Maximum likelihood estimation:
the optimization point of view

Guillaume Obozinski

Ecole des Ponts - ParisTech

ParisTech

Master MVA 2014-2015



Outline

@ Statistical concepts

© A short review of convex analysis and optimization

@ The maximum likelihood principle




Statistical concepts




Statistical Model

Parametric model — Definition:
Set of distributions parametrized by a vector § € © C RP

Po = {po(z) | 6 € O}
Bernoulli model: X ~ Ber(6) © =[0,1]
o) =0°(1 - 0)(~0

Binomial model: X ~ Bin(n,0) © =10,1]

po(x) = ( ) 6= (1 — )1

n
T

Multinomial model: X ~ M(n,my, 7o, ..., Tk) 0 =[0,1]%

n
o= ()" )
L1y ., Tk



Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1,..., K}, with
P(C = k) = m.

We will code C with ar.v. Y = (Y1,...,Yx)" with

Yi = 1ic=r

For example if K =5 and ¢ = 4 then y = (0,0,0,1,0) .
So y € {0, 1} with S0,y = 1.

P(C=Fk) =P(Y; =1) and P(Y = Hw




Bernoulli, Binomial, Multinomial

Y ~ Ber(n) (Y1,...,Yg) ~ M(1,71,...,7K)

p(y) =7Y(1 — )t~y p(y) == . wyE




Gaussian model

Scalar Gaussian model : X ~ N (u, 0?)
X real valued r.v., and 0 = (M,UQ) €O =RxR}.

_ 1 1(z — p)?
Puo? (x)—mexp 5T

Multivariate Gaussian model: X ~ N (u, X)

X r.v. taking values in R%. If Iy is the set of positive definite
matrices of size d x d , and 0 = (u,X) € © = R? x K.
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Gaussian densities
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of
random variables.

xM o x™
A common assumption is that the variables are i.i.d.
o independent

o identically distributed, i.e. have the same distribution P.

This collection of observations is called
e the sample or the observations in statistics
o the samples in engineering

o the training set in machine learning
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A short review of convex analysis and
optimization




Review: convex analysis

Convex function

WAE1,  fOx+(1-Ny) A + (1N ()
Strictly convex function

VAEI0L X (1= A)y) < AF) - (1- ) f(y)
Strongly convex function

>0, 8.6 x> f(x)— pljx|[* is convex

Equivalently:
VAE0,1],  FOXH(I-N) 1) < AFE)+H(1-A) F(y)—pA(1-N)[x—y]

The largest possible p is called the strong convexity constant.
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Minima of convex functions

Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

fly) = Fx0) + V) (y—x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
There exists a unique local minimum which is also global.
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Minima and stationary points of differentiable functions
Definition (Stationary point)
For f differentiable, we say that x is a stationary point if V f(x) = 0.

Theorem (Fermat)

If f is differentiable at x and x is a local minimum, then X is
stationary.

Theorem (Stationary point of a convex differentiable function)

If f is convex and differentiable at x and x is stationary then x is a
MINIMUM.

Theorem (Stationary points of a twice differentiable functions)
For f twice differentiable at x
o if x is a local minimum then V f(x) =0 and V?f(x) = 0.

o conversely if Vf(x) =0 and V2f(x) = 0 then x is a strict local
MINIMUmM.
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The maximum likelihood principle




Maximum likelihood principle

o Let Po = {p(z;0) | 0 € O} be a model
@ Let x be an observation
Likelihood:
L:O — R+
0 — p(x;0)

Maximum likelihood estimator: . E
b — (2:0) Sir Ronald Fisher
ML = ArEmiax P (1890-1962)

Case of 1.1.d data

If (zi)1<i<n is an i.i.d. sample of size n:

n n
Ot = argmaprg(a:i) = argmax Z log po(zi)
€0 i e imy
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The maximum likelihood estimator

The MLE
e does not always exists
@ is not necessarily unique

@ is not admissible in general
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MLE for the Bernoulli model
Let X7, Xo,...,X,, an ii.d. sample ~ Ber(6). The log-likelihood is

5(9) = ZIng(:CZ'; 9) = Zlog [012(1 _ e)l—xi]
i=1 i=1

= Z (zilog 6 + (1 — z;) log(1 — 0)) = Nlog(6) + (n — N)log(1 — 6)
i=1
with N :=>"" | ;.
e O ((0) is strongly concave = the MLE exists and is unique.

o since /¢ differentiable 4+ strongly concave its maximizer is the
unique stationary point

0 N n-N

Thus

- N xi1+zo+--+a,
HMLE:;: :




MLE for the multinomial

Done on the board. See lecture notes.




Brief review of Lagrange duality

Convex optimization problem with linear constraints
For

e f a convex function,

o X C RP a convex set included in the domain of f,

o AcR"™P beR"

mi)r(l f(x) subjectto Ax=Db (P)
x€

Lagrangian

L(x,A) = f(x) + AT(Ax — b)

with A € R™ the Lagrange multiplier.




Properties of the Lagrangian

Link between primal and Lagrangian

max L(x,A) =
AER™

{f(x) if Ax=b

+o0o0 otherwise.

So that

. i s LA
e R 709 LR R £O0 )

Lagrangian dual objective function

g(A) = min L(x, A\)

xeX

Dual optimization problem

A) = in L(x, A D
max g(A) = max min L(x, A) (D)




Maxmin-minmax inequality, weak and strong duality
For any f: R™ x R™ and any w € R™ and z € R™, we have

. p— |
Teg e T D) = iy nap e

Weak dnalitv

d* = A) = in L(x,A) < mi L(x,A) = mi =: p*
R ) = mpx g L0 ) = i Y FOe ) = i 00 =i

So that in general, we have d* < p*. This is called weak duality

Strong duality

In some cases, we have strong duality:

e Solutions to (P) and (D) are the same




Slater’s qualification condition

Slater’s qualification condition is a condition on the constraints of a
convex optimization problem that guarantees that strong duality
holds.

For linear constraints, Slater’s condition is very simple:

Slater’s condition for a cvx opt. pb with lin. constraints

If there exists an x in the relative interior of X N {Ax = b} then
strong duality holds.




MLE for the univariate and multivariate Gaussian

Done on the board. See lecture notes.
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