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4.1 Notation and probability review

Let us recall a few notations before establishing some properties of directed graphical models.
Let X1, X2, . . . , Xn be random variables with distribution:

P(X1 = x1, X2 = x2, . . . , Xn = xn) = pX(x1, . . . , xn) = p(x)

where x stands for (x1, . . . , xn). Given A ⊂ {1, . . . , n}, we denote the marginal distribution
of xA by:

p(xA) =
∑
x∈Ac

p(xA, xAc).

With this notation we can write the conditional distribution as:

p(xA|xAc) =
p(xA, xAc)

p(xAc)

We also recall the so-called 'chain rule' stating:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xn|x1, . . . , xn−1)

To end with notations and recalls, we remind the conditional independence characterization:

X ⊥⊥Y | Z ⇔ p (x, y|z) = p (x|z) p (y|z)⇔ p (x|y, z) = p (x|z) =
p (x, y|z)

p (y|z)

4.2 Directed Graphical Model

4.2.1 First de�nitions and properties

Let X1, . . . , Xn be n random variables with distribution p(x) = pX(x1, . . . , xn).

De�nition 4.1 Let G = (V,E) be a DAG with V = {1, . . . , n}. We say that p(x) factorizes
in G, denoted p(x) ∈ L(G) i� p(x) is of the form:

∀x, p(x) =
n∏
i=1

fi(xi, xπi) such that fi ≥ 0,
∑
xi

f(xi, xπi) = 1 (4.1)

where we recall that πi stands for the set of parents of the vertex i in G.
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We now show that because we assumed that G was a DAG, it implies a particular and
convenient form for the fi above. We have:

Proposition 4.2 If p(x) ∈ L(G) then, for all i ∈ {1, . . . , n}, fi(xi, xπi) = p(xi|xπi).

Proof We prove this by induction on n = |V |, the cardinality of the set V . Since G is a
DAG, there exists a leaf, i.e. a node with no children. Without loss of generality, we can
assume that the leaf is labeled by n. We �rst notice:

∀x, p(x1, . . . , xn−1) =
∑
xn

p(x1, . . . , xn)

=
∑
xn

n∏
i=1

fi(xi, xπi)

=
∑
xn

fn(xn, xπn)
n−1∏
i=1

fi(xi, xπi)

=
n−1∏
i=1

fi(xi, xπi)
∑
xn

fn(xn, xπn) (∗)

=
n−1∏
i=1

fi(xi, xπi)

= g(x1, . . . , xn−1) (∗∗)

(4.2)

The step (∗) is justi�ed by the fact that n is a leaf and thus it never appears in any of the πi
for i ∈ {1, . . . , n−1}. Step (∗∗) is also justi�ed by the same kind of reasoning: since n is a leaf
it cannot appear in any of the πi explaining why it is only a function, say g, of x1, . . . , xn−1.
From this result, we can use an induction reasoning noticing that G − {n} is still a DAG.
To conclude this proof, we simply need to show that, indeed, fn(xn, xπn) = p(xn|xπn)�this
property will automatically propagates by induction. We have:

p(xn, xπn) =
∑

xi,i/∈{n}∪πn

p(x) =

 ∑
xi,i/∈{n}∪πn

g(x1, . . . , gn−1)

 fn(xn, xπn). (4.3)

Noticing that
∑

xi,i/∈{n}∪πn g(x1, . . . , xn−1) is a function of only xπn , say h(xπn), we can derive:

p(xn|xπn) =
p(xn, xπn)∑
x′n
p(x′n, xπn)

=
h(xπn)fn(xn, xπn)

h(xπn)
= fn(xn, xπn). (4.4)

Hence we can give an equivalent de�nition for a DAG to the notion of factorization:
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De�nition 4.3 (Equivalent de�nition) p(x) factorizes in G, denoted p(x) ∈ L(G) i�:

∀x, p(x) =
n∏
i=1

p(xi|xπi) (4.5)

Example 4.2.1 • (Trivial Graphs) Assume E = ∅, i.e. there is no edges. Then we have
p(x) =

∏n
i=1 p(xi), implying the random variables X1, . . . , Xn are independent. Hence

variables are independent if they factorize in the empty graph.

• (Complete Graphs) Assume now we have a complete graph (thus with n(n− 1)/2 edges
as we need acyclic for it to be a DAG), we have: p(x) =

∏n
i=1 p(xi|x1, . . . , xi−1), the

so-called 'chain rule' which is always true. Every random process factorizes in the
complete graph.

4.2.2 Graphs with three nodes

We give an insight of the di�erent possible behaviors of a graph by thoroughly enumerating
the possibilities for a 3-node graph.

• The two �rst options are the empty graph, leading to independence, and the complete
graph that gives no further information than the chain rule.

• (Markov chain) A Markov chain is a certain type of DAG showed in Fig.(4.1). In this
con�guration we show that we have:

p(x, y, z) ∈ L(G)⇒ X ⊥⊥Z | Y (4.6)

Indeed we have:

p(z|y, x) =
p(x, y, z)

p(x, y)
=

p(x, y, z)∑
z′ p(z

′, x, y)
=

p(x)p(y|x)p(z|y)∑
z′ p(x)p(y|x)p(z′|y)

= p(z|y)

Y ZX

Figure 4.1. Markov Chain

• (Latent cause) It is the type of DAG given in Fig.(4.2). We show that:

p(x) ∈ L(G)⇒ X ⊥⊥Y | Z (4.7)

Indeed:

p(x, y|z)
p(x, y, z)

p(z)
=
p(z)p(y|z)p(x|z)

p(z)
= p(x|z)p(y|z)
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X Z Y

Figure 4.2. Latent cause

• (Explaining away) Represented in Fig.(4.3), we can show for this type of graph:

p(x) ∈ L(G)⇒ X ⊥⊥Y (4.8)

It basically stems from:

p(x, y) =
∑
z

p(x, y, z) = p(x)p(y)
∑
z

p(z) = p(x)p(y)

X Z Y

Figure 4.3. Explaining away

Remark 4.2.1 The use of 'cause' is not advised since observational statistics provide with
correlations and no causality notion. Note also that in the 'explaining away' graph, in general
X ⊥⊥Y |Z is not true. Last, it is important to �gure that not every relationships can be
expressed in terms of graphical modes. As a counter-example take three random variables
that are pairwise independent, but not fully independent.

4.2.3 Inclusion, reversal and marginalization properties

Inclusion property. Here is a quite intuitive proposition about included graphs and
their factorization.

Proposition 4.4 If G = (V,E) and G′ = (V,E ′) then:

E ⊂ E ′ ⇔ L(G) ⊂ L(G) (4.9)

Proof We have p(x) =
∏n

i=1 p(xi, xπi(G)). As E ⊂ E ′ it is obvious that πi(G) ⊂ πi(G
′).

Therefore, going back to the de�nition of graphical models through potential fi(xi, xπi) we
get the result.

Reversal property. We also have some reversal properties. Let us �rst de�ne the
notion of V-structure.
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Figure 4.4. V-structure

De�nition 4.5 We say there is a V-structure in i ∈ V if |πi| ≥ 2, i.e.i has two or more
parents.

Proposition 4.6 (Markov equivalence) If G = (V,E) is a DAG and if for (i, j) ∈ E, |πi| = 0
and |πj| ≤ 1, then (i, j) may be reversed, i.e. if p(x) factorizes in G then it factorizes in
G′ = (V,E ′) with E ′ = (E − {(i, j)}) ∪ {(j, i)}.

In terms of 3-nodes graph, this property ensures us that the Markov chain and latent cause
are equivalent. On the other hand the V-structure lead to a di�erent class of graph compared
to the two others.

De�nition 4.7 An edge (i, j) is said to be covered if πj = {i} ∪ πi.

By reversing (i, j) we might not get a DAG as it might break the acyclic property. We have
the following result:

Proposition 4.8 Let G = (V,E) be a graph and (i, j) ∈ E a covered edge. Let G′ = (V,E ′)
with E ′ = (E − {(i, j)}) ∪ {(j, i)}, then if G′ is a DAG, L(G) = L(G′).

Marginalization. The underlying question is to know whether the marginalization of a
distribution that factorizes in a graphical model also does. This is true for the marginalization
with respect to leaf nodes.

Proposition 4.9 If i is a leaf, then p(xj, j 6= i) factorizes in the sub-graph obtained by
removing the leaf i.

Proof It is simply derived by the following computation:

p(x1, ...xn−1) =
∑
xn

p(x1, . . . , xn)

=
∑
xn

(
n−1∏
i=1

p(xi|xπi)p(xn|xπn)

)

=
n−1∏
i=1

p(xi|xπi)
∑
xn

p(xn|xπn)

=
n−1∏
i=1

p(xi|xπi)
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Conditional independence. We �nish this section by giving a result that explains
that if p(x) factorizes in G then every single random variable is independent from the set
of its non-descendants given its parents. From now on, we denote by nd(i) the set of non-
descendants of i.

Proposition 4.10 If G is a DAG, then:

p(x) ∈ L(G)⇔ Xi⊥⊥Xnd(i)|Xπi (4.10)

Proof We will only prove the forward implication. Assume (1, . . . , n) is a topological order
then: 

p(x) =
n∏
i=1

p(xi|xπi) : because p(x) ∈ L(G)

p(x) =
n∏
i=1

p(xi|x1, . . . , xi−1) : chain rule, always true

As we chose a topological order, we have πi ⊂ {1, . . . , i−1}, and we show by induction that:

p(xi|xπi) = p(xi|x1, . . . , xi−1) = p(xi|xπi , x{1,...,i−1}−πi).

This directly implies that Xi⊥⊥Xπi−{1,...,i−1}|Xπi . The key idea now is to notice that for all
i, there exist a topological order such that nd(i) ⊂ {1, . . . , i− 1}.

4.2.4 d-separation

We want to answer queries such as, given A,B and C three subsets, is XA⊥⊥XB|Xc true?
To answer those issues we need the d-separation notion, terminology standing for directed
separation. Indeed it is easy to �gure out that the notion of separation is not enough in a
directed graph and needs to be generalized.

De�nition 4.11 Let a, b ∈ V , a chain from a to b is a sequence of nodes, say (v1, . . . , vn)
such that v1 = a and vn = b and ∀j, (vj, vj+1) ∈ E or (vj, vj+1) ∈ E.

We can notice that a chain is hence a path in the symmetrized graph, i.e. in the graph
where if the relation → is true then ↔ is true as well. Assume C is a set that is observed.
We want to de�ne a notion of being 'blocked' by this set C in order to answer the underlying
question above.

De�nition 4.12 1. A chain from a et b is blocked in d if:

• either d ∈ C and (vi−1, vi, vi+1) is not a V-structure;

• or d /∈ C and (vi−1, vi, vi+1) is a V-structure and no descendants of d is in C.
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2. A chain from a to b is blocked if and only if it is blocked at any nodes.

3. A and B are said to be d-separated by C if and only if all chains that go from a ∈ A
to b ∈ B are blocked.

Example 4.2.2 • (Markov chain) If you try to prove that any set of the future is inde-
pendent to the past given the present with Markov theory, it might be di�cult but the
d-separation notion gives the results directly.

Figure 4.5. Markov chain

• (Hidden Markov Model) Often used because we only observe a noisy observation of the
random process.

observations

etats

Figure 4.6. Hidden Markov Model

4.3 Undirected graphical models

4.3.1 De�nition

De�nition 4.13 Let G = (V,E) be a undirected graph. We denote by C a set of cliques
of G i.e.a set of sets of fully connected vertices. We say that a probability distribution p
factorizes in G and denote p ∈ L(G) if p(x) is of the form:

p(x) =
1

Z

∏
C∈C

ψC(xC) with ψC ≥ 0, Z =
∑
x

∏
C∈C

ψC(xC).

� The functions ψC are not probability distributions like in the directed graphical mod-
els. They are called potentials.

Remark 4.3.1 With the normalization by Z of this expression, we see that the function ψC
are de�ned up to a multiplicative constant.
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Remark 4.3.2 We may restrict C to Cmax, the set of maximal cliques.

Remark 4.3.3 This de�nition can be extended to any function: f is said to factorize in
G ⇐⇒ f(x) =

∏
C∈C ψC(xC).

4.3.2 Trivial graphs

Empty graphs We consider G = (V,E) with E = ∅. For p ∈ L(G), we get:

p(x) =
n∏
i=1

ψi(xi) as C = {{i} ∈ V }

This gives us that X1, ..., Xn are mutually independent.

1

2 3

4

Complete graphs We consider G = (V,E) with ∀i, j ∈ V, (i, j) ∈ E. For p ∈
L(G), we get:

p(x) =
1

Z
ψV (xV ) as C is reduced to a single set V

This gives no further information upon the n-sample
X1, ..., Xn.

1

2 3

4

4.3.3 Separation and conditional dependence

Proposition 4.14 Let G = (V,E) and G′ = (V,E ′) be two undirected graphs.

E ⊆ E ′ ⇒ L(G) ⊆ L(G′)

De�nition 4.15 We say that p satis�es the Global Markov property w.r.t. G if and
only if for all A,B, S ⊂ V disjoint subsets: A and B are separated by S ⇒ XA⊥⊥XB|XS.

Proposition 4.16 If p ∈ L(G) then, p satis�es the Global Markov property w.r.t. G.
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Proof We can consider that A ∪ B ∪ S = V without loss of generality as we could replace
A and B by :

Ã = A ∪ {a ∈ V / a and A are not separated by S }

B̃ = V \ {S ∪ Ã}
Ã and B̃ are separated by S.

We consider C ∈ C. It is not possible to have C ∩ A 6= ∅ and C ∩B 6= ∅ as A and B are
separated by S. Then C ⊂ A ∪ S or C ⊂ B ∪ S. Let D be the set of cliques C such that
C ⊂ A ∪ S and D′ the set of all other cliques. We have:

p(x) =
1

Z

∏
C∈C

C⊂A∪S

ψC(xC)
∏
C∈D′

ψC(xC) = f(xA∪S)g(xB∪S)

p(xA|xS, xB) =
p(xA, xB, xS)

p(xS, xB)
=

f(xA, xS)g(xS, wB)∑
x
′
A
f(x

′
A, xS)g(xB, xS)

=
f(xA, xS)∑
x
′
A
f(x

′
A, xS)

= p(xA|xS)
Thus, XA⊥⊥XB|XS.

Théorème 4.17 (Hammersley - Cli�ord) If ∀x, p(x) > 0 then p ∈ L(G) ⇐⇒ p satis�es
the global Markov property.

4.3.4 Marginalization

As for directed graphical models, we also have a marginalization notion in undirected graphs.
It is slightly di�erent. If p(x) factorizes in G, then p(x1, . . . , xn) factorizes in the graph where
the node n is removed and all neighbors are connected.

Proposition 4.18 Let G = (V,E) be an undirected graph and G′ = (V ′, E ′) the graph obtain
for V ′ = V \ {n} and E ′ the set of edge connecting all the neighbors of n. If p ∈ L(G) then
p(x1, ..., xn−1) ∈ L(G′).

We now introduce the notion of Markov blanket

De�nition 4.19 For i ∈ V , the Markov blanket is the smallest set of nodes that makes
Xi independent to the rest of the graph.

Remark 4.3.4 The Markov blanket in an undirected graph for i ∈ V is the set of its neigh-
bors. For a directed graph, it is the union of all parents, all children and parents of children.
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4.3.5 Relation between directed and undirected graphical models

Since now we have seen that many notions developed for directed graph naturally extended
to undirected graphs. The raising question is thus to know whether we can �nd a theory
including both directed and undirected graphs, in particular, is there a way�for instance by
symmetrizing the directed graph as we have done repeatedly�to �nd a general equivalence
between those two notions. The answer is no, as we will discuss�though it might work in
some special cases described above.

Directed graphical model Undirected graphical model

Factorization p(x) =
n∏
i=1

p(xi|xπi) p(x) = 1
Z

∏
C∈C

ψC(xC)

Set independence d-separation separation
Marginalization non close close

Not equivalent
1

2 3

4 1

2

3

Let G be DAG. Can we �nd G′ undirected such that L(G) = L(G′)? L(G) ⊂ L(G′)?

De�nition 4.20 Let G = (V,E) be a DAG. The symmetrized graph of G is G̃ = (V, Ẽ),
with Ẽ = {(u, v), (v, u)/(u, v) ∈ E}.

De�nition 4.21 Let G = (V,E) be a DAG. The moralized graph Ḡ of G is the sym-
metrized graph G̃, where we add edge such that for all v ∈ V , πv is a clique.

We admit the following proposition:

Proposition 4.22 Let G be a DAG without any V-structure, then Ḡ = G̃ and L(G) =
L(G̃) = L(Ḡ).

In case there is a V-structure in the graph, we can only conclude:

Proposition 4.23 Let G be a DAG, then L(G) ⊂ L(Ḡ).

Ḡ is minimal for the number of edges in the set H of undirected graphs such that L(G) ⊂
L(H).

� Not all conditional independence structure for random variables can be factorized in
a graphical model (directed or undirected).

4-10


