Breaking the Curse of Dimensionality
with Convex Neural Networks
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Curse of dimensionality (supervised learning)

e Goal: Learning a function f : RY — R with minimal risk

R(f)=E[{(y, f(x))]

— Minimizer f* only assumed to be Lipshitz-continuous
— Need n = Q(¢~%) observations to achieve R(f) — R(f*) < ¢
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Curse of dimensionality (supervised learning)

e Goal: Learning a function f : RY — R with minimal risk

R(f) =E[l(y, f(z))]

— Minimizer f* only assumed to be Lipshitz-continuous

— Need n = Q(c9) observations to achieve R(f) — R(f*) < e

e Reducing sample complexity by exploiting structure

L inear function
Generalized additive model

One-hidden layer neural network Zle nio(w, x + b)

Projection pursuit

Subspace dependence

w'x+b

>4 fi(x))

g(W 'z)

de—?

kid?e—4
k2ds 2
kid?e—4

(ki\/a) —rank(W)+3



Goals
k k
fla) =) mmax{wz+b;,0} = > mi(ww+bi)s
1=1 1=1

e Generalization properties?
— Adaptivity to structure
— Non-linear variable selection
e Learning or sampling weights (w;,b;) € R4+1?
— Convexification by letting £ — 400
— Selection (¢1) vs. random sampling (¢5)
e Hard or easy to optimize?

— Polynomial time algorithms ...
— ... with same guarantees on unseen data



Convex neural networks (Bengio, Le Roux, Vincent,
Delalleau, and Marcotte, 2006)
Main idea

k

¢ Replace the sum Zm(w:x + b;). by an integral
i=1

f(z) = / T b) (w,b)dr(w, b

k
— Equivalence when ndr is a weighted sum of Diracs: Znﬁwi,bi
i=1
e Promote sparsity with an /;-norm: In(w,b)|dT(w,b)

]Rd—|—1



Convex neural networks
Formalization

e Several points of views (Barron, 1993; Kurkova and Sanguineti,
2001; Bengio et al., 2006; Rosset et al., 2007)

e Define space F; of functions f that can be decomposed as

f@) = [ @or b nwbdrtw) (o)



Convex neural networks
Formalization

e Several points of views (Barron, 1993; Kurkova and Sanguineti,
2001; Bengio et al., 2006; Rosset et al., 2007)

e Define space F; of functions f that can be decomposed as
f@)= [ Tt by nwbdrwp) ()
Rd+1

e Define the variation norm ~;(f) on F; as

1 (f) = inf / n(w,b)|dr(w,b) such that (e) holds

Rd+1



Variation norm and finite decomposition

e Property 1 (Leshno et al., 1993): Fi is dense in L?



Variation norm and finite decomposition

e Property 1 (Leshno et al., 1993): Fi is dense in L?

e Property 2 (Barron, 1993) for any f € JFj, there exists a finite

decomposition f(x Zm w, x + b;)4 such that
1=1

— Hf—f” < e in L?-norm
- k=0(m(f)*")

e NB: constructive proof by conditional gradient algorithm



Conditional gradient algorithm
¢ Minimizing J(f) such that v(f) < ¢

— J smooth and convex

— Frank-Wolfe, conditional gradient, gradient boosting, etc.
(Frank and Wolfe, 1956; Dem'yanov and Rubinov, 1967; Dudik
et al., 2012; Harchaoui et al., 2013; Jaggi, 2013)

e lteration: fi. 1 = (1 — ps)fi + pu argminU’(ft), f)
v1(f)<é

/71(][) S 5 argvlr(r}i)%é«]/(ft)a f>



Conditional gradient algorithm
e Minimizing J(f) such that v(f) < ¢

— J smooth and convex

— Frank-Wolfe, conditional gradient, gradient boosting, etc.
(Frank and Wolfe, 1956; Dem'yanov and Rubinov, 1967; Dudik
et al., 2012; Harchaoui et al., 2013; Jaggi, 2013)

e lteration: ft—i—l — (1 — ,Ot)ft + Pt argmin<J/(ft)7 f>
Y1(f)<o

— Line search or p, =2/(t + 1)
— Convergence rate: J(f) — inf J(g) = O(5%/t)

v1(g)<é

e f; = convex combination of ¢t extreme points



Conditional gradient algorithm
Extreme points

e lteration: f;1 1 = (1 — py)fi + prargmin{J'(fy), f)
11(f)<0

e f; = convex combination of { extreme points

— (1-ball: extreme points are 1-sparse vectors
— The set {71(f) < d} is the convex hull of all functions

r— +5(w'z+0b)y, for (w,b) € RIT!



Conditional gradient algorithm
Extreme points

e lteration: ft—i—l — (1 — ,Ot)ft + Pt argmin<‘]/(ft)7 f>
Y1(f)<6

e f; = convex combination of ¢ extreme points

— (1-ball: extreme points are 1-sparse vectors
— The set {71(f) < d} is the convex hull of all functions

r— +5(w'z+0b),, for (w,b) € RIT!
e Extreme points are single neurons/units

argmin (J'(f), f) = £6(w, - +bs) 4
71(f)<o

— for (wt7 bt) — T argimaX, p)crd+1 |<J/(ft)7 (wT ' _I_b)—|->|



Conditional gradient algorithm
Supervised learning from finite data set

e Goal: min —Z€ Yi, f(x;))

y1(f)<d N

¢ Adding a new unit/neuron/basis function:

argmax
(w,b)eRA+1

1 mn
=S g Ty +b)y| with g = £y, fulx,))

— Computational difficulty?



Adding extra neuron/unit for ReLUs

e Reformulation with v = (w,b) € Rt and z = (z,1) € R4

PCEDN Do (0Tt =Y (0Tt

1= ?:GI_|_ el

max
Jvll2<1

= INnax
Jvll2<1

with I—l- — {ngz P 0} and I_ = {Z,g@ < O}, and tz — ‘gz‘zz - Rd+1



Adding extra neuron/unit for ReLUs
Hausdorff distance between zonotopes

e Reformulation with v = (w,b) € R and z = (z,1) € R4
= max

> oi(0Tz)e| = max | 37 (07 t) — (T h)
1 ~

1= iEI+ €1 _

max
Jvll2<1

with ]_|_ _— {i,gi = 0} and /_ = {i,gi < O}, and t; = \gz\zz = Rd+1,
e By convex duality, equivalent to

max{ min max |[u; —wu_|l2, min max Hu+—u_H2}
ureEKLu_eK_ u_eK_ujpeKy

with K_|_={ Z b;t;, b; € [0, 1]} and K_:{ Z bit;, b; € [0, 1]}

i€I+ 1e1_



Hausdorff distance between zonotopes

e /onotopes K = Zb ti;, b; €10, 1 and zonoids (Bolker, 1969)

t1+t2+t3

2O

— Affine projections of hypercubes
— Zonoids are limits of zonotopes
— In d = 2 (only), all centrally symmetric convex sets are zonoids



Hausdorff distance between zonotopes

e Zonotopes K = { Z bit;, b; € |0, 1]} and zonoids (Bolker, 1969)

t1 + 1o + 13

]
l3
to \OQ )

0 0

e Hausdorff distance computation, still hard...
Lo
w0
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Hausdorff distance between zonotopes

e Zonotopes K = { Z biti, b; € [0, 1]} and zonoids (Bolker, 1969)

b1 +t2 + 13

]
i3
to NO? N

0 0

e Hausdorff distance computation, approximation by ellipsoids?
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Convex relaxations and polynomial-time algorithms

e Many possibilities (SDP, ellipsoids, etc.), no success (yet)...

e (conjectured) Impossible result: for any g € R”, find ¥ such that
|D||]2 =1 and

K |lvll2=1

Zgz ?} Z@

Zgz ’U Zz




Convex relaxations and polynomial-time algorithms

e Many possibilities (SDP, ellipsoids, etc.), no success (yet)...

e (conjectured) Impossible result: for any g € R”, find ¥ such that
|D||]2 =1 and

Zgz ’U Zz

v 2i) /— max

K [|v][2=1

e Sufficient result for matching generalization bounds

— Only in expectation for g standard Gaussian vector
— Reduction to simple non-convex problem
— NB: similar to linear binary classification (which is NP-hard)



Why not sampling weights?
e Sampling m weights (w;, b;) and use features (w;' x + b;)
— Linear combination and Eg—regularize{n
— Equivalent to a kernel k(x,y) = %z(w:x + b))+ (w; y + b;) &



Why not sampling weights?
e Sampling m weights (w;, b;) and use features (w;' x + b;)
— Linear combination and /s-regularizer
. I
— Equivalent to a kernel k(x,y) = — ;(wjx + b))+ (w; y + b;) &

o Letting m — o0

— k(x,y) tends to / (w' 2z +b)(w'y +b)Ldu(w,b)
]Rd—|—1

— Random kernel expansion (Neal, 1995; Rahimi and Recht, 2007)
— Can be computed in closed form (Le Roux and Bengio, 2007; Cho
and Saul, 2009)

e Defines a Hilbert space F> with norm ~5 such that:

Yo (f)? = inf/ In(w,b)|*dr(w,b) s.t. f(:v):/R (w ' z4+b) Ln(w, b)dr(w, b)

Rd+1 d+1



Generalization properties

1 mn
Minimizati : irical risk =S " ¢(ys. f(z,
* Minimization of empirical risk ; (yi, f(x;))
— subject to y1(f) < 4 : learning weights (w;, b;)
— subject to v2(f) < d : sampling weights (w;,b,)
— NB: ’71<”72, i.e.,FQCFl



Generalization properties

1 mn
Minimizati : irical risk =S " ¢(ys. f(z,
* Minimization of empirical risk ; (yi, f(x;))
— subject to y1(f) < 4 : learning weights (w;, b;)
— subject to v2(f) < d : sampling weights (w;,b,)
— NB: ’71<”72, i.e.,FQCFl

e Sampling weights (i.e., using /5 / kernel methods)

— No adaptivity (e.g., a single neuron does not belong to F5)

e Learning sparse weights (i.e., using /1)

— Automatic adaptivity to structure
— E.g., f(z) = g(W "x) for W of low-rank



Approximation properties with variation norm

e Finite variation norm

— f (d/243/2)-times differentiable = v1(f) < 72(f) < o0
— Smoothness index has to grow with dimension!



Approximation properties with variation norm

e Finite variation norm

— f (d/243/2)-times differentiable = v1(f) < 72(f) < o0
— Smoothness index has to grow with dimension!

e Approximation of Lipschitz-continuous functions

— f 1-Lipschitz-continuous = there exists g such that v;(g) < ¢ and
with approximation error §—2/(4+t1) Jog §
— Proof based on spherical harmonics



Approximation properties with variation norm

e Finite variation norm

— f (d/243/2)-times differentiable = v1(f) < 72(f) < o0
— Smoothness index has to grow with dimension!
e Approximation of Lipschitz-continuous functions

— f 1-Lipschitz-continuous = there exists g such that v;(g) < ¢ and
with approximation error §—2/(4+t1) Jog §
— Proof based on spherical harmonics

e Adaptivity

— If f depends on a s-dimensional projection, replace d by s
— Only works for v,



Generalization bounds

e Assuming f* of a certain form

— Penalizing weight vectors w by f9-norms

function space |- |l2

T d'/?

+ b ~—75

w n1/2
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Generalization bounds

e Assuming f* of a certain form

— Penalizing weight vectors w by f9-norms

— Assuming g-sparse solution and penalizing w by ¢1-norm

function space |- |l2 |- |l
d'/? log d)'/?
w'x+b 12 \/5( 1/)2
. C(d ¢'*C(d
No assumption 1/((dJ23) logn 1/(d£3)) logn
1/2 1/2 1/2
Zf] w, :1; , W, € R4 kd// logn kg G?ﬁd) logn
n n
k
- | kdY2C (s kq'/2C(s)(log d)?/(+3)
Z fi(W, ), W; € R4 nl/(SJrg)) logn (TLB/((S+3)) logn
j=1




Conclusion

e Convex neural networks / infinitely many basis functions

— Adaptivity to structure
— Corresponding ernel methods are not adaptive
— Provable high-dimensional non-linear variable selection

e Convex but no polynomial-time algorithm

— Reduction to approximate Haussdorff distance between zonotopes
— Open problem



Conclusion

e Convex neural networks / infinitely many basis functions

— Adaptivity to structure
— Corresponding ernel methods are not adaptive
— Provable high-dimensional non-linear variable selection

e Convex but no polynomial-time algorithm
— Reduction to approximate Haussdorff distance between zonotopes
— Open problem

e Extensions

— Multiple outputs
— Multiple layers
— Other models (e.g., Gaussian mixtures)
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