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ABSTRACT

We present a class of algorithms that find clusters in inde-
pendent component analysis: the data are linearly trans-
formed so that the resulting components can be grouped
into clusters, such that components are dependent within
clusters and independent between clusters. In order to find
such clusters, we look for a transform that fits the estimated
sources to a forest-structured graphical model. In the non-
Gaussian, temporally independent case, the optimal trans-
form is found by minimizing a contrast function based on
mutual information that directly extends the contrast func-
tion used for classical ICA. We also derive a contrast func-
tion in the Gaussian stationary case that is based on spectral
densities and generalizes the contrast function of Pham [22]
to richer classes of dependency.

1. INTRODUCTION

Given a multivariate random variable x in R
m, indepen-

dent component analysis (ICA) consists in finding a linear
transform W such that the resulting components of s =
Wx = (s1, . . . , sm)> are as independent as possible (see,
e.g., [13, 4, 10, 20]). ICA has been applied successfully to
many problems where it can be assumed that the data are ac-
tually generated as linear mixtures of independent compo-
nents, such as audio blind source separation or biomedical
imagery.

In previous work [3], we relaxed the independence as-
sumption to allow for richer classes of dependencies, namely
we search for a linear transform W such that the compo-
nents of s = Wx = (s1, . . . , sm)> can be well modeled
by a tree-structured graphical model. We refer to this model
as tree-dependent component analysis (TCA). In the same
semiparametric likelihood framework as presented in [10],
the contrast function that is minimized is a linear combi-
nation of mutual information terms that directly extends the
classical contrast function for ICA, and we showed that many
ICA algorithms and techniques for estimation can be ex-
tended to this richer class of dependencies.

In this paper, we extend this approach in two directions:
first we allow the tree to be a forest; that is, a non-spanning
tree with potentially any number of connected components.
As shown in Section 2, such a graphical model is appropri-
ate for the modeling of clusters, each cluster being one of
the connected components. As was the case for TCA [3],
the topology of the forest in not fixed in advance; rather,
we search for the best possible forest in a manner analogous
to the Chow-Liu algorithm [11]. We refer to this model as
forest-dependent component analysis (FCA).

In addition, we extend the semiparametric approach of [3]
to the Gaussian stationary case, making use of the notion of
graphical models for time series [16]. Not surprisingly, the
contrast function that we obtain is a linear combination of
entropy rate terms that directly extends the contrast function
presented by Pham [22].

In Section 3, we derive the contrast function for our
semiparametric model and review techniques to estimate it
in the temporally independent case, while in Section 4, we
extend these results to the Gaussian stationary case. In Sec-
tion 5, we give a precise description of our algorithms, and
we present simulation results in Section 6.

2. MODELING CLUSTERS

In order to model clusters in ICA, it is necessary to model
both inter-cluster independence and intra-cluster dependence.
Forest-structured graphical models are particularly appro-
priate because they model exactly inter-cluster independence,
while providing a rich but tractable model for intra-cluster
dependence, by allowing an arbitrary pattern of tree-structured
dependence within a cluster.

More precisely, let x1, . . . , xm denote m random vari-
ables. A forest T is a non-spanning undirected tree on the
vertices {1, . . . ,m}, and a probability distribution p(x) is
said to factorize in T if and only if it can be written as
p(x) ∝

∏

(u,v)∈T ϕuv(xu, xv), where the potentials ϕuv

are arbitrary functions (see e.g. [21]). Let C1, . . . , Ck be
the k connected components of T , as shown in Figure 1.
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Fig. 1. A forest with 10 nodes and 4 clusters

Under certain positivity and regularity conditions, a distri-
bution p(x) factorizes in T if and only if (a) xC1

, . . . , xCk

are mutually independent, and (b) two variables in the same
cluster are conditionally independent given all other vari-
ables in that cluster. The factorization of the distribution of
each cluster of variables is flexible enough to model a wide
variety of distributions, and still tractable enough to enable
the easy computation of the semiparametric likelihood, as
shown in the following section.

3. CONTRAST FUNCTIONS

In this paper, we wish to model the vector x using the model
x = As, where A is an invertible mixing matrix and s fac-
torizes in a forest T . We make no assumptions on the lo-
cal bidimensional marginal distributions which are neces-
sary in order to completely specify the model: A and T are
the parametric parts, while the local bidimensional marginal
distributions are nuisance parameters that are left unspeci-
fied. The semiparametric likelihood is obtained by max-
imizing first with respect to the nuisance parameters. As
was the case for ICA, this is easily done, essentially be-
cause for trees, a “Pythagorean” expansion of the Kullback-
Leibler divergence holds that generalizes the expansion for
independent components (which is encoded by a graphical
model with no edges).

We first restrict to the case where W = A−1 is fixed.
This is essentially the problem solved by the Chow-Liu al-
gorithm [11]; however, we need to show how a prior proba-
bility on the topology of the forest can be included.

In the following sections, p(xu, xv) and p(xu) will de-
note the marginalizations of p(x) on (xu, xv) and xu re-
spectively. The Kullback-Leibler (KL) divergence between
two distributions p(x) and q(x) is defined as D(p || q) ,

Ep(x) log p(x)
q(x) . We will also work with the pairwise mutual

information I(xu, xv) between two variables xu and xv,
defined as I(xu, xv) = D(p(xu, xv) || p(xu)p(xv)), and
the m-fold mutual information defined as I(x1, . . . , xm) =
D(p(x) || p(x1) · · · p(xm)).

3.1. Chow-Liu algorithm and forests

Given a forest T on the vertices {1, . . . ,m}, we let DT de-
note the set of probability distributions q(x) that factorize
in T . We want to model p(x) using a distribution q(x)
in DT . Trees are a special case of decomposable models
and thus, for a given tree T , minimizing the KL divergence
yields the following “Pythagorean” expansion of the KL di-
vergence [21, 15]:

Theorem 1 For a given forest T and a target distribution
p(x), we have, for all distributions q ∈ DT :

D(p || q) = D(p || pT ) + D(pT || q),

where pT (x) =
∏

(u,v)∈T
p(xu,xv)

p(xu)p(xv)

∏

u p(xu). In addi-

tion, q = pT minimizes D(p || q) over q ∈ DT , and we
have:

IT (x) , min
q∈DT

D(p || q) = D(p || pT ) (1)

= I(x1, . . . , xm)−
∑

(u,v)∈T

I(xu, xv). (2)

We refer to IT (x) as the T -mutual information: it is the
minimum possible loss of information when encoding the
distribution p(x) with a distribution that factorizes in T . It
is equal to zero if and only if p does factorize in T .

In order to find the best forest T , we need to minimize
IT (x) in Eq. (2), with respect to T . Without any restriction
on T , since all mutual information terms are nonnegative,
the minimum is attained at a spanning tree and thus the min-
imization is equivalent to a maximum weight spanning tree
problem with weights I(xu, xv), which can easily be solved
in polynomial time by greedy algorithms (see e.g. [14]).

3.2. Prior on forests

In order to model forests, we include a prior term w(T ) =
log p(T ) where p(T ) is a prior probability on the forest T
which penalizes dense forests. In order to be able to mini-
mize IT (x) − w(T ), we restrict the penalty w(T ) to be of
the form w(T ) =

∑

(u,v)∈T w0
uv + f(#(T )), where w0

uv is
a fixed set of weights, f is a concave function and #(T ) the
number of edges in T . We use the algorithm outlined in Fig-
ure 2, with weights wuv = I(xu, xv) + w0

uv . Starting from
the empty graph, while it is possible, incrementally pick a
safe edge (i.e., one that does not create a cycle) such that
the gain is maximal and positive. The following proposition
shows that we obtain the global maximum:

Proposition 1 If J(T ) has the form J(T ) =
∑

(u,v)∈T wuv+

f(#(T )) where {wuv, u, v ∈ {1, . . . ,m}} is a fixed set of
weights, and f is a concave function, then the algorithm
outlined in Figure 2 outputs the global maximum of J(T ).

Natural priors are such that w(T ) ∝ −#(T ) or w(T ) ∝
−(#(T ))α, α > 1 (the earlier edges are penalized less than
the later ones).



Input: weights {wuv, u, v ∈ {1, . . . ,m}}
tmax > 0, concave function f(t)

Algorithm:
1. Initialization: T = ∅, t = 0

E = {1, . . . ,m} × {1, . . . ,m}
2. While E 6= ∅ and t < tmax

a. Find wu0v0
= max(u,v)∈E wuv

b. If wu0v0
+ f(t + 1)− f(t) > 0

T ← T ∪ (u0, v0), t← t + 1
E ← {e ∈ E, T ∪ {e} has no cycles}

else E = ∅

Output: maximum weight forest T

Fig. 2. Greedy algorithm for the maximum weight forest
problem, with a maximal number of edges tmax.

3.3. Tree-dependent component analysis

We now let the demixing matrix W vary. Let DW,T de-
note the set of all such distributions. The KL divergence is
invariant by invertible transformation of its arguments, so
Theorem 1 can be easily extended [3]:

Theorem 2 If x has distribution p(x), then the minimum
KL divergence between p(x) and a distribution q(x) ∈ DW,T

is equal to the T -mutual information of s = Wx, that is:

J(x,W, T ) , min
q∈DW,T

D(p || q) = IT (s)

= I(s1, . . . , sm)−
∑

(u,v)∈T

I(su, sv).

Therefore, in the semiparametric TCA approach, we wish
to minimize J(W,T ) = J(x,W, T ) − w(T ) with respect
to W and T . An approach to the estimation of this contrast
function from a finite sample is presented in the next section
while the optimization procedure is presented in Section 5.

3.4. Estimation of the contrast function

As in ICA, we do not know the density p(x) and the estima-
tion criterion must be replaced by empirical contrast func-
tions. In [3], we describe three estimation methods, each of
them extending classical ICA methods to the TCA model.
We briefly summarize these methods here, which readily
extend to forests.

Because the joint entropy of s = Wx can be written as
H(s) = H(x)+log |det W |, we only need one-dimensional
entropies in order to minimize the term I(s1, . . . , sm). We
also need two-dimensional entropies to estimate the pair-
wise mutual informations. In the first method we obtain
m(m − 1)/2 two-dimensional kernel density estimates
(KDE), which can be done efficiently using the fast Fourier
transform [23], and use the density estimates in order to

compute the entropy terms. The overall complexity of eval-
uation of the contrast function is O(m2N).

In the second approach, we extend the contrast func-
tion of [2], based on the kernel generalized variance (KGV),
which is a Mercer kernel-based approximation to the mutual
information. The evaluation can be performed in O(mN).

Finally, in the third approach, we use Gram-Charlier
expansions for one-dimensional and two-dimensional en-
tropies, as laid out in [1]. The resulting contrast function
involves fourth-order cumulants and is easily computed and
minimized. Although cumulant-based contrast functions are
usually less robust to outliers and source densities (see e.g. [2]),
they provide a fast good initialization for the lengthier opti-
mizations using KDE or KGV.

4. STATIONARY GAUSSIAN PROCESSES

In this section, we assume first that the sources are doubly
infinite sequences of real valued observations {sk(t), t ∈
Z}, k = 1, . . . ,m. We model this multivariate sequence as
a zero-mean multivariate Gaussian stationary process (we
assume that the mean has been removed). We let Γ(h),
h ∈ Z, denote the m ×m matrix autocovariance function,
defined as

Γ(h) = E[s(t)s(t + h)>].

We assume that
∑∞

−∞
||Γ(h)|| < ∞, so that the spectral

density matrix f(ω) is well-defined, as

f(ω) =
1

2π

+∞
∑

h=−∞

Γ(h)e−ihω.

For each ω, f(ω) is an m×m Hermitian matrix. In addition
the function ω 7→ f(ω) is 2π-periodic.

4.1. Entropy rate of Gaussian processes

The entropy rate of a process s is defined as [15]:

H(s) = lim
T→∞

1

T
H(s(t), . . . , s(t + T )).

In the case of Gaussian stationary processes, the entropy
rate can be computed using the spectral density matrix (due
to an extension of Szegö’s theorem to multivariate processes,
see e.g. [18]):

H(s) =
1

4π

∫ π

−π

log det[4π2ef(ω)]dω.

Note that this is an analog of the expression for the entropy
of a Gaussian vector z with covariance matrix Σ, where
H(z) = 1

2 log det[2πeΣ].
By the usual linear combination of entropy rates, the

mutual information between process can be defined. Also,
we can express the entropy rate of the process x = V s,
where V is a d×m matrix, using the spectral density of s

H(V s) =
1

4π

∫ π

−π

log det[4π2eV f(ω)V >]dω.



4.2. Graphical model for time series

The graphical model framework can be extended to multi-
variate time series [7, 16]. The dependencies that are con-
sidered are between whole time series, that is between the
entire sets {si(t), t ∈ Z}, for i = 1, . . . m. If the pro-
cess is jointly Gaussian stationary, then most of the graph-
ical model results for Gaussian variables can be extended.
In particular, maximum likelihood estimation of spectral
density matrices in decomposable models decouples and is
equivalent to equating local spectral density matrices. As
we show in the next section, this enables Theorem 1 and
Theorem 2 to be extended to the time series case.

4.3. Contrast function

Let x be a multivariate time series {xk(t), t ∈ Z}, k =
1, . . . ,m. We wish to model the variable x using the model
x = As, where A is an invertible mixing matrix and s is a
Gaussian stationary time series that factorizes in a forest T .
Letting W = A−1, we let DW,T

stat denote the set of all such
distributions. We state without proof the direct extension of
Theorem 2 to time series (Wu denotes the u-th row of W ):

Theorem 3 If x has a distribution with spectral density ma-
trix f(ω), then the minimum KL divergence between p(x)

and a distribution q(x) ∈ DW,T
stat is equal to the T -mutual

information of s = Wx, that is:

J(f, T,W ) , IT (f,W ) = I(f,W )−
∑

(u,v)∈T

Iuv(f,W ),

(3)
where

I(f,W ) , −
1

4π

∫ π

−π

log det Wf(ω)W>

W1f(ω)W>

1
···Wmf(ω)W>

m

dω

is the m-fold mutual information between s1, . . . , sm and

Iuv(f,W ) ,

−
1

4π

∫ π

−π

log

{

1−
(Wuf(ω)W>

v )
2

Wuf(ω)W>
u ·Wvf(ω)W>

v

}

dω

is the pairwise mutual information between su and sv .
Thus, the goal of FCA is to minimize IT (f,W ) in Eq. (3)

with respect to W and T ; in our simulations, we refer to this
contrast function as the STAT contrast function.

4.4. Estimation of the spectral density matrix

In the presence of a finite sample {x(t), t = 0, . . . , N−1},
we use the smoothed periodogram [8] in order to estimate
the spectral density matrix at points ωj = 2πj/N , ωj ∈
[−π, π]. At those frequencies, the periodogram is defined
as

IN (ωj) = 1
N

(

∑N

t=1 xte
−itωj

) (

∑N

t=1 xte−itωj

)>

(we assume the means have been previously removed from
the data), and can readily be computed using m fast Fourier
transforms (FFT). We use the following estimated spectral
density matrices

f̂(ωk) =
1

N

N−1
∑

j=0

W (j)IN (ωj+k), (4)

where W (j) is a smoothing window that is required to be
symmetric and sum to one. In our simulations, we took the
window W (j) = (2p + 1)−1 for |j| 6 p, and 0 other-
wise. Note that if the number of samples N tends to infinity
with p(N) tending to infinity such that p(N)/N → 0, then
Eq. (4) provides a consistent estimate of the spectral density
matrix [8].

Our contrast function involves integrals of the form
∫ π

−π
B(f(ω))dω.

They can be estimated by Riemannian sums using estimated
values of f at ωj = 2πj/N , ωj ∈ [−π, π], from Eq. (4).
However, in large samples, we subsample (using a linear
filter) the estimated density matrix to a grid of size d = 50,
and use the following approximation:

∫ π

−π
B(f(ω))dω ≈ 2π

d

∑d

i=1 B(f(ωi)).

5. OPTIMIZATION

5.1. Identifiability

For the ICA model, it is well known that in the tempo-
rally independent case the model is identifiable up to per-
mutation and scaling, if and only if there is at most one
Gaussian source, and that in the Gaussian stationary case,
the model is identifiable up to permutation and scaling if
and only if the sources have linearly independent autoco-
variance functions [20]. It is possible to show that—for
a given forest C—a necessary condition for identifiability
up to permutation and scaling of the demixing matrix W is
that the components are non-Gaussian in the temporally in-
dependent case, and have linearly independent autocovari-
ance functions in the Gaussian stationary case. However
this condition is not sufficient because there are additional
invariances beyond permutation and scaling. Indeed, for a
given set of clusters, as pointed out in [9], only those sub-
spaces spanned by the corresponding rows of W are iden-
tifiable, namely if the subspace has p dimensions, they can
be premultiplied by any linear transform on p dimensions.

We deal with the scaling invariance by imposing a unit
norm constraint on the rows of W , while we ignore dur-
ing the optimization (but not during the evaluation stage, in
Section 6) the invariance by permutations or by global linear
transform of clusters.

5.2. Algorithm

Our model is estimated by minimizing the contrast function
F (W,T ) = J(x,W, T ) − w(T ), where w(T ) is the log-



Input: data {x} = {x1, . . . , xN}, ∀n, xn ∈ R
m

Algorithm:
1. Initialization: T = ∅, W random
2. For i = 0 to m− 1

a. While F (W,T ) is decreasing
1. Find best tree T with i edges, for fixed W
2. Compute gradient of F with respect to W
3. Perform line search in W , in direction of

the gradient
b. Wi = W , Ti = T , Ji = J

3. Find i∗ = arg maxi Ji

Output: demixing matrix W = Wi∗ , forest T = Ti∗

Fig. 3. The TCA algorithm

prior on the tree T and J(x,W, T ) is the contrast function
that depends on the forest T , the demixing matrix W and the
data x, defined in Theorem 2 or Theorem 3, using the esti-
mation methods presented in Section 3.4 and Section 4.4.
The algorithm is presented in Figure 3.

In order to perform the optimization of F (W,T ), we
alternate minimization with respect to T , using a greedy al-
gorithm for the maximum weight spanning tree problem as
presented in Section 3.2, and minimization with respect to
W , using steepest descent with line search. Note that since
we constrain each row of W to have unit norm, our search
space for W is a product of m spheres. On each sphere we
perform line search along the geodesic, as detailed in [17].
To compute the gradient with respect to W , we use either
first-order differences (KGV, KDE, CUM) or exact compu-
tations (STAT), but in principle, exact computations can be
carried through for all four methods.

The procedure converges to a local minimum with re-
spect to W . In order to deal with multiple local minima for
the pair (W,T ), an efficient heuristic is to start from an ICA
solution (zero edges) and incrementally increase the num-
ber of allowed edges from zero to m− 1, as we describe in
Figure 3.

6. SIMULATIONS

In all of our simulations, data were generated from q in-
dependent clusters C1, . . . , Cq , and then rotated by a ran-
dom but known matrix B. We measure the demixing per-
formance by comparing W to V = B−1.

6.1. Performance metric

In the case of ICA, the only invariances are invariances by
permutation or scaling, which can be taken care of by a sim-
ple metric. Indeed, what needs to be measured is how much
A = WV −1 differs from a diagonal matrix, up to permuta-
tion. In our case, however, we need to measure how much

A differs from a block diagonal matrix, up to permutation.
We first build the m ×m cost matrix B as follows: for

any i ∈ {1, . . . ,m} and j ∈ Ck, we have

Bji = 1− (
∑

p∈Ck
|Api|)/(

∑m
p=1 |Api|),

which is the cost of assigning component i to the cluster Ck.
For each permutation σ over m elements, we define the cost
of the assignment of components to clusters defined by σ
to be e(σ) =

∑

i Bσ(i)i. Finally, the performance metric is
defined as the minimum of e(σ) over all permutations:

e = max
σ

e(σ) = max
σ

∑

i

Bσ(i)i,

which can be computed in polynomial time by the Hungar-
ian method [6]. e is always between 0 and m and is equal
to 0 if and only if V is equivalent to W .

6.2. Comparisons

For temporally independent sources, we compare our
algorithm—with the three different contrast functions CUM,
KDE, KGV—to two ICA algorithms JADE [10], and
FastICA [20].

For Gaussian stationary sources, we compare our algo-
rithm to three ICA algorithms for time series, SOBI [5],
TDSEP [24] and an algorithm that minimizes with respect
to W the contrast function used by Pham [22]. This con-
trast function corresponds exactly to our contrast function
JSTAT when no edges are allowed in the graph; that is,
JSTAT (f,W, ∅).

6.3. Temporally independent sources

We generated patterns of components as follows: given m
variables and q components, we generated component sizes
from a multinomial distribution. For each component we
generated N iid samples from a mixture of two Gaussian
with means µ+ and µ− and covariance matrices Σ+ and
Σ−, where µ± = ±au (u is a random unit norm vector
and a is sampled from a Gamma distribution) and Σ± =
U±D±U>

± (the diagonal elements of D± are sampled from
a Dirichlet distribution and the orthogonal matrices are both
random). Then the data were rotated by a random orthogo-
nal matrix.

We performed simulations with various numbers of
sources, from m = 4 to m = 8. We report results ob-
tained from 20 replications in Table 1. The FCA methods
recover the components better than the “plain” ICA algo-
rithms. Note that if the distribution of a component can
itself be modeled by a local ICA model, then such a com-
ponent should be retrieved perfectly by an ICA algorithm.
Since the sets of random distributions that we use contain
such distributions, the average performance of all the algo-
rithms (both ICA and FCA) is relatively good. These re-
marks also apply to the simulations with stationary Gaus-
sian processes.



Table 1. (Top) Results for temporally independent sources.
(Bottom) Results for Gaussian stationary sources.

m Jade FastICA FCA-Cum FCA-Kde FCA-Kgv
4 0.6 0.65 0.25 0.15 0.14
6 1.3 1.2 0.7 0.51 0.5
8 2.4 2.5 1.1 0.9 0.9

m Sobi Tdsep Pham FCA
4 0.11 0.12 0.06 0.02
6 0.27 0.25 0.10 0.06
8 0.8 0.8 0.28 0.20

12 1.1 1.2 0.39 0.25
16 1.5 1.4 1.21 1.02

6.4. Stationary Gaussian processes

We generate patterns of components as before, but the data
are generated from causal autoregressive models, with ran-
dom coefficients. We performed simulations with various
numbers of sources, from m = 4 to m = 12. We report re-
sults obtained from 20 replications in Table 1, where, as in
the temporally independent case, our algorithm outperforms
the extant ICA algorithms.

7. CONCLUSION

We have presented algorithms that find clusters in an in-
dependent component analysis, by explicitly modeling the
sources with a forest-structured graphical model. The forest
T and the demixing matrix W are determined by minimiz-
ing contrast functions within a semiparametric estimation
framework, for temporally independent non-Gaussian data
or for stationary Gaussian processes. Searching for the op-
timal forest enables us to determine the number and sizes of
components, which was not feasible in previously proposed
approaches to finding clusters [9, 19].

Although we have limited ourselves to a generalization
of ICA that allows forest-structured dependency among the
sources, it is clearly of interest to make use of the general
graphical model toolbox and consider broader classes of de-
pendency.
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