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Curse of dimensionality (supervised learning)

• Goal: Learning a function f : Rd → R with minimal risk

R(f) = E
[

ℓ(y, f(x))
]

– Minimizer f∗ only assumed to be Lipshitz-continuous

– Need n = Ω(ε−d) observations to achieve R(f)−R(f∗) 6 ε



Curse of dimensionality (supervised learning)

• Goal: Learning a function f : Rd → R with minimal risk

R(f) = E
[

ℓ(y, f(x))
]

– Minimizer f∗ only assumed to be Lipshitz-continuous

– Need n = Ω(ε−d) observations to achieve R(f)−R(f∗) 6 ε

• Reducing sample complexity by exploiting structure

Linear function w⊤x+ b dε−2

Generalized additive model
∑d

j=1 fj(xj) k4d2ε−4

One-hidden layer neural network
∑k

i=1 ηiσ(w
⊤
i x+ b) k2dε−2

Projection pursuit
∑k

i=1 fi(w
⊤
i x) k4d2ε−4

Subspace dependence g(W⊤x) ( ε
k
√
d
)−rank(W)+3



Goals

f(x) =
k

∑

i=1

ηimax{w⊤
i x+ bi, 0} =

k
∑

i=1

ηi(w
⊤
i x+ bi)+

• Generalization properties?

– Adaptivity to structure

– Non-linear variable selection

• Learning or sampling weights (wi, bi) ∈ R
d+1?

– Convexification by letting k → +∞
– Selection (ℓ1) vs. random sampling (ℓ2)

• Hard or easy to optimize?

– Polynomial time algorithms ...

– ... with same guarantees on unseen data



Convex neural networks (Bengio, Le Roux, Vincent,

Delalleau, and Marcotte, 2006)

Main idea

• Replace the sum
k
∑

i=1

ηi(w
⊤
i x+ bi)+ by an integral

f(x) =

∫

Rd+1
(w⊤x+ b)+ η(w, b)dτ(w, b)

– Equivalence when ηdτ is a weighted sum of Diracs:
k
∑

i=1

ηiδwi,bi

• Promote sparsity with an ℓ1-norm:

∫

Rd+1
|η(w, b)|dτ(w, b)



Convex neural networks

Formalization

• Several points of views (Barron, 1993; Kurkova and Sanguineti,

2001; Bengio et al., 2006; Rosset et al., 2007)

• Define space F1 of functions f that can be decomposed as

f(x) =

∫

Rd+1
(w⊤x+ b)+ η(w, b)dτ(w, b) (•)



Convex neural networks

Formalization

• Several points of views (Barron, 1993; Kurkova and Sanguineti,

2001; Bengio et al., 2006; Rosset et al., 2007)

• Define space F1 of functions f that can be decomposed as

f(x) =

∫

Rd+1
(w⊤x+ b)+ η(w, b)dτ(w, b) (•)

• Define the variation norm γ1(f) on F1 as

γ1(f) = inf

∫

Rd+1
|η(w, b)|dτ(w, b) such that (•) holds



Variation norm and finite decomposition

• Property 1 (Leshno et al., 1993): F1 is dense in L2



Variation norm and finite decomposition

• Property 1 (Leshno et al., 1993): F1 is dense in L2

• Property 2 (Barron, 1993): for any f ∈ F1, there exists a finite

decomposition f̂(x) =
k

∑

i=1

ηi(w
⊤
i x+ bi)+ such that

– ‖f − f̂‖ 6 ε in L2-norm

– k = O(γ1(f)
2ε−2)

• NB: constructive proof by conditional gradient algorithm



Conditional gradient algorithm

• Minimizing J(f) such that γ1(f) 6 δ

– J smooth and convex

– Frank-Wolfe, conditional gradient, gradient boosting, etc.

(Frank and Wolfe, 1956; Dem’yanov and Rubinov, 1967; Dudik

et al., 2012; Harchaoui et al., 2013; Jaggi, 2013)

• Iteration: ft+1 = (1− ρt)ft + ρt argmin
γ1(f)6δ

〈J ′(ft), f〉

γ1(f) ≤ δ

−J ′(ft)

ft

arg min
γ1(f)≤δ

〈J ′(ft), f〉

ft+1



Conditional gradient algorithm

• Minimizing J(f) such that γ1(f) 6 δ

– J smooth and convex

– Frank-Wolfe, conditional gradient, gradient boosting, etc.

(Frank and Wolfe, 1956; Dem’yanov and Rubinov, 1967; Dudik

et al., 2012; Harchaoui et al., 2013; Jaggi, 2013)

• Iteration: ft+1 = (1− ρt)ft + ρt argmin
γ1(f)6δ

〈J ′(ft), f〉

– Line search or ρt = 2/(t+ 1)

– Convergence rate: J(f)− inf
γ1(g)6δ

J(g) = O(δ2/t)

• ft = convex combination of t extreme points



Conditional gradient algorithm

Extreme points

• Iteration: ft+1 = (1− ρt)ft + ρt argmin
γ1(f)6δ

〈J ′(ft), f〉

• ft = convex combination of t extreme points

– ℓ1-ball: extreme points are 1-sparse vectors

– The set {γ1(f) 6 δ} is the convex hull of all functions

x 7→ ±δ(w⊤x+ b)+, for (w, b) ∈ R
d+1



Conditional gradient algorithm

Extreme points

• Iteration: ft+1 = (1− ρt)ft + ρt argmin
γ1(f)6δ

〈J ′(ft), f〉

• ft = convex combination of t extreme points

– ℓ1-ball: extreme points are 1-sparse vectors

– The set {γ1(f) 6 δ} is the convex hull of all functions

x 7→ ±δ(w⊤x+ b)+, for (w, b) ∈ R
d+1

• Extreme points are single neurons/units

argmin
γ1(f)6δ

〈J ′(ft), f〉 = ±δ(w⊤
t ·+bt)+

– for (wt, bt) = − argmax(w,b)∈Rd+1

∣

∣〈J ′(ft), (w⊤ · +b)+〉
∣

∣



Conditional gradient algorithm

Supervised learning from finite data set

• Goal: min
γ1(f)6δ

1

n

n
∑

i=1

ℓ(yi, f(xi))

• Adding a new unit/neuron/basis function:

argmax
(w,b)∈Rd+1

∣

∣

∣

∣

1

n

n
∑

i=1

gi · (w⊤xi + b)+

∣

∣

∣

∣

with gi = ℓ′(yi, ft(xi))

– Computational difficulty?



Adding extra neuron/unit for ReLUs

Hausdorff distance between zonotopes

• Reformulation with v = (w, b) ∈ R
d+1 and z = (x, 1) ∈ R

d+1:

max
‖v‖261

∣

∣

∣

∣

n
∑

i=1

gi(v
⊤zi)+

∣

∣

∣

∣

= max
‖v‖261

∣

∣

∣

∣

∑

i∈I+

(v⊤ti)+ −
∑

i∈I−

(v⊤ti)+

∣

∣

∣

∣

with I+ = {i, gi > 0} and I− = {i, gi < 0}, and ti = |gi|zi ∈ R
d+1,



Adding extra neuron/unit for ReLUs

Hausdorff distance between zonotopes

• Reformulation with v = (w, b) ∈ R
d+1 and z = (x, 1) ∈ R

d+1:

max
‖v‖261

∣

∣

∣

∣

n
∑

i=1

gi(v
⊤zi)+

∣

∣

∣

∣

= max
‖v‖261

∣

∣

∣

∣

∑

i∈I+

(v⊤ti)+ −
∑

i∈I−

(v⊤ti)+

∣

∣

∣

∣

with I+ = {i, gi > 0} and I− = {i, gi < 0}, and ti = |gi|zi ∈ R
d+1,

• By convex duality, equivalent to

max
{

min
u+∈K+

max
u−∈K−

‖u+ − u−‖2, min
u−∈K−

max
u+∈K+

‖u+ − u−‖2
}

with K+=

{

∑

i∈I+

biti, bi ∈ [0, 1]

}

and K−=

{

∑

i∈I−

biti, bi ∈ [0, 1]

}



Hausdorff distance between zonotopes

• Zonotopes K=

{

∑

i

biti, bi ∈ [0, 1]

}

and zonoids (Bolker, 1969)

t1

t2

t3

0 0

t1 + t2 + t3

0 0

– Affine projections of hypercubes

– Zonoids are limits of zonotopes

– In d = 2 (only), all centrally symmetric convex sets are zonoids
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• Zonotopes K=

{

∑

i

biti, bi ∈ [0, 1]

}

and zonoids (Bolker, 1969)

t1

t2

t3

0 0

t1 + t2 + t3

0 0

• Hausdorff distance computation, still hard...

0

0

0



Hausdorff distance between zonotopes

• Zonotopes K=

{

∑

i

biti, bi ∈ [0, 1]

}

and zonoids (Bolker, 1969)

t1

t2

t3

0 0

t1 + t2 + t3

0 0

• Hausdorff distance computation, approximation by ellipsoids?

0

0

0

0



Convex relaxations and polynomial-time algorithms

• Many possibilities (SDP, ellipsoids, etc.), no success (yet)...

• (conjectured) Impossible result: for any g ∈ R
n, find v̂ such that

‖v̂‖2 = 1 and

∣

∣

∣

∣

n
∑

i=1

gi(v̂
⊤zi)+

∣

∣

∣

∣

>
1

κ
max

‖v‖2=1

∣

∣

∣

∣

n
∑

i=1

gi(v
⊤zi)+

∣

∣

∣

∣



Convex relaxations and polynomial-time algorithms

• Many possibilities (SDP, ellipsoids, etc.), no success (yet)...

• (conjectured) Impossible result: for any g ∈ R
n, find v̂ such that

‖v̂‖2 = 1 and

∣

∣

∣

∣

n
∑

i=1

gi(v̂
⊤zi)+

∣

∣

∣

∣

>
1

κ
max

‖v‖2=1

∣

∣

∣

∣

n
∑

i=1

gi(v
⊤zi)+

∣

∣

∣

∣

• Sufficient result for matching generalization bounds

– Only in expectation for g standard Gaussian vector

– Reduction to simple non-convex problem

– NB: similar to linear binary classification (which is NP-hard)



Why not sampling weights?

• Sampling m weights (wi, bi) and use features (w⊤
i x+ bi)+

– Linear combination and ℓ2-regularizer

– Equivalent to a kernel k(x, y) =
1

m

m
∑

i=1

(w⊤
i x+ bi)+(w

⊤
i y + bi)+



Why not sampling weights?

• Sampling m weights (wi, bi) and use features (w⊤
i x+ bi)+

– Linear combination and ℓ2-regularizer

– Equivalent to a kernel k(x, y) =
1

m

m
∑

i=1

(w⊤
i x+ bi)+(w

⊤
i y + bi)+

• Letting m → ∞

– k(x, y) tends to

∫

Rd+1
(w⊤x+ b)+(w

⊤y + b)+dµ(w, b)

– Random kernel expansion (Neal, 1995; Rahimi and Recht, 2007)

– Can be computed in closed form (Le Roux and Bengio, 2007; Cho

and Saul, 2009)

• Defines a Hilbert space F2 with norm γ2 such that:

γ2(f)
2 = inf

∫

Rd+1
|η(w, b)|2dτ(w, b) s.t. f(x)=

∫

Rd+1
(w⊤x+b)+η(w, b)dτ(w, b)



Generalization properties

• Minimization of empirical risk
1

n

n
∑

i=1

ℓ(yi, f(xi))

– subject to γ1(f) 6 δ : learning weights (wj, bj)

– subject to γ2(f) 6 δ : sampling weights (wj, bj)

– NB: γ1 6 γ2, i.e., F2 ⊂ F1



Generalization properties

• Minimization of empirical risk
1

n

n
∑

i=1

ℓ(yi, f(xi))

– subject to γ1(f) 6 δ : learning weights (wj, bj)

– subject to γ2(f) 6 δ : sampling weights (wj, bj)

– NB: γ1 6 γ2, i.e., F2 ⊂ F1

• Sampling weights (i.e., using ℓ2 / kernel methods)

– No adaptivity (e.g., a single neuron does not belong to F2)

• Learning sparse weights (i.e., using ℓ1)

– Automatic adaptivity to structure

– E.g., f(x) = g(W⊤x) for W of low-rank



Approximation properties with variation norm

• Finite variation norm

– f (d/2+3/2)-times differentiable ⇒ γ1(f) 6 γ2(f) < ∞
– Smoothness index has to grow with dimension!
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• Approximation of Lipschitz-continuous functions

– f 1-Lipschitz-continuous ⇒ there exists g such that γ1(g) 6 δ and

with approximation error δ−2/(d+1) log δ

– Proof based on spherical harmonics



Approximation properties with variation norm

• Finite variation norm

– f (d/2+3/2)-times differentiable ⇒ γ1(f) 6 γ2(f) < ∞
– Smoothness index has to grow with dimension!

• Approximation of Lipschitz-continuous functions

– f 1-Lipschitz-continuous ⇒ there exists g such that γ1(g) 6 δ and

with approximation error δ−2/(d+1) log δ

– Proof based on spherical harmonics

• Adaptivity

– If f depends on a s-dimensional projection, replace d by s

– Only works for γ1



Generalization bounds

• Assuming f∗ of a certain form

– Penalizing weight vectors w by ℓ2-norms

• Assuming q-sparse solution and penalizing w by ℓ1-norm

∣

∣

∣
function space ‖ · ‖2
∣

∣

∣

∣

w⊤x+ b d1/2

n1/2
∣

∣

∣

∣

No assumption
C(d)

n1/(d+3) log n

∣

∣

∣

∣

k
∑

j=1

fj(w
⊤
j x), wj ∈ R

d kd1/2

n1/4 log n

∣

∣

∣

∣

k
∑

j=1

fj(W
⊤
j x), Wj ∈ R

d×s kd1/2C(s)

n1/(s+3) log n



Generalization bounds

• Assuming f∗ of a certain form

– Penalizing weight vectors w by ℓ2-norms

– Assuming q-sparse solution and penalizing w by ℓ1-norm

∣

∣

∣
function space ‖ · ‖2 ‖ · ‖1
∣

∣

∣

∣

w⊤x+ b d1/2

n1/2

√
q
(log d)1/2

n1/2
∣

∣

∣

∣

No assumption
C(d)

n1/(d+3) log n
q1/2C(d)

n1/(d+3) log n

∣

∣

∣

∣

k
∑

j=1

fj(w
⊤
j x), wj ∈ R

d kd1/2

n1/4 log n
kq1/2(log d)1/2

n1/4 log n

∣

∣

∣

∣

k
∑

j=1

fj(W
⊤
j x), Wj ∈ R

d×s kd1/2C(s)

n1/(s+3) log n
kq1/2C(s)(log d)2/(s+3)

n1/(s+3) log n



Conclusion

• Convex neural networks / infinitely many basis functions

– Adaptivity to structure

– Corresponding ernel methods are not adaptive

– Provable high-dimensional non-linear variable selection

• Convex but no polynomial-time algorithm

– Reduction to approximate Haussdorff distance between zonotopes

– Open problem



Conclusion

• Convex neural networks / infinitely many basis functions

– Adaptivity to structure

– Corresponding ernel methods are not adaptive

– Provable high-dimensional non-linear variable selection

• Convex but no polynomial-time algorithm

– Reduction to approximate Haussdorff distance between zonotopes

– Open problem

• Extensions

– Multiple outputs

– Multiple layers

– Other models (e.g., Gaussian mixtures)
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