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5.1 Information Theory

5.1.1 Entropy

We will use the following properties (Jensen Inequality):

1. if f : R→ R is convex and if X is an integrable random variable :

EX(f(X)) ≥ f(EX(X))

2. if f : R→ R is strictly convex, we have equality if and only if X is constant a.s.

Definition 5.1 (Entropy) Let X be a random variable taking values in the finite set X .
We denote p(x) = P (X = x).
In information theory, the quantity

I(x) = log
1

p(x)

can be interpreted as a quantity of information carried by the occurrence of x. (This is
sometimes called self-information). Entropy is defined as the expected amount of information
of the random variable.

H(X) = Ep(x) [I(X)] = −
∑
x∈X

p(x) log p(x)

The base of the logarithm is the natural base or 2, the latter being more consistent with bit
coding interpretations of entropy. In this course we will use the natural logarithm.

5.1.2 Kullback-Leibler divergence

Definition 5.2 (Kullback Leibler Divergence) Let p and q be two finite distributions
on X . The Kullback Leibler Divergence between p and q is defined by

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)

q(x)

=
∑
x∈X

p(x)

q(x)

(
log

p(x)

q(x)

)
q(x)

= EX∼q

[
p(X)

q(X)
log

p(X)

q(X)

]
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� KL Divergence is not a distance as it is not symmetric.

Proposition 5.3 D(p ‖ q) ≥ 0 and equality holds if and only if p = q.

Proof If there exists x ∈ X such that q(x) = 0 and p(x) 6= 0 then D(p ‖ q) = +∞.
Otherwise, we can without loss of generality assume that q(x) > 0 everywhere. We make
this assumption in the rest of the proof. By convexity of the function y 7→ y log y, and by
Jensen’s inequality, we have

D(p ‖ q) = Eq

[
p(X)

q(X)
log

(
p(X)

q(X)

)]
≥ Eq

[
p(X)

q(X)

]
logEq

[
p(X)

q(X)

]
= 0

since
Eq

[
p(X)

q(X)

]
=
∑
x∈X

p(x)

q(x)
q(x) =

∑
x∈X

p(x) = 1.

Furthermore, D(p ‖ q) = 0 iff there is an equality in Jensen’s inequality above which implies
that p(x) = cq(x) q-a.s., but summing this last equality over x implies that c = 1, which in
turn implies that p = q.

Proposition 5.4 We have the following inequalities:

1. H(X) ≥ 0 with equality if X is constant a.s

2. H(X) ≤ log(Card(X ))

Proof Since p(x) = Pp(X = x) ≤ 1 then −p(x) log p(x) ≥ 0 which implies that H(X) ≥ 0
with equality iff −p(x) log p(x) = 0 for all x ∈ X , which proves the first point. Then

D(p ‖ q) = −
∑
x∈X

p(x) log q(x)− (−
∑
x∈X

p(x) log p(x))

= −
∑
x∈X

p(x) log q(x)−H(X)

We choose q0(x) = 1
Card(X )

. ThenH(X) = log(Card(X ))−D. HenceH(X) ≤ log(Card(X )).

Definition 5.5 (Mutual information) Let X, Y be two random variables of joint distri-
bution pX,Y (x, y) = P (X = x, Y = y) and with marginal distributions pX(x) =

∑
y pX,Y (x, y)

and pY (y) =
∑

x pX,Y (x, y). The mutual information of X and Y is defined by

I(X, Y ) =
∑
x,y

pX,Y (x, y) log
pX,Y (x, y)

pX(x) pY (y)

= D(pX,Y ‖ pXpY )

5-2



Lecture 5 — October 30th 2013/2014

Proposition 5.6 I(X, Y ) = 0⇔ X⊥⊥Y

Proof It directly follows from the fact that D(pX,Y ‖ pX pY ) = 0 implies that pX,Y (x, y) =
pX(x)pY (y) which is the definition of the independence of X and Y .

� Independent ⇒ not correlated but not correlated ; independence
The first implication comes from the fact that if X⊥⊥Y then E(X, Y ) = E(X)E(Y )

and then Cov(X, Y ) = 0.
Counter-example for the reverse implication: if Θ is a r.v. following the uniform distribution
on [0, 1] and we define the random variables X and Y by X = sin(2πΘ) and Y = cos(2πΘ)
then X and Y are not correlated but dependent.

Remark 5.1.1 The reverse is only true for Gaussian random variables.

5.1.3 Relation between minimum Kullback-Leibler divergence and
maximum likelihood principle

Definition 5.7 (Empirical distribution) Let x1, ..., xN ∈ X be N i.i.d. observations of a
random variable X.
The empirical distribution of X derived from this sample is

p̂(x) =
1

N

N∑
n=1

δ(x− xn)

Where δ is the Dirac function, null everywhere except in 0 where it takes the value 1.

Proposition 5.8 Let pθ be a parameterized distribution on X .
Maximizing the likelihood pθ(x) is equivalent to minimizing the KL Divergence D(p̂||pθ)

Proof
D(p̂||pθ) =

∑
x∈X

p̂(x) log
p̂(x)

pθ(x)

= −H(p̂)−
∑
x∈X

p̂(x) log pθ(x)

= −H(p̂)− 1

N

∑
x∈X

N∑
n=1

δ(x− xn) log pθ(x)

= −H(p̂)− 1

N

N∑
n=1

log pθ(xn)

The second term is equal to the opposite of the log-likelihood pθ(x). Hence the conclusion.
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Remark 5.1.2 pθ(x) = 0 ⇒ p̂(x) = 0, but p̂(x) = 0 ; pθ(x) = 0. So we should not try to
compute D(pθ||p̂), because this would rule out all the values of x that we have not encountered
yet (i.e. such that p̂(x) = 0).

5.1.4 Maximum entropy principle

The maximum entropy principle is a different principle than the maximum likelihood prin-
ciple and solves a different kind of problem. It assumes that we use the data to specify a
constraint on the possible distribution we choose. The idea is to maximize the entropy H(p)
under the constraint that p ∈ P(X ) where P(X ) is a set of possible distribution typically
specified from the data.

Let ’s consider the following examples

1. A study on kangaroos estimated that p = 3/4 of the kangaroos are left-handed and
q = 2/3 drink Foster beer. What is a reasonable estimate of the fraction of kangaroos
that are both left-handed and drink Foster beer? The maximum entropy principle can
be invoked to choose among all distributions of pairs of binary random variables. In
particular, one way to formalize that we want to choose the least specific distribution
that satisfies these constraints is to find the distribution with maximal entropy that
satisfies the constraints on the marginals. If X is the variable "is left-handed" and Y
"drinks Foster beer", then the problem is formalized as

max
pX,Y

H(pX,Y ) s.t. pX,Y (1, 0) + pX,Y (1, 1) = p, pX,Y (0, 1) + pX,Y (1, 1) = q.

What is the solution to this problem? (Exercise)

2. Among all distributions on {1, . . . , 10} what is the distribution with expected value
equal to 2 which has the largest entropy? (Exercise)

3. It is possible to show that the distribution on R with fixed mean µ and fixed variance
σ2 that has maximal differential entropy is the Gaussian distribution.

4. The principle of maximum entropy is also the principle invoked to construct distribu-
tion on angles with fixed mean and variance. It leads to the so-called wrapped normal
distribution. A related distribution on angle which is also a maximum entropy distri-
bution is the von Mises distribution.

The maximum entropy principle is used often when working with contingency tables.

5.1.5 Entropy and KL divergence for continuous random variables

Let X be a continuous random variable taking its values in the continuous space X and let
p be its probability density function. We have the following adapted expressions of entropy
and KL Divergence:
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• Differential entropy:

Hdiff(p) = −
∫
X
p(x) log(p(x))dµ(x)

• Differential Kullback Leibler Divergence:

Ddiff(p ‖ q) =

∫
X
p(x) log

p(x)

q(x)
dµ(x)

= EX∼p

[
log

p(X)

q(X)

]
� In the continuous case, the entropy is not necessarily non-negative.

Remark 5.1.3 The definition of Hdiff (p) depends on the reference measure µ. This means
that Hdiff (p) does not capture any intrinsic properties of p any more, and loses its "physical
interpretation" in terms of quantity of information, at least in an absolute sense. By contrast
Ddiff (p ‖ q) does not depend on the choice of the reference measure and has therefore a
stronger interpretation.

5.2 Exponential families
Let x1, ..., xN ∈ X be N i.i.d. observations of a random variable X.

Definition 5.9 A statistic Φ is just a function of the data: x 7→ Φ(x) = Φ(x1, ..., xN)

Definition 5.10 (Sufficient statistic (statistique exhaustive in French)) A function
T : x 7→ T (x) is a sufficient statistic for a model PΘ if and only if

∀θ ∈ Θ, pθ(x) = h(x) g(T (x); θ)

Note that in order to estimate θ from data x using the maximum likelihood principle the
information of the statistics T (x) carries all the information that is relevant.

Another way of interpreting what a sufficient statistic is is to take the Bayesian point of
view. In Bayesian statistics, the parameter θ is modelled as a random variable and we then
have:

p(x, θ) = p(x|θ) p(θ) = h(x) g(T (x); θ) p(θ),

which means that θ⊥⊥X | T (X).

Definition 5.11 (Exponential family) Let X be a random variable on X . An exponential
family is a family of distribution of the form

p(x; θ) dµ(x) = h(x) exp
{
b(θ)Tφ(x)− Ã(θ)

}
dµ(x),

where
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• h(x) the ancillary statistic,

• h(x)dµ(x) the reference measure (or base measure),

• φ(x) the sufficient statistic (also called feature vector),

• θ the parameter,

• η = b(θ) the canonical parameter,

• Ã(θ) = A(η) the log-partition function.

Proposition 5.12

A(η) = log

∫
X
h(x) exp

{
ηTφ(x)

}
dµ(x)

Proof
1 =

∫
X
p(x|η)dµ(x) = e−A(η)

∫
X
h(x) exp

{
ηTφ(x)

}
dµ(x)

Definition 5.13 (Canonical exponential family) A canonical exponential family is an
exponential family which such that b(θ) = θ = η, i.e.:

p(x; η) = h(x) exp(ηTφ(x)− A(η))

Definition 5.14 (Domain) The domain of an exponential family is defined by:

Ω = {η ∈ Rp | A(η) <∞}

Example 5.2.1 (Multinomial model) Let X be a random variable on X = {0, 1}K. X
follows a multinomial distribution of parameter π ∈ [0, 1]K.

p(x; π) =
K∏
k=1

πxkk

= exp
( K∑
k=1

xk log πk

)
= exp

( K∑
k=1

xkηk

)
= exp(〈x, η〉)

In this expression we easily recognize:
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• η = (log π1, log π2, · · · , log πK)T ;

• φ(x) = x;

• dµ(x) the counting measure

• h(x) = 1 the constant function equal to one;

But we don’t recognize A(η). Let us find it using Proposition 5.12:

A(η) = log
(∑
x∈X

exp(ηTx)
)

= log
( K∑
k=1

exp(ηk)
)

p(x; η) = exp(ηTx− A(η))

= exp

(
K∑
k=1

ηkxk − A(η)

)

= exp

(
K∑
k=1

(ηk − A(η))xk

)

= exp

(
K∑
k=1

log

(
exp ηk∑K
k′=1 exp ηk

)
xk

)
We see that in the first expression of the likelihood in its exponential form, we did not take
into account the fact that

∑
k πk = 1. There was a hidden constraint on η. Now we have a

new expression for πk and no more constraint over the values that η can take:

π̃k =
exp(ηk)∑
k′ exp(ηk)

.

Example 5.2.2 (Gaussian distribution (µ, σ) over R)

p(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

= exp

{
x2

(
−1

2σ2

)
+ x

µ

σ2
−
[
µ2

2σ2
+

1

2
log(2πσ2)

]}
We recognize an exponential family with:

• φ(x) = (x, x2)T

• η = ( µ
σ2 , − 1

2σ2 )T = (η1, η2)T
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• A(η) = 1
2

log
(
− 2π

2η2

)
− η21

4η2

p(x) = exp
{
φ(x)Tη − A(η)

}
on the domain: {η ∈ R2, η2 < 0}.

Example 5.2.3 Many other common distributions are exponential families: Binomial law,
Poisson law (X = N), Dirichlet law, Gamma law, exponential law.

5.2.1 Link with the graphical models

Xi Xj

Figure 5.1. Ising model

Example 5.2.4 (Ising model)

pη(x) =
1

Z(η)
exp

∑
(i,j)∈E

ψij(xi, xj, η)

ψij(xi, xj) = V 11
ij xixj + V 10

ij xi(1− xj) + V 01
ij (1− xi)xj + V 00

ij (1− xi)(1− xj)

η = (V kk′

ij ) (i,j)∈E
k, k′∈{0,1}

φ(x) =

 xixj
(1− xi)xj

...


(i,j)∈E

This first expression is overparametrized. We can rewrite the expression with just one
parameter per pair (xi, xj):

pη(x) =
1

Z

∏
(i,j)∈E

exp
(
η̃ijxixj

)∏
i∈V

exp
(
η̃ixi

)
.
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Example 5.2.5 (General discrete graphical model) In the general case of a discrete
graphical model such that p(x) > 0 for all x ∈ X , we have:

p(x) =
1

Z

∏
c∈C

Ψc(xc)

=
1

Z
exp

{∑
c∈C

log Ψc(xc)

}

=
1

Z
exp

{∑
c∈C

∑
yc∈Xc

δ{yc=xc} log(Ψc(yc))

}

Where Xc = { set of all possible values of the r.v. on the clique c}
We recognize:

Φ(x) =
(
δ(xc=yc)

)
yc∈Xc
c∈C

and
η =

(
log(Ψc(yc))

)
yc∈Xc
c∈C

5.2.2 Minimal representation

Remark 5.2.1 Let pη(x) = exp
(
η>φ(x)− A(η)

)
h(x)dµ(x).

The set Nη := {x : pη(x) = 0} actually does not depend on η but only on h(x).

Definition 5.15 (Common set of probability zero)

N := {x : h(x) = 0}

Definition 5.16 (Affinely dependent statistics) We denote φ(x) = (φ1(x), . . . , φK(x))>.
The sufficient statistics are said to be affinely dependent if:

∃(c0, . . . , cK) 6= 0, ∀x 6∈ N , c0 + c1φ1(x) + . . .+ cKφK(x) = 0.

Definition 5.17 (Minimal representation of an exponential family) A vector of suf-
ficient statistics provides a minimal representation of the exponential family these statistics
are affinely independent.

Theorem 5.18 Every exponential family admits at least one minimal representation (not
necessarily unique) of unique minimal dimension K.

Remark 5.2.2 We will quite often use redundant (i.e. not minimal) representations.
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5.2.3 Exponential family of an i.i.d. sample

We consider an i.i.d. sample X1, . . . , Xn distributed according to pη, which belongs to an
exponential family. Then

pη(x1, . . . , xn) =
n∏
i=1

pη(xi) =
n∏
i=1

[
exp

(
η>φ(xi)− A(η)

)
h(xi)

]
= exp

(
η>
( n∑
i=1

φ(xi)
)
− nA(η)

) ∏
i

h(xi)

1. The sufficient statistics is nφ̄, where φ̄ = 1
n

∑n
i=1 φ(xi),

2. The canonical parameter η and the domain Ω = {η | A(η) < ∞} remain the same as
for a single observation,

3. The log-partition function is nA(η).

5.2.4 General exponential family

In general, in an exponential family, we can parametrize η with a function b such that
η = b(θ) and θ in an open connected subset Θ of Rd.

Definition 5.19 (Curved exponential family) An exponential family is said to be curved
if its Jacobian J =

{
∂bj(θ)

∂θi

}
i,j

is not full rank.

Example 5.2.6 pµ(x) = N (x;µ, µ2)

5.2.5 Convexity and differentiability in exponential families

Lemme 5.20 (Hölder’s inequality)

∀x, y ∈ Rd, p, q > 1 such that
1

p
+

1

q
= 1

|x>y| 6 ||x||p||y||q where ||x||p =

(
n∑
k=1

xpk

) 1
p

.

∀f, g : Rn → R,
∫
|f(x)g(x)|dx 6

(∫
|f(x)|pdx

) 1
p
(∫
|g(x)|qdx

) 1
q

.

Theorem 5.21 (Convexity) In a canonical exponential family, we have the following prop-
erties:
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1. Ω is a convex subset of Rp

2. Z : η 7→
∫

exp
(
η>φ(x)

)
h(x)dx is a convex function

3. A : η 7→ log (Z(η)) is a convex function

Proof If Ω = ∅ or Ω is a singleton, the result is trivial.
If not, there exist η1, η2 ∈ Ω such that η1 6= η2. Let η = α η1 + (1− α) η2, α ∈]0, 1[.

exp(η>φ(x)) 6 α exp(η>1 φ(x)) + (1− α) exp(η>2 φ(x))∫
. . . h(x)dµ(x) 6 α

∫
. . . h(x)dµ(x) + (1− α)

∫
. . . h(x)dµ(x)

Z(η) 6 α Z(η1) + (1− α) Z(η2).

Thus Z is a convex function. Moreover:

η1, η2 ∈ Ω ⇒ Z(η) 6 αZ(η1) + (1− α)Z(η2) <∞ ⇒ η ∈ Ω

which proves that Ω is a convex set.

Z(η) =

∫
exp

(
η>φ(x)

)
h(x)dµ(x) =

∫
(exp η>1 φ(x))αh(x)α︸ ︷︷ ︸

f(x)α

(exp η>2 φ(x))1−αh(x)1−α︸ ︷︷ ︸
g(x)(1−α)

dµ(x)

By taking p = 1
α
, we obtain:∫

f(x)αg(x)1−αdµ(x) 6

(∫
f(x)αpdµ(x)

) 1
p
(∫

g(x)(1−α)qdµ(x)

) 1
q

Z(η) 6 Z(η1)α Z(η2)1−α

A(η) = log(Z(η)) 6 αA(η1) +(1− α)A(η2).

Hence A is a convex function.

Corollary 5.22 In a canonical exponential family, the maximum likelihood estimator is the
solution of a convex optimization problem.

Proof The log-likelihood is concave:

`(η) = log pη(x) = η>φ̄(x)− A(η) + log h(x).

5-11



Lecture 5 — October 30th 2013/2014

Remark 5.2.3 The theorem does not hold in any of those two cases:

1. The family is curved,

2. φ is not fully observed and we consider the marginal likelihood of the observations.

Theorem 5.23 If η ∈
◦
Ω, then Z is C∞ (and so is A) and:

∂Z

∂ηk
= Eη[φk(x)]Z(η)

∂m

∂ηm1
1 . . . ∂ηmKK

Z(η) = Eη[φ1(x)m1 . . . φK(x)mK ]Z(η)

Proof It is a bit technical but standard to show using the dominated convergence theorem
that one can exchange differentiation and expectation in the computations of the differentials
of Z. One then has

∂Z

∂ηk
=

∫
φk(x) exp

{
η>φ(x)

}
h(x)dµ(x)

=

∫
φk(x) exp

{
η>φ(x)− A(η)

}
h(x)dµ(x) exp(A(η))︸ ︷︷ ︸

Z(η)

= Eη[φk(x)]Z(η),

which proves the first formula (the general one can be deduced by induction).
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