2} \subset \mathcal{F}_{1}$

Generalization properties

- Minimization of empirical risk $\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)$
- subject to $\gamma_{1}(f) \leqslant \delta$: learning weights $\left(w_{j}, b_{j}\right)$
- subject to $\gamma_{2}(f) \leqslant \delta$: sampling weights $\left(w_{j}, b_{j}\right)$
- NB: $\gamma_{1} \leqslant \gamma_{2}$, i.e., $\mathcal{F}_{2} \subset \mathcal{F}_{1}$
- Sampling weights (i.e., using $\ell_{2} /$ kernel methods)
- No adaptivity (e.g., a single neuron does not belong to \mathcal{F}_{2})
- Learning sparse weights (i.e., using ℓ_{1})
- Automatic adaptivity to structure
- E.g., $f(x)=g\left(W^{\top} x\right)$ for W of low-rank

Approximation properties with variation norm

- Finite variation norm
- $f(d / 2+3 / 2)$-times differentiable $\Rightarrow \gamma_{1}(f) \leqslant \gamma_{2}(f)<\infty$
- Smoothness index has to grow with dimension!

Approximation properties with variation norm

- Finite variation norm
- $f(d / 2+3 / 2)$-times differentiable $\Rightarrow \gamma_{1}(f) \leqslant \gamma_{2}(f)<\infty$
- Smoothness index has to grow with dimension!
- Approximation of Lipschitz-continuous functions
- f 1-Lipschitz-continuous \Rightarrow there exists g such that $\gamma_{1}(g) \leqslant \delta$ and with approximation error $\delta^{-2 /(d+1)} \log \delta$
- Proof based on spherical harmonics

Approximation properties with variation norm

- Finite variation norm
- $f(d / 2+3 / 2)$-times differentiable $\Rightarrow \gamma_{1}(f) \leqslant \gamma_{2}(f)<\infty$
- Smoothness index has to grow with dimension!
- Approximation of Lipschitz-continuous functions
- f 1-Lipschitz-continuous \Rightarrow there exists g such that $\gamma_{1}(g) \leqslant \delta$ and with approximation error $\delta^{-2 /(d+1)} \log \delta$
- Proof based on spherical harmonics
- Adaptivity
- If f depends on a s-dimensional projection, replace d by s
- Only works for γ_{1}

Generalization bounds

- Assuming f^{*} of a certain form
- Penalizing weight vectors w by ℓ_{2}-norms

function space	$\\|\cdot\\|_{2}$
$w^{\top} x+b$	$\frac{d^{1 / 2}}{n^{1 / 2}}$
No assumption	$\frac{C(d)}{n^{1 /(d+3)}} \log n$
$\sum_{j=1}^{k} f_{j}\left(w_{j}^{\top} x\right), w_{j} \in \mathbb{R}^{d}$	$\frac{k d^{1 / 2}}{n^{1 / 4}} \log n$
$\sum_{j=1}^{k} f_{j}\left(W_{j}^{\top} x\right), W_{j} \in \mathbb{R}^{d \times s}$	$\frac{k d^{1 / 2} C(s)}{n^{1 /(s+3)}} \log n$

Generalization bounds

- Assuming f^{*} of a certain form
- Penalizing weight vectors w by ℓ_{2}-norms
- Assuming q-sparse solution and penalizing w by ℓ_{1}-norm

function space	$\\|\cdot\\|_{2}$	$\\|\cdot\\|_{1}$
$w^{\top} x+b$	$\frac{d^{1 / 2}}{n^{1 / 2}}$	$\sqrt{q} \frac{(\log d)^{1 / 2}}{n^{1 / 2}}$
No assumption	$\frac{C(d)}{n^{1 /(d+3)}} \log n$	$\frac{q^{1 / 2} C(d)}{n^{1 /(d+3)}} \log n$
$\sum_{j=1}^{k} f_{j}\left(w_{j}^{\top} x\right), w_{j} \in \mathbb{R}^{d}$	$\frac{k d^{1 / 2}}{n^{1 / 4}} \log n$	$\frac{k q^{1 / 2}(\log d)^{1 / 2}}{n^{1 / 4}} \log n$
$\sum_{j=1}^{k} f_{j}\left(W_{j}^{\top} x\right), W_{j} \in \mathbb{R}^{d \times s}$	$\frac{k d^{1 / 2} C(s)}{n^{1 /(s+3)}} \log n$	$\frac{k q^{1 / 2} C(s)(\log d)^{2 /(s+3)}}{n^{1 /(s+3)}} \log n$

Conclusion

- Convex neural networks / infinitely many basis functions
- Adaptivity to structure
- Corresponding ernel methods are not adaptive
- Provable high-dimensional non-linear variable selection
- Convex but no polynomial-time algorithm
- Reduction to approximate Haussdorff distance between zonotopes
- Open problem

Conclusion

- Convex neural networks / infinitely many basis functions
- Adaptivity to structure
- Corresponding ernel methods are not adaptive
- Provable high-dimensional non-linear variable selection
- Convex but no polynomial-time algorithm
- Reduction to approximate Haussdorff distance between zonotopes
- Open problem
- Extensions
- Multiple outputs
- Multiple layers
- Other models (e.g., Gaussian mixtures)

References

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.
Y. Bengio, N. Le Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural networks. Adv. NIPS, 2006.
E. D. Bolker. A class of convex bodies. Transactions of the American Mathematical Society, 145: 323-345, 1969.
Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information Processing Systems, 2009.
V. F. Dem'yanov and A. M. Rubinov. The minimization of a smooth convex functional on a convex set. SIAM Journal on Control, 5(2):280-294, 1967.
Miro Dudik, Zaid Harchaoui, Jérôme Malick, et al. Lifted coordinate descent for learning with trace-norm regularization. In AISTATS-Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics-2012, volume 22, pages 327-336, 2012.
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics quarterly, 3 (1-2):95-110, 1956.
Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for norm-regularized smooth convex optimization. Technical Report 1302.2325, arXiv, 2013.
M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the International Conference on Machine Learning (ICML), 2013.
V. Kurkova and M. Sanguineti. Bounds on rates of variable-basis and neural-network approximation. IEEE Transactions on Information Theory, 47(6):2659-2665, Sep 2001.

Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In International Conference on Artificial Intelligence and Statistics, pages 404-411, 2007.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural networks, 6(6): 861-867, 1993.

Radford M. Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in neural information processing systems, 2007.
S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. ℓ_{1}-regularization in infinite dimensional feature spaces. In Proc. COLT, 2007.

