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Summary. Principal component analysis (PCA) is a ubiquitous technique for data analysis and
processing, but one which is not based on a probability model. We demonstrate how the principal
axes of a set of observed data vectors may be determined through maximum likelihood estimation of
parameters in a latent variable model that is closely related to factor analysis. We consider the
properties of the associated likelihood function, giving an EM algorithm for estimating the principal
subspace iteratively, and discuss, with illustrative examples, the advantages conveyed by this
probabilistic approach to PCA.
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1. Introduction

Principal component analysis (PCA) (Jolliffe, 1986) is a well-established technique for dimen-
sionality reduction, and a chapter on the subject may be found in numerous texts on
multivariate analysis. Examples of its many applications include data compression, image
processing, visualization, exploratory data analysis, pattern recognition and time series
prediction.

The most common derivation of PCA is in terms of a standardized linear projection which
maximizes the variance in the projected space (Hotelling, 1933). For a set of observed d-
dimensional data vectors {t,}, n € {1, ..., N}, the g principal axes w;, je {1, ..., q}, are
those orthonormal axes onto which the retained variance under projection is maximal. It can
be shown that the vectors w; are given by the ¢ dominant eigenvectors (i.e. those with the
largest associated eigenvalues );) of the sample covariance matrix S = %, (t, — t)(t, — /N,
where t is the data sample mean, such that Sw; = \;w;. The ¢ principal components of the
observed vector t, are given by the vector x, = W'(t, — t), where W = (w;, W, . . ., w,). The
variables x; are then uncorrelated such that the covariance matrix X, X,X, /N is diagonal with
elements \;.

A complementary property of PCA, and that most closely related to the original discus-
sions of Pearson (1901), is that, of all orthogonal linear projections x, = W'(t, — ), the
principal component projection minimizes the squared reconstruction error £, |it, — t,I|°,
where the optimal linear reconstruction of t, is given by t, = Wx, + .

However, a notable feature of these definitions of PCA (and one remarked on in many
texts) is the absence of an associated probabilistic model for the observed data. The objective
of this paper is therefore to address this limitation by demonstrating that PCA may indeed be
derived within a density estimation framework.
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We obtain a probabilistic formulation of PCA from a Gaussian latent variable model
which is closely related to statistical factor analysis. This model is outlined in Section 2, where
we discuss the existing precedence for our approach in the literature. Within the framework
that we propose, detailed in Section 3, the principal axes emerge as maximum likelihood
parameter estimates which may be computed by the usual eigendecomposition of the sample
covariance matrix and subsequently incorporated in the model. Alternatively, the latent vari-
able formulation leads naturally to an iterative, and computationally efficient, expectation—
maximization (EM) algorithm for effecting PCA.

Such a probabilistic formulation is intuitively appealing, as the definition of a likelihood
measure enables a comparison with other probabilistic techniques, while facilitating statistical
testing and permitting the application of Bayesian methods. However, a further motivation is
that probabilistic PCA conveys additional practical advantages as follows.

(a) The probability model offers the potential to extend the scope of conventional PCA.
For example, we illustrate in Section 4 how multiple PCA models may usefully be
combined as a probabilistic mixture and how PCA projections may be obtained when
some data values are missing.

(b) As well as its application to dimensionality reduction, probabilistic PCA can be utilized
as a constrained Gaussian density model. The benefit of so doing is that maximum
likelihood estimates for the parameters associated with the covariance matrix can be
efficiently computed from the data principal components. Potential applications
include classification and novelty detection, and we again give an example in Section 4.

We conclude with a discussion in Section 5, while mathematical details concerning key
results are left to Appendixes A and B.

2. Latent variable models, factor analysis and principal component analysis

2.1. Factor analysis

A latent variable model seeks to relate a d-dimensional observation vector t to a correspond-
ing g-dimensional vector of latent (or unobserved) variables x. Perhaps the most common
such model is factor analysis (Bartholomew, 1987; Basilevsky, 1994) where the relationship is
linear:

t=Wx+p+e (1)

The d x ¢ matrix W relates the two sets of variables, while the parameter vector p permits the
model to have non-zero mean. The motivation is that, with ¢ < d, the latent variables will
offer a more parsimonious explanation of the dependences between the observations.
Conventionally, x ~ A(0, I), and the latent variables are defined to be independent and
Gaussian with unit variance. By additionally specifying the error, or noise, model to be
likewise Gaussian € ~ A(0, ¥), equation (1) induces a corresponding Gaussian distribution
for the observations t ~ N (p, WWT + ¥). The model parameters may thus be determined
by maximum likelihood, although, because there is no closed form analytic solution for W
and W, their values must be obtained via an iterative procedure.

The motivation, and indeed key assumption, for the factor analysis model is that, by
constraining the error covariance W to be a diagonal matrix whose elements ; are usually
estimated from the data, the observed variables ¢; are conditionally independent given the
values of the latent variables x. These latent variables are thus intended to explain the
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correlations between observation variables while ¢; represents variability unique to a par-
ticular #;. This is where factor analysis fundamentally differs from standard PCA, which
effectively treats covariance and variance identically.

2.2. Links from factor analysis to principal component analysis

Because of the distinction made between variance and covariance in the standard factor
analysis model, the subspace defined by the maximum likelihood estimates of the columns of
W will generally not correspond to the principal subspace of the observed data. However,
certain links between the two methods have been previously established, and such con-
nections centre on the special case of an isotropic error model, where the residual variances
1, = o> are constrained to be equal.

This approach was adopted in the early Young-Whittle factor analysis model (Young,
1940; Whittle, 1952), where in addition the residual variance o* was presumed known (i.c. the
model likelihood was a function of W alone). In that case, maximum likelihood is equivalent
to a least squares criterion, and a principal component solution emerges in a straightforward
manner.

The methodology employed by Young and Whittle differed from that conventionally
adopted, since the factors x were considered as parameters to be estimated rather than as
random variables. However, a stochastic treatment of x recovers a similar result, given that the
d — q smallest eigenvalues of the sample covariance S are equal to o°. In that case, it is simple
to show that the observation covariance model WW ' + %I can be made exact (assuming the
correct choice of ¢), and both W and ¢* may then be determined analytically through
eigendecomposition of S, without resort to iteration (Anderson (1963) and Basilevsky (1994),
pages 361-363).

However, it is restrictive (and rarely justified in practice) to assume that either o” is known
or that the model of the second-order statistics of the data is exact. Indeed, in the presence of
additive observation noise, an exact covariance model is generally undesirable. This is par-
ticularly true in the practical application of PCA, where we often do not require an exact
characterization of the covariance structure in the minor subspace, since this information is
effectively ‘discarded’ in the dimensionality reduction process.

In the remainder of this paper we therefore focus on the case of most interest and consider
the nature of the maximum likelihood estimators for W and ¢” in the realistic case where the
model covariance proposed is not equal to its sample counterpart, and where ¢* must be
estimated from the data (and so enters the likelihood function). This case has indeed been
investigated, and related to PCA, in the early factor analysis literature by Lawley (1953) and
by Anderson and Rubin (1956), although this work does not appear widely known. They
showed that stationary points of the likelihood function occur when W is a matrix whose
columns are scaled eigenvectors of the sample covariance matrix S, and o° is the average
variance in the discarded dimensions (we give details shortly). These derivations, however,
fall short of showing that the principal eigenvectors represent the global maximum of the
likelihood.

In the next section we re-establish this link between PCA and factor analysis, while also
extending the earlier derivation to show (in Appendix A) that the maximum likelihood
estimators Wy, and oy for the isotropic error model do correspond to principal component
analysis. We give a full characterization of the properties of the likelihood function for what
we choose to term ‘probabilistic PCA’ (PPCA). In addition, we give an iterative EM algorithm
for estimating the parameters of interest with potential computational benefits. Finally, to
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motivate this work and to underline how the definition of the probability model can be
advantageously exploited in practice, we offer some examples of the practical application of
PPCA in Section 4.

3. Probabilistic principal component analysis

3.1.  The probability model
The use of the isotropic Gaussian noise model A(0, ¢°I) for € in conjunction with equation
(1) implies that the x conditional probability distribution over t-space is given by

tIx ~ N(Wx + p, 0°1). )

With the marginal distribution over the latent variables also Gaussian and conventionally
defined by x ~ A/(0, I), the marginal distribution for the observed data t is readily obtained
by integrating out the latent variables and is likewise Gaussian:

t~N(u, C), (3)

where the observation covariance model is specified by C = WWT + ¢°I. The corresponding
log-likelihood is then

L= —% {d In2m) + In |C| + tr(C'S)}, “

where

N

_1 _ )7
S = N l(tn w(t, —p) . (%)

The maximum likelihood estimator for y is given by the mean of the data, in which case S
is the sample covariance matrix of the observations {t,}. Estimates for W and ¢ may be
obtained by iterative maximization of £, e.g. by using the EM algorithm given in Appendix
B, which is based on the algorithm for standard factor analysis of Rubin and Thayer (1982).
However, in contrast with factor analysis, maximum likelihood estimators for W and o® may
be obtained explicitly, as we see shortly.

Later, we shall make use of the conditional distribution of the latent variables x given the
observed t, which may be calculated by using Bayes’s rule and is again Gaussian:

x|t ~ N(M'W(t — ), M), (6)
where we have defined M = W'W + ¢’I. Note that M is of size ¢ x ¢ whereas C is d x d.

3.2.  Properties of the maximum likelihood estimators
In Appendix A it is shown that, with C given by WW 7T + ¢°I, the likelihood (4) is maximized
when

Wy = U, (A, — o°)'"R, @)

where the ¢ column vectors in the d x ¢ matrix U, are the principal eigenvectors of S, with
corresponding eigenvalues ), . . ., A, in the g x ¢ diagonal matrix A,, and R is an arbitrary
g X q orthogonal rotation matrix. Other combinations of eigenvectors (i.e. non-principal
ones) correspond to saddlepoints of the likelihood function. Thus, from equation (7), the
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latent variable model defined by equation (1) effects a mapping from the latent space into the
principal subspace of the observed data.

It may also be shown that for W = Wy, the maximum likelihood estimator for o is given
by

T ®)
oML = —— Y
W d—gq 5
which has a clear interpretation as the variance ‘lost’ in the projection, averaged over the lost
dimensions.

In practice, to find the most likely model given S, we would first estimate ogy; from
equation (8), and then Wy from equation (7), where for simplicity we would effectively
ignore R (i.e. choose R = I). Alternatively, we might employ the EM algorithm detailed in
Appendix B, where R at convergence can be considered arbitrary.

3.3. Factor analysis revisited

Although the above estimators result from the application of a simple constraint to the
standard factor analysis model, we note that an important distinction resulting from the use
of the isotropic noise covariance o°I is that PPCA is covariant under rotation of the original
data axes, as is standard PCA, whereas factor analysis is covariant under componentwise
rescaling. Another point of contrast is that in factor analysis neither of the factors found by a
two-factor model is necessarily the same as that found by a single-factor model. In PPCA, we
see above that the principal axes may be found incrementally.

3.4. Dimensionality reduction

The general motivation for PCA is to transform the data into some reduced dimensionality
representation, and with some minor algebraic manipulation of Wy;; we may indeed obtain
the standard projection onto the principal axes if desired. However, it is more natural from a
probabilistic perspective to consider the dimensionality reduction process in terms of the
distribution of the latent variables, conditioned on the observation. From expression (6), this
distribution may be conveniently summarized by its mean:

(antn) = M_IW;\F/IL(tn - ll’) (9)

(Note, also from expression (6), that the corresponding conditional covariance is given by
o2 M~ and is thus independent of #.) It can be seen that, when 0% — 0, M~ — (W W)™
and equation (9) then represents an orthogonal projection into latent space and so standard
PCA is recovered. However, the density model then becomes singular, and thus undefined. In
practice, with o® > 0 as determined by equation (8), the latent projection becomes skewed
towards the origin as a result of the Gaussian marginal distribution for x. Because of this, the
reconstruction Wy (X,lt,) + p is not an orthogonal projection of t, and is therefore not
optimal (in the squared reconstruction error sense). Nevertheless, optimal reconstruction of
the observed data from the conditional latent mean may still be obtained, in the case of
o? >0, and is given by Wy (W Wa) "M (X, |t,) + .

4. Examples

Here we give three examples of how PPCA can be exploited in practice. We first consider the
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visualization of data sets with missing values and then extend this single projection model to
the mixture case, before finally giving an example of how the covariance parameterization
that is implicit in PPCA offers an effective mechanism for restricting the number of degrees of
freedom in a Gaussian model.

4.1. Missing data

PPCA offers a natural approach to the estimation of the principal axes in cases where some,
or indeed all, of the data vectors t, = (t,;, t,, - . ., t,q) €xhibit one or more missing (at
random) values. Drawing on the standard methodology for maximizing the likelihood of a
Gaussian model in the presence of missing values (Little and Rubin, 1987) and the EM
algorithm for PPCA given in Appendix B, we may derive an iterative algorithm for maximum
likelihood estimation of the principal axes, where both the latent variables {x,} and the
missing observations {t,;} make up the ‘complete’ data. Fig. 1(a) shows a projection of 38
examples from the 18-dimensional Tobamovirus data utilized by Ripley (1996), p. 291, to
illustrate standard PCA. Of interest in the plot is the evidence of three subgroupings and the
atypicality of example 11. We simulated missing data by randomly removing each value in
the data set with probability 20%. Fig. 1(b) shows an equivalent PPCA projection obtained
by using an EM algorithm, where the conditional means have also been averaged over the
conditional distribution of missing, given observed, values. The salient features of the pro-
jection remain clear, despite the fact that all the data vectors suffered from at least one
missing value.

4.2. Mixtures of probabilistic principal component analysis models

Because PCA defines a single linear projection and is thus a relatively simplistic technique,
there has been significant recent interest in obtaining more complex projection methods by
combining multiple PCA models, notably for image compression (Dony and Haykin, 1995)
and visualization (Bishop and Tipping, 1998). Such a complex model is readily implemented
as a mixture of such PPCA models. By means of a simple illustration, Fig. 2 shows three PCA
projections of the virus data obtained from a three-component mixture model, optimized by

3 3
%m 10 %tm
2 % 2r
ﬁ '? 16 2?“ 30
1 af 1 32 16 1
0 22 0 22
1 1
- 1 14 -1 14 15
36 44'5 45 44
2l g » -2t 4 422
44 47
-3 17 i *l
46 48 -3 46 48
-4 -2 0 2 4 -4 -2 0 2 4
(a) (b)
Fig. 1. Projections of the Tobamovirus data by using (a) PCA on the full data set and (b) PPCA with 136 missing

values
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Fig. 2. Projections of the Tobamovirus data obtained from a three-component PPCA mixture model: the
locations of these three projection planes can be superimposed on the single principal component projection plot
(Fig. 1(a)) to aid the interpretation of the data structure further

using an EM algorithm again derived by combining standard methods (Titterington et al.,
1985) with the algorithm given in Appendix B. In theory, the projection of every data point
would appear in each plot, corresponding to three sets of principal axes associated with each
component in the mixture, but in practice examples need not be shown in the plot if the
corresponding component model has negligible conditional probability of having generated
them. This effectively implements a simultaneous automated clustering and visualization of
data, which is much more powerful than simply subsetting the data by eye and performing
individual PCAs. Multiple plots such as these offer the potential to reveal more complex
structure than a single PCA projection alone.

4.3. Controlling the degrees of freedom

An alternative perspective on PPCA is that it can be applied simply as a covariance model of
data, where the covariance C is defined in terms of the auxiliary parameters W and o”. This is
particularly relevant for larger values of data dimensionality d and moderately sized data sets,
where it is usually inappropriate to fit a full covariance model, as this implies the estimation
of d(d+ 1)/2 free parameters. In such cases, constraints are often placed on the covariance
matrix, that it be, for example, diagonal (with d parameters) or proportional to the identity
matrix (one parameter). The covariance model in PPCA comprises dg + 1 — g(qg — 1)/2 free
parameters and thus permits control of the model complexity through the choice of ¢g. (Here,
we stress that we are considering the predictive power of the model, rather than the explan-
atory sense in which we might interpret ¢ in traditional factor analysis.)

We illustrate this in Table 1, which shows the estimated prediction error (in this case, the
negative log-likelihood per example) for various Gaussian models fitted to the Tobamovirus
data. The dimensionality of the data is large, at 18, compared with the number of examples,
38, and so more complex models easily overfit. However, a PPCA density model with latent
space dimension g = 2 gives the lowest error. More practically, in other problems we could
apply PPCA to the modelling of class conditional densities, and select a value (or values) of
q which optimized the classification accuracy. Because the maximum likelihood estimators
for W and ¢, and thus C, can be found explicitly by eigendecomposition of the sample
covariance matrix, the search for an appropriate complexity of model can be performed
explicitly and relatively cheaply.



618 M. E. Tipping and C. M. Bishop

Table 1. Complexity and bootstrap estimate of the prediction error for
various Gaussian models of the Tobamovirus datat

Covariance q (equivalent) Number of Prediction
model parameters error
Isotropic ) 1 18.6
Diagonal (—) 18 19.6
PPCA 1 19 16.8

2 36 14.8

3 52 15.6
Full a7 171 3193.5

1The isotropic and full covariance models are equivalent to special cases of
PPCA, with ¢ =0 and g = d — | respectively.

5. Discussion

We have reiterated and extended the earlier work of Lawley (1953) and Anderson and Rubin
(1956) and shown how PCA may be viewed as a maximum likelihood procedure based on a
probability density model of the observed data. This probability model is Gaussian, and the
model covariance is determined simply by applying equations (7) and (8), requiring only the
computation of the eigenvectors and eigenvalues of the sample covariance matrix. However,
in addition to this explicit formulation, we have also given an EM algorithm for finding the
principal axes by iteratively maximizing the likelihood function, and this approach may be
more efficient for larger values of data dimensionality as discussed in Appendix B.

Examples given in Section 4 demonstrated the utility of the probabilistic formalism, where
we performed PCA on a data set with missing values, generalized the single model to the
mixture case and demonstrated the capacity to constrain the number of free parameters in a
Gaussian density model. Indeed, we have exploited these possibilities in practice to obtain
more powerful algorithms for the visualization of data and more efficient methods for image
compression.

Finally, we note that factor analysis is generally applied to elucidate an explanation of data,
and, whereas PPCA is closely related to factor analysis in its formulation, the above examples
reflect that our motivation for its application has in general not been explanatory. Rather,
we have considered PPCA as a mechanism for probabilistic dimension reduction, or as a
variable complexity predictive density model.
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Appendix A: Maximum likelihood principal component analysis

A.1. The stationary points of the log-likelihood
The gradient of log-likelihood (4) with respect to W may be obtained from standard matrix differ-
entiation results (for example see Krzanowski and Marriott (1994), p. 133):
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oc

oL _ -IgC-I'W — C'W).
o = V(C'sCW—C'w) (10)

At the stationary points
SC'W =w, (11)

assuming that C™! exists, which we shall see requires that ¢ < rank(S), so this assumption implies no
loss of practicality.

There are three possible classes of solutions to equation (11). The first is, trivially, W = 0, which will
be seen to be a minimum of the log-likelihood. Second is the case C = S, where the covariance model
is exact and the d — q smallest elgenvalues of S are identical as dlscussed 1n Sectlon 2.2. Then, W is
identifiable since WWT =S — ¢’ has a known solution at W = U(A — & I) ’R, where U is a square
matrix whose columns are the eigenvectors of S, with A the corresponding diagonal matrix of eigen-
values, and R is an arbitrary orthogonal (i.e. rotation) matrix.

However, the ‘interesting’ solutions represent the third case, where SC'W =W, but W # 0 and
C #8S. To find these we first express the parameter matrix W in terms of its singular value decom-
position:

W =ULVT, (12)

where U = (u;, wy, . . ., u,) is a d x ¢ matrix of orthonormal column vectors, L = diag(/,, 4, . . ., [,) is
the ¢ x ¢ diagonal matrix of singular values and V is a ¢ x g orthogonal matrix. Then, substituting this
decomposition into equation (11) gives after some manipulation

SUL = U(¢*1 + LY)L. (13)

For [; # 0, equation (13) implies that Su; = (c* -I—l )u; for each vector u;. Therefore, each column of
U must be an eigenvector of S, with correspondmg elgenvalue A= o’ + lj , and so

b=y — )", (14)
For [; =0, u; is arbitrary. All potential solutions for W may thus be written as
W =U,K, — o’)'"R, (15)

where U, is a d x ¢ matrix whose g columns u; are eigenvectors of S, R is an arbitrary ¢ x g orthogonal
matrix and K, is a ¢ x ¢ diagonal matrix with elements

(16)

{ Ajs the corresponding eigenvalue to w;, or
k —

2
g,

where the latter case may be seen to be equivalent to /; = 0.

A.2. The global maximum of the likelihood
The matrix U, may contain any of the eigenvectors of S, so to identify those which maximize the like-
lihood the expression for W in equation (15) is substituted into the log-likelihood function (4) to give

E_——{dln(27r)+21n()\)+ Z A+ (d— q)ln(a)+q} amn
where ¢ is the number of non-zero [, Ay, . . ., A, are the eigenvalues corresponding to the eigenvectors
‘retained” in W and A, . . ., A, are those ‘discarded’. Maximizing the log-likelihood (17) with respect
to o® gives

2 _
o (18)
d q J= ;&—1

and so
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£=—g{§ln()\j)+(d—q') ln(d z )\)+dln(27r)+d}. (19)
= -

]—q ’+1

Equation (18) implies that o > 0 if rank(S) > ¢ as stated earlier. We wish to find the maximum of the
log-likelihood (19) with respect to the choice of eigenvectors or eigenvalues to retain in W and those to
discard. By exploiting the constancy of the sum of all eigenvalues, the condition for the maximization of
the likelihood can be expressed equivalently as the minimization of the quantity

1 d 1 d

d—q 25t J=q+1

which only depends on the discarded values and is non-negative (Jensen’s inequality). Interestingly, the
minimization of E leads only to the requirement that the discarded ); be adjacent within the spectrum
of the ordered eigenvalues of S. However, equation (14) also requires that A > A vjie(l,. .. q "1, so
from equation (18) we can deduce from this that the smallest eigenvalue musr be dzscm ded. This is now
sufficient to show that E must then be minimized when A, y, . . ., A, are the smallest d — ¢’ eigenvalues
and so the likelihood £ is maximized when ), . . ., A, are the largest eigenvalues of S.

It should also be noted that £ is maximized with respect to ¢/, when there are fewest terms in the
sums in equation (20) which occurs when ¢’ = ¢ and therefore no /; is 0. Furthermore, £ is minimized
when W = 0, which may be seen to be equivalent to the case of ¢ = 0.

A.3. The nature of other stationary points
If stationary points represented by minor eigenvector solutions are stable maxima, then local max-
imization (via an EM algorithm for example) is not guaranteed to converge to the global maximum
comprising the principal eigenvectors. We may show, however, that minor eigenvector solutions are
saddlepoints on the likelihood surface.

Consider a stationary point of the gradient equation (10) at W = U,(K, — o ’I)'/?, where U, may contain
q arbitrary elgenvectors of S, and K,, as defined in equations (16) contains either the couespondmg
eigenvalue or o°. (For clarity, the rotatlon R is ignored here, but it can easﬂy be incorporated in the
followmg analysis.) Then consider a small peiturbation to a column vector W, in W of the form eu;,
where ¢ is an arbitrarily small positive constant and u; is a discarded eigenvector.

For W to represent a stable solution, the dot product of the likelihood gradient at W; + eu; and the
perturbation must be negative. This dot product may be straightforwardly computed and, ignoring
terms in €2, is given by

eNO/k; — Du C 'y, 3))

where k; is the value in K, correspondlng to w and ), is the elgenvalue correspondmg to the pertur-
bation u;. Since Cclis posmve definite, u; 'c! u; >0 and so the sign of the gradient is determined by
Nk — {. When k; = \;, this term is negative if )\ > ), in which case the maximum is stable. If \; <
then W must be a saddlepomt If k; = o2, the statlonary p01nt can never be stable since, from equation
(18), o* is the average of d — ¢’ elgenvalues and so \; > o” for at least one of those eigenvalues, except
when all those eigenvalues are identical. Such a case is considered in the next section.

__From expression (21), by considering all possible perturbations u, to all possible column vectors W; of
W, it can be seen that the only stable maximum occurs when W comprises the ¢ principal eigenvectors.

A.4. Equality of eigenvalues

Equality of any of the ¢ principal eigenvalues does not affect the analysis presented. However, a
consideration should be given to the instance when all the d — ¢ minor (discarded) eigenvalue(s) are
equal and identical with one or more of the smallest principal (retained) eigenvalue(s). (In practice,
particularly in the case of sampled covariance matrices, this exact C = S case is unlikely.)

Consider the example of extracting two components from data with a covariance matrix having
eigenvalues 2, 1 and 1. In this case, the second pr1n01pal axis is not uniquely defined within the minor
subspace. The spherical noise distribution defined by o7, in addition to explammg the residual variance,
can also optimally explain the second principal component Because \, = o7, /, in equation (14) is 0,
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and W effectively only comprises a single vector. The combination of this single vector and the noise
distribution still represents the maximum of the likelihood.

Appendix B: An EM algorithm for probabilistic principal component analysis

In the EM approach to maximizing the likelihood for PPCA, we consider the latent variables {x,} to be
‘missing’ data and the ‘complete’ data to comprise the observations together with these latent variables.
The corresponding complete-data log-likelihood is then

N
‘CC = El In {p(tn’ Xn)}’ (22)
where, in PPCA, from the definitions in Section 3.1,

_ t,, — WX,, — 2 — Xy ’
Pt %) = @y exp( = =N =) oy (L), 23

In the E-step, we take the expectation of £ with respect to the distributions p(x,|t,, W, ¢°):

No(d 1 1 1
<£C> = _E {— 111(0’2) +§ tr((x,,xf)) +—2_E§(tn - I-I')T(tn - IJ') - E_’z‘ (xn)TWT(tn - IJ')

=2
+523 tr(wTw<x,,xI>)}, 249
where we have omitted terms that are independent of the model parameters and
(x,) = M 'WT(t, — p), (25)
(x,x) = "M+ (x,)(x,) T, (26)

in which M = WTW + ¢°I as before. Note that these statistics are computed using the current (fixed)
values of the parameters and follow from distribution (6) earlier.
In the M-step, (£Lc) is maximized with respect to W and o giving new parameter estimates

B N N -1
W= {z (t - u)(x,,>T} (z <x,,x3>) : @7

n=l1 n=l1
- 1 X ~ T
& = 5@ 2 Uts = 1l = 20x) "W, — ) + tr( (0, ) WTW)). 28)

To maximize the likelihood then, the sufficient statistics of the conditional distributions are calculated
from equations (25) and (26), after which revised estimates for the parameters are obtained from
equations (27) and (28). These four equations are iterated in sequence until the algorithm is judged to
have converged.

We may gain considerable insight into the operation of the EM algorithm by substituting for (x,) and
(x,xT) from equations (25) and (26) into equations (27) and (28). Some further manipulation leads to
both the E-step and the M-step being combined and rewritten as

W = SW( I + M 'WTSw)~!, (29)
1

~2_

& tr(S — SWM~'WT), (30)

Ul

where S is again given by

L e — T
S_N”;] (tn I‘l’)(tn ”’) N (31)
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The first instance of W in equation (30) is the o/d value of the parameter matrix, whereas the second
instance W is the new value calculated from equation (29). Equations (29)—(31) indicate that the data
enter the EM formulation only through the covariance matrix S, as would be expected.

Although it is algebraically convenient to express the EM algorithm in terms of S, care should be
exercised in the implementation. When ¢ < d, considerable computational savings might be obtained
by not explicitly evaluating S, even though this need only be done once at initialization. The compu-
tation of S requires O(Nd?) operations, but an inspection of equations (27) and (28) indicates that
the complexity is only O(Ndg). This is reflected by the fact that equations (29) and (30) only require
terms of the form SW and tr(S). For the former, computing SW as T, x,(x} W) is O(Ndq) and so more
efficient than (I, x,X )W, which is equivalent to finding S explicitly. The trade-off between the cost of
initially computing S directly and that of computing SW more cheaply at each iteration will clearly
depend on the number of iterations needed to obtain the accuracy of solution required and the ratio of d
to q.

A final point to note is that, at convergence, although the columns of Wy, will span the principal
subspace, they need not be orthogonal since

Wi Wy = RT(A, — 0’ DR, (32)

which is not diagonal for R # I. In common with factor analysis, and indeed some other iterative PCA
algorithms, there is an element of rotational ambiguity. However, if required, the true principal axes
may be determined by noting that equation (32) represents an eigenvector decomposition of Wl Wy,
where the transposed rotation matrix R is simply the matrix whose columns are the eigenvectors of the
g x g matrix Wy Wy (and therefore also of M).
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