
Predictive low-rank decomposition for kernel methods

Francis R. Bach francis.bach@mines.org

Centre de Morphologie Mathématique, Ecole des Mines de Paris
35 rue Saint-Honoré, 77300 Fontainebleau, France

Michael I. Jordan jordan@cs.berkeley.edu

Computer Science Division and Department of Statistics
University of California, Berkeley, CA 94720, USA

Abstract

Low-rank matrix decompositions are essen-
tial tools in the application of kernel meth-
ods to large-scale learning problems. These
decompositions have generally been treated
as black boxes—the decomposition of the
kernel matrix that they deliver is indepen-
dent of the specific learning task at hand—
and this is a potentially significant source
of inefficiency. In this paper, we present
an algorithm that can exploit side informa-
tion (e.g., classification labels, regression re-
sponses) in the computation of low-rank de-
compositions for kernel matrices. Our al-
gorithm has the same favorable scaling as
state-of-the-art methods such as incomplete
Cholesky decomposition—it is linear in the
number of data points and quadratic in the
rank of the approximation. We present
simulation results that show that our algo-
rithm yields decompositions of significantly
smaller rank than those found by incomplete
Cholesky decomposition.

1. Introduction

Kernel methods provide a unifying framework for
the design and analysis of machine learning algo-
rithms (Schölkopf and Smola, 2001, Shawe-Taylor and
Cristianini, 2004). A key step in any kernel method
is the reduction of the data to a kernel matrix, also
known as a Gram matrix. Given the kernel matrix,
generic matrix-based algorithms are available for solv-
ing learning problems such as classification, prediction,
anomaly detection, clustering and dimensionality re-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

duction. There are two principal advantages to this
division of labor: (1) any reduction that yields a pos-
itive semidefinite kernel matrix is allowed, a fact that
opens the door to specialized transformations that ex-
ploit domain-specific knowledge; and (2) expressed in
terms of the kernel matrix, learning problems often
take the form of convex optimization problems, and
powerful algorithmic techniques from the convex op-
timization literature can be brought to bear in their
solution.

An apparent drawback of kernel methods is the naive
computational complexity associated with manipulat-
ing kernel matrices. Given a set of n data points, the
kernel matrix K is of size n×n. This suggests a compu-
tational complexity of at least O(n2); in fact most ker-
nel methods have at their core operations such as ma-
trix inversion or eigenvalue decomposition which scale
as O(n3). Moreover, some kernel algorithms make use
of sophisticated tools such as semidefinite program-
ming and have even higher-order polynomial complex-
ities (Lanckriet et al., 2004).

These generic worst-case complexities can often be
skirted, and this fact is one of the major reasons for
the practical success of kernel methods. The under-
lying issue is that the kernel matrices often have a
spectrum that decays rapidly and are thus of small nu-
merical rank (Williams and Seeger, 2000). Standard
algorithms from numerical linear algebra can thus be
exploited to compute an approximation of the form
L = GG>, where G ∈ R

n×m, and where the rank m
is generally significantly smaller than n. Moreover, it
is often possible to reformulate kernel-based learning
algorithms to make use of G instead of K. The re-
sulting computational complexity generally scales as
O(m3 + m2n). This linear scaling in n makes kernel-
based methods viable for large-scale problems.

To achieve this desirable result, it is of course neces-
sary that the underlying numerical linear algebra rou-

tines scale linearly in n, a desideratum that inter alia

rules out routines that inspect all of the entries of K.
Algorithms that meet this desideratum include the
Nyström approximation (Williams and Seeger, 2000),
sparse greedy approximations (Smola and Schölkopf,
2000) and incomplete Cholesky decomposition (Fine
and Scheinberg, 2001, Bach and Jordan, 2002).

One unappealing aspect of the current state-of-the-art
is that the decomposition of the kernel matrix is per-
formed independently of the learning task. Thus, in
the classification setting, the decomposition of K is
performed independently of the labels, and in the re-
gression setting the decomposition is performed inde-
pendently of the response variables. It seems unlikely
that a single decomposition would be appropriate for
all possible learning tasks, and unlikely that a decom-
position that is independent of the predictions should
be optimized for the particular task at hand. Similar
issues arise in other areas of machine learning; for ex-
ample, in classification problems, while principal com-
ponent analysis can be used to reduce dimensionality
in a label-independent manner, methods such as lin-
ear discriminant analysis that take the labels into ac-
count are generally viewed as preferable (Hastie et al.,
2001). The point of view of the current paper is that
that there are likely to be advantages to being “dis-
criminative” not only with respect to the parameters
of a model, but with respect to the underlying matrix
algorithms as well.

Thus we pose the following two questions:

1. Can we exploit side information (labels, desired
responses, etc.) in the computation of low-rank
decompositions of kernel matrices?

2. Can we compute these decompositions with a
computational complexity that is linear in n?

The current paper answers both of these questions in
the affirmative. Although some new ideas are needed,
the end result is an algorithm closely related to incom-
plete Cholesky decomposition whose complexity is a
constant factor times the complexity of standard in-
complete Cholesky decomposition. As we will show
empirically, the new algorithm yields decompositions
of significantly smaller rank than those of the standard
approach.

The paper is organized as follows. In Section 2, we re-
view classical incomplete Cholesky decomposition with
pivoting. In Section 3, we present our new predictive
low-rank decomposition framework, and in Section 4
we present the details of the computations performed
at each iteration, as well as the exact cost reduction of
such steps. In Section 5, we show how the cost reduc-

tion can be efficiently approximated via a look-ahead
method. Empirical results are presented in Section 6
and we present our conclusions in Section 7.

We use the following notations: for a rectangular
matrix M , ‖M‖F denotes the Frobenius norm, de-
fined as ‖M‖F = (tr MM>)1/2; ‖M‖1 denotes the
sum of the singular values of M , which is equal to
the sum of the eigenvalues of M when M is square
and symmetric, and in turn equal to trM when the
matrix is in addition positive semidefinite. We also
let ‖x‖2 denote the 2-norm of a vector x, equal to
‖x‖2 = (x>x)1/2 = ‖x‖F . Given two sequences of dis-
tinct indices I and J , M(I, J) denotes the submatrix
of M composed of rows indexed by I, and columns in-
dexed by J . Note that the sequences I and J are not
necessarily increasing sequences. The notation M(:, J)
denotes the submatrix of the columns of M indexed by
the elements of J , and similarly for M(I, :). Also, we
refer to the sequence of integers from p to q as p:q. Fi-
nally, we denote the concatenation of two sequences I
and J as [I J]. We let Idq ∈ R

q×q denote the identity
matrix and 1q ∈ R

q denote the vector of all ones.

2. Incomplete Cholesky decomposition

In this section, we review incomplete Cholesky decom-
position with pivoting, as used by Fine and Scheinberg
(2001) and Bach and Jordan (2002).

2.1. Decomposition algorithm

Incomplete Cholesky decomposition is an iterative al-
gorithm that yields an approximation L = GG>,
where G ∈ R

n×m, and where the rank m is generally
significantly smaller than n.1 The algorithm depends
on a sequence of pivots. Assuming temporarily that
the pivots i1, i2, . . . are known, and initializing a diag-
onal matrix D to the diagonal of K, the k-th iteration
of the algorithm is as follows:

G(ik, k)=D(ik)1/2

G(Jk, k)= 1
G(ik,k)

(
K(Jk, ik)−

∑k−1
j=1 G(Jk, j)G(ik, j)

)

D(j)=D(j)−G(j, k)2, ∀j /∈ {i1, . . . , ik},

where Ik = (i1, . . . , ik) and Jk denotes the sorted com-
plement of Ik. The complexity of the k-th iteration is
O(kn), and thus the total complexity after m steps
is O(m2n). After the k-th iteration, G(Ik, 1 :k) is a
lower triangular matrix and the approximation of K
is Lk = GkG>

k , where Gk is the matrix composed of
the first k columns of G, i.e., Gk = G(:, 1 : k). We
let denote Dk the diagonal matrix D after the k-th

1In this paper, the matrices G will always have full rank,
i.e, the rank will always be the number of columns.

iteration.

2.2. Pivot selection and early stopping

The algorithm operates by greedily choosing the col-
umn such that the approximation of K obtained by
adding that column is best. In order to select the
next pivot ik, we thus have to rank the gains in ap-
proximation error for all remaining columns. Since
all approximating matrices GkG>

k are such that Lk =
GkG>

k 4 K, the 1-norm ‖K − Lk‖1, which is de-
fined as the sum of the singular values, is equal to
‖K − Lk‖1 = tr(K − Lk).

To compute the exact gain of approximation after
adding column ik is an O(kn) operation. If this
were to be done for all remaining columns at each
iteration, we would obtain a prohibitive total com-
plexity of O(m2n2). The algorithm avoids this cost
by using a lower bound on the gain in approxima-
tion. Note in particular that at every step we have
tr Lk =

∑k
q=1 ‖G(:, q)‖22; thus the gain of adding the

k-th column is ‖G(:, k)‖22, which is lower bounded by
G(ik, k)2. Even before the k-th iteration has begun,
we know the final value of G(ik, k)2 if ik were chosen,
since this is exactly Dk−1(ik).

We thus chose the pivot ik that maximizes the lower
bound Dk−1(ik) among the remaining indices. This
strategy also provides a principled early stopping cri-
terion: if no pivot is larger than a given precision ε,
the algorithm stops.

2.3. Low rank approximation and partitioned

matrices

Incomplete Cholesky decomposition yields a decompo-
sition in which the column space of L is spanned by a
subset of the columns of K. As the following proposi-
tion shows, under additional constraints the subset of
columns actually determines the approximation:

Proposition 1 Let K be an n×n symmetric positive

semidefinite matrix. Let I be a sequence of distinct

elements of {1, . . . , n} and J its ordered complement

in {1, . . . , n}. There is an unique matrix L of size n
such that:
(i) L is symmetric,

(ii) the column space of L is spanned by by K(:, I),
(iii) L(:, I) = K(:, I).
This matrix L is such that

L([I J], [I J])=

(
K(I, I) K(J, I)>

K(J, I) K(J, I)K(I, I)†K(J, I)>

)
.

In addition, the matrices L and K − L are positive

semidefinite.

Proof If L satisfies the three conditions, then (i) and
(iii) implies that L(I, J) = L(J, I)> = K(J, I)> =
K(I, J). Since the column space of L is spanned by
K(:, I), we must have L(:, J) = K(:, I) × E, where E
is a |I| × |J | matrix. By projecting onto the columns
in I, we get K(I, J) = K(I, I)E, which implies that
L(J, J) = K(J, I)K(I, I)†K(I, J), where M† denotes
the pseudo-inverse of M (Golub and Loan, 1996).

Note that the approximation error for the block
(J, J) is equal to the Schur complement K(J, J) −
K(J, I)K(I, I)†K(I, J) of K(I, I). The incomplete
Cholesky decomposition with pivoting builds a set
I = {i1, . . . , im} iteratively and approximates the ma-
trix K by L given in the previous proposition for the
given I. To obtain L, a square root of K(I, I) has to
be computed that is easy to invert. The Cholesky de-
composition provides such a square root which is built
efficiently as I grows.

3. Predictive low-rank decomposition

We now assume that the n× n kernel matrix K is as-
sociated with side information of the form Y ∈ R

n×d.
Supervised learning problems provide standard exam-
ples of problems in which such side information is
present. For example, in the (multi-way) classifica-
tion setting, d is the number of classes and each row y
of Y has d elements such that yi is equal to one if the
corresponding data point belongs to class i, and zero
otherwise. In the (multiple) regression setting, d is
the number of response variables. In all of these cases,
our objective is to find an approximation of K which
(1) leads to good predictive performance and (2) has
small rank.

3.1. Prediction with kernels

In this section, we review the classical theory of re-
producing kernel Hilbert spaces (RKHS) which is nec-
essary to justify the error term that we use to char-
acterize how well an approximation of K is able to
predict Y .

Let xi ∈ X be an input data point and let yi ∈ R
d de-

note the associated label or response variable, for i =
1, . . . , n. Let H be an RKHS on X , with kernel T (., .).
Given a loss function c : X × R

d × R
d → R+, the em-

pirical risk is defined as R(f) =
∑n

i=1 c(xi, yi, f(xi))
for functions f in Hd. By a simple multivariate exten-
sion of the representer theorem (Schölkopf and Smola,
2001, Shawe-Taylor and Cristianini, 2004), minimiz-
ing the empirical risk subject to a constraint on the
RKHS norm of f leads to a solution of the form
f(x) =

∑n
i=1 αik(x, xi), where αi ∈ R

d.

In this paper, we build our kernel approximations by
considering the quadratic loss c(x, y, f) = 1

2‖x− f‖2F .
The empirical risk is then equal to 1

2

∑n
i=1 ‖yi −

(Kα)i‖
2
F = 1

2‖Y − Kα‖2F , where α ∈ R
n×d. When

K is approximated by GG>, for G an n ×m matrix,
the optimal risk is equal to:

min
α∈Rn×d

1
2‖Y −Kα‖2F = minβ∈Rm×d

1
2‖Y −Gβ‖2F . (1)

3.2. Global objective function

The global criterion that we consider is a linear com-
bination of the approximation error of K and the loss
as defined in Eq. (1), i.e:

J(G) = λ‖K −GG>‖1 + µ min
β∈Rm×d

‖Y −Gβ‖2F .

For convenience we use the following normalized values
of µ and λ (which correspond to values of the corre-
sponding terms in the objective for G = 0):

λ =
1− κ

trK
and µ =

κ

trY >Y
.

The parameter κ thus calibrates the tradeoff between
approximation of K and prediction of Y .

The matrix β can be minimized out to obtain the fol-
lowing criterion:

J(G) = λ‖K −GG>‖1

+µ tr
(
Y >Y − Y >G(G>G)−1G>Y

)
.

Finally, if we incorporate the constraint K � GG>,
we obtain the final form of the criterion:

J(G) = λ tr(K −GG>)

+µ tr(Y >Y − Y >G(G>G)−1G>Y). (2)

4. Cholesky with side information (CSI)

Our algorithm builds on incomplete Cholesky decom-
position, restricting the matrices G that it considers
to those which are obtained as incomplete Cholesky
factors of K. In order to select the pivot, we need to
compute the gain in the cost function J in Eq. (2) for
each pivot at each iteration.

Let us denote the two terms in the cost function J(G)
as λJK(G) and µJY (G). The first term has been stud-
ied in Section 2, where we found that

JK(G) = tr K −
∑m

k=1 ‖G(:, k)‖22. (3)

In order to compute the second term,

JY (G) = tr
(
Y >Y − Y >G(G>G)−1G>Y

)
, (4)

efficiently, we need an efficient way of computing the
matrix G(G>G)−1G> which is amenable to cheap up-
dating as G increases. This can be achieved by QR
decomposition.

4.1. QR decomposition

Given a rectangular n ×m matrix M , such that n >

m, the QR decomposition of M is of the form M =
QR, where Q is a n × m′ matrix with orthonormal
columns, i.e., Q>Q = Idm′ , m′ 6 m, and R is an m′×
m upper triangular matrix. The matrix Q provides an
orthonormal basis of the column space of M ; if M has
full rank m, then m′ = m, while if not, m′ is equal to
the rank of m.

The QR decomposition can be seen as the Gram-
Schmidt orthonormalization of the column vectors of
M (Golub and Loan, 1996); moreover, the matrix R>

is the Cholesky factor of the m × m matrix M>M .
A simple iterative algorithm to compute the QR de-
composition of M follows the Gram-Schmidt orthonor-
malization procedure. The first column of Q and
R are defined as Q(:, 1) = M(:, 1)/‖M(:, 1)‖2 and
R(1, 1) = ‖M(:, 1)‖2. The k-th iteration, k 6 m, is
the following:

R(j, k) = Q(:, j)>M(:, k), ∀j = 1, . . . , k − 1

R(k, k) = ‖M(:, k)−
∑k−1

i=1 R(i, k)Q(:, i)‖2

Q(:, k) = 1
R(k,k)

(
M(:, ik)−

∑k−1
i=1 R(i, k)Q(:, i)

)
.

The algorithm stops whenever k reaches m or R(k, k)
vanishes. The complexity of each iteration is equal to
O(km) and thus the total complexity up to the m-th
step is O(m2n).

4.2. Parallel Cholesky and QR decompositions

While building the Cholesky decomposition G itera-
tively as described in Section 2.1, we update its QR
decomposition at each step. The complexity of each
iteration is O(kn) and thus, if the algorithm stops af-
ter m steps, the total complexity is O(m2n). We still
need to describe the pivot selection strategy; as for
the Cholesky decomposition we use a greedy strategy,
i.e., we chose the pivot that most reduces the cost. In
the following sections, we show how this choice can be
performed efficiently.

4.3. Cost reduction

We use the following notation: Rk = R(1 : k, 1 : k),
Gk = G(:, 1 : k), Qk = Q(:, 1 : k), gk = G(:, k) and
qk = Q(:, k). After the k-th iteration the cost function
is equal to

Jk =λ

(
trK−

m∑

q=1

‖gq‖
2

)
+µ
(
tr Y >Y −tr Y >QkQ>

k Y
)
,

and the cost reduction is thus equal to

Jk−1 − Jk = λ∆JK + µ∆JY , (5)

where

∆JK = ‖gk‖
2
2 (6)

∆JY = ‖Y >qk‖
2
2 =
‖Y >(Idn −Qk−1Q

>
k−1)gk‖

2
F

‖(Idn −Qk−1Q>
k−1)gk‖2F

.(7)

Following Section 2.1, we can express gk in terms of
the pivot ik and the approximation after the (k−1)-th
iteration, i.e.,

gk =
(K − Lk−1)(:, ik)

(K − Lk−1)(ik, ik)1/2
=

(K − Lk−1)(:, ik)

Dk−1(ik)1/2
(8)

Computing this reduction before the k-th iteration for
all n + 1 − k available pivots is a prohibitive O(kn2)
operation. As in the case of Cholesky decomposition,
a lower bound on the reduction can be computed to
avoid this costly operation. However, we have devel-
oped a different strategy, one based on a look-ahead
algorithm that gives cheap additional information on
the kernel matrix. This strategy is presented in the
next section.

5. Look-ahead decompositions

At every step of the algorithm, we not only perform
one step of Cholesky and QR, but we also perform
several “look-ahead steps” to gather more information
about the kernel matrix K. Throughout the procedure
we maintain the following information: (1) decompo-
sition matrices Gk−1 ∈ R

n×(k−1), Qk−1 ∈ R
n×(k−1),

Dk−1 ∈ R
n, and Rk−1 ∈ R

(k−1)×(k−1), obtained
from the sequence of indices Ik−1 = (i1, . . . , ik−1);
(2) additional decomposition matrices obtained by δ
additional runs of Cholesky and QR decomposition:
Gadv

k−1 ∈ R
n×(k−1+δ), Qadv

k−1 ∈ R
n×(k−1+δ), Radv

k−1 ∈

R
(k−1+δ)×(k−1+δ), Dadv

k−1 ∈ R
n. The first k−1 columns

of Gadv
k−1 and Qadv

k−1 are the matrices Gk−1 and Qk−1,
and the δ additional columns that are added are in-
dexed by Hk = (hk

1 , . . . , hk
δ). We now describe how

this information is updated, and how it is used to ap-
proximate the cost reduction. A high-level description
of the overall algorithm is given in Figure 1.

5.1. Approximation of the cost reduction

After the (k − 1)-th iteration, we have the follow-
ing approximations: Lk−1 = Gk−1G

>
k−1 and Ladv

k−1 =

Gadv
k−1(G

adv
k−1)

>. In order to approximate the cost reduc-
tion defined by Eqs. (5), (6), (7) and (8), we replace all
currently unknown portions of the kernel matrix (i.e.,
the columns whose indices are not in Ik−1∪Hk) by the
corresponding elements of Ladv

k−1. This is equivalent to
replacing gk in Eq. (8) by

ĝk =
(Ladv

k−1 − Lk−1)(:, ik)

(K(ik, ik)− Lk−1(ik, ik))1/2
.

In order to approximate ∆JK , we also make sure that
gk(ik) is not approximated so that our error term re-
duces to the lower bound of the incomplete Cholesky
decomposition when δ = 0 (i.e., no look-ahead per-
formed); this is obtained through the corrective term
η in the following equations. We obtain:

∆̂JK(ik) =
Ak−1(ik) + ηk−1(ik)

Dk−1(ik)
(9)

∆̂JY (ik) =
Ck−1(ik)

Bk−1(ik)
(10)

with

ηk−1(ik) =Dk−1(i)
2 − (Dk−1(i)−Dadv

k−1(i))
2

Ak−1(ik) = ‖(Ladv
k−1 − Lk−1)(:, ik)‖22

Bk−1(ik) = ‖(Idn−Qk−1Q
>
k−1)(L

adv
k−1−Lk−1)(:, ik))‖22

Ck−1(ik) =

‖Y >(Idn−Qk−1Q
>
k−1)(L

adv
k−1−Lk−1)(:, ik))‖2F .

Note that when the index ik belongs to the set of δ
indices that were considered in advance, then the ap-
proximation is exact.

A naive computation of the approximation would lead
to a prohibitive quadratic complexity in n. We now
present a way of updating the quantities defined above
as well as a way of updating the δ look-ahead Cholesky
and QR steps at a cost of O(δn + dn) per iteration.

5.2. Efficient implementation

Updating the look ahead decompositions After
the pivot ik has been chosen, if it was not already in-
cluded in the set of indices already treated in advance,
we perform the additional step of Cholesky and QR de-
compositions with that pivot. If it was already chosen,
we select a new pivot using the usual Cholesky lower
bound defined in Section 2. Let Gbef

k , Qbef
k and Rbef

k

be those decompositions with k + δ columns. In both
cases, we obtain a Cholesky decompositions whose k-
th pivot is not ik in general, since ik may not be among
the first look-ahead pivots from the previous iteration.
In general, ik is less than δ indices away from the
k-th position. In order to compute Gadv

k , Qadv
k and

Radv
k , we need to update the Cholesky and QR de-

compositions to advance pivot ik to the k-th position.
In Appendix A, we show how this can be done with
worst-case time complexity O(δn), which is faster than
naively redoing δ steps of Cholesky decomposition in
O(kδn).

Updating approximation costs In order to derive
update equations for Ak(i), Bk(i) and Ck(i), the cru-

Input: kernel matrix K ∈ R
n×n,

target matrix Y ∈ R
n×d,

maximum rank m, tolerance ε,
tradeoff parameter κ ∈ [0, 1],
number of look-ahead steps δ ∈ N.

Algorithm:

1. Perform δ look-ahead steps of Cholesky (Sec-
tion 2.1) and QR decomposition (Section 4.1),
selecting pivots according to Section 2.2.

2. Initialization: η = 2ε, k = 1.

3. While η > ε and k 6 m,

a. Compute estimated gains for the remaining
pivots (Section 5.1), and select best pivot,

b. If new pivot not in the set of look-ahead pivots,
perform a Cholesky and a QR step, otherwise
perform the steps with a pivot selected accord-
ing to Section 2.2,

c. Permute indices in the Cholesky and QR
decomposition to put new pivot in position k,
using the method in Appendix A,

d. Compute exact gain η; let k = k + 1.

Output: G and its QR decomposition.

Figure 1. High-level description of the CSI algorithm.

cial point is to notice that

Ladv
k (:, i) = Lbef

k (:, i)

= Ladv
k−1(:, i) + Gbef

k (i, k+δ)Gbef
k (:, k+δ).

This makes most of the terms in the expansion of
Ak(i), Bk(i) and Ck(i) identical to terms in Ak−1(i),
Bk−1(i) and Ck−1(i). The total complexity of updat-
ing Ak(i), Bk(i) and Ck(i), for all i, is then O(dn+δn).

5.3. Computational complexity

The total complexity of the CSI algorithm after m
steps is the sum of (a) m + δ steps of Cholesky and
QR decomposition, i.e., O((m + δ)2n), (b) updating
the look-ahead decompositions by permuting indices
as presented in Appendix A, i.e., O(δmn), and (c) up-
dating the approximation costs, i.e., O(mdn + mδn).

The total complexity is thus O((m + δ)2n + mdn). In
the usual case in which d 6 max{m, δ}, this yields a
total complexity equal to O((m + δ)2n), which is the
same complexity as computing m+δ steps of Cholesky
and QR decomposition. For large kernel matrices, the
Cholesky and QR decompositions remain the most
costly computations, and thus the CSI algorithm is
only a few times slower than the standard incomplete

Cholesky decomposition.

We see that the CSI algorithm has the same favor-
able linear complexity in the number of data points
n as standard Cholesky decomposition. In particular,
we do not need to examine every entry of the kernel
matrix in order to compute the CSI approximation.
This is particularly important when the kernel is itself
costly to compute, as in the case of string kernels or
graph kernels (Shawe-Taylor and Cristianini, 2004).

5.4. Including an intercept

It is straightforward to include an intercept in the CSI
algorithm. This is done by replacing Y with ΠnY ,

where Πn = (Idn −
1n1>

n

n) is the centering projection
matrix. The Cholesky decomposition is not changed,
while the QR decomposition is now performed on ΠnG
instead of G. The rest of the algorithm is not changed.

6. Experiments

We have conducted a comparison of CSI and incom-
plete Cholesky decomposition for 37 UCI datasets, in-
cluding both regression and (multi-way) classification
problems. The kernel method that we used in these
experiments is the least-squares SVM (Suykens and
Vandewalle, 1999). The goal of the comparison was to
investigate to what extent we can achieve a lower-rank
decomposition with the CSI algorithm as compared to
incomplete Cholesky, at equivalent levels of predictive
performance.2

6.1. Least-squares SVMs

The least-squares SVM (LS-SVM) algorithm is based
on the minimization of the following cost function:

1
2n‖Y −Kα− 1nb‖2F + τ

2 tr α>Kα,

where α ∈ R
n×d and b ∈ R

1×d. This is a classical pe-
nalized least-squares problem, whose estimating equa-
tions are obtained by setting the derivatives to zero:

b = 1
n (−1>n Kα + 1>n Y), (KΠnK + nτK)α = KΠnY,

where Πn = (Idn −
1
n1n1>n).

6.2. Least-squares SVM with incomplete

Cholesky decomposition

We now approximate K by an incomplete Cholesky
factorization obtained from columns in I, i.e., L =
GG>. Expressed in terms of G, the estimating equa-

2A Matlab/C implementation can be downloaded from
http://cmm.ensmp.fr/~bach/

tions for the LS-SVM become:

G(G>ΠnG + nτIdm)G>α = GG>ΠnY (11)

b = 1
n (−1>n GG>α + 1>n Y). (12)

The solutions of Eq. (11) are the vectors of the form:

α = G(G>G)−1(G>ΠnG + nτIdm)−1G>ΠnY + v,

where v is any vector orthogonal to the column space
of G. Thus α is not uniquely defined; however,
the quantity Kα is uniquely defined, and equal to
Kα = G(G>ΠnG + τIdm)−1G>ΠnY . We also have
b = 1

n (−1>n G(G>ΠnG + τIdm)−1G>ΠnY + 1>n Y) and
the predicted training responses in R

d are Kα+b1n =
ΠnG(G>ΠnG + τIdm)−1G>ΠnY .

In order to compute the responses for previously un-
seen data zj , for j = 1, . . . , ntest, we consider the
rectangular testing kernel matrix in R

ntest×n, defined
as (Ktest)ji = T (xi, zj). We use the approxima-
tion of Ktest based on the rows of Ktest for which
the corresponding rows of K were already selected
in the Cholesky decomposition of K. If we let I de-
note those rows, the testing responses are then equal
to Ktest(:, I)G(I, :)−>G>α, which is uniquely defined
(while α is not). This also has the effect of not requir-
ing the computation of the entire testing kernel matrix
Ktest—a substantial gain for large datasets.

In order to compute the training error and testing
errors, we threshold the responses appropriately (by
taking the sign for binary classification, or the closest
basis vector for multi-class classification, where each
class is mapped to a basis vector).

6.3. Experimental results - UCI datasets

We transformed all discrete variables to multivariate
real random variables by mapping them to the ba-
sis vectors; we also scaled each variable to unit vari-
ance. We performed 10 random “75/25” splits of the
data. We used a Gaussian-RBF kernel, T (x, y) =
exp(−γ‖x − y‖22), with the parameters γ and τ cho-
sen so as to minimize error on the training split. The
minimization was performed by grid search.

We trained and tested several LS-SVMs with decom-
positions of increasing rank, comparing incomplete
Cholesky decomposition to the CSI method presented
in this paper. The hyperparameters for the CSI algo-
rithm were set to κ = 0.99 and δ = 40. The value of δ
was chosen to be large enough so that in most cases the
final rank was the same as if the entire kernel matrix
was used, and small enough so that the complexity of
the lookahead was small compared to the rest of the
Cholesky decomposition.

For both algorithms, the stopping criterion (the min-
imal gain at each iteration) was set to 10−4. We im-
posed no upper bound on the ranks of the decomposi-
tions.

We report the minimal rank for which the cross-
validation error is within a standard deviation of the
average testing error obtained when no low-rank de-
composition is used. As shown in Figure 2, the CSI
algorithm generally yields a decomposition of signif-
icantly smaller rank than incomplete Cholesky de-
composition; indeed, the difference in minimal ranks
achieved by the algorithms can be dramatic.

7. Conclusions

A major theme of machine learning research is the ad-
vantages that accrue to “discriminative” methods—
methods that adjust all of the parameters of a model
to minimize a task-specific loss function. In this pa-
per we have extended this point of view to the matrix
algorithms that underlie kernel-based learning meth-
ods. With the incomplete Cholesky decomposition as
a starting point, we have developed a new low-rank
decomposition algorithm for positive semidefinite ma-
trices that can exploit side information (e.g., classifica-
tion labels). We have shown that this algorithm yields
decompositions of significantly lower rank than those
obtained with current methods (which ignore the side
information). Given that the computational require-
ments of the new algorithm are comparable to those of
standard incomplete Cholesky decomposition, we feel
that the new algorithm can and should replace incom-
plete Cholesky in a variety of applications.

There are several natural extensions of the research re-
ported here that are worth pursuing, most notably the
extension of these results to situations in which two or
more related kernel matrices have to be approximated
conjointly, such as in kernel canonical correlation anal-
ysis (Bach and Jordan, 2002) or multiple kernel learn-
ing (Lanckriet et al., 2004).

AppendixA.Efficient pivot permutation

In this appendix we describe an efficient algorithm to
advance the pivot with index q to position p < q in an
incomplete Cholesky and QR decomposition. This can
be achieved by q−p transpositions between successive
pivots. Permuting two successive pivots p, p+1 can be
done in O(n) as follows (we let denote P = p :p+1):

1. Permute rows p and p+1 of Q and G

2. Perform QR decomposition G(P, P)> = Q1R1

3. R(:, P)← R(:, P)Q1, G(:, P)← G(:, P)Q1

dataset nf nc np Chol CSI
ringnorm 20 2 1000 14 3
kin-32fh-c 32 2 2000 25 6
pumadyn-32nm 32 – 4000 93 23
pumadyn-32fh 32 – 4000 30 8
kin-32fh 32 – 4000 34 10
cmc 12 3 1473 10 3
bank-32fh 32 – 4000 221 72
page-blocks 8 2 5473 451 155
spambase 49 2 4000 90 31
isolet 617 8 1798 254 89
twonorm 20 2 4000 8 3
dermatology 34 2 358 32 14
comp-activ 21 – 4000 159 73
abalone 10 – 4000 27 13
yeast 7 3 673 8 4
titanic 8 2 2201 4 2
kin-32nm-c 32 2 4000 122 68
pendigits 16 4 4485 111 63
adult 3 2 4000 7 4
ionosphere 33 2 351 76 45
liver 6 2 345 15 9
pi-diabetes 8 2 768 10 6
segmentation 15 3 660 5 3
waveform 21 3 2000 8 5
splice 240 3 3175 487 305
census-16h 16 – 1000 42 28
kin-32nm 32 – 2000 307 211
add10 10 – 2000 280 204
mushroom 116 2 4000 60 44
bank-32-nm 32 – 4000 413 328
kin-32nm 32 – 4000 586 479
vehicle 18 2 416 31 27
breast 9 2 683 2 2
thyroid 7 4 1000 1 1
satellite 36 3 2000 2 2
vowel 10 4 360 70 73
optdigits 58 6 2000 68 72
boston 12 – 506 48 61

Figure 2. Simulation results on UCI datasets, where nf is
the number of features, nc the number of classes (‘–’ for re-
gression problems), and np the number of data points. For
both classical incomplete Cholesky decomposition (Chol)
and Cholesky decomposition with side information (CSI),
we report the minimal rank for which the prediction per-
formance with a decomposition of that rank is within one
standard deviation of the performance with a full-rank ker-
nel matrix. Datasets are sorted by the values of the ratios
between the last two columns.

4. Perform QR decomposition R(P, P) = Q2R2

5. R(P, :)← Q>
2 R(P, :), Q(:, P)← Q(:, P)Q2.

The total complexity of permuting indices p and q is
thus O(|p−q|n). Note all columns of G and Q between
p and q are changed but that the updates involve |p−q|
shuffles between successive columns of Q and G.

Acknowledgements

We wish to acknowledge support from a grant from In-
tel Corporation, and a graduate fellowship to Francis
Bach from Microsoft Research. We also wish to ac-
knowledge Grant 0412995 from the National Science
Foundation.

References

F. R. Bach and M. I. Jordan. Kernel independent
component analysis. J. Mach. Learn. Res., 3:1–48,
2002.

S. Fine and K. Scheinberg. Efficient SVM training us-
ing low-rank kernel representations. J. Mach. Learn.

Res., 2:243–264, 2001.

G. H. Golub and C. F. Van Loan. Matrix Computa-

tions. J. Hopkins Univ. Press, 1996.

T. Hastie, R. Tibshirani, and J. Friedman. The Ele-

ments of Statistical Learning. Springer-Verlag, 2001.

G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui,
P. Bartlett, and M. I. Jordan. Learning the kernel
matrix with semidefinite programming. J. Mach.

Learn. Res., 5:27–72, 2004.

B. Schölkopf and A. J. Smola. Learning with Kernels.
MIT Press, 2001.

J. Shawe-Taylor and N. Cristianini. Kernel Methods

for Pattern Analysis. Cambridge Univ. Press, 2004.

A. J. Smola and B. Schölkopf. Sparse greedy matrix
approximation for machine learning. In Proc. ICML,
2000.

J. A. K. Suykens and J. Vandewalle. Least squares sup-
port vector machine classifiers. Neural Proc. Let., 9
(3):293–300, 1999.

C. K. I. Williams and M. Seeger. Effect of the input
density distribution on kernel-based classifiers. In
Proc. ICML, 2000.

