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Abstract We consider the random-design least-squares regres-

sion problem within the reproducing kernel Hilbert space (RKHS)
framework. Given a stream of independent and identically distributed
input/output data, we aim to learn a regression function within an
RKHS H, even if the optimal predictor (i.e., the conditional expecta-
tion) is not in H. In a stochastic approximation framework where the
estimator is updated after each observation, we show that the aver-
aged unregularized least-mean-square algorithm (a form of stochastic
gradient descent), given a sufficient large step-size, attains optimal
rates of convergence for a variety of regimes for the smoothnesses of
the optimal prediction function and the functions in H. Our results
apply as well in the usual finite-dimensional setting of parametric
least-squares regression, showing adaptivity of our estimator to the
spectral decay of the covariance matrix of the covariates.

1. Introduction. Positive-definite-kernel-based methods such as the
support vector machine or kernel ridge regression are now widely used in
many areas of science of engineering. They were first developed within the
statistics community for non-parametric regression using splines, Sobolev
spaces, and more generally reproducing kernel Hilbert spaces (see, e.g., [1]).
Within the machine learning community, they were extended in several inter-
esting ways (see, e.g., [2, 3]): (a) other problems were tackled using positive-
definite kernels beyond regression problems, through the “kernelization” of
classical unsupervised learning methods such as principal component analy-
sis, canonical correlation analysis, or K-means, (b) efficient algorithms based
on convex optimization have emerged, in particular for large sample sizes,
and (c) kernels for non-vectorial data have been designed for objects like
strings, graphs, measures, etc. A key feature is that they allow the separa-
tion of the representation problem (designing good kernels for non-vectorial
data) and the algorithmic/theoretical problems (given a kernel, how to de-
sign, run efficiently and analyse estimation algorithms).

The theoretical analysis of non-parametric least-squares regression within
the RKHS framework is well understood. In particular, regression on input
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data in Rd, d > 1, and so-called Mercer kernels (continuous kernels over a
compact set) that lead to dense subspaces of the space of square-integrable
functions and non parametric estimation [4], has been widely studied in the
last decade starting with the works of Smale and Cucker [5, 6] and being fur-
ther refined [7, 8] up to optimal rates [9, 10, 11] for Tikhonov regularization
(batch iterative methods were for their part studied in [12, 13]). However,
the kernel framework goes beyond Mercer kernels and non-parametric re-
gression; indeed, kernels on non-vectorial data provide examples where the
usual topological assumptions may not be natural, such as sequences, graphs
and measures. Moreover, even finite-dimensional Hilbert spaces may need
a more refined analysis when the dimension of the Hilbert space is much
larger than the number of observations: for example, in modern text and
web applications, linear predictions are performed with a large number of
covariates which are equal to zero with high probability. The sparsity of the
representation allows to reduce significantly the complexity of traditional
optimization procedures; however, the finite-dimensional analysis which ig-
nores the spectral structure of the data often leads to trivial guarantees
because the number of covariates far exceeds the number of observations,
while the analysis we carry out is meaningful (note that in these contexts
sparsity of the underlying estimator is typically not a relevant assumption).
In this paper, we consider minimal assumptions regarding the input space
and the distributions, so that our non-asymptotic results may be applied to
all the cases mentioned above.

In practice, estimation algorithms based on regularized empirical risk min-
imization (e.g., penalized least-squares) face two challenges: (a) using the
correct regularization parameter and (b) finding an approximate solution
of the convex optimization problems. In this paper, we consider these two
problems jointly by following a stochastic approximation framework formu-
lated directly in the RKHS, in which each observation is used only once
and overfitting is avoided by making only a single pass through the data–a
form of early stopping, which has been considered in other statistical frame-
works such as boosting [14]. While this framework has been considered be-
fore [15, 16, 17], the algorithms that are considered either (a) require two
sequences of hyperparameters (the step-size in stochastic gradient descent
and a regularization parameter) or (b) do not always attain the optimal
rates of convergence for estimating the regression function. In this paper,
we aim to remove simultaneously these two limitations.

Traditional online stochastic approximation algorithms, as introduced by
Robbins and Monro [18], lead in finite-dimensional learning problems (e.g.,
parametric least-squares regression) to stochastic gradient descent methods
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with step-sizes decreasing with the number of observations n, which are typi-
cally proportional to n−ζ , with ζ between 1/2 and 1. Short step-sizes (ζ = 1)
are adapted to well-conditioned problems (low dimension, low correlations
between covariates), while longer step-sizes (ζ = 1/2) are adapted to ill-
conditioned problems (high dimension, high correlations) but with a worse
convergence rate—see, e.g., [19, 20] and references therein. More recently
[21] showed that constant step-sizes with averaging could lead to the best
possible convergence rate in Euclidean spaces (i.e., in finite dimensions). In
this paper, we show that using longer step-sizes with averaging also brings
benefits to Hilbert space settings needed for non parametric regression.

With our analysis, based on positive definite kernels, under assumptions
on both the objective function and the covariance operator of the RKHS, we
derive improved rates of convergence [9], in both the finite horizon setting
where the number of observations is known in advance and our bounds hold
for the last iterate (with exact constants), and the online setting where our
bounds hold for each iterate (asymptotic results only). It leads to an explicit
choice of the step-sizes (which play the role of the regularization parameters)
which may be used in stochastic gradient descent, depending on the number
of training examples we want to use and on the assumptions we make.

In this paper, we make the following contributions:
– We review in Section 2 a general though simple algebraic framework
for least-squares regression in RKHS, which encompasses all commonly
encountered situations. This framework however makes unnecessary
topological assumptions, which we relax in Section 2.5 (with details in
App. A).

– We characterize in Section 3 the convergence rate of averaged least-
mean-squares (LMS) and show how the proper set-up of the step-size
leads to optimal convergence rates (as they were proved in [9]), extend-
ing results from finite-dimensional [21] to infinite-dimensional settings.
The problem we solve here was stated as an open problem in [15, 16].
Moreover, our results apply as well in the usual finite-dimensional set-
ting of parametric least-squares regression, showing adaptivity of our
estimator to the spectral decay of the covariance matrix of the covari-
ates (see Section 4.1).

– We compare our new results with existing work, both in terms of rates
of convergence in Section 4, and with simulations on synthetic spline
smoothing in Section 5.

Sketches of the proofs are given in Appendix B. Complete proofs are
available in the arXiv version of the paper [22].
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2. Learning with positive-definite kernels. In this paper, we con-
sider a general random design regression problem, where observations (xi, yi)
are independent and identically distributed (i.i.d.) random variables in X × Y
drawn from a probability measure ρ on X × Y. The set X may be any set
equipped with a measure; moreover we consider for simplicity Y = R and
we measure the risk of a function g : X → R, by the mean square error, that
is, ε(g) := Eρ

[
(g(X)− Y )2].

The function g that minimizes ε(g) over all measurable functions is known
to be the conditional expectation, that is, gρ(X) = E[Y |X]. In this paper
we consider formulations where our estimates lie in a reproducing kernel
Hilbert space (RKHS) H with positive definite kernel K : X × X → R.

2.1. Reproducing kernel Hilbert spaces. Throughout this section, we make
the following assumption:

(A1) X is a compact topological space and H is an RKHS associated with
a continuous kernel K on the set X .

RKHSs are well-studied Hilbert spaces which are particularly adapted to
regression problems (see, e.g., [23, 1]). They satisfy the following properties:

1. (H, 〈·, ·〉H) is a separable Hilbert space of functions: H ⊂ RX .
2. H contains all functions Kx : t 7→ K(x, t), for all x in X .
3. For any x ∈ X and f ∈ H, the reproducing property holds:

f(x) = 〈f,Kx〉H.

The reproducing property allows to treat non-parametric estimation in the
same algebraic framework as parametric regression. The Hilbert space H is
totally characterized by the positive definite kernel K : X × X → R, which
simply needs to be a symmetric function on X × X such that for any finite
family of points (xi)i∈I in X , the |I|× |I|-matrix of kernel evaluations is
positive semi-definite. We provide examples in Section 2.6. For simplicity,
we have here made the assumption that K is a Mercer kernel, that is, X
is a compact set and K : X × X → R is continuous. See Section 2.5 for an
extension without topological assumptions.

2.2. Random variables. In this paper, we consider a set X and Y ⊂ R and
a distribution ρ on X ×Y. We denote by ρX the marginal law on the space X
and by ρY |X=x the conditional probability measure on Y given x ∈ X . We
may use the notations E [f(X)] or EρX [f(·)] for

∫
X f(x)dρX(x). Beyond the

moment conditions stated below, we will always make the assumptions that
the space L2

ρX
of square ρX -integrable functions defined below is separable
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(this is the case in most interesting situations; see [24] for more details). Since
we will assume that ρX has full support, we will make the usual simplifying
identification of functions and their equivalence classes (based on equality
up to a zero-measure set). We denote by ‖ · ‖L2

ρX
the norm:

‖f‖2L2
ρX

=
∫
X
|f(x)|2dρX(x).

The space L2
ρX

is then a Hilbert space with norm ‖ · ‖L2
ρX

, which we will
always assume separable (that is, with a countable orthonormal system).

Throughout this section, we make the following simple assumption re-
garding finiteness of moments:

(A2) R2 := supx∈X K(x, x) and E[Y 2] are finite; ρX has full support in X .

Note that under these assumptions, any function in H in in L2
ρX

; however
this inclusion is strict in most interesting situations.

2.3. Minimization problem. We are interested in minimizing the follow-
ing quantity, which is the prediction error (or mean squared error) of a
function f , defined for any function in L2

ρX
as:

(2.1) ε(f) = E

[
(f(X)− Y )2

]
.

We are looking for a function with a low prediction error in the particular
function space H, that is we aim to minimize ε(f) over f ∈ H. We have for
f ∈ L2

ρX
:

ε(f) = ‖f‖2L2
ρX
− 2

〈
f,

∫
Y
ydρY |X=·(y)

〉
L2
ρX

+ E[Y 2](2.2)

= ‖f‖2L2
ρX
− 2 〈f,E [Y |X = ·]〉L2

ρX
+ E[Y 2].

A minimizer g of ε(g) over L2
ρX

is known to be such that g(X) = E[Y |X].
Such a function is generally referred to as the regression function, and de-
noted gρ as it only depends on ρ. It is moreover unique (as an element of
L2
ρX

). An important property of the prediction error is that the excess risk
may be expressed as a squared distance to gρ, i.e.:

(2.3) ∀f ∈ L2
ρX
, ε(f)− ε(gρ) = ‖f − gρ‖2L2

ρX
.

A key feature of our analysis is that we only considered ‖f − gρ‖2L2
ρX

as a
measure of performance and do not consider convergences in stricter norms
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(which are not true in general). This allows us to neither assume that gρ is
in H nor that H is dense in L2

ρX
. We thus need to define a notion of the best

estimator in H. We first define the closure F (with respect to ‖·‖L2
ρX

) of any
set F ⊂ L2

ρX
as the set of limits in L2

ρX
of sequences in F . The space H is a

closed and convex subset in L2
ρX

. We can thus define gH = arg minf∈H ε(g),
as the orthogonal projection of gρ on H, using the existence of the projection
on any closed convex set in a Hilbert space. See Proposition 8 in Appendix A
for details. Of course we do not have gH ∈ H, that is the minimum in H is
in general not attained.

Estimation from n i.i.d. observations builds a sequence (gn)n∈N in H. We
will prove under suitable conditions that such an estimator satisfies weak
consistency, that is gn ends up predicting as well as gH:

E [ε(gn)− ε(gH)] n→∞−−−→ 0 ⇔ ‖gn − gH‖L2
ρX

n→∞−−−→ 0.

Seen as a function of f ∈ H, our loss function ε is not coercive (i.e., not
strongly convex), as our covariance operator (see definition below) Σ has no
minimal strictly positive eigenvalue (the sequence of eigenvalues decreases
to zero). As a consequence, even if gH ∈ H, gn may not converge to gH in
H, and when gH /∈ H, we shall even have ‖gn‖H →∞.

2.4. Covariance operator. We now define the covariance operator for the
space H and probability distribution ρX . The spectral properties of such an
operator have appeared to be a key point to characterize the convergence
rates of estimators [5, 8, 9].

We implicitly define (via Riesz’ representation theorem) a linear operator
Σ : H → H through

∀(f, g) ∈ H2, 〈f,Σg〉H = E [f(X)g(X)] =
∫
X
f(x)g(x)dρX(x).

This operator is the covariance operator (defined on the Hilbert space H).
Using the reproducing property, we have:

Σ = E [KX ⊗KX ] ,

where for any elements g, h ∈ H, we denote by g ⊗ h the operator from H
to H defined as:

g ⊗ h : f 7→ 〈f, h〉H g.

Note that this expectation is formally defined as a Bochner expectation (an
extension of Lebesgue integration theory to Banach spaces, see [25]) in L(H)
the set of endomorphisms of H.
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In finite dimension, i.e., H = R
d, for g, h ∈ Rd, g ⊗ h may be identified

to a rank-one matrix, that is, g ⊗ h = gh> =
(
(gihj)16i,j6d

)
∈ R

d×d as
for any f , (gh>)f = g(h>f) = 〈f, h〉Hg. In other words, g ⊗ h is a linear
operator, whose image is included in Vect(g), the linear space spanned by g.
Thus in finite dimension, Σ is the usual (non-centered) covariance matrix.

We have defined the covariance operator on the Hilbert space H. If f ∈ H,
we have for all z ∈ X , using the reproducing property:

E[f(X)K(X, z)] = E[f(X)Kz(X)] = 〈Kz,Σf〉H = (Σf)(z),

which shows that the operator Σ may be extended to any square-integrable
function f ∈ L2

ρX
. In the following, we extend such an operator as an endo-

morphism T from L2
ρX

to L2
ρX

.

Definition 1 (Extended covariance operator). Assume (A1-2). We
define the operator T as follows:

T : L2
ρX
→ L2

ρX

g 7→
∫
X
g(t) Kt dρX (t),

so that for any z ∈ X , T (g)(z) =
∫
X
g(x) K(x, z) dρX (t) = E[g(X)K(X, z)].

From the discussion above, if f ∈ H ⊂ L2
ρX

, then Tf = Σf . We give here
some of the most important properties of T . The operator T (which is an
endomorphism of the separable Hilbert space L2

ρX
) may be reduced in some

Hilbertian eigenbasis of L2
ρX

. It allows us to define the power of such an
operator T r, which will be used to quantify the regularity of the function
gH. See proof in Appendix I.2, Proposition 19 in [22].

Proposition 1 (Eigen-decomposition of T ). Assume (A1-2). T is a
bounded self-adjoint semi-definite positive operator on L2

ρX
, which is trace-

class. There exists a Hilbertian eigenbasis (φi)i∈I of the orthogonal supple-
ment S of the null space Ker(T ), with summable strictly positive eigenvalues
(µi)i∈I . That is:

– ∀i ∈ I, Tφi = µiφi, (µi)i∈I strictly positive such that
∑
i∈I µi <∞.

– L2
ρX

= Ker(T )
⊥
⊕S, that is, L2

ρX
is the orthogonal direct sum of Ker(T )

and S.

When the space S has finite dimension, then I has finite cardinality, while
in general I is countable. Moreover, the null space Ker(T ) may be either
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reduced to {0} (this is the more classical setting and such an assumption
is often made), finite-dimensional (for example when the kernel has zero
mean, thus constant functions are in S) or infinite-dimensional (e.g., when
the kernel space only consists in even functions, the whole space of odd
functions is in S).

Moreover, the linear operator T allows to relate L2
ρX

and H in a very
precise way. For example, when g ∈ H, we immediately have Tg = Σg ∈ H
and 〈g, Tg〉H = Eg(X)2 = ‖g‖2L2

ρX

. As we formally state in the following
propositions, this essentially means that T 1/2 will be an isometry from L2

ρX
to H. We first show that the linear operator T happens to have an image
included in H, and that the eigenbasis of T in L2

ρX
may also be seen as

eigenbasis of Σ in H (See proof in Appendix I.2, Proposition 18 in [22]):

Proposition 2 (Decomposition of Σ). Assume (A1-2). Σ : H → H is
injective. The image of T is included in H: Im(T ) ⊂ H. Moreover, for any
i ∈ I, φi = 1

µi
Tφi ∈ H , thus

(
µ

1/2
i φi

)
i∈I

is an orthonormal eigen-system of
Σ and an Hilbertian basis of H, i.e., for any i in I, Σφi = µiφi.

This proposition will be generalized under relaxed assumptions (in par-
ticular as Σ will no more be injective, see Section 2.5 and Appendix A).

We may now define all powers T r (they are always well defined because
the sequence of eigenvalues is upper-bounded):

Definition 2 (Powers of T ). We define, for any r > 0, T r : L2
ρX
→

L2
ρX

, for any h ∈ Ker(T ) and (ai)i∈I such that
∑
i∈I a

2
i < ∞, through:

T r (h+
∑
i∈I aiφi) =

∑
i∈I aiµ

r
iφi. Moreover, for any r > 0, T r may be

defined as a bijection from S into Im(T r). We may thus define its unique
inverse T−r : Im(T r)→ S.

The following proposition is a consequence of Mercer’s theorem [5, 26]. It
describes how the space H is related to the image of operator T 1/2.

Proposition 3 (Isometry for Mercer kernels). Under assumptions (A1,2),
H = T 1/2

(
L2
ρX

)
and T 1/2 : S → H is an isometrical isomorphism.

The proposition has the following consequences:

Corollary 1. Assume (A1, A2):

– For any r > 1/2, T r(S) ⊂ H, because T r(S) ⊂ T 1/2(S), that is, with
large enough powers r, the image of T r is in the Hilbert space.
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– ∀r > 0, T r(L2
ρX

) = S = T 1/2(L2
ρX

) = H, because (a) T 1/2(L2
ρX

) = H
and (b) for any r > 0, T r(L2

ρX
) = S. In other words, elements of H

(on which our minimization problem attains its minimum), may seen
as limits (in L2

ρX
) of elements of T r(L2

ρX
), for any r > 0.

– H is dense in L2
ρX

if and only if T is injective (which is equivalent to
ker(T ) = {0})

The sequence of spaces {T r(L2
ρX

)}r>0 is thus a decreasing (when r is
increasing) sequence of subspaces of L2

ρX
such that any of them is dense in

H, and T r(L2
ρX

) ⊂ H if and only if r > 1/2.
In the following, the regularity of the function gH will be characterized by

the fact that gH belongs to the space T r(L2
ρX

) (and not only to its closure),
for a specific r > 0 (see Section 2.7). This space may be described depending
on the eigenvalues and eigenvectors as

T r(L2
ρX

) =
{ ∞∑
i=1

biφi such that
∞∑
i=1

b2
i

µ2r
i

<∞
}
.

We may thus see the spaces T r(L2
ρX

) as spaces of sequences with various
decay conditions.

2.5. Minimal assumptions. In this section, we describe under which “min-
imal” assumptions the analysis may be carried. We prove that the set X may
only be assumed to be equipped with a measure, the kernel K may only as-
sumed to have bounded expectation EρK(X,X) and the output Y may only
be assumed to have finite variance. That is:

(A1’) H is a separable RKHS associated with kernel K on the set X .
(A2’) E [K(X,X)] and E[Y 2] are finite.

In this section, we have to distinguish the set of square ρX -integrable
functions L2

ρX
and its quotient L2

ρX
that makes it a separable Hilbert space.

We define p the projection from L2
ρX

into L2
ρX

(precise definitions are given
in Appendix A). Indeed it is no more possible to identify the space H, which
is a subset of L2

ρX
, and its canonical projection p(H) in L2

ρX
.

Minimality: The separability assumption is necessary to be able to ex-
pand any element as an infinite sum, using a countable orthonormal family
(this assumption is satisfied in almost all cases, for instance it is simple as
soon as X admits a topology for which it is separable and functions in H are
continuous, see [23] for more details). Note that we do not make any topo-
logical assumptions regarding the set X . We only assume that it is equipped
with a probability measure.
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Assumption (A2’) is needed to ensure that every function in H is square-
integrable, that is, E[K(X,X)] < ∞ if and only if H ⊂ L2

ρX
; for example,

for f = Kz, z ∈ X , ‖Kz‖2L2
ρX

= E[K(X, z)2] 6 K(z, z)EK(X,X) (see more
details in the Appendix I, Proposition 11 in [22]).

Our assumptions are sufficient to analyze the minimization of ε(f) with
respect to f ∈ H and seem to allow the widest generality.

Comparison: These assumptions will include the previous setting, but also
recover measures without full support (e.g., when the data lives in a small
subspace of the whole space) and kernels on discrete objects (with non-finite
cardinality).

Moreover, (A1’), (A2’) are stricly weeker than (A1), (A2). In pre-
vious work, (A2’) was sometimes replaced by the stronger assumptions
supx∈X K(x, x) <∞ [15, 16, 17] and |Y | bounded [15, 17]. Note that in func-
tional analysis, the weaker hypothesis

∫
X×X k(x, x′)2dρX(x)dρX(x′) < ∞ is

often used [27], but it is not adapted to the statistical setting.
Main differences: The main difference here is that we cannot identify H

and p(H): there may exist functions f ∈ H\{0} such that ‖f‖L2
ρX

= 0. This
may for example occur if the support of ρX is strictly included in X , and
f is zero on this support, but not identically zero. See the Appendix I.5 in
[22] for more details.

As a consequence, Σ is no more injective and we do not have Im(T 1/2) = H
any more. We thus denote S an orthogonal supplement of the null space
Ker(Σ). As we also need to be careful not to confuse L2

ρX
and L2

ρX
, we define

an extension T of Σ from L2
ρX

into H, then T = p ◦ T . We can define for
r > 1/2 the power operator T r of T (from L2

ρX
into H), see App. A for

details.
Conclusion: Our problem has the same behaviour under such assump-

tions. Proposition 1 remains unchanged. Decompositions in Prop. 2 and
Corollary 1 must be slightly adapted (see Proposition 9 and Corollary 7 in
Appendix A for details). Finally, Proposition 3 is generalized by the next
proposition, which states that p(S ) = p(H) and thus S and p(H) are iso-
morphic (see proof in Appendix I.2, Proposition 19 in [22]):

Proposition 4 (Isometry between supplements). T 1/2 : S → S is an
isometry. Moreover, Im(T 1/2) = p(H) and T 1/2 : S → p(H) is an isomor-
phism.

We can also derive a version of Mercer’s theorem, which does not make
any more assumptions that are required for defining RKHSs. As we will not
use it in this article, this proposition is only given in Appendix A.
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Convergence results: In all convergence results stated below, assumptions
(A1, A2) may be replaced by assumptions (A1’, A2’).

2.6. Examples. The property H = S, stated after Proposition 3, is im-
portant to understand what the space H is, as we are minimizing over this
closed and convex set. As a consequence the space H is dense in L2

ρX
if and

only if T is injective (or equivalently, Ker(T ) = {0} ⇔ S = L2
ρX

). We de-
tail below a few classical situations in which different configurations for the
“inclusion” H ⊂ H ⊂ L2

ρX
appear:

1. Finite-dimensional setting with linear kernel: in finite dimen-
sion, with X = R

d and K(x, y) = x>y, we have H = R
d, with the

scalar product in 〈u, v〉H =
∑d
i=1 uivi. This corresponds to usual para-

metric least-squares regression. If the support of ρX has non-empty
interior, then H = H: gH is the best linear estimator. Moreover, we
have H = H  L2

ρX
: indeed Ker(T ) is the set of functions such that

EXf(X) = 0 (which is a large space).
2. Translation-invariant kernels for instance the Gaussian kernel over
X = R

d, with X following a distribution with full support in R
d: in

such a situation we have H  H = L2
ρX

. This last equality holds more
generally for all universal kernels, which include all kernels of the form
K(x, y) = q(x − y) where q has a summable strictly positive Fourier
transform [28, 29]. These kernels are exactly the kernels such that T
is an injective endomorphism of L2

ρX
.

3. Splines over the circle: When X ∼ U [0; 1] and H is the set of m-
times periodic weakly differentiable functions (see Section 5), we have
in general H  H  L2

ρX
. In such a case, ker(T ) = span(x 7→ 1), and

H ⊕ span(x 7→ 1) = L2
ρX

, that is we can approximate any zero-mean
function.

Many examples and more details may be found in [3, 26, 30]. In particular,
kernels on non-vectorial objects may be defined (e.g., sequences, graphs or
measures).

2.7. Convergence rates. In order to be able to establish rates of conver-
gence in this infinite-dimensional setting, we have to make assumptions on
the objective function and on the covariance operator eigenvalues. In order
to account for all cases (finite and infinite dimensions), we now consider
eigenvalues ordered in non-increasing order, that is, we assume that the set
I is either {1, . . . , d} if the underlying space is d-dimensional or N∗ if the
underlying space has infinite dimension.
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(A3) We denote (µi)i∈I the sequence of non-zero eigenvalues of the opera-
tor T , in decreasing order. We assume µi 6 s2

iα for some α > 1 (so that
tr(T ) <∞), with s ∈ R+.

(A4) gH ∈ T r
(
L2
ρX

)
with r > 0, and as a consequence ‖T−r(gH)‖L2

ρX
<∞.

We chose such assumptions in order to make the comparison with the
existing literature as easy as possible, for example [9, 16]. However, some
other assumptions may be found as in [11, 31].

Dependence on α and r. The two parameters r and α intuitively parametrize
the strengths of our assumptions:

– In assumption (A3) a bigger α makes the assumption stronger: it
means the reproducing kernel Hilbert space is smaller, that is if (A3)
holds with some constant α, then it also holds for any α′ < α. More-
over, if T is reduced in the Hilbertian basis (φi)i of L2

ρX
, we have an

effective search space S =
{∑∞

i=1 biφi/
∑∞
i=1

b2
i
µi

< ∞
}
: the smaller

the eigenvalues, the smaller the space. Note that since tr(T ) is finite,
(A3) is always true for α = 1.

– In assumption (A4), for a fixed α, a bigger r makes the assump-
tion stronger, that is the function gH is actually smoother. Indeed,
considering that (A4) may be rewritten gH ∈ T r

(
L2
ρX

)
and for any

r < r′, T r
′(
L2
ρX

)
⊂ T r

(
L2
ρX

)
. In other words,

{
T r
(
L2
ρX

) }
r≥0 are

decreasing (r growing) subspaces of L2
ρX

.
For r = 1/2, T 1/2(L2

ρX

)
= H; moreover, for r > 1/2, our best ap-

proximation function gH ∈ H is in fact in H, that is the optimization
problem in the RKHS H is attained by a function of finite norm. How-
ever for r < 1/2 it is not attained.

– Furthermore, it is worth pointing the stronger assumption which is of-
ten used in the finite dimensional context, namely tr

(
Σ1/α

)
=
∑
i∈I µ

1/α
i

finite. It turns out that this is a stronger assumption, indeed, since we
have assumed that the eigenvalues (µi) are arranged in non-increasing
order, if tr

(
Σ1/α

)
is finite, then (A3) is satisfied for s2 =

[
2 tr

(
Σ1/α

) ]α.
Such an assumption appears for example in Corollary 5.

Related assumptions. The assumptions (A3) and (A4) are adapted to our
theoretical results, but some stricter assumptions are often used, that make
comparison with existing work more direct. For comparison purposes, we
will also use:

(a3) For any i ∈ I = N, u2 6 iαµi 6 s2 for some α > 1 and u, s ∈ R+.
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(a4) We assume the coordinates (νi)i∈N of gH ∈ L2
ρX

in the eigenbasis
(φi)i∈N (for ‖.‖L2

ρX
) of T are such that νiiδ/2 6W , for some δ > 1 and

W ∈ R+ (so that ‖gH‖L2
ρX

<∞).

Assumption (a3) directly imposes that the eigenvalues of T decay at rate
i−α (which imposes that there are infinitely many), and thus implies (A3).
Together, assumptions (a3) and (a4), imply assumptions (A3) and (A4),
with any δ > 1 + 2αr. Indeed, we have

‖T−rgH‖2L2
ρX

=
∑
i∈N

ν2
i µ
−2r
i 6

W 2

u4r

∑
i∈N

i−δ+2αr,

which is finite for 2αr − δ < −1. Thus, the supremum element of the set
of r such that (A4) holds is such that δ = 1 + 2αr. Thus, when comparing
assumptions (A3-4) and (a3-4), we will often make the identification above,
that is, δ = 1 + 2αr.

The main advantage of the new assumptions is their interpretation when
the basis (φi)i∈I is common for several RKHSs (such as the Fourier basis
for splines, see Section 5): (a4) describes the decrease of the coordinates of
the best function gH ∈ L2

ρX
independently of the chosen RKHS. Thus, the

parameter δ characterizes the prediction function, while the parameter α
characterizes the RKHS.

3. Stochastic approximation in Hilbert spaces. In this section, we
consider estimating a prediction function g ∈ H from observed data, and we
make the following assumption:

(A5) For n > 1, the random variables (xn, yn) ∈ X ×R are independent and
identically distributed with distribution ρ.

Our goal is to estimate a function g ∈ H from data, such that ε(g) =
E(Y − g(X))2 is as small as possible. As shown in Section 2, this is equiv-
alent to minimizing ‖g − gH‖2L2

ρX

. The two main approaches to define an
estimator is by regularization or by stochastic approximation (and combi-
nations thereof). See also approaches by early-stopped gradient descent on
the empirical risk in [32].

3.1. Regularization and linear systems. Given n observations, regular-
ized empirical risk minimization corresponds to minimizing with respect to
g ∈ H the following objective function:

1
n

n∑
i=1

(yi − g(xi))2 + λ‖g‖2H.
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Although the problem is formulated in a potentially infinite-dimensional
Hilbert space, through the classical representer theorem [2, 3, 33], the unique
(if λ > 0) optimal solution may be expressed as ĝ =

∑n
i=1 aiKxi , and

a ∈ R
n may be obtained by solving the linear system (K + λI)a = y,

where K ∈ R
n×n is the kernel matrix, a.k.a. the Gram matrix, composed

of pairwise kernel evaluations Kij = K(xi, xj), i, j = 1, . . . , n, and y is the
n-dimensional vector of all n responses yi, i = 1, . . . , n.

The running-time complexity to obtain a ∈ R
n is typically O(n3) if no

assumptions are made, but several algorithms may be used to lower the com-
plexity and obtain an approximate solution, such as conjugate gradient [34]
or column sampling (a.k.a. Nyström method) [35, 36, 37].

In terms of convergence rates, assumptions (a3-4) allow to obtain con-
vergence rates that decompose ε(ĝ) − ε(gH) = ‖ĝ − gH‖2L2

ρX

as the sum of
two asymptotic terms [9, 31, 37]:

– Variance term: O
(
σ2n−1λ−1/α), which is decreasing with λ, where σ2

characterizes the noise variance, for example, in the homoscedastic case
(i.i.d. additive noise), the marginal variance of the noise; see assump-
tion (A6) for the detailed assumption that we need in our stochastic
approximation context.

– Bias term: O
(
λmin{(δ−1)/α,2}), which is increasing with λ. Note that

the corresponding r from assumptions (A3-4) is r = (δ − 1)/2α, and
the bias term becomes proportional to λmin{2r,2}.

There are then two regimes:

– Optimal predictions: If r < 1, then the optimal value of λ (that mini-
mizes the sum of two terms and makes them asymptotically equivalent)
is proportional to n−α/(2rα+1) = n−α/δ and the excess prediction er-
ror ‖ĝ − gH‖2L2

ρX

= O
(
n−2αr/(2αr+1)) = O

(
n−1+1/δ), and the resulting

procedure is then “optimal” in terms of estimation of gH in L2
ρX

(see
Section 4 for details).

– Saturation: If r > 1, where the optimal value of λ (that minimizes
the sum of two terms and makes them equivalent) is proportional to
n−α/(2α+1), and the excess prediction error is less than O

(
n−2α/(2α+1)),

which is suboptimal. Although assumption (A4) is valid for a larger r,
the rate is the same than if r = 1.

In this paper, we consider a stochastic approximation framework with
improved running-time complexity and similar theoretical behavior than
regularized empirical risk minimization, with the advantage of (a) needing
a single pass through the data and (b) simple assumptions.
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3.2. Stochastic approximation. Using the reproducing property, we have
for any g ∈ H, ε(g) = E(Y − g(X))2 = E(Y − 〈g,KX〉H)2, with gradi-
ent (defined with respect to the dot-product in H) ∇ε(g) = −2E

[
(Y −

〈g,KX〉H)KX

]
.

Thus, for each pair of observations (xn, yn), we have ∇ε(g) = −2E
[
(yn −

〈g,Kxn〉H)Kxn

]
, and thus, the quantity

[
−(yn−〈g,Kxn〉H)Kxn

]
=
[
−(yn−

g(xn)〉)Kxn

]
is an unbiased stochastic (half) gradient. We thus consider the

stochastic gradient recursion, in the Hilbert spaceH, started from a function
g0 ∈ H (taken to be zero in the following):

gn = gn−1 − γn
[
yn − 〈gn−1,Kxn〉H

]
Kxn = gn−1 − γn

[
yn − gn−1(xn)

]
Kxn ,

where γn is the step-size.
We may also apply the recursion using representants. Indeed, if g0 = 0,

which we now assume, then for any n > 1,

gn =
n∑
i=1

aiKxi ,

with the following recursion on the sequence (an)n>1:

an = −γn(gn−1(xn)− yn) = −γn

(
n−1∑
i=1

aiK(xn, xi)− yn

)
.

We also output the averaged iterate defined as

(3.1) gn = 1
n+ 1

n∑
k=0

gk = 1
n+ 1

n∑
i=1

( i∑
j=1

aj
)
Kxi .

Running-time complexity. The running time complexity is O(i) for itera-
tion i—if we assume that kernel evaluations are O(1), and thus O(n2) after n
steps. This is a serious limitation for practical applications. Several authors
have considered expanding gn on a subset of all (Kxi), which allows to bring
down the complexity of each iteration and obtain an overall linear complex-
ity is n [38, 39], but this comes at the expense of not obtaining the sharp
generalization errors that we obtain in this paper. Note that when studying
regularized least-squares problem (i.e., adding a penalisation term), one has
to update every coefficient (ai)16i6n at step n, while in our situation, only
an is computed at step n.
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Relationship to previous works. Similar algorithms have been studied be-
fore [15, 16, 40, 41, 42], under various forms. Especially, in [17, 40, 41, 42] a
regularization term is added to the loss function (thus considering the follow-
ing problem: arg minf∈H ε(f) + λ||f ||2K). In [15, 16], neither regularization
nor averaging procedure are considered, but in the second case, multiple pass
through the data are considered. In [42], a non-regularized averaged proce-
dure equivalent to ours is considered. However, the step-sizes γn which are
proposed, as well as the corresponding analysis, are different. Our step-sizes
are larger and our analysis uses more directly the underlying linear algebra
to obtain better rates (while the proof of [42] is applicable to all smooth
losses).
Step-sizes. We are mainly interested in two different types of step-sizes
(a.k.a. learning rates): the sequence (γi)16i6n may be either:

1. a subsequence of a universal sequence (γi)i∈N, we refer to this situation
as the “online setting”. Our bounds then hold for any of the iterates.

2. a sequence of the type γi = Γ(n) for i 6 n, which will be referred to
as the “finite horizon setting”: in this situation the number of samples
is assumed to be known and fixed and we chose a constant step-size
which may depend on this number. Our bound then hold only for the
last iterate.

In practice it is important to have an online procedure, to be able to deal
with huge amounts of data (potentially infinite). However, the analysis is
easier in the “finite horizon” setting. Some doubling tricks allow to pass to
varying steps [43], but it is not fully satisfactory in practice as it creates
jumps at every n which is a power of two.

3.3. Extra regularity assumptions. We denote by Ξ = (Y − gH(X))KX

the residual, a random element of H. We have E [Ξ] = 0 but in general we
do not have E [Ξ|X] = 0 (unless the model of homoscedastic regression is
well specified). We make the following extra assumption:
(A6) There exists σ > 0 such that E [Ξ⊗ Ξ] 4 σ2Σ, where 4 denotes the

order between self-adjoint operators.
In other words, for any f ∈ H, we have E

[
(Y−gH(X))2f(X)2] 6 σ2

E[f(X)2].
In the well specified homoscedastic case, we have that (Y − gH(X)) is

independent of X and with σ2 = E
[
(Y − gH(X))2], E [Ξ|X] = σ2Σ is clear:

the constant σ2 in the first part of our assumption characterizes the noise
amplitude. Moreover when |Y −gH(X)| is a.s. bounded by σ2, we have (A6).

We first present the results in the finite horizon setting in Section 3.4
before turning to the online setting in Section 3.5.
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3.4. Main results (finite horizon). We can first get some guarantee on
the consistency of our estimator, for any small enough constant step-size:

Theorem 1. Assume (A1-6), then for any constant choice γn = γ0 <
1

2R2 , the prediction error of ḡn converges to the one of gH, that is:

(3.2) E [ε (ḡn)− ε(gH)] = E‖ḡn − gH‖2L2
ρX

n→∞−−−→ 0.

The expectation is considered with respect to the distribution of the sam-
ple (xi, yi)16i6n, as in all the following theorems (note that ‖ḡn− gH‖2L2

ρX

is
itself a different expectation with respect to the law ρX).

Theorem 1 means that for the simplest choice of the learning rate as a
constant, our estimator tends to the perform as well as the best estimator
in the class H. Note that in general, the convergence in H is meaningless
if r < 1/2. The following results will state some assertions on the speed of
such a convergence; our main result, in terms of generality is the following:

Theorem 2 (Complete bound, γ constant, finite horizon). Assume (A1-
6) and γi = γ = Γ(n), for 1 6 i 6 n. If γR2 6 1/4:

E‖ḡn − gH‖2L2
ρX

6
4σ2

n

(
1 + (s2γn)

1
α

)
+ 4
‖T−rgH‖2L2

ρX

γ2rn2 min{r,1} .

We can make the following observations:

– Proof : Theorem 1 is directly derived from Theorem 2, which is proved
in Appendix II.3 in [22]: we derive for our algorithm a new error de-
composition and bound the different sources of error via algebraic cal-
culations. More precisely, following the proof in Euclidean space [21],
we first analyze (in Appendix II.2 in [22]) a closely related recursion
(we replace Kxn ⊗Kxn by its expectation Σ, and we thus refer to it
as a semi-stochastic version of our algorithm):

gn = gn−1 − γn(ynKxn − Σgn−1).

It (a) leads to an easy computation of the main bias/variance terms of
our result, (b) will be used to derive our main result by bounding the
drifts between our algorithm and its semi-stochastic version. A more
detailed sketch of the proof is given in Appendix B.

– Bias/variance interpretation: The two main terms have a simple
interpretation. The first one is a variance term, which shows the effect
of the noise σ2 on the error. It is bigger when σ gets bigger, and



18 DIEULEVEUT AND BACH

moreover it also gets bigger when γ is growing (bigger steps mean more
variance). As for the second term, it is a bias term, which accounts
for the distance of the initial choice (the null function in general) to
the objective function. As a consequence, it is smaller when we make
bigger steps.

– Assumption (A4): Our assumption (A4) for r > 1 is stronger than
for r = 1 but we do not improve the bound. Indeed the bias term
(see comments below) cannot decrease faster than O(n−2): this phe-
nomenon in known as saturation [44]. To improve our results with
r > 1 it may be interesting to consider another type of averaging. In
the following, r < 1 shall be considered as the main and most inter-
esting case.

– Relationship to regularized empirical risk minimization: Our
bound ends up being very similar to bounds for regularized empirical
risk minimization, with the identification λ = 1

γn . It is thus no surprise
that once we optimize for the value of γ, we recover the same rates
of convergence. Note that in order to obtain convergence, we require
that the step-size γ is bounded, which corresponds to an equivalent λ
which has to be lower-bounded by 1/n.

– Finite horizon: Once again, this theorem holds in the finite horizon
setting. That is we first choose the number of samples we are going to
use, then the learning rate as a constant. It allows us to chose γ as a
function of n, in order to balance the main terms in the error bound.
The trade-off must be understood as follows: a bigger γ increases the
effect of the noise, but a smaller one makes it harder to forget the
initial condition.

We may now deduce the following corollaries, with specific optimized
values of γ:

Corollary 2 (Optimal constant γ). Assume (A1-6) and a constant
step-size γi = γ = Γ(n), for 1 6 i 6 n:

1. If α−1
2α < r and Γ(n) = γ0 n

−2αmin{r,1}−1+α
2αmin{r,1}+1 , γ0R

2 6 1/4, we have:

(3.3) E

(
‖ḡn − gH‖2L2

ρX

)
6 A n

− 2αmin{r,1}
2αmin{r,1}+1 .

with A = 4
(
1 + (γ0s

2)
1
α

)
σ2 + 4

γ2r
0
||L−rK gH||2L2

ρX

.
2. If 0 < r < α−1

2α , with Γ(n) = γ0 is constant, γ0R
2 6 1/4, we have:

(3.4) E

(
‖ḡn − gH‖2L2

ρX

)
6 A n−2r,
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with the same constant A.

We can make the following observations:

– Limit conditions: Assumption (A4), gives us some kind of “posi-
tion” of the objective function with respect to our reproducing kernel
Hilbert space. If r > 1/2 then gH ∈ H. That means the regression
function truly lies in the space in which we are looking for an approx-
imation. However, it is not necessary neither to get the convergence
result, which stands for any r > 0, nor to get the optimal rate (see
definition in Section 4.2), which is also true for α−1

2α < r < 1 .
– Evolution with r and α: As it has been noticed above, a bigger α
or r would be a stronger assumption. It is thus natural to get a rate
which improves with a bigger α or r: the function (α, r) 7→ 2αr

2αr+1 is
increasing in both parameters.

– Different regions: in Figure 1a, we plot in the plan of coordinates α, δ
(with δ = 2αr + 1) our limit conditions concerning our assumptions,
that is, r = 1 ⇔ δ = 2α + 1 and α−1

2α = r ⇔ α = δ. The region
between the two green lines is the region for which the optimal rate of
estimation is reached. The magenta dashed lines stands for r = 1/2,
which has appeared to be meaningless in our context.
The region α > δ ⇔ α−1

2α > r corresponds to a situation where reg-
ularized empirical risk minimization would still be optimal, but with
a regularization parameter λ that decays faster than 1/n, and thus,
our corresponding step-size γ = 1/(nλ) would not be bounded as a
function of n. We thus saturate our step-size to a constant and the
generalization error is dominated by the bias term.
The region α 6 (δ − 1)/2 ⇔ r > 1 corresponds to a situation where
regularized empirical risk minimization reaches a saturating behaviour.
In our stochastic approximation context, the variance term dominates.

3.5. Online setting. We now consider the second case when the sequence
of step-sizes does not depend on the number of samples we want to use
(online setting).

The computation are more tedious in such a situation so that we will only
state asymptotic theorems in order to understand the similarities and dif-
ferences between the finite horizon setting and the online setting, especially
in terms of limit conditions.

Theorem 3 (Complete bound, (γn)n online). Assume (A1-6), assume
for any i, γi = γ0

iζ
, γ0R

2 6 1/2 :



20 DIEULEVEUT AND BACH

– If 0 < r(1− ζ) < 1, if 0 < ζ < 1
2 then

(3.5) E‖ḡn − gH‖2L2
ρX

6 O

(
σ2(s2γn)

1
α

n1− 1
α

)
+O

 ||L−rK gH||2L2
ρX

(nγn)2r

 .
– If 0 < r(1− ζ) < 1, 1

2 < ζ

(3.6) E‖ḡn − gH‖2L2
ρX

6 O

(
σ2(s2γn)

1
α

n1− 1
α

1
nγ2

n

)
+O

 ||L−rK gH||2L2
ρX

(nγn)2r

 .
The constant in the O(·) notations only depend on γ0 and α.

Theorem 3 is proved in Appendix II.4 in [22]. In the first case, the main
bias and variance terms are the same as in the finite horizon setting, and
so is the optimal choice of ζ. However in the second case, the variance
term behaviour changes: it does not decrease any more when ζ increases
beyond 1/2. Indeed, in such a case our constant averaging procedure puts
to much weight on the first iterates, thus we do not improve the variance
bound by making the learning rate decrease faster. Other type of averaging,
as proposed for example in [45], could help to improve the bound.

Moreover, this extra condition thus changes a bit the regions where we
get the optimal rate (see Figure 1b), and we have the following corollary:

Corollary 3 (Optimal decreasing γn). Assume (A1-6) (in this corol-
lary, O(·) stands for a constant depending on α, ||L−rK gH||L2

ρX
, s, σ2, γ0 and

universal constants):

1. If α−1
2α < r < 2α−1

2α , with γn = γ0n
−2αr−1+α

2αr+1 for any n > 1 we get the
rate:

(3.7) E‖ḡn − gH‖2L2
ρX

= O
(
n−

2αr
2αr+1

)
.

2. If 2α−1
2α < r, with γn = γ0n

−1/2 for any n > 1, we get the rate:

(3.8) E‖ḡn − gH‖2L2
ρX

= O
(
n−

2α−1
2α
)
.

3. If 0 < r < α−1
2α , with γn = γ0 for any n > 1, we get the rate given

in equation (3.4). Indeed the choice of a constant learning rate natu-
rally results in an online procedure.

This corollary is directly derived from Theorem 3, balancing the two main
terms. The only difference with the finite horizon setting is the shrinkage of
the optimality region as the condition r < 1 is replaced by r < 2α−1

2α < 1
(see Figure 1b). In the next section, we relate our results to existing work.
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(a) Finite Horizon (b) Online

Figure 1: Behaviour of convergence rates: (left) finite horizon and (right)
online setting. We describe in the (α, δ) plan (with δ = 2αr+1) the different
optimality regions : between the two green lines, we achieve the optimal
rate. On the left plot the red (respectively magenta and cyan) lines are the
regions for which Zhang [42] (respectively Yao & Tarrès [17] and Ying &
Pontil [16]) proved to achieve the overall optimal rate (which may only be
the case if α = 1). The four blue points match the coordinates of the four
couples (α, δ) that will be used in our simulations : they are spread over the
different optimality regions.

4. Links with existing results. In this section, we relate our results
from the previous section to existing results.

4.1. Euclidean spaces. Recently, Bach and Moulines showed in [21] that
for least squares regression, averaged stochastic gradient descent achieved
a rate of O(1/n), in a finite-dimensional Hilbert space (Euclidean space),
under the same assumptions as above (except the first one of course), which
is replaced by:

(A1-f) H is a d-dimensional Euclidean space.

They showed the following result:

Proposition 5 (Finite-dimensions [21]). Assume (A1-f), (A2-6). Then
for γ = 1

4R2 ,

(4.1) E [ε (gn)− ε(gH)] 6 4
n

[
σ
√
d+R‖gH‖H

]2
.
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We show that we can deduce such a result from Theorem 2 (and even
with comparable constants). Indeed under (A1-f) we have:

– If E
[
||xn||2

]
6 R2 then Σ 4 R2I and (A3) is true for any α ≥ 1 with

s2 = R2dα. Indeed λi 6 R2 if i 6 d and λi = 0 if i > d+ 1 so that for
any α > 1, i ∈ N∗, λi 6 R2 dα

iα .
– As we are in a finite-dimensional space (A4) is true for r = 1/2 as
||T−1/2gH||2L2

ρX

= ||gH||2H.

Under such remarks, the following corollary may be deduced from Theo-
rem 2:

Corollary 4. Assume (A1-f), (A2-6), then for any α > 1, with
γR2 6 1/4:

E‖ḡn − gH‖2L2
ρX

6
4σ2

n

(
1 + (R2γdαn)

1
α

)
+ 4‖gH‖

2
H

nγ
.

So that, when α→∞,

E [ε (gn)− ε(gH)] 6 4
n

(
σ
√
d+R‖gH‖H

1√
γR2

)2

.

This bound is easily comparable to equation (4.1) and shows that our
more general analysis has not lost too much. Moreover our learning rate is
proportional to n

−1
2α+1 with r = 1/2, so tends to behave like a constant when

α→∞, which recovers the constant step set-up from [21].

Moreover, N. Flammarion proved (Personnal communication, 05/2014),
using the same tpye of techniques, that their bound could be extended to:

(4.2) E [ε (gn)− ε(gH)] 6 8σ
2d

n
+ 4R4 ‖Σ−1/2gH‖2

(γR2)2n2 ,

a result that may be deduced of the following more general corollaries of our
Theorem 2:

Corollary 5. Assume (A1-f), (A2-6), and, for some q > 0, ||Σ−qgH||2H =
||Σ−(q+1/2)gH||2L2

ρX

<∞, then:

E [ε (gn)− ε(gH)] 6 16σ
2 tr(Σ1/α)(γn)1/α

n
+ 8R4(q+1/2) ||Σ−qgH||2H

(nγR2)2(q+1/2) .
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Such a result is derived from Theorem 2 and with the stronger assumption
tr(Σ1/α) < ∞ clearly satisfied in finite dimension, and with r = q + 1/2.
Note that the result above is true for all values of α > 1 and all q > 0 (for the
ones with infinite ||Σ−(q+1/2)gH||2L2

ρX

, the statement is trivial). This shows
that we may take the infimum over all possible α 6 1 and q > 0, showing
adaptivity of the estimator to the spectral decay of Σ and the smoothness
of the optimal prediction function gH.

Thus with α→∞, we obtain :

Corollary 6. Assume (A1-f), (A2-6), and, for some q > 0, ||Σ−qgH||2H =
||Σ−(q+1/2)gH||2L2

ρX

<∞, then:

E [ε (gn)− ε(gH)] 6 16σ
2d

n
+ 8R4(q+1/2) ||Σ−qg∗||2H

(nγR2)2(q+1/2) .

– This final result bridges the gap between Proposition 5 (q = 0), and
its extension equation (4.2) (q = 1/2). The constants 16 and 8 come
from the upper bounds (a + b)2 6 a2 + b2 and 1 + 1/

√
d 6 2 and are

thus non optimal.
– Moreover, we can also derive from Corollary 5, with α = 1, q = 0, and
γ ∝ n−1/2, we recover the rate O(n−1/2) (where the constant does not
depend on the dimension d of the Euclidean space). Such a rate was
described, e.g., in [46].

Note that linking our work to the finite-dimensional setting is made using
the fact that our assumption (A3) is true for any α > 1.

4.2. Optimal rates of estimation. In some situations, our stochastic ap-
proximation framework leads to “optimal” rates of prediction in the fol-
lowing sense. In [9, Theorem 2] a minimax lower bound was given: let
P(α, r) (α > 1, r ∈ [1/2, 1]) be the set of all probability measures ρ on
X × Y, such that:

– |y| 6Mρ almost surely,
– T−rgρ ∈ L2

ρX
,

– the eigenvalues (µj)j∈N arranged in a non increasing order, are subject
to the decay µj = O(j−α).

Then the following minimax lower rate stands:

lim inf
n→∞

inf
gn

sup
ρ∈P(b,r)

P

{
ε(gn)− ε(gρ) > Cn−2rα/(2rα+1)

}
= 1,
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for some constant C > 0 where the infimum in the middle is taken over all
algorithms as a map ((xi, yi)16i6n) 7→ gn ∈ H.

When making assumptions (a3-4), the assumptions regarding the pre-
diction problem (i.e., the optimal function gρ) are summarized in the decay
of the components of gρ in an orthonormal basis, characterized by the con-
stant δ. Here, the minimax rate of estimation (see, e.g., [47]) is O(n−1+1/δ)
which is the same as O

(
n−2rα/(2rα+1)) with the identification δ = 2αr + 1.

That means the rate we get is optimal for α−1
2α < r < 1 in the finite

horizon setting, and for α−1
2α < r < 2α−1

2α in the online setting. This is the
region between the two green lines on Figure 1.

4.3. Regularized stochastic approximation. It is interesting to link our
results to what has been done in [41] and [17] in the case of regularized
least-mean-squares, so that the recursion is written:

gn = gn−1 − γn ((gn−1(xn)− yn)Kxn + λngn−1)

with (gn−1(xn)−yn)Kxn+λngn−1 an unbiased gradient of 1
2Eρ

[
(g(x)− y)2]+

λn
2 ||g||

2. In [17] the following result is proved (Remark 2.8 following Theo-
rem C ):

Theorem 4 (Regularized, non averaged stochastic gradient[17]). As-
sume that T−rgρ ∈ L2

ρX
for some r ∈ [1/2, 1]. Assume the kernel is bounded

and Y compact. Then with probability at least 1− κ, for all t ∈ N,

ε(gn)− ε(gρ) 6 Oκ
(
n−2r/(2r+1)

)
.

Where Oκ stands for a constant which depends on κ.

No assumption is made on the covariance operator beyond being trace
class, but only on ‖T−rgρ‖L2

ρX
(thus no assumption (A3)). A few remarks

may be made:

1. They get almost-sure convergence, when we only get convergence in
expectation. We could perhaps derive a.s. convergence by considering
moment bounds in order to be able to derive convergence in high
probability and to use Borel-Cantelli lemma.

2. They only assume 1
2 6 r 6 1, which means that they assume the

regression function to lie in the RKHS.
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4.4. Unregularized stochastic approximation. In [16], Ying and Pontil
studied the same unregularized problem as we consider, under assumption
(A4). They obtain the same rates as above (n−2r/(2r+1) log(n)) in both on-
line case (with 0 6 r 6 1

2) and finite horizon setting (0 < r).
They led as an open problem to improve bounds with some additional

information on some decay of the eigenvalues of T , a question which is
answered here.

Moreover, Zhang [42] also studies stochastic gradient descent algorithms
in an unregularized setting, also with averaging. As described in [16], his
result is stated in the linear kernel setting but may be extended to kernels
satisfying supx∈X K(x, x) 6 R2. Ying and Pontil derive from Theorem 5.2
in [42] the following proposition:

Proposition 6 (Short step-sizes [42]). Assume we consider the algo-
rithm defined in Section 3.2 and output gn defined by equation equation (3.1).
Assume the kernel K satisfies supx∈X K(x, x) 6 R2. Finally assume gρ sat-
isfies assumption (A4) with 0 < r < 1/2. Then in the finite horizon setting,
with Γ(n) = 1

4R2n
− 2r

2r+1 , we have:

E [ε (ḡn)− ε(gH)] = O
(
n−

2r
2r+1

)
.

Moreover, note that we may derive their result from Corollary 2. Indeed,
using Γ(n) = γ0n

−2r
2r+1 , we get a bias term which is of order n

−2r
2r+1 and a vari-

ance term of order n−1+ 1
2rα+α which is smaller. Our analysis thus recovers

their convergence rate with their step-size. Note that this step-size is signif-
icantly smaller than ours, and that the resulting bound is worse (but their
result holds in more general settings than least-squares). See more details in
Section 4.5.

4.5. Summary of results. All three algorithms are variants of the follow-
ing:

g0 = 0
∀n > 1, gn = (1− λn)gn−1 − γn(yn − gn−1(xn))Kxn .

But they are studied under different settings, concerning regularization,
averaging, assumptions: we sum up in Table 1 the settings of each of these
studies. For each of them, we consider the finite horizon settings, where
results are generally better.
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Algorithm Ass. Ass. γn λn Rate Conditions
type (A3) (A4)

This paper yes yes 1 0 n−2r r < α−1
2α

This paper yes yes n−
2αr+1−α

2αr+1 0 n
−2αr

2αr+1 α−1
2α < r < 1

This paper yes yes n−
α+1

2α+1 0 n
−2α

2α+1 r > 1

Zhang [42] no yes n
−2r

2r+1 0 n
−2r

2r+1 0 6 r 6 1
2

Tarrès & Yao [17] no yes n
−2r

2r+1 n
−1

2r+1 n
−2r

2r+1 1
2 6 r 6 1

Ying & Pontil [16] no yes n
−2r

2r+1 0 n
−2r

2r+1 r > 0

Table 1
Summary of assumptions and results (step-sizes, rates and conditions) for our three
regions of convergence and related approaches. We focus on finite-horizon results.

We can make the following observations:

– Dependence of the convergence rate on α: For learning with any
kernel with α > 1 we strictly improve the asymptotic rate compared to
related methods that only assume summability of eigenvalues: indeed,
the function x 7→ x/(x+ 1) is increasing on R+. If we consider a given
optimal prediction function and a given kernel with which we are going
to learn the function, considering the decrease in eigenvalues allows to
adapt the step-size and obtain an improved learning rate. Namely, we
improved the previous rate −2r

2r+1 up to −2αr
2αr+1 .

– Worst-case result in r: in the setting of assumptions (a3,4), given δ,
the optimal rate of convergence is known to be O(n−1+1/δ), where
δ = 2αr+ 1. We thus get the optimal rate, as soon as α < δ < 2α+ 1,
while the other algorithms get the suboptimal rate n

δ−1
δ+α−1 under var-

ious conditions. Note that this sub-optimal rate becomes close to the
optimal rate when α is close to one, that is, in the worst-case situation.
Thus, in the worst-case (α arbitrarily close to one), all methods behave
similarly, but for any particular instance where α > 1, our rates are
better.

– Choice of kernel: in the setting of assumptions (a3,4), given δ, in
order to get the optimal rate, we may choose the kernel (i.e., α) such
that α < δ < 2α + 1 (that is neither too big, nor too small), while
other methods need to choose a kernel for which α is as close to one
as possible, which may not be possible in practice.

– Improved bounds: Ying and Pontil [16] only give asymptotic bounds,
while we have exact constants for the finite horizon case. Moreover
there are some logarithmic terms in [16] which disappear in our anal-
ysis.
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– Saturation: our method does saturate for r > 1, while the non-
averaged framework of [16] does not (but does not depend on the value
of α). We conjecture that a proper non-uniform averaging scheme (that
puts more weight on the latest iterates), we should get the best of both
worlds.

5. Experiments on artificial data. Following [16], we consider syn-
thetic examples with smoothing splines on the circle, where our assumptions
(A3-4) are easily satisfied.

5.1. Splines on the circle. The simplest example to match our assump-
tions may be found in [1]. We consider Y = gρ(X) + ε, with X ∼ U [ 0; 1] is
a uniform random variable in [0, 1], and gρ in a particular RKHS (which is
actually a Sobolev space).

Let H be the collection of all zero-mean periodic functions on [0; 1] of the
form

f : t 7→
√

2
∞∑
i=1

ai(f) cos(2πit) +
√

2
∞∑
i=1

bi(f) sin(2πit),

with
‖f‖2H =

∞∑
i=1

(ai(f)2 + bi(f)2)(2πi)2m <∞.

This means that the m-th derivative of f , f (m) is in L2([0 ; 1]). We consider
the inner product:

〈f, g〉H =
∞∑
i=1

(2πi)2m (ai(f)ai(g) + bi(f)bi(g)) .

It is known that H is an RKHS and that the reproducing kernel Rm(s, t)
for H is

Rm(s, t) =
∞∑
i=1

2
(2πi)2m [cos(2πis) cos(2πit) + sin(2πis) sin(2πit)]

=
∞∑
i=1

2
(2πi)2m cos(2πi(s− t)).

Moreover the study of Bernoulli polynomials gives a close formula forR(s, t),
that is:

Rm(s, t) = (−1)m−1

(2m)! B2m ({s− t}) ,

with Bm denoting the m-th Bernoulli polynomial and {s− t} the fractional
part of s− t [1].
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We can derive the following proposition for the covariance operator which
means that our assumption (A3) is satisfied for our algorithm in H when
X ∼ U [0; 1], with α = 2m, and s = 2(1/2π)m.

Proposition 7 (Covariance operator for smoothing splines). If X ∼
U [0; 1], then in H:

1. the eigenvalues of Σ are all of multiplicity 2 and are λi = (2πi)−2m,
2. the eigenfunctions are φci : t 7→

√
2 cos(2πit) and φsi : t 7→

√
2 sin(2πit).

Proof. For φci we have (a similar argument holds for φsi ):

T (φci )(s) =
∫ 1

0
R(s, t)

√
2 cos(2πit)dt

=
(∫ 1

0

2
(2iπ)2m

√
2 cos(2πit)2dt

)
cos(2πis) = λi

√
2 cos(2πis)

= λiφ
c
i (s).

It is well known that (φci , φsi )i>0 is an orthonormal system (the Fourier
basis) of the functions in L2([ 0; 1]) with zero mean, and it is easy to check
that ((2iπ)−mφci , (2iπ)−mφsi )i>1 is an orthonormal basis of our RKHSH (this
may also be seen as a consequence of the fact that T 1/2 is an isometry).

Finally, considering gρ(x) = Bδ/2(x) with δ = 2αr+ 1 ∈ 2N, our assump-
tion (A4) holds. Indeed it implies (a3-4), with α > 1, δ = 2αr + 1, since

for any k ∈ N, Bk(x) = −2k!
∞∑
i=1

cos
(
2iπx− kπ

2
)

(2iπ)k (see, e.g., [48]).

We may notice a few points:

1. Here the eigenvectors do not depend on the kernel choice, only the re-
normalisation constant depends on the choice of the kernel. Especially
the eigenbasis of T in L2

ρX
does not depend on m. That can be linked

with the previous remarks made in Section 4.
2. Assumption (A3) defines here the size of the RKHS: the smaller α =

2m is, the bigger the space is, the harder it is to learn a function.

In the next section, we illustrate on such a toy model our main results
and compare our learning algorithm to Ying and Pontil’s [16], Tarrès and
Yao’s [17] and Zhang’s [42] algorithms.

5.2. Experimental set-up. We use gρ(x) = Bδ/2(x) with δ = 2αr + 1, as
proposed above, with B1(x) = x − 1

2 , B2(x) = x2 − x + 1
6 and B3(x) =

x3 − 3
2x

2 + 1
2x.
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We give in Figure 2 the functions used for simulations in a few cases that
span our three regions. We also remind the choice of γ proposed for the 4
algorithms. We always use the finite horizon setting.

r α δ K gρ
log(γ)
log(n) (this paper) log(γ)

log(n) (previous)

0.75 2 4 R1 B2 −1/2 = −0.5 −3/5 = −0.6

0.375 4 4 R2 B2 0 −3/7 ' −0.43

1.25 2 6 R1 B3 −3/7 ' −0.43 −5/7 ' −0.71

0.125 4 2 R2 B1 0 −1/5 = −0.2

Table 2
Different choices of the parameters α, r and the corresponding convergence rates and
step-sizes. The (α, δ) coordinates of the four choices of couple “(kernel, objective

function)” are mapped on Figure 1. They are spread over the different optimality regions.

5.3. Optimal learning rate for our algorithm. In this section, we empir-
ically search for the best choice of a finite horizon learning rate, in order
to check if it matches our prediction. For a certain number of values for n,
distributed exponentially between 1 and 103.5, we look for the best choice
Γbest(n) of a constant learning rate for our algorithm up to horizon n. In
order to do that, for a large number of constants C1, · · · , Cp, we estimate
the expectation of error E[ε(gn(γ = Ci))− ε(gρ)] by averaging over 30 inde-
pendent sample of size n, then report the constant giving minimal error as
a function of n in Figure 2. We consider here the situation α = 2, r = 0.75.
We plot results in a logarithmic scale, and evaluate the asymptotic decrease
of Γbest(n) by fitting an affine approximation to the second half of the curve.
We get a slope of −0.51, which matches our choice of −0.5 from Corollary 2.
Although, our theoretical results are only upper-bounds, we conjecture that
our proof technique also leads to lower-bounds in situations where assump-
tions (a3-4) hold (like in this experiment).
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Figure 2: Optimal learning rate Γbest(n) for our algorithm in the finite hori-
zon setting (plain magenta). The dashed green curve is a first order affine
approximation of the second half of the magenta curve.

5.4. Comparison to competing algorithms. In this section, we compare
the convergence rates of the four algorithms described in Section 4.5. We
consider the different choices of (r, α) as described in Table 2 in order to
go all over the different optimality situations. The main properties of each
algorithm are described in Table 1. However we may note:

– For our algorithm, Γ(n) is chosen accordingly with Corollary 2, with
γ0 = 1

R2 .
– For Ying and Pontil’s algorithm, accordingly to Theorem 6 in [16], we
consider Γ(n) = γ0n

− 2r
2r+1 . We choose γ0 = 1

R2 which behaves better
than the proposed r

64(1+R4)(2r+1) .
– For Tarrès and Yao’s algorithm, we refer to Theorem C in [17], and
consider Γ(n) = a (n0 + n)−

2r
2r+1 and Λ(n) = 1

a (n0 + n)−
1

2r+1 . The
theorem is stated for all a > 4: we choose a = 4.

– For Zhangl’s algorithm, we refer to Part 2.2 in [16], and choose Γ(n) =
γ0n
− 2r

2r+1 with γ0 = 1
R2 which behaves better than the proposed choice

1
4(1+R2) .

Finally, we sum up the rates that were both predicted and derived for the
four algorithms in the four cases for (α, δ) in Table 3. It appears that (a)
we approximatively match the predicted rates in most cases (they would if
n was larger), (b) our rates improve on existing work.



NON-PARAMETRIC STOCHASTIC APPROXIMATION 31

(a) r = 0.75, α = 2
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(b) r = 0.375, α = 4
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(c) r = 1.25, α = 2
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(d) r = 0.125, α = 4

Figure 3: Comparison between algorithms. We have chosen parameters in
each algorithm accordingly with description in Section 4.5, especially for the
choices of γ0. The y-axis is log10 (E[ε(ĝn)− ε(gρ)]), where the final output ĝn
may be either gn (This paper, Zhang) or gn(Ying & Pontil, Yao & Tarres).
This expectation is computed by averaging over 15 independent samples.
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r = 0.75 r = 0.375 r = 1.25 r = 0.125
α = 2 α = 4 α = 2 α = 4

Predicted rate (our algo.) -0.75 -0.75 -0.8 -0.25
Effective rate (our algo.) -0.7 -0.71 -0.69 -0.29
Predicted rate (YP) -0.6 -0.43 -0.71 -0.2
Effective rate (YP) -0.53 -0.5 -0.63 -0.22
Predicted rate (TY) -0.6
Effective rate (TY) -0.48 -0.39 -0.43 -0.2
Predicted rate (Z) -0.43 -0.2
Effective rate (Z) -0.53 -0.43 -0.41 -0.21

Table 3
Predicted and effective rates (asymptotic slope of the log-log plot) for the four different
situations. We leave empty cases when the set-up does not come with existing guarantees:

most algorithms seem to exhibit the expected behaviour even in such cases.

6. Conclusion. In this paper, we have provided an analysis of averaged
unregularized stochastic gradient methods for kernel-based least-squares re-
gression. Our novel analysis allowed us to consider larger step-sizes, which
in turn lead to optimal estimation rates for many settings of eigenvalue de-
cay of the covariance operators and smoothness of the optimal prediction
function. Moreover, we have worked on a more general setting than previous
work, that includes most interesting cases of positive definite kernels.

Our work can be extended in a number of interesting ways: First, (a) we
have considered results in expectation; following the higher-order moment
bounds from [21] in the Euclidean case, we could consider higher-order mo-
ments, which in turn could lead to high-probability results or almost-sure
convergence. Moreover, (b) while we obtain optimal convergence rates for
a particular regime of kernels/objective functions, using different types of
averaging (i.e., non uniform) may lead to optimal rates in other regimes. Be-
sides, (c) following [21], we could extend our results for infinite-dimensional
least-squares regression to other smooth loss functions, such as for logis-
tic regression, where an online Newton algorithm with the same running-
time complexity would also lead to optimal convergence rates. Also, (d)
the running-time complexity of our stochastic approximation procedures is
still quadratic in the number of samples n, which is unsatisfactory when n
is large; by considering reduced set-methods [38, 39, 11], we hope to able
to obtain a complexity of O(dnn), where dn is such that the convergence
rate is O(dn/n), which would extend the Euclidean space result, where dn
is constant equal to the dimension. Finally, (e) in order to obtain the op-
timal rates when the bias term dominates our generalization bounds, it
would be interesting to combine our spectral analysis with recent acceler-
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ated versions of stochastic gradient descent which have been analyzed in the
finite-dimensional setting [49].
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Appendices
A. Minimal assumptions.

A.1. Definitions. We first define the set of square ρX -integrable func-
tions L2

ρX
:

L2
ρX

=
{
f : X → R

/∫
X
f2(t)dρX(t) <∞

}
;

we will always make the assumptions that this space is separable (this is
the case in most interesting situations. See [24] for more details.) L2

ρX
is its

quotient under the equivalence relation given by

f ≡ g ⇔
∫
X

(f(t)− g(t))2dρX(t) = 0,

which makes it a separable Hilbert space (see, e.g., [50]).
We denote p the canonical projection from L2

ρX
into L2

ρX
such that p :

f 7→ f̃ , with f̃ = {g ∈ L2
ρX
, s.t. f ≡ g}.

Under assumptions A1, A2 or A1’, A2’, any function in H in in L2
ρX

.
Moreover, under A1, A2 the spaces H and p(H) may be identified, where
p(H) is the image of H via the mapping p ◦ i : H i−→ L2

ρX

p−→ L2
ρX

, where i is
the trivial injection from H into L2

ρX
.

A.2. Isomorphism. As it has been explained in the main text, the min-
imization problem will appear to be an approximation problem in L2

ρX
, for

which we will build estimates in H. However, to derive theoretical results,
it is easier to consider it as an approximation problem in the Hilbert space
L2
ρX

, building estimates in p(H).
We thus need to define a notion of the best estimation in p(H). We first

define the closure F (with respect to ‖ · ‖L2
ρX

) of any set F ⊂ L2
ρX

as the set
of limits of sequences in F . The space p(H) is a closed and convex subset
in L2

ρX
. We can thus define gH = arg min

f∈ p(H) ε(g), as the orthogonal
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projection of gρ on p(H), using the existence of the projection on any closed
convex set in a Hilbert space. See Proposition 8 in Appendix A in [22] for
details.

Proposition 8 (Definition of best approximation function). Assume
(A1-2). The minimum of ε(f) in p(H) is attained at a certain gH (which
is unique and well defined in L2

ρX
).

Where p(H) =
{
f ∈ L2

ρX
/ ∃(fn) ⊂ p(H), ‖fn − f‖L2

ρX
→ 0

}
is the set

of functions f for which we can hope for consistency, i.e., having a sequence
(fn)n of estimators in H such that ε(fn)→ ε(f).

The properties of our estimator, especially its rate of convergence will
strongly depend on some properties of both the kernel, the objective function
and the distributions, which may be seen through the properties of the
covariance operator which is defined in the main text. We have defined
the covariance operator, Σ : H → H. In the following, we extend such an
operator as an endomorphism T from L2

ρX
to L2

ρX
and by projection as an

endomorphism T = p ◦ T from L2
ρX

to L2
ρX

. Note that T is well defined as∫
X g(t) Kt dρX (t) does not depend on the function g chosen in the class of
equivalence of g.

Definition 3 (Extended covariance operator). Assume (A1-2). We
define the operator T as follows (this expectation is formally defined as a
Bochner expectation in H.):

T L2
ρX
→ L2

ρX

g 7→
∫
X
g(t) Kt dρX (t),

so that for any z ∈ X , T (g)(z) =
∫
X
g(x) K(x, z) dρX (t) = E[g(X)K(X, z)].

A first important remark is that Σf = 0 implies 〈f,Σf〉 = ‖f‖2L2
ρX

= 0,
that is p(Ker(Σ)) = {0}. However, Σ may not be injective (unless ‖f‖2L2

ρX

⇒
f = 0, which is true when f is continuous and ρX has full support). Σ and
T may independently be injective or not.

The operator T (which is an endomorphism of the separable Hilbert space
L2
ρX

) can be reduced in some Hilbertian eigenbasis of L2
ρX

. The linear oper-
ator T happens to have an image included in H, and the eigenbasis of T in
L2
ρX

may also be seen as eigenbasis of Σ in H (See proof in Appendix I.2,
Proposition 18 in [22]):
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Proposition 9 (Decomposition of Σ). Assume (A1-2). The image of
T is included in H: Im(T ) ⊂ H, that is, for any f ∈ L2

ρX
, T f ∈ H. More-

over, for any i ∈ I, φHi = 1
µi
T φi ∈ H ⊂ L2

ρX
is a representant for the

equivalence class φi, that is p(φHi ) = φi. Moreover µ1/2
i φHi is an orthonor-

mal eigen-system of the orthogonal supplement S of the null space Ker(Σ).
That is:

– ∀i ∈ I, ΣφHi = µiφ
H
i .

– H = Ker(Σ)
⊥
⊕S .

Such decompositions allow to define T r : L2
ρX
→ H for r > 1/2. Indeed ,

completeness allows to define infinite sums which satisfy a Cauchy criterion.
See proof in Appendix I.2, Proposition 19 in [22]. Note the different condition
concerning r in the definitions. For r > 1/2, T r = p ◦ T r. We need r > 1/2,
because (µ1/2

i φH) is an orthonormal system of S .

Definition 4 (Powers of T ). We define, for any r > 1/2, T r : L2
ρX
→

H, for any h ∈ Ker(T ) and (ai)i∈I such that
∑
i∈I a

2
i <∞, through:

T r
(
h+

∑
i∈I

aiφi

)
=
∑
i∈I

aiµ
r
iφ
H
i .

We have two decompositions of L2
ρX

= Ker(T )
⊥
⊕S and H = Ker(Σ)

⊥
⊕S .

The two orthogonal supplements S and S happen to be related through the
mapping T 1/2, as stated in Proposition 4: T 1/2 is an isomorphism from S
into S . It also has he following consequences, which generalizes Corollary 1:

Corollary 7. – T 1/2(S) = p(H), that is any element of p(H) may
be expressed as T 1/2g for some g ∈ L2

ρX
.

– For any r > 1/2, T r(S) ⊂ H, because T r(S) ⊂ T 1/2(S), that is, with
large powers r, the image of T r is in the projection of the Hilbert space.

– ∀r > 0, T r(L2
ρX

) = S = T 1/2(L2
ρX

) = H, because (a) T 1/2(L2
ρX

) =
p(H) and (b) for any r > 0, T r(L2

ρX
) = S. In other words, elements of

p(H) (on which our minimization problem attains its minimum), may
seen as limits (in L2

ρX
) of elements of T r(L2

ρX
), for any r > 0.

– p(H) is dense in L2
ρX

if and only if T is injective.

A.3. Mercer theorem generalized. Finally, although we will not use it in
the rest of the paper, we can state a version of Mercer’s theorem, which does
not make any more assumptions that are required for defining RKHSs.
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Proposition 10 (Kernel decomposition). Assume (A1-2). We have for
all x, y ∈ X ,

K(x, y) =
∑
i∈I

µiφ
H
i (x)φHi (y) + g(x, y),

and we have for all x ∈ X ,
∫
X g(x, y)2dρX(y) = 0. Moreover, the convergence

of the series is absolute.

We thus obtain a version of Mercer’s theorem (see Appendix I.5.3 in [22])
without any topological assumptions. Moreover, note that (a) S is also an
RKHS, with kernel (x, y) 7→

∑
i∈I µiφ

H
i (x)φHi (y) and (b) that given the

decomposition above, the optimization problem in S and H have equiva-
lent solutions. Moreover, considering the algorithm below, the estimators we
consider will almost surely build equivalent functions (see Appendix I.4 in
[22]). Thus, we could assume without loss of generality that the kernel K is
exactly equal to its expansion

∑
i∈I µiφ

H
i (x)φHi (y).

A.4. Complementary (A6) assumption. Under minimal assumptions, we
also have to make a complementary moment assumption :

(A6’) There exists R > 0 and σ > 0 such that E [Ξ⊗ Ξ] 4 σ2Σ, and
E(K(X,X)KX ⊗ KX) 4 R2Σ where 4 denotes the order between
self-adjoint operators.

In other words, for any f ∈ H, we have: E
[
K(X,X)f(X)2] 6 R2

E[f(X)2].
Such an assumption is implied by (A2), that is if K(X,X) is almost surely
bounded by R2: this constant can then be understood as the radius of the
set of our data points. However, our analysis holds in these more general
set-ups where only fourth order moment of ‖Kx‖H = K(x, x)1/2 is finite.

B. Sketch of the proofs. Our main theorems are Theorem 2 and The-
orem 3, respectively in the finite horizon and in the online setting. Corollar-
ies can be easily derived by optimizing over γ the upper bound given in the
theorem.

The complete proof is given in Appendix II in [22]. The proof is nearly
the same for finite horizon and online setting. It relies on a refined analysis
of strongly related recursions in the RKHS and on a comparison between
iterates of the recursions (controlling the deviations).

We first present the sketch of the proof for the finite-horizon setting :
We want to analyze the error of our sequence of estimators (gn) such that
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g0 = 0 and

gn = gn−1 − γn
[
yn − 〈gn−1,Kxn〉H

]
Kxn

gn = (I − γKxn ⊗Kxn)gn−1 + γynKxn

gn − gH = (I − γ ˜Kxn ⊗Kxn)(gn−1 − gH) + γΞn.

Where we have denoted Ξn = (yn − gH(xn))Kxn the residual, which has 0
mean, and ˜Kxn ⊗Kxn : L2

ρX
→ H an a.s. defined extension of Kxn ⊗Kxn :

H → H, such that ˜Kxn ⊗Kxn(f) = f(xn)Kxn , that will be denoted for
simplicity Kxn ⊗Kxn in this section.

Finally, we are studying a sequence (ηn)n = (gn − gH)n defined by:

η0 = gH,

ηn = (I − γnKxn ⊗Kxn)ηn−1 + γnΞn.

We first consider splitting this recursion in two simpler recursions ηinitn and
ηnoisen such that ηn = ηinitn + ηnoisen :

• (ηinitn )n defined by :

ηinit0 = gH and ηinitn = (I − γKxn ⊗Kxn)ηinitn−1.

ηinitn is the part of (ηn)n which is due to the initial conditions ( it is
equivalent to assuming Ξn ≡ 0).
• Respectively, let (ηnoisen )n be defined by :

ηnoise0 = 0 and ηnoisen = (I − γKxn ⊗Kxn)ηnoisen−1 + γΞn.

ηnoisen is the part of (ηn)n which is due to the noise.

We will bound ‖ηn‖ by ‖ηinitn ‖+‖ηnoisen ‖ using Minkowski’s inequality. That
is how the bias-variance trade-off originally appears.

Next, we notice that E[Kxn ⊗Kxn ] = T , and thus define “semi-stochastic”
versions of the previous recursions by replacingKxn⊗Kxn by its expectation:

For the initial conditions: (η0,init
n )n∈N so that :

η0,init
0 = gH, η0,init

n = (I − γT )η0,init
n−1 .

which is a deterministic sequence.
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An algebraic calculation gives an estimate of the norm of η0,init
n , and we

can also bound the residual term ηinitn −η0,init
n , then conclude by Minkowski.

For the variance term: We follow the exact same idea, but have to define
a sequence of “semi-stochastic recursion”, to be able to bound the residual
term.

This decomposition is summed up in Table 4.

Complete recursion ηn
↙ ↘

variance term ηnoisen | bias term ηinitn

↓ | ↓
multiple recursion | semi stochastic variant

↙ ↘ | ↙ ↘
main terms ηrn, r > 1 residual term ηnoisen −

∑
ηrn | main term η0

n residual term ηinitn − η0
n

satisfying semi-sto recursions satisf. stochastic recursion | satisf. semi-sto recursion satisf. stochastic recursion
↓ Lemma 8 ↓ Lemma 9 | ↓ ↓ Lemma 9

6 C Variance term →r→∞ 0 | 6 Bias term residual negligible term

Lemma 5 ↘ ↙ Lemma 4
Theorem 2

Table 4
Error decomposition in the finite horizon setting. All the referances refer to Lemmas

given in Appendix II in [22].

For the online setting, we follow comparable ideas and end in a similar
decomposition.
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