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Supervised, unsupervised and semi-supervised learning
Supervised learning
Training set composed of pairs {(x1,¥1), ..., (Xn,Yn)}-
— Learn to classify new points in the classes
Unsupervised learning
Training set composed of pairs {x1,...,X,}.

— Partition the data in a number of classes.
— Possibly produce a decision rule for new points.

Transductive learning
Data available at train time composed of

train data {(x1,91), ..., (Xn,yn)} + test data {Xp41,...,Xn}
— Classify all the test data

Semi-supervised learning

Data available at train time composed of
labelled data {(x1,¥1),...,(Xn,yn)} + unlabelled data

{Xn+1,---,Xn}

— Produce a classification rule for future ﬁoints



Clustering

o Clustering is word usually used for unsupervised classification

o Clustering techniques can be useful to solve semi-supervised
classification problem.

Clustering is not a well-specified problem

o Classes might be impossible to infer from the distribution of X
alone
@ Several goals possible:
o Find the modes of the distribution
o Find a set of denser connected regions supporting most of the
density
o Find a set of denser convex regions supporting most of the
density
o Find a set of denser ellipsoidal regions supporting most of the
density
o Find a set of denser round regions supporting most of the density
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K-means
Key assumption: Data composed of K “roundish” clusters of

similar sizes with centroids (g1, -+ , K ).
Problem can be formulated as: min E mlonl ||
M1, 5K T

Difficult (NP-hard) nonconvex problem.

K-means algorithm
@ Draw centroids at random

@ Assign each point to the closest centroid
Cp = {i | lIxi — pe]|* = min [|x; — mill*}

© Recompute centroid as center of mass of the cluster

Q Goto?2



K-means properties

Three remarks:
o K-means is greedy algorithm

o It can be shown that K-means converges in a finite number of
steps.

@ The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm
with a random initialization to have chances to obtain a better
solution.

o Will fail if the clusters are not round



K—IHG&HS—F—{—, (Arthur and Vassilvitskii, 2007)

Algorithm
@ Choose first center p1 uniformly among data points
For k =2..K
o Let D? = minjy, ||z; — uxl3
° Chogse the next center among {x1,...,x,} with probability
x D;.

endFor

— Solution is log(K) optimal.

See Arthur, D. and Vassilvitskii, S. (2007). k-means+-+: the advantages of
careful seeding. Proceedings of the 18th annual ACM-SIAM symposium on
Discrete algorithms.



The Gaussian mixture model

and
the EM algorithm
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Jensen’s Inequality

Consider a function f:R? — R

Q if f is convex and if X is a random variable, then

E[f(X)] = f(E[X])

Q if f is strictly convex, we have equality in the previous
inequality if and only if X is constant almost surely.
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Entropy

Let X ar.v. with values in the finite set X and p(z) = P(X = z).

Quantity of information of the observation x

1
I(z) :=log —
@) p(x)
Definition of entropy
H(X):=E — Y plx) log p(x
zeX

Remarks:
@ Convention: 0log0 =0
@ H defined either with natural log or the log in base 2 (i.e. log,).
@ log, is better for coding interpretations

@ In this course we will use the natural logarithm.
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Kullback-Leibler divergence

Definition

Let p and ¢ be two finite distributions on X finite. The
Kullback-Leibler divergence is defined by

_ op PEX)
D(p || q) I;(p log = Ex~p [1 gq(X)]

_ 5o @) (0 PEN oy PX) g PX)
=2 ) <lgq<x>>q” B |y 8 )

&% The KL divergence is not a distance: it is not symmetric. If
dr € X with ¢(x) =0 and p(z) # 0 then D(p || ¢) =
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Kullback-Leibler divergence
Proposition
D(p || q) > 0 and equality holds if and only if p = q.
Proof.
W.lLo.g assume g(z) > 0 everywhere.

Q@ y+— ylogy is convex so by Jensen’s inequality, we have

- (3 m ()] 5 25]  25]

since () (@)
p p\r
g, [P 5 POy - S ) = 1.
i) - S =X
@ D(p || q) = 0 iff there is equality in Jensen’s inequality

= p(x) = cq(x) g-as.,
= but summing this last equality over x implies that ¢ =1,
= in turn implies that p = q.
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Differential entropy and KL

Let X be a r.v. with distribution P and density p w.r.t. a measure pu.

Differential entropy:
Has(r) = = | p(a) log(p(a))dula)

Differential Kullback Leibler Divergence

Dar(p || @) = / Pz >1og§g§
p(X)
q(X)

()

= EXNp [log

d
4
o Hyg(p) 20
o Hyig (p) depends on the reference measure .
= Hgig (p) does not capture intrinsic properties of P.
o However, Dyig (p || ¢) does not depend on p.
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Gaussian mixture model

e K components

@ z component indicator

z~M(1,(m,...,7K))

K
o p(z) =[] =
k=1

z=(z1,...,25)" €{0,1}¥

K
o p(x|z; (1, Zw)k) = > 26 N (x5 p, Zh)
k=1
K
o p(x) = mN(x; i, )

k=1

Estimation: argmax log
Bi, 2k

K

> m N s i)

k=1

zn

Xn




Applying maximum likelihood to the Gaussian mixture
Let Z={2z€ {0, 1}F |35 2 =1}

= Zp()gz Z H |:7TkNX Wi, Xk ] Zﬂ'k/\/ (x5 pge, Xi)

zeZ zeZ k=1

Issue
o The marginal log-likelihood () = > log(p(x™)) with
0= (Tl', (ks Zk)lngK) is now complicated

@ No hope to find a simple solution to the maximum likelihood
problem

e By contrast the complete log-likelihood has a rather simple form:

M
= > logp(x®,200) =" A4 1og N (s g, ) +sz)10g %),

i, k i,k
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Applying ML to the multinomial mixture

M
= Zlogp(x( Z zk log/\/ @ g, ) +Z zk)log (7k),
i=1

ik

o If we knew 2z we could maximize ¢(6).
o If we knew 0 = (Tr, (p, Zk)1§k§K), we could find the best z(®
since we could compute the true a posteriori on z(* given x®:

ﬂkN( 7“]{2?2](:)
S MmN (O py, 35)

— Seems a chicken and egg problem...
o In addition, we want to solve

max Z log ( Z p(x ) and not Z log p(x

z(®) 2 (M)

p(z) =1]x;0) =

o Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = logZp(x,z;O logz
o P %36)
> ) q(z)log )

z

= [Ey[log p(x, 2;0)] + H(q)

e This shows that £(q,0) < logp(x;0)

e Moreover: 6 — L(q,0) is a concave function.

o Finally it is possible to show that
L(q,0) = logp(x;6) — K L(q|[p(-x;8))

So that if we set ¢(z) = p(z | x;01")) then
L(q,6") = p(x;6'").

EM

xz0

=:L(q,0)




A graphical idea of the EM algorithm

Hold 9 new
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Expectation Maximization algorithm

Initialize 8 = O

WHILE (Not converged)
Expectation step

® q(z) =p(z | x;607Y)

@ L(q,0) =Eq[logp(x, 2;0)] + H(q)

Maximization step

0 0 = argmax E, [ log p(x, z; )] 6o = 9t-1)
(4

grew  —  g(t)
ENDWHILE



Expected complete log-likelihood

With the notation: qgl? = IP’q@ (z,(;) =1)= Eq@ [z,(:)], we have

Eq(f,) [5(9)] = q(t> logp(X, Z; 9}

[
= q<t>[zlogp @, ie)]

= q(t |: Zk-)logN a”kvzk +sz)1og(ﬂ-/€):|
i,k

= ZE ® Zk ]10g/\f( TINS5 +Z]E (t) Zk)] log ()

i,k ik
= 3 410 N (D e, ) + D 4y log(my)
ik i,k



Expectation step for the Gaussian mixture

We computed previously q@

7 (2), which is a multinomial
distribution defined by

%@ (2 = p(z®|x®; t-1))

(®) ®)

Abusing notation we will denote (g;;’, ..., q;;) the corresponding
vector of probabilities defined by

ay =Bz’ =1)=E @[]

(t 1) log/\f(x(l 7“‘]@ -1 E(t 1))

t) _ (i) _ (1). gt=1)y —
q;;, =z =1]x";0 ) =
k k Z‘f(zl 7'['§t 1 lOgN(X ’H‘gt 1)72§t 1))




Maximization step for the Gaussian mixture

(', (I‘L](:)a El(f)hgkgl() = argax E o [€(0)]

This yields the updates:

j i i T
;N) D x(® qz(/? »(®) _ > (X( ) — Mg)) (X() - “l(ct)) qz(/?
k. ) =
> qz‘(i? i qg,?
(t)
and W;(ct) = 722 qZk(t)
2 i ik




Final EM algorithm for the Multinomial mixture model
Initialize 8 = 6g
WHILE (Not converged)
Expectation step
0, m Vo N(xO, Y i)
4k, K (

ZJ':l thil) log V' (x(), H§t*1)7 2§t71))

Maximization step

i) (T i t i T (t
N;(f) _ > x® qz(k) El(f) _ > (= - p’l(c))(x( ) - “l(c)) qz(k)
' > qz(I? ' > qz'(l?
L0
and w](:) = 2 ik ql’f(t)
Ei,k’ Qg
ENDWHILE



EM Algorithm for the Gaussian mixture model II1

N
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