### 6.1 Moment vector

Definition 6.1 (Moment vector) We define the moment vector (or moment parameter as:

$$
\mu(\eta)=\nabla A(\eta)=E_{\eta}[\phi(X)]
$$

### 6.1.1 Examples of moment vectors

## Bernoulli

For a Bernoulli distribution, we can write:

$$
p(x)=\pi^{x}(1-\pi)^{1-x}=e^{x \log \pi-x \log (1-\pi)+\log (1-\pi)}=e^{x \eta-A(\eta)}
$$

with $\eta=\log \frac{\pi}{1-\pi}$ and $A(\eta)=-\log (1-\pi)$.
From this we get that $\pi=(1-\pi) e^{\eta}$ and thus $\pi=\frac{e^{\eta}}{1+e^{\eta}}=\frac{1}{1+e^{-\eta}}=\sigma(\eta)$. Remark that in logistic regression we have $\eta=w^{\top} x$.

Moreover, we can write $A(\eta)=-\log (1-\pi)=\log \left(1+e^{\eta}\right)$ and the moment vector is:

$$
\mu(\eta)=E_{\eta}[\phi(X)]=E_{\eta}[X]=\pi
$$

## Multinomial

In the multinomial case we consider $Z \rightarrow\{0,1\}^{k}$. We have $\phi(Z)=\left(\begin{array}{c}Z_{1} \\ \vdots \\ Z_{k}\end{array}\right)$ and the moment vector is:

$$
\mu(\eta)=E_{\eta}[\phi(Z)]=\left(\begin{array}{c}
\pi_{1} \\
\vdots \\
\pi_{k}
\end{array}\right)
$$

## Gaussian

In the gaussian model, we have $\phi(x)=\binom{x}{x^{2}}$ and we obtain:

$$
\mu(\eta)=E_{\eta}\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right]=\binom{\mu}{\sigma^{2}+\mu^{2}}
$$

### 6.2 Hessian of A

Proposition 6.2 The hessian of $A$ is the covariance matrix of the sufficient statistic:

$$
\nabla^{2} A(\eta)=E\left[(\phi(X)-\mu(\eta))(\phi(X)-\mu(\eta))^{\top}\right]=\operatorname{Cov}(\phi(X))
$$

Proof We can write:

$$
\begin{aligned}
\nabla^{2} A(\eta) & =\nabla \nabla A(\eta)=\nabla\left(\frac{\nabla Z(\eta)}{Z(\eta)}\right)=\frac{\nabla^{2} Z(\eta)}{Z(\eta)}+\nabla Z(\eta)\left(\frac{-\nabla Z(\eta)}{Z(\eta)^{2}}\right)^{\top} \\
& =\frac{\nabla^{2} Z(\eta)}{Z(\eta)}-\left(\frac{\nabla Z(\eta)}{Z(\eta)}\right)\left(\frac{\nabla Z(\eta)}{Z(\eta)}\right)^{\top}
\end{aligned}
$$

Moreover we have $\left[\nabla^{2} Z(\eta)\right]_{k, k^{\prime}}=E\left[\phi_{k}(X) \phi_{k^{\prime}}(X)\right] Z(\eta)$ ie:

$$
\nabla^{2} Z(\eta)=E\left[\phi(X) \phi(X)^{\top}\right] Z(\eta)
$$

Consequently:

$$
\begin{aligned}
\nabla^{2} A(\eta) & =E\left[\phi(X) \phi(X)^{\top}\right]-\mu(\eta) \mu(\eta)^{\top} \\
& =E\left[(\phi(X)-\mu(\eta))\left(\phi(X)-\mu(\eta)^{\top}\right]\right. \\
& =\operatorname{Cov}(\phi(X))
\end{aligned}
$$

Remark: $Z$ can be seen as a moment generating function $t \rightarrow Z(\eta+t)$ and $A$ as the cumulative generating function $t \rightarrow A(\eta+t)$.

Corollary 6.3 We have the three following properties:

1. $\nabla^{2} A(\eta) \succeq 0$ (semi-positive definite).
2. $A$ is convex.
3. $A$ is strictly convex on $\Omega$ if, and only if, $\phi(X)$ is a minimal representation of the exponential family.

## Proof

1. $\forall c, c^{\top} \nabla^{2} A(\eta) c=E\left[c^{\top}(\phi-\mu)(\phi-\mu)^{\top} c\right]=E\left[\left((\phi-\mu)^{\top} c\right)^{2}\right] \geq 0$
2. Since $\nabla^{2} A \succeq 0, \mathrm{~A}$ is convex.
3. If $A$ is not strictly convex, then there exists $\eta$ and $c$ such that $c^{\top} \nabla^{2} A(\eta) c=0$ therefore, for all $x, \operatorname{Var}\left(c^{\top} \phi(x)\right)=0$ thus $c^{\top} \phi(x)=-c_{o}$. We can thus write: $\forall x, c_{0}+c_{1} \phi_{1}(x)+$ $\ldots+c_{k} \phi_{k}(x)=0$. Since we can go backward, we have the equivalence.

### 6.3 Log-Likelihood of an exponential function

Denoting $\bar{\phi}=\frac{1}{n} \sum_{i} \phi\left(x_{i}\right)$, we have:

$$
-l(\eta)=-\eta^{\top} \bar{\phi} n+n A(\eta)
$$

and

$$
-\nabla l(\eta)=-\bar{\phi} n+n \mu(\eta)
$$

Consequently, we have the following equivalence:

$$
\nabla l(\eta)=0 \Leftrightarrow \mu(\eta)=\bar{\phi}
$$

Theorem 6.4 The maximum likelihood estimator $\eta$ is such that $\bar{\phi}=\mu(\eta)$. This result is called "Moment Matching".

$$
\begin{array}{|c}
\bar{\phi}=E_{\eta}[\phi(x)]=\mu(\eta) \\
\eta \underset{\text { learning }}{\stackrel{\text { inference }}{\rightleftarrows}} \mu(\eta)=\bar{\phi}
\end{array}
$$

### 6.4 Link between Maximum Likelihood and Maximum Entropy

The Maximum Entropy principle can be applied: we want to find the disribution $p$ such that $E[\phi(X)]=\bar{\phi}$ and has maximal entropy.

We can write this as a convex optimization problem:

$$
\begin{array}{ll}
\hline \underset{p}{\operatorname{Minimize}} & -H(p) \\
\text { subject to } & \left\{\begin{array}{l}
E_{p}[\phi(X)]=\bar{\phi} \\
p(x) \geq 0 \\
\sum_{x} p(x)=1
\end{array}\right.
\end{array}
$$

Let us introduce the corresponding Lagrangian:

$$
\mathcal{L}(p, \lambda, c)=\sum_{x} p(x) \log p(x)-\lambda^{\top}\left(\sum_{x} p(x) \phi(x)-\bar{\phi}\right)+c\left(\sum_{x} p(x)-1\right)
$$

Since the problem is convex, we have strong duality:

$$
\min _{p} \max _{\lambda, c} \mathcal{L}(p, \lambda, c)=\max _{\lambda, c} \min _{p} \mathcal{L}(p, \lambda, c)
$$

Slater's condition corresponds to the existence of $p$ in the relative interior of the domain of the function that is in $\mathbb{R}_{+*}^{|X|}$ and such that $\sum_{x \in \mathcal{X}} p(x)=1$. If we do not find such a $p$ then we can reduce our set taken $\mathcal{X}^{\prime}=\mathcal{X} \backslash\{x \mid p(x)=0\}$.

Without loss of generality, we can hence assume that $p>0$ and that the moment condition holds. The gradient of the Lagrangian with respect to $p$ is given by:

$$
\nabla_{p} \mathcal{L}(p, \lambda, c)=\log p(x)+1-\lambda^{\top} \phi(x)+c
$$

and we have:

$$
\begin{aligned}
\nabla_{p} \mathcal{L}=0 & \Leftrightarrow \log p(x)=\lambda^{\top} \phi(x)-(c+1) \\
& \Leftrightarrow p(x)=C e^{\lambda^{\top} \phi(x)} \text { with } C=e^{-(c+1)}
\end{aligned}
$$

We recognize here an exponential family. Reinjecting this value of $p$ and maximizing with respect to $\lambda$ and $c$, we obtain the maximum likelihood estimator.

Theorem 6.5 If $X_{1}, \ldots, X_{n}$ is an iid sample and $\phi(X)$ a statistic, then the maximum entropy estimator satisfying the equality $E_{p}[\phi(X)]=\bar{\phi}$ is the maximum likelihood distribution in the exponential family with sufficient statistic $\phi$.

### 6.5 Gaussian graphical models

### 6.5.1 Canonical parameterization

We consider a Gaussian random variable $X \in \mathbb{R}^{p}: X \sim \mathcal{N}(\mu, \Sigma)$ with $\mu \in \mathbb{R}^{p}, \Sigma \in \mathbb{R}^{p \times p}$, $\Sigma \succ 0$. We recall the expression of its density:

$$
p(x, \mu, \Sigma)=\frac{1}{\sqrt{(2 \pi)^{p}|\Sigma|}} \exp \left[-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right]
$$

Denoting $\eta=\Sigma^{-1} \mu$ et $\Lambda=\Sigma^{-1}$ we get:

$$
\begin{aligned}
(x-\mu)^{T} \Sigma^{-1}(x-\mu) & =x^{T} \Sigma^{-1} x-x \mu^{T} \Sigma^{-1} x+\mu^{T} \Sigma^{-1} \mu \\
& =x^{T} \Lambda x-2 \eta^{T} x+\eta^{T} \Lambda^{-1} \eta \\
p(x, \mu, \Lambda) & =\exp \left[\eta^{T} x-\frac{1}{2} x^{T} \Lambda x-A(\eta, \Lambda)\right] \\
A(\eta, \Lambda) & =\frac{1}{2} \eta^{T} \Lambda^{-1} \eta+\frac{p}{2} \log 2 \pi-\frac{1}{2} \log |\Lambda|
\end{aligned}
$$

$\theta=\{\Lambda, \eta\}$ are the canonical parameters. $\Lambda$ is called the precision matrix, and $\eta$ is the loading vector. We have the following sufficient statistic, which is not a minimal representation:

$$
\Phi(x)=\binom{x}{-\frac{1}{2} \operatorname{Vec}\left(x x^{T}\right)}
$$

## Mean and covariance

The mean and covariance of $X$ are given by :

$$
\begin{aligned}
\nabla_{\theta} A(\eta, \Lambda) & =\mathbb{E}_{\theta}[\Phi(X)] \\
& =\binom{-\frac{1}{2} \mathbb{E}_{\theta}[X]}{\mathbb{E}_{\theta}[X]}=\nabla_{\eta} A(\eta, \Lambda) \\
& =\Lambda^{-1} \eta \\
& =\mu \\
-\frac{1}{2} \mathbb{E}_{\theta}\left[X X^{T}\right] & =\nabla_{\Lambda} A(\eta, \Lambda) \\
& =-\frac{1}{2} \Lambda^{-1} \eta \eta^{T} \Lambda^{-1}-\frac{1}{2} \Lambda^{-1} \\
& =-\frac{1}{2}\left[\mu \mu^{T}+\Lambda^{-1}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Cov}[X] & =\mathbb{E}_{\theta}\left[X X^{T}\right]-\mathbb{E}_{\theta}[X] \mathbb{E}_{\theta}[X]^{T} \\
& =\Lambda^{-1} \\
& =\Sigma
\end{aligned}
$$

Please note that we could have also computed the covariance with:

$$
\nabla_{\theta}^{2} A(\eta, \Lambda)=\left(\begin{array}{cc}
\operatorname{Cov}(X) & \cdots \\
\cdots & \operatorname{Cov}\left(\operatorname{Vec}\left(X X^{T}\right)\right)
\end{array}\right)
$$

and $\nabla_{\eta}^{2} A(\eta, \Lambda)=\Lambda^{-1}$

### 6.5.2 Conditioning and marginalization in Gaussian GM

We partition the random variable $X \in \mathbb{R}^{p}$ into two components $X_{1} \in \mathbb{R}^{p_{1}}$ and $X_{2} \in \mathbb{R}^{p_{2}}$ such that $X=\binom{X_{1}}{X_{2}}$ and $p=p_{1}+p_{2}$. We now seek to determine the law of $X_{1}$ and $X_{2} \mid X_{1}$.

$$
X_{1} \sim ?, \quad X_{2} \mid X_{1} \sim ?
$$

Before doing so, we need to partition the moment parameters $\mu, \Sigma$ and the canonical parameters $\Lambda, \eta$ in the same way:

$$
\mu=\binom{\mu_{1}}{\mu_{2}}, \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right), \quad \eta=\binom{\eta_{1}}{\eta_{2}}, \quad \Lambda=\Sigma^{-1}=\left(\begin{array}{cc}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{21} & \Lambda_{22}
\end{array}\right) .
$$

from which we get a partitioned form for the joint distribution:

$$
\begin{equation*}
p\left(x_{1}, x_{2}\right)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}^{T} \Lambda\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}\right] \tag{6.1}
\end{equation*}
$$

In what follows, we will introduce a tool to block diagonalize partitioned matrices. We will then be able to develop general formulas for marginalization and conditioning in the multivariate Gaussian setting.

### 6.5.3 Digression on Schur complement

Let us consider the block matrix $M=\left(\begin{array}{cc}A & L \\ R & U\end{array}\right)$. Our goal is to explicit the blocks of its inverse in terms of the initial blocks $A, L$ ( $L$ stands for left), $U$ ( $U$ stands for upper) and $R$ ( $R$ stands for right).

We can zero out the $L$ and $R$ by premultiplying $M$ by $D$ and postmultiplying by $D$. We denote $\Delta$ this block diagonal matrix.

$$
\begin{aligned}
\left(\begin{array}{cc}
I & 0 \\
-R A^{-1} & I
\end{array}\right) \times\left(\begin{array}{cc}
A & L \\
R & U
\end{array}\right) \times\left(\begin{array}{cc}
I & -A^{-1} L \\
0 & I
\end{array}\right) & =D \times M \times G \\
& =\left(\begin{array}{cc}
I & 0 \\
-R A^{-1} & I
\end{array}\right) \times\left(\begin{array}{cc}
A & 0 \\
R & U-R A^{-1} L
\end{array}\right) \\
\Delta & =\left(\begin{array}{cc}
A & 0 \\
0 & U-R A^{-1} L
\end{array}\right)
\end{aligned}
$$

Definition 6.6 The Schur complement of the matrix $M=\left(\begin{array}{cc}A & L \\ R & U\end{array}\right)$ with respect to $A$ is $\left[M_{/ A}\right]=U-R A^{-1} L$.

By symmetry we obtain the Schur complement of $M$ with respect to $U$ : $\left[M_{/ U}\right]=A-$ $L U^{-1} R$

## Lemme 6.7 (Determinant lemma)

$$
|M|=|A| \times\left|\left[M_{/ A}\right]\right|=|U| \times\left|\left[M_{/ U}\right]\right|
$$

Proof

$$
|\Delta|=\underbrace{|D|}_{=1}|M| \underbrace{|G|}_{=1}=|M|
$$

and we have also

$$
|\Delta|=|A|\left|\left[M_{/ A}\right]\right|
$$

and

$$
|\Delta|=|U|\left|\left[M_{/ U}\right]\right|
$$

Lemme 6.8 (Positivity lemma) If $M$ is symmetric then $M \succcurlyeq 0$ if and only if $A \succcurlyeq 0$ and $\left[M_{/ A}\right] \succcurlyeq 0$.

Please note that we have the same lemma for strict inequalities.
Proof $G=D^{T}$. $A \succcurlyeq 0$ and $\left[M_{/ A}\right] \succcurlyeq 0 \Leftrightarrow \forall x, x^{T} \Delta x \geqslant 0 \Leftrightarrow \forall x,\left(D^{T} x\right)^{T} M\left(D^{T} x\right) \geqslant 0$, hence $\forall y, y^{T} M y \geqslant 0$ because $G=D^{T}$ is invertible.

## Woodbury-Sherman-Morrison inversion formula for partitioned matrices

We have that $M$ is invertible if and only if $A \succcurlyeq 0$ and $\left[M_{/ A}\right] \succcurlyeq 0$. Then $\Delta^{-1}=G^{-1} M^{-1} D^{-1}$, and $M^{-1}=G \Delta^{-1} D$. The explicit computation of this matrix product gives the so-called Woodbury-Sherman-Morrison formula:

$$
\begin{align*}
M^{-1} & =\left(\begin{array}{cc}
I & -A^{-1} L \\
0 & I
\end{array}\right) \times\left(\begin{array}{cc}
A^{-1} & 0 \\
0 & {\left[M_{/ A}\right]^{-1}}
\end{array}\right) \times\left(\begin{array}{cc}
I & 0 \\
-R A^{-1} & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{-1}+A^{-1} L\left[M_{/ A}\right]^{-1} R A^{-1} & -A^{-1} L\left[M_{/ A}\right]^{-1} \\
-\left[M_{/ A}\right]^{-1} R A^{-1} & {\left[M_{/ A}\right]^{-1}}
\end{array}\right) \tag{6.2}
\end{align*}
$$

Similarly we obtain:

$$
M^{-1}=\left(\begin{array}{cc}
{\left[M_{/ U}\right]^{-1}} & -U^{-1} R\left[M_{/ U}\right]^{-1} \\
-\left[M_{/ U}\right]^{-1} L U^{-1} & U^{-1}+U^{-1} R\left[M_{/ U}\right]^{-1} L U^{-1}
\end{array}\right)
$$

### 6.5.4 Back to the problem

We now use the Woodbury formula (6.2) to compute an interesting expression for the quadratic form of the multivariate Gaussian distribution.

$$
\begin{align*}
(x-\mu)^{T} \Sigma^{-1}(x-\mu) & =\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}^{T}\left(\begin{array}{cc}
I & -\Sigma_{11}^{-1} \Sigma_{12} \\
0 & I
\end{array}\right) \ldots \\
& \times\left(\begin{array}{cc}
\Sigma_{11}^{-1} & 0 \\
0 & {\left[\Sigma_{/ \Sigma_{11}}\right]^{-1}}
\end{array}\right) \times\left(\begin{array}{cc}
I & 0 \\
-\Sigma_{21} \Sigma_{11}^{-1} & I
\end{array}\right)\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}  \tag{6.3}\\
& =\left(x_{1}-\mu_{1}\right)^{T}\left(x_{1}-\mu_{1}\right)+\left(x_{2}-\mu_{2}-b\right)^{T}\left[\Sigma_{\left./ \Sigma_{11}\right]^{-1}}\left(x_{2}-\mu_{2}-b\right)\right.
\end{align*}
$$

where we denoted $b=\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right)$.
Now recall that we have $|\Sigma|=\left|\Sigma_{11}\right|\left|\left[\Sigma_{/ \Sigma_{11}}\right]\right|$. The joint distribution can be expressed as:

$$
\begin{align*}
p\left(x_{1}, x_{2}\right)= & \underbrace{\frac{1}{\sqrt{(2 \pi)^{p_{1}}\left|\Sigma_{11}\right|}} \exp \left[-\frac{1}{2}\left(\left(x_{1}-\mu_{1}\right)^{T} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right)\right)\right]}_{p\left(x_{1}\right)} \times \ldots \\
& \underbrace{\frac{1}{\sqrt{(2 \pi)^{p_{1}} \mid\left[\Sigma_{\left./ \Sigma_{11}\right] \mid}\right.}} \exp \left[-\frac{1}{2}\left(\left(x_{2}-\mu_{2}-b\right)\left[\Sigma_{\left./ \Sigma_{11}\right]}\right]^{-1}\left(x_{2}-\mu_{2}-b\right)\right)\right]}_{p\left(x_{2} \mid x_{1}\right)} \tag{6.4}
\end{align*}
$$

From (6.4) we deduce that $X_{1} \sim \mathcal{N}\left(\mu_{1}, \Sigma_{11}\right)$, et $X_{2} \mid X_{1} \sim \mathcal{N}\left(\mu_{2}+b,\left[\Sigma_{\left./ \Sigma_{11}\right]}\right]\right)$.
We denote by $\left(\mu_{1}, \Sigma_{1}\right)$, respectively $\left(\mu_{2 \mid 1}, \Sigma_{2 \mid 1}\right)$, the moment parameters of the marginal distribution of $x_{1}$, respectively the moment parameters of the conditional distribution of $x_{2}$ given $x_{1}$. We have a similar notation for the canonical parameters $\eta$ and $\Lambda$. We summarize our results in the following:

Moment parameterization summary

$$
\left\{\begin{array}{l}
\mu_{1}=\mu_{1} \\
\Sigma_{1}=\Sigma_{11} \\
\mu_{2 \mid 1}=\mu_{2}+b=\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right) \\
\Sigma_{2 \mid 1}=\left[\Sigma_{/ \Sigma_{11}}\right]=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
\end{array}\right.
$$

## Canonical parameterization summary

$$
\left\{\begin{array}{l}
\eta_{1}=\left[\Lambda_{/ \Lambda_{22}}\right] \mu_{1}=\eta_{2}-\Lambda_{12} \Lambda_{22}^{-1} \eta_{2} \\
\Lambda_{1}=\Sigma_{11}^{-1}=\left[\Lambda_{/ \Lambda_{22}}\right]=\Lambda_{11}-\Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \\
\eta_{2 \mid 1}=\Lambda_{22 \mid 1} \times \mu_{2 \mid 1}=\Lambda_{22} \mu_{2}-\Lambda_{21}\left(x_{1}-\mu_{1}\right)=\eta_{2}-\Lambda_{21} x_{1} \\
\Lambda_{22 \mid 1}=\Lambda_{22}
\end{array}\right.
$$

We can notice that in the moment parameterization, the marginalization operation is simple and the conditioning is complicated and the opposite holds in the canonical parameterization.

### 6.5.5 Zeros of the precision matrix and Markov properties

Let $p\left(x_{1}, \ldots, x_{p}\right)$ a joint Gaussian distribution. We denote $I=\{i, j\}$ and we consider $p\left(x_{i}, x_{j} \mid x_{B}\right)$, with $B=\{1, \ldots, p\} \backslash\{i, j\}$. Using the canonical parameterization:

$$
\eta_{I} \left\lvert\, B=\binom{\eta_{i}-\Lambda_{i B} x_{B}}{\eta_{j}-\Lambda_{j B} x_{B}} \quad\right. \text { and } \quad \Lambda_{I I \mid B}=\Lambda_{I I}=\left(\begin{array}{cc}
\lambda_{i i} & \lambda_{i j} \\
\lambda_{j i} & \lambda_{j j}
\end{array}\right)
$$

we have the following expression for the covariance matrix of $X_{I} \mid X_{B}$ :

$$
\operatorname{Cov}\left(X_{I} \mid X_{B}\right)=\Sigma_{I I \mid B}=\Lambda_{I I \mid B}^{-1}=\frac{1}{\left|\Lambda_{I I}\right|}\left(\begin{array}{cc}
\lambda_{j j} & -\lambda_{j i} \\
-\lambda_{i j} & \lambda_{i i}
\end{array}\right)
$$

Hence $\operatorname{Cov}\left(x_{i}, x_{j} \mid X_{B}\right)=\frac{-\lambda_{i j}}{\sqrt{\lambda_{i i} \times \lambda_{j j}}}$ and $\lambda_{i j}=0 \Rightarrow X_{i} \perp X_{j} \mid X_{B}$.
Proposition 6.9 The non zero coefficients in $\Lambda$ correspond to edges in the underlying graphical model.

Indeed, the distribution is proportional to $\exp \left(\eta^{T}-\frac{1}{2} x \Lambda x^{T}\right)=\prod_{i} \exp \left(\eta_{i} x_{i}\right) \prod_{i j} \exp \left(-\frac{1}{2} x_{i} \lambda_{i j} x_{j}\right)$

### 6.5.6 Matrix inversion lemma

A useful consequence of the Schur component is to prove rigorously the following inversion lemma:

Lemme 6.10 (Matrix inversion) Let $X \in \mathbb{R}^{p \times n}$

$$
\left(\operatorname{Id}+\lambda X^{T} X\right)^{-1}=\operatorname{Id}-\lambda X\left(\operatorname{Id}+\lambda X X^{T}\right)^{-1} X^{T}
$$

In practice, we often want to invert matrix such as $\left(\operatorname{Id}+\lambda X^{T} X\right)$ where $X \in \mathbb{R}^{p \times n}$ is a design matrix. $n$ represents an i.i.d sample while $p$ represents the features, and we usually have $n \gg p$. In that case, the inversion lemma 6.10 replaces the problem of inverting a $n \times n$ matrix (complexity in $O\left(n^{3}\right)$ ) by a less costly one: inverting a $p \times p$ matrix.
Proof We consider $M=\left(\begin{array}{cc}\mathrm{Id} & X \\ X^{T} & -\frac{1}{\lambda} \mathrm{Id}\end{array}\right)=\left(\begin{array}{cc}A & L \\ R & U\end{array}\right)$, then $\left[M_{/ U}\right]^{-1}=\left(\operatorname{Id}+\lambda X^{T} X\right)$.
Recall the Woodbury formula (6.2), we have:

$$
\left[M_{/ U}\right]^{-1}=A^{-1}+A^{-1} L\left[M_{/ A}\right]^{-1} R A^{-1}
$$

which gives us the inversion lemma since here $\left[M_{/ U}\right]^{-1}=\operatorname{Id}+X\left(-\frac{1}{\lambda} \operatorname{Id}-X X^{T}\right)^{-1} X^{T}$.

