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Generative models vs conditional models

@ X is the input variable

e Y is the output variable
A generative model is a model of the joint distribution p(z,y).
A conditional model is a model of the conditional distribution
p(ylz).
Conditional models vs Generative models

o CM make fewer assumptions about the data distribution

o CM require fewer parameters

o CM are typically computationally harder to learn

e CM can typically not handle missing data or latent variables
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Probabilistic version of linear regression
Modeling the conditional distribution of Y given X by

Y|X~Nw'X +b,0%
or equivalently Y = w' X +b+e with e~ N(0,0?).

The offset can be ignored up to a reparameterization.

Y =@ <31:)+e.

Likelihood for one pair

plyi | xi) = 5 exp (*

Negative log-likelihood

2

n " 1A (s — wTx,)?
—l(w,0%) = =y logp(yilxi) = 5 log(2m0”) + 5 ) wowxl
i=1 =1
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Probabilistic version of linear regression

2

02w o

i=1

The minimization problem in w
min L ” )(ll)”2
1 92 2 Yy 2

that we recognize as the usual linear regression, with

o y= (Y1, yn)"

@ X the design matrix with rows equal to x
2

and
+
1: .

Optimizing over o*, we find:

- 1 ¢ _
J%/ILE =- Z(yz - U’JT/[LEXi)Q

n
i=1
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Logistic regression
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Logistic regression

Classification setting: 08

0.6
X =RPY e {0,1}.

0.4

Key assumption: 02
P(Y =1 ’ X = X) T 50 -5 0 5 10
1 pu—
BPy=0[x=x %

o The logistic function is part of

Implies that the family of sigmoid functions.

P(Y=1|X=x) = U('wa) o Often called “the” sigmoid

function.
for 1 Properties:
oz ,
1+e? VzeR, o(—2z) =1-o0(z),
the logistic function. VzeR, o'(z2) =o0(2)(1-0(2))
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Likelihood for logistic regression

Let n:=o(w'x +b). W.lLo.g. we assume b = 0.
By assumption: Y|X = x ~ Ber(n).

Likelihood
pY =ylX =x) =n(1 - )Y = o(w'x)Vo(—w 'x)" .

Log-likelihood

T T

x)+ (1 -y)logo(-w x)
= ylogn+ (1 —y)log(l —n)

= ylog ? ; + log(1 — )

= yw'x+logo(—w'x)

l(w) = ylogo(w
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Maximizing the log-likelihood
Log-likelihood of a sample
Given an i.i.d. training set D = {(x1,91), ", (Xn,Yn)}

l(w) = Z yiw ' x; +logo(—w'x;).
i=1

The log-likelihood is differentiable and concave.
= Its global maxima are its stationary points.

Gradient of ¢

- o(—wx;)o(w'x;)
Vi(w) = Zyixi —X; r(—wTxy)
i=1 i
= Z(yz — ;)X with ;= G(wai).
i=1

Thus, Vl(w)=0& 3" x;(yi—0(0'x;))=0.
No closed form solution !
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Second order Taylor expansion

Need an iterative method to solve Z X (yi GTXZ)) =0.

— Gradient descent (aka steepest descent)
— Newton’s method

Hessian of ¢

Hl(w) = in(O—a’(’wai)a'(—wai)xiT )

= Z —ni(1 — 771)Xl = —XTDlag(m(l —ni)) X
=1

where X is the design matrix.
— Note that —H/ is p.s.d. =/ is concave.
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Newton’s method

Use the Taylor expansion
{aw) + (w0 — w) VL) + 3 (w0 — w) T HEw') (w0 — w')

and minimize w.r.t. w. Setting h = w — w'

, we get
max hTVapl(w) + %hTHé(w)h.
Le., for logistic regression, writing D,, = Diag((m(l — 777,))2)
min h'XT(y—mn) - %hTXTDT,Xh
Modified normal equations

X'D,Xh-X"g with g=y-—n
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[terative Reweighted Least Squares (IRLS)

Assuming X TD,,X is invertible, the algorithm takes the form
w ) — w® 4 (XTDn(t)X)leT(y — ).

This is called iterative reweighted least squares because each step is
equivalent to solving the reweighted least squares problem:

5 Z Th yz

with
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Alternate formulation of logistic regression

If y € {—1,1}, then
P(Y =y|X =x) =o(yw ' x)
Log-likelihood
{(w) =logo(yw'x) = —log (1+ exp(—y'me))

Log-likelihood for a training set

lw) = — Zlog (1+ exp(—y,;wT:Ui))
i=1
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Fisher discriminant analysis
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Generative classification

X e RP and Y € {0,1}. Instead of modeling directly p(y | x) model
p(y) and p(x | y) and deduce p(y | x) using Bayes rule.
In classification P(Y =1 | X =x) =

PX=x|Y=1)PY =1)
PX=x|Y=1)PY =1)+P(X=x|Y

I
=
=

i-.<

|
=

For example one can assume
o PY=1)=m
o P(X =x|Y =1)~N(x;11,%1)
o P(X =x | Y =0) ~N(x; po, Xo).
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Fisher’s discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint 3; = 3y = 3. Given a training
set, the different model parameters can be estimated using the
maximum likelihood principle, which leads to

(7, p1, fo, 31, Xp).
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