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Statistical Model

Parametric model – Definition:

Set of distributions parametrized by a vector θ ∈ Θ ⊂ Rp

PΘ =
{
pθ(x) | θ ∈ Θ

}
Bernoulli model: X ∼ Ber(θ) Θ = [0, 1]

pθ(x) = θx(1− θ)(1−x)

Binomial model: X ∼ Bin(n, θ) Θ = [0, 1]

pθ(x) =

(
n

x

)
θx(1− θ)(1−x)

Multinomial model: X ∼M(n, π1, π2, . . . , πK) Θ = [0, 1]K

pθ(x) =

(
n

x1, . . . , xk

)
π1
x1 . . . πk

xk
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1, . . . ,K}, with

P(C = k) = πk.

We will code C with a r.v. Y = (Y1, . . . , YK)> with

Yk = 1{C=k}

For example if K = 5 and c = 4 then y = (0, 0, 0, 1, 0)>.
So y ∈ {0, 1}K with

∑K
k=1 yk = 1.

P(C = k) = P(Yk = 1) and P(Y = y) =

K∏
k=1

πykk .
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Bernoulli, Binomial, Multinomial

Y ∼ Ber(π) (Y1, . . . , YK) ∼M(1, π1, . . . , πK)

p(y) = πy(1− π)1−y p(y) = πy11 . . . πyKK

N1 ∼ Bin(n, π) (N1, . . . , NK) ∼M(n, π1, . . . , πK)

p(n1) =
(
n
n1

)
πn1 (1− π)n−n1 p(n) =

(
n

n1 . . . nK

)
πn1

1 . . . πnK
K

with(
n

i

)
=

n!

(n− i)!i!
and

(
n

n1 . . . nK

)
=

n!

n1! . . . nK !
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Gaussian model

Scalar Gaussian model : X ∼ N (µ, σ2)

X real valued r.v., and θ =
(
µ, σ2

)
∈ Θ = R× R∗+.

pµ,σ2 (x) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)

Multivariate Gaussian model: X ∼ N (µ,Σ)

X r.v. taking values in Rd. If Kd is the set of positive definite
matrices of size d× d , and θ = (µ,Σ) ∈ Θ = Rd ×Kd.

pµ,Σ (x) =
1√

(2π)d det Σ
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
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Gaussian densities
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of
random variables.

X(1), . . . , X(n)

A common assumption is that the variables are i.i.d.

independent

identically distributed, i.e. have the same distribution P .

This collection of observations is called

the sample or the observations in statistics

the samples in engineering

the training set in machine learning
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A short review of convex analysis and
optimization
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Review: convex analysis

Convex function

∀λ ∈ [0, 1], f(λx + (1− λ)y) ≤ λ f(x) + (1− λ) f(y)

Strictly convex function

∀λ ∈ ]0, 1[, f(λx + (1− λ)y) < λf(x) + (1− λ) f(y)

Strongly convex function

∃µ > 0, s.t. x 7→ f(x)− µ‖x‖2 is convex

Equivalently:

∀λ ∈ [0, 1], f(λx+(1−λ)y) ≤ λ f(x)+(1−λ) f(y)−µλ(1−λ)‖x−y‖2

The largest possible µ is called the strong convexity constant.
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Minima of convex functions

Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

f(y) ≥ f(x) +∇f(x)>(y − x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
There exists a unique local minimum which is also global.
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Minima and stationary points of differentiable functions

Definition (Stationary point)

For f differentiable, we say that x is a stationary point if ∇f(x) = 0.

Theorem (Fermat)

If f is differentiable at x and x is a local minimum, then x is
stationary.

Theorem (Stationary point of a convex differentiable function)

If f is convex and differentiable at x and x is stationary then x is a
minimum.

Theorem (Stationary points of a twice differentiable functions)

For f twice differentiable at x

if x is a local minimum then ∇f(x) = 0 and ∇2f(x) � 0.

conversely if ∇f(x) = 0 and ∇2f(x)� 0 then x is a strict local
minimum.
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The maximum likelihood principle
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Maximum likelihood principle

Let PΘ =
{
p(x; θ) | θ ∈ Θ

}
be a model

Let x be an observation

Likelihood:

L : Θ → R+

θ 7→ p(x; θ)

Maximum likelihood estimator:

θ̂ML = argmax
θ∈Θ

p(x; θ)
Sir Ronald Fisher

(1890-1962)

Case of i.i.d data

If (xi)1≤i≤n is an i.i.d. sample of size n:

θ̂ML = argmax
θ∈Θ

n∏
i=1

pθ(xi) = argmax
θ∈Θ

n∑
i=1

log pθ(xi)
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The maximum likelihood estimator

The MLE

does not always exists

is not necessarily unique

is not admissible in general
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MLE for the Bernoulli model
Let X1, X2, . . . , Xn an i.i.d. sample ∼ Ber(θ). The log-likelihood is

`(θ) =

n∑
i=1

log p(xi; θ) =

n∑
i=1

log
[
θxi(1− θ)1−xi

]
=

n∑
i=1

(
xi log θ + (1− xi) log(1− θ)

)
= N log(θ) + (n−N) log(1− θ)

with N :=
∑n

i=1 xi.

θ 7→ `(θ) is strongly concave ⇒ the MLE exists and is unique.

since ` differentiable + strongly concave its maximizer is the
unique stationary point

∇`(θ) =
∂

∂θ
`(θ) =

N

θ
− n−N

1− θ
.

Thus

θ̂MLE =
N

n
=
x1 + x2 + · · ·+ xn

n
.
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MLE for the multinomial

Done on the board. See lecture notes.
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Brief review of Lagrange duality

Convex optimization problem with linear constraints

For

f a convex function,

X ⊂ Rp a convex set included in the domain of f ,

A ∈ Rn×p, b ∈ Rn,

min
x∈X

f(x) subject to Ax = b (P )

Lagrangian

L(x,λ) = f(x) + λT (Ax− b)

with λ ∈ Rn the Lagrange multiplier.

Maximum likelihood estimation: the optimization point of view
22/26



Properties of the Lagrangian

Link between primal and Lagrangian

max
λ∈Rn

L(x,λ) =

{
f(x) if Ax = b

+∞ otherwise.

So that
min

x∈X : Ax=b
f(x) = min

x∈X
max
λ∈Rn

L(x,λ)

Lagrangian dual objective function

g(λ) = min
x∈X

L(x,λ)

Dual optimization problem

max
λ∈Rn

g(λ) = max
λ∈Rn

min
x∈X

L(x,λ) (D)
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Maxmin-minmax inequality, weak and strong duality

For any f : Rn × Rm and any w ∈ Rn and z ∈ Rm, we have

max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z).

Weak duality

d∗ := max
λ∈Rn

g(λ) = max
λ

min
x∈X

L(x,λ) ≤ min
xx∈X

max
λ∈Rn

L(x,λ) = min
x∈X

f(x) =: p∗

So that in general, we have d∗ ≤ p∗. This is called weak duality

Strong duality

In some cases, we have strong duality:

d∗ = p∗

Solutions to (P ) and (D) are the same
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Slater’s qualification condition

Slater’s qualification condition is a condition on the constraints of a
convex optimization problem that guarantees that strong duality
holds.

For linear constraints, Slater’s condition is very simple:

Slater’s condition for a cvx opt. pb with lin. constraints

If there exists an x in the relative interior of X ∩ {Ax = b} then
strong duality holds.
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MLE for the univariate and multivariate Gaussian

Done on the board. See lecture notes.
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