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Submodular functions- References and Links

• References based on from combinatorial optimization

– Submodular Functions and Optimization (Fujishige, 2005)

– Discrete convex analysis (Murota, 2003)

• Tutorial paper based on convex optimization (Bach, 2011)

– www.di.ens.fr/~fbach/submodular_fot.pdf

• Slides for this class

– www.di.ens.fr/~fbach/submodular_fbach_mlss2012.pdf

• Other tutorial slides and code at submodularity.org/

• Lecture slides at ssli.ee.washington.edu/~bilmes/ee595a_

spring_2011/



Submodularity (almost) everywhere

Clustering

• Semi-supervised clustering

⇒

• Submodular function minimization



Submodularity (almost) everywhere

Sensor placement

• Each sensor covers a certain area (Krause and Guestrin, 2005)

– Goal: maximize coverage

• Submodular function maximization

• Extension to experimental design (Seeger, 2009)



Submodularity (almost) everywhere

Graph cuts

• Submodular function minimization



Submodularity (almost) everywhere

Isotonic regression

• Given real numbers xi, i = 1, . . . , p

– Find y ∈ R
p that minimizes

1

2

p
∑

j=1

(xi− yi)
2 such that ∀i, yi 6 yi+1

y

x

• Submodular convex optimization problem



Submodularity (almost) everywhere

Structured sparsity - I



Submodularity (almost) everywhere

Structured sparsity - II

raw data sparse PCA

• No structure: many zeros do not lead to better interpretability



Submodularity (almost) everywhere

Structured sparsity - II

raw data sparse PCA

• No structure: many zeros do not lead to better interpretability



Submodularity (almost) everywhere

Structured sparsity - II

raw data Structured sparse PCA

• Submodular convex optimization problem



Submodularity (almost) everywhere

Structured sparsity - II

raw data Structured sparse PCA

• Submodular convex optimization problem



Submodularity (almost) everywhere

Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem



Submodularity (almost) everywhere

Maximum weight spanning trees

• Given an undirected graph G = (V,E) and weights w : E 7→ R+

– find the maximum weight spanning tree
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• Greedy algorithm for submodular polyhedron - matroid



Submodularity (almost) everywhere

Combinatorial optimization problems

• Set V = {1, . . . , p}

• Power set 2V = set of all subsets, of cardinality 2p

• Minimization/maximization of a set function F : 2V → R.

min
A⊂V

F (A) = min
A∈2V

F (A)



Submodularity (almost) everywhere

Combinatorial optimization problems

• Set V = {1, . . . , p}

• Power set 2V = set of all subsets, of cardinality 2p

• Minimization/maximization of a set function F : 2V → R.

min
A⊂V

F (A) = min
A∈2V

F (A)

• Reformulation as (pseudo) Boolean function

min
w∈{0,1}p

f(w)

with ∀A ⊂ V, f(1A) = F (A)

(0, 1, 1)~{2, 3}

(0, 1, 0)~{2}

(1, 0, 1)~{1, 3} (1, 1, 1)~{1, 2, 3}

(1, 1, 0)~{1, 2}

(0, 0, 1)~{3}

(0, 0, 0)~{ }

(1, 0, 0)~{1}



Submodularity (almost) everywhere

Convex optimization with combinatorial structure

• Supervised learning / signal processing

– Minimize regularized empirical risk from data (xi, yi), i = 1, . . . , n:

min
f∈F

1

n

n
∑

i=1

ℓ(yi, f(xi)) + λΩ(f)

– F is often a vector space, formulation often convex

• Introducing discrete structures within a vector space framework

– Trees, graphs, etc.

– Many different approaches (e.g., stochastic processes)

• Submodularity allows the incorporation of discrete structures



Outline

1. Submodular functions

– Definitions

– Examples of submodular functions

– Links with convexity through Lovász extension

2. Submodular optimization

– Minimization

– Links with convex optimization

– Maximization

3. Structured sparsity-inducing norms

– Norms with overlapping groups

– Relaxation of the penalization of supports by submodular functions



Submodular functions

Definitions

• Definition: F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

– NB: equality for modular functions

– Always assume F (∅) = 0



Submodular functions

Definitions

• Definition: F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

– NB: equality for modular functions

– Always assume F (∅) = 0

• Equivalent definition:

∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

⇔ ∀A ⊂ B, ∀k /∈ A, F (A ∪ {k})− F (A) > F (B ∪ {k})− F (B)

– “Concave property”: Diminishing return property



Submodular functions

Definitions

• Equivalent definition (easiest to show in practice):

F is submodular if and only if ∀A ⊂ V, ∀j, k ∈ V \A:

F (A ∪ {k})− F (A) > F (A ∪ {j, k})− F (A ∪ {j})



Submodular functions

Definitions

• Equivalent definition (easiest to show in practice):

F is submodular if and only if ∀A ⊂ V, ∀j, k ∈ V \A:

F (A ∪ {k})− F (A) > F (A ∪ {j, k})− F (A ∪ {j})

• Checking submodularity

1. Through the definition directly

2. Closedness properties

3. Through the Lovász extension



Submodular functions

Closedness properties

• Positive linear combinations: if Fi’s are all submodular : 2V → R

and αi > 0 for all i ∈ {1, . . . ,m}, then

A 7→
n
∑

i=1

αiFi(A) is submodular



Submodular functions

Closedness properties

• Positive linear combinations: if Fi’s are all submodular : 2V → R

and αi > 0 for all i ∈ {1, . . . ,m}, then

A 7→
n
∑

i=1

αiFi(A) is submodular

• Restriction/marginalization: if B ⊂ V and F : 2V → R is

submodular, then

A 7→ F (A ∩B) is submodular on V and on B



Submodular functions

Closedness properties

• Positive linear combinations: if Fi’s are all submodular : 2V → R

and αi > 0 for all i ∈ {1, . . . ,m}, then

A 7→
n
∑

i=1

αiFi(A) is submodular

• Restriction/marginalization: if B ⊂ V and F : 2V → R is

submodular, then

A 7→ F (A ∩B) is submodular on V and on B

• Contraction/conditioning: if B ⊂ V and F : 2V → R is

submodular, then

A 7→ F (A ∪B)− F (B) is submodular on V and on V \B



Submodular functions

Partial minimization

• Let G be a submodular function on V ∪W , where V ∩W = ∅

• For A ⊂ V , define F (A) = minB⊂W G(A ∪B)−minB⊂W G(B)

• Property: the function F is submodular and F (∅) = 0



Submodular functions

Partial minimization

• Let G be a submodular function on V ∪W , where V ∩W = ∅

• For A ⊂ V , define F (A) = minB⊂W G(A ∪B)−minB⊂W G(B)

• Property: the function F is submodular and F (∅) = 0

• NB: partial minimization also preserves convexity

• NB: A 7→ max{F (A), G(A)} and A 7→ min{F (A), G(A)} might not

be submodular



Examples of submodular functions

Cardinality-based functions

• Notation for modular function: s(A) =
∑

k∈A sk for s ∈ R
p

– If s = 1V , then s(A) = |A| (cardinality)

• Proposition 1: If s ∈ R
p
+ and g : R+ → R is a concave function,

then F : A 7→ g(s(A)) is submodular

• Proposition 2: If F : A 7→ g(s(A)) is submodular for all s ∈ R
p
+,

then g is concave

• Classical example:

– F (A) = 1 if |A| > 0 and 0 otherwise

– May be rewritten as F (A) = maxk∈V (1A)k



Examples of submodular functions

Covers

S

3S

1S
2S

7

S6

S5

S4

S 8

• Let W be any “base” set, and for each k ∈ V , a set Sk ⊂W

• Set cover defined as F (A) =
∣

∣

⋃

k∈A Sk

∣

∣

• Proof of submodularity



Examples of submodular functions

Cuts

• Given a (un)directed graph, with vertex set V and edge set E

– F (A) is the total number of edges going from A to V \A.

A

• Generalization with d : V × V → R+

F (A) =
∑

k∈A,j∈V \A
d(k, j)

• Proof of submodularity



Examples of submodular functions

Entropies

• Given p random variables X1, . . . ,Xp with finite number of values

– Define F (A) as the joint entropy of the variables (Xk)k∈A

– F is submodular

• Proof of submodularity using data processing inequality (Cover and

Thomas, 1991): if A ⊂ B and k /∈ B,

F (A∪{k})−F (A) = H(XA,Xk)−H(XA) = H(Xk|XA) > H(Xk|XB)

• Symmetrized version G(A) = F (A) + F (V \A) − F (V ) is mutual

information between XA and XV \A

• Extension to continuous random variables, e.g., Gaussian:

F (A) = log detΣAA, for some positive definite matrix Σ ∈ R
p×p



Entropies, Gaussian processes and clustering

• Assume a joint Gaussian process with covariance matrix Σ ∈ R
p×p

• Prior distribution on subsets p(A) =
∏

k∈A ηk
∏

k/∈A(1− ηk)

• Modeling with independent Gaussian processes on A and V \A

• Maximum a posteriori: minimize

I(fA, fV \A)−
∑

k∈A

log ηk −
∑

k∈V \A
log(1− ηk)

• Similar to independent component analysis (Hyvärinen et al., 2001)

⇒ cut:



Examples of submodular functions

Flows

• Net-flows from multi-sink multi-source networks (Megiddo, 1974)

• See details in www.di.ens.fr/~fbach/submodular_fot.pdf

• Efficient formulation for set covers



Examples of submodular functions

Matroids

• The pair (V, I) is a matroid with I its family of independent sets, iff:

(a) ∅ ∈ I
(b) I1 ⊂ I2 ∈ I ⇒ I1 ∈ I
(c) for all I1, I2 ∈ I, |I1| < |I2| ⇒ ∃k ∈ I2\I1, I1 ∪ {k} ∈ I

• Rank function of the matroid, defined as F (A) = maxI⊂A, A∈I |I|
is submodular (direct proof )

• Graphic matroid (More later!)

– V edge set of a certain graph G = (U, V )

– I = set of subsets of edges which do not contain any cycle

– F (A) = |U | minus the number of connected components of the

subgraph induced by A



Outline

1. Submodular functions

– Definitions

– Examples of submodular functions

– Links with convexity through Lovász extension

2. Submodular optimization

– Minimization

– Links with convex optimization

– Maximization

3. Structured sparsity-inducing norms

– Norms with overlapping groups

– Relaxation of the penalization of supports by submodular functions



Choquet integral - Lovász extension

• Subsets may be identified with elements of {0, 1}p

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

=

p−1
∑

k=1

(wjk − wjk+1
)F ({j1, . . . , jk}) + wjpF ({j1, . . . , jp})

(0, 1, 1)~{2, 3}

(0, 1, 0)~{2}

(1, 0, 1)~{1, 3} (1, 1, 1)~{1, 2, 3}

(1, 1, 0)~{1, 2}

(0, 0, 1)~{3}

(0, 0, 0)~{ }

(1, 0, 0)~{1}



Choquet integral - Lovász extension

Properties

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

=

p−1
∑

k=1

(wjk − wjk+1
)F ({j1, . . . , jk}) + wjpF ({j1, . . . , jp})

• For any set-function F (even not submodular)

– f is piecewise-linear and positively homogeneous

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p



Choquet integral - Lovász extension

Example with p = 2

• If w1 > w2, f(w) = F ({1})w1 + [F ({1, 2})− F ({1})]w2

• If w1 6 w2, f(w) = F ({2})w2 + [F ({1, 2})− F ({2})]w1

w2

w1

w >w2 1

1 2w >w

(1,1)/F({1,2})  
(0,1)/F({2})

f(w)=1
0 (1,0)/F({1})

(level set {w ∈ R
2, f(w) = 1} is displayed in blue)

• NB: Compact formulation f(w) =

−[F ({1})+F ({2})−F ({1, 2})]min{w1, w2}+F ({1})w1+F ({2})w2



Submodular functions

Links with convexity

• Theorem (Lovász, 1982): F is submodular if and only if f is convex

• Proof requires additional notions:

– Submodular and base polyhedra



Submodular and base polyhedra - Definitions

• Submodular polyhedron: P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

• Base polyhedron: B(F ) = P (F ) ∩ {s(V ) = F (V )}

2s

s 1

B(F)

P(F)

3s

s 2

s 1

P(F)

B(F)

• Property: P (F ) has non-empty interior



Submodular and base polyhedra - Properties

• Submodular polyhedron: P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

• Base polyhedron: B(F ) = P (F ) ∩ {s(V ) = F (V )}

• Many facets (up to 2p), many extreme points (up to p!)



Submodular and base polyhedra - Properties

• Submodular polyhedron: P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

• Base polyhedron: B(F ) = P (F ) ∩ {s(V ) = F (V )}

• Many facets (up to 2p), many extreme points (up to p!)

• Fundamental property (Edmonds, 1970): If F is submodular,

maximizing linear functions may be done by a “greedy algorithm”

– Let w ∈ R
p
+ such that wj1 > · · · > wjp

– Let sjk = F ({j1, . . . , jk})− F ({j1, . . . , jk−1}) for k ∈ {1, . . . , p}
– Then f(w) = max

s∈P (F )
w⊤s = max

s∈B(F )
w⊤s

– Both problems attained at s defined above

• Simple proof by convex duality



Greedy algorithms - Proof

• Lagrange multiplier λA ∈ R+ for s⊤1A = s(A) 6 F (A)

max
s∈P (F )

w⊤s= min
λA>0,A⊂V

max
s∈Rp

{

w⊤s−
∑

A⊂V

λA[s(A)− F (A)]

}

= min
λA>0,A⊂V

max
s∈Rp

{

∑

A⊂V

λAF (A) +

p
∑

k=1

sk
(

wk −
∑

A∋k

λA
)

}

= min
λA>0,A⊂V

∑

A⊂V

λAF (A) such that ∀k ∈ V, wk =
∑

A∋k

λA

• Define λ{j1,...,jk} = wjk − wjk−1
for k ∈ {1, . . . , p − 1}, λV = wjp,

and zero otherwise

– λ is dual feasible and primal/dual costs are equal to f(w)



Proof of greedy algorithm - Showing primal feasibility

• Assume (wlog) jk = k, and A = (u1, v1] ∪ · · · ∪ (um, vm]

s(A) =
∑m

k=1 s((uk, vk]) by modularity

=
∑m

k=1

{

F ((0, vk])− F ((0, uk])
}

by definition of s

6
∑m

k=1

{

F ((u1, vk])− F ((u1, uk])
}

by submodularity

= F ((u1, v1]) +

m
∑

k=2

{

F ((u1, vk])− F ((u1, uk])
}

6 F ((u1, v1]) +
∑m

k=2

{

F ((u1, v1] ∪ (u2, vk])− F ((u1, v1] ∪ (u2, uk])
}

by submodularity

= F ((u1, v1] ∪ (u2, v2])

+
∑m

k=3

{

F ((u1, v1] ∪ (u2, vk])− F ((u1, v1] ∪ (u2, uk])
}

• By pursuing applying submodularity, we get:

s(A) 6 F ((u1, v1] ∪ · · · ∪ (um, vm]) = F (A), i.e., s ∈ P (F )



Greedy algorithm for matroids

• The pair (V, I) is a matroid with I its family of independent sets, iff:

(a) ∅ ∈ I
(b) I1 ⊂ I2 ∈ I ⇒ I1 ∈ I
(c) for all I1, I2 ∈ I, |I1| < |I2| ⇒ ∃k ∈ I2\I1, I1 ∪ {k} ∈ I

• Rank function, defined as F (A) = maxI⊂A, A∈I |I| is submodular

• Greedy algorithm:

– Since F (A ∪ {k})− F (A) ∈ {0, 1}p, s ∈ {0, 1}p
⇒ w⊤s =

∑

k, sk=1wk

– Start with A = ∅, orders weights wk in decreasing order and

sequentially add element k to A if set A remains independent

• Graphic matroid: Kruskal’s algorithm for max. weight spanning tree!



Submodular functions

Links with convexity

• Theorem (Lovász, 1982): F is submodular if and only if f is convex

• Proof

1. If F is submodular, f is the maximum of linear functions

⇒ f convex

2. If f is convex, let A,B ⊂ V .

– 1A∪B+1A∩B = 1A+1B has components equal to 0 (on V \(A∪
B)), 2 (on A ∩B) and 1 (on A∆B = (A\B) ∪ (B\A))

– Thus f(1A∪B + 1A∩B) = F (A ∪B) + F (A ∩B).

– By homogeneity and convexity, f(1A + 1B) 6 f(1A) + f(1B),

which is equal to F (A) + F (B), and thus F is submodular.



Submodular functions

Links with convexity

• Theorem (Lovász, 1982): If F is submodular, then

min
A⊂V

F (A) = min
w∈{0,1}p

f(w) = min
w∈[0,1]p

f(w)

• Proof

1. Since f is an extension of F ,

minA⊂V F (A) = minw∈{0,1}p f(w) > minw∈[0,1]p f(w)

2. Any w ∈ [0, 1]p may be decomposed as w =
∑m

i=1 λi1Bi
where

B1 ⊂ · · · ⊂ Bm = V , where λ > 0 and λ(V ) 6 1:

– Then f(w) =
∑m

i=1 λiF (Bi) >
∑m

i=1 λiminA⊂V F (A) >

minA⊂V F (A) (because minA⊂V F (A) 6 0).

– Thus minw∈[0,1]p f(w) > minA⊂V F (A)



Submodular functions

Links with convexity

• Theorem (Lovász, 1982): If F is submodular, then

min
A⊂V

F (A) = min
w∈{0,1}p

f(w) = min
w∈[0,1]p

f(w)

• Consequence: Submodular function minimization may be done in

polynomial time

– Ellipsoid algorithm: polynomial time but slow in practice



Submodular functions - Optimization

• Submodular function minimization in O(p6)

– Schrijver (2000); Iwata et al. (2001); Orlin (2009)

• Efficient active set algorithm with no complexity bound

– Based on the efficient computability of the support function

– Fujishige and Isotani (2011); Wolfe (1976)

• Special cases with faster algorithms: cuts, flows

• Active area of research

– Machine learning: Stobbe and Krause (2010), Jegelka, Lin, and

Bilmes (2011)

– Combinatorial optimization: see Satoru Iwata’s talk

– Convex optimization: See next part of tutorial



Submodular functions - Summary

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing



Submodular functions - Summary

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave



Submodular functions - Summary

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave

• Intuition 2: behave like convex functions

– Polynomial-time minimization, conjugacy theory



Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

• Entropies

– H((Xk)k∈A) from p random variables X1, . . . ,Xp

– Gaussian variables H((Xk)k∈A) ∝ log detΣAA

– Functions of eigenvalues of sub-matrices

• Network flows

– Efficient representation for set covers

• Rank functions of matroids



Submodular functions - Lovász extension

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

=

p−1
∑

k=1

(wjk − wjk+1
)F ({j1, . . . , jk}) + wjpF ({j1, . . . , jp})

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p (subsets

may be identified with elements of {0, 1}p)
– f is piecewise affine and positively homogeneous

• F is submodular if and only if f is convex

– Minimizing f(w) on w ∈ [0, 1]p equivalent to minimizing F on 2V



Submodular functions - Submodular polyhedra

• Submodular polyhedron: P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

• Base polyhedron: B(F ) = P (F ) ∩ {s(V ) = F (V )}

• Link with Lovász extension (Edmonds, 1970; Lovász, 1982):

– if w ∈ R
p
+, then max

s∈P (F )
w⊤s = f(w)

– if w ∈ R
p, then max

s∈B(F )
w⊤s = f(w)

• Maximizer obtained by greedy algorithm:

– Sort the components of w, as wj1 > · · · > wjp

– Set sjk = F ({j1, . . . , jk})− F ({j1, . . . , jk−1})

• Other operations on submodular polyhedra (see, e.g., Bach, 2011)



Outline
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2. Submodular optimization
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– Links with convex optimization

– Maximization
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– Relaxation of the penalization of supports by submodular functions



Submodular optimization problems

Outline

• Submodular function minimization

– Properties of minimizers

– Combinatorial algorithms

– Approximate minimization of the Lovász extension

• Convex optimization with the Lovász extension

– Separable optimization problems

– Application to submodular function minimization

• Submodular function maximization

– Simple algorithms with approximate optimality guarantees



Submodularity (almost) everywhere

Clustering

• Semi-supervised clustering

⇒

• Submodular function minimization



Submodularity (almost) everywhere

Graph cuts

• Submodular function minimization



Submodular function minimization

Properties

• Let F : 2V → R be a submodular function (such that F (∅) = 0)

• Optimality conditions: A ⊂ V is a minimizer of F if and only if A

is a minimizer of F over all subsets of A and all supersets of A

– Proof : F (A) + F (B) > F (A ∪B) + F (A ∩B)

• Lattice of minimizers: if A and B are minimizers, so are A ∪ B
and A ∩B



Submodular function minimization

Dual problem

• Let F : 2V → R be a submodular function (such that F (∅) = 0)

• Convex duality:

min
A⊂V

F (A) = min
w∈[0,1]p

f(w)

= min
w∈[0,1]p

max
s∈B(F )

w⊤s

= max
s∈B(F )

min
w∈[0,1]p

w⊤s = max
s∈B(F )

s−(V )

• Optimality conditions: The pair (A, s) is optimal if and only if

s ∈ B(F ) and {s < 0} ⊂ A ⊂ {s 6 0} and s(A) = F (A)

– Proof : F (A) > s(A) = s(A ∩ {s < 0}) + s(A ∩ {s > 0})
> s(A ∩ {s < 0}) > s−(V )



Exact submodular function minimization

Combinatorial algorithms

• Algorithms based on minA⊂V F (A) = maxs∈B(F ) s−(V )

• Output the subset A and a base s ∈ B(F ) such that A is tight for s

and {s < 0} ⊂ A ⊂ {s 6 0}, as a certificate of optimality

• Best algorithms have polynomial complexity (Schrijver, 2000; Iwata

et al., 2001; Orlin, 2009) (typically O(p6) or more)

• Update a sequence of convex combination of vertices of B(F )

obtained from the greedy algorithm using a specific order:

– Based only on function evaluations

• Recent algorithms using efficient reformulations in terms of

generalized graph cuts (Jegelka et al., 2011)



Exact submodular function minimization

Symmetric submodular functions

• A submodular function F is said symmetric if for all B ⊂ V ,

F (V \B) = F (B)

– Then, by applying submodularity, ∀A ⊂ V , F (A) > 0

• Example: undirected cuts, mutual information

• Minimization in O(p3) over all non-trivial subsets of V (Queyranne,

1998)

• NB: extension to minimization of posimodular functions (Nagamochi

and Ibaraki, 1998), i.e., of functions that satisfies

∀A,B ⊂ V, F (A) + F (B) > F (A\B) + F (B\A).



Approximate submodular function minimization

• For most machine learning applications, no need to obtain

exact minimum

– For convex optimization, see, e.g., Bottou and Bousquet (2008)

min
A⊂V

F (A) = min
w∈{0,1}p

f(w) = min
w∈[0,1]p

f(w)



Approximate submodular function minimization

• For most machine learning applications, no need to obtain

exact minimum

– For convex optimization, see, e.g., Bottou and Bousquet (2008)

min
A⊂V

F (A) = min
w∈{0,1}p

f(w) = min
w∈[0,1]p

f(w)

• Subgradient of f(w) = max
s∈B(F )

s⊤w through the greedy algorithm

• Using projected subgradient descent to minimize f on [0, 1]p

– Iteration: wt = Π[0,1]p
(

wt−1 − C√
t
st
)

where st ∈ ∂f(wt−1)

– Convergence rate: f(wt)−minw∈[0,1]p f(w) 6
C√
t
with primal/dual

guarantees (Nesterov, 2003; Bach, 2011)



Approximate submodular function minimization

Projected subgradient descent

• Assume (wlog.) that ∀k ∈ V , F ({k}) > 0 and F (V \{k}) > F (V )

• Denote D2 =
∑

k∈V

{

F ({k}) + F (V \{k})− F (V )
}

• Iteration: wt = Π[0,1]p
(

wt−1 −
D√
pt
st
)

with st ∈ argmin
s∈B(F )

w⊤
t−1s

• Proposition: t iterations of subgradient descent outputs a set At

(and a certificate of optimality st) such that

F (At)− min
B⊂V

F (B) 6 F (At)− (st)−(V ) 6
Dp1/2√

t



Submodular optimization problems

Outline

• Submodular function minimization

– Properties of minimizers

– Combinatorial algorithms

– Approximate minimization of the Lovász extension

• Convex optimization with the Lovász extension

– Separable optimization problems

– Application to submodular function minimization

• Submodular function maximization

– Simple algorithms with approximate optimality guarantees



Separable optimization on base polyhedron

• Optimization of convex functions of the form Ψ(w) + f(w) with

f Lovász extension of F

• Structured sparsity

– Regularized risk minimization penalized by the Lovász extension

– Total variation denoising - isotonic regression



Total variation denoising (Chambolle, 2005)

• F (A) =
∑

k∈A,j∈V \A
d(k, j) ⇒ f(w) =

∑

k,j∈V

d(k, j)(wk − wj)+

• d symmetric ⇒ f = total variation



Isotonic regression

• Given real numbers xi, i = 1, . . . , p

– Find y ∈ R
p that minimizes

1

2

p
∑

j=1

(xi− yi)
2 such that ∀i, yi 6 yi+1

y

x

• For a directed chain, f(y) = 0 if and only if ∀i, yi 6 yi+1

• Minimize 1
2

∑p
j=1(xi − yi)

2 + λf(y) for λ large



Separable optimization on base polyhedron

• Optimization of convex functions of the form Ψ(w) + f(w) with

f Lovász extension of F

• Structured sparsity

– Regularized risk minimization penalized by the Lovász extension

– Total variation denoising - isotonic regression



Separable optimization on base polyhedron

• Optimization of convex functions of the form Ψ(w) + f(w) with

f Lovász extension of F

• Structured sparsity

– Regularized risk minimization penalized by the Lovász extension

– Total variation denoising - isotonic regression

• Proximal methods (see next part of the tutorial)

– Minimize Ψ(w) + f(w) for smooth Ψ as soon as the following

“proximal” problem may be obtained efficiently

min
w∈Rp

1

2
‖w − z‖22 + f(w) = min

w∈Rp

p
∑

k=1

1

2
(wk − zk)

2 + f(w)

• Submodular function minimization



Separable optimization on base polyhedron

Convex duality

• Let ψk : R → R, k ∈ {1, . . . , p} be p functions. Assume

– Each ψk is strictly convex

– supα∈R
ψ′
j(α) = +∞ and infα∈Rψ

′
j(α) = −∞

– Denote ψ∗
1, . . . , ψ

∗
p their Fenchel-conjugates (then with full domain)



Separable optimization on base polyhedron

Convex duality

• Let ψk : R → R, k ∈ {1, . . . , p} be p functions. Assume

– Each ψk is strictly convex

– supα∈R
ψ′
j(α) = +∞ and infα∈Rψ

′
j(α) = −∞

– Denote ψ∗
1, . . . , ψ

∗
p their Fenchel-conjugates (then with full domain)

min
w∈Rp

f(w) +

p
∑

j=1

ψi(wj) = min
w∈Rp

max
s∈B(F )

w⊤s+
p

∑

j=1

ψj(wj)

= max
s∈B(F )

min
w∈Rp

w⊤s+
p

∑

j=1

ψj(wj)

= max
s∈B(F )

−
p

∑

j=1

ψ∗
j (−sj)



Separable optimization on base polyhedron

Equivalence with submodular function minimization

• For α ∈ R, let Aα ⊂ V be a minimizer of A 7→ F (A) +
∑

j∈Aψ
′
j(α)

• Let u be the unique minimizer of w 7→ f(w) +
∑p

j=1ψj(wj)

• Proposition (Chambolle and Darbon, 2009):

– Given Aα for all α ∈ R, then ∀j, uj = sup({α ∈ R, j ∈ Aα})
– Given u, then A 7→ F (A) +

∑

j∈Aψ
′
j(α) has minimal minimizer

{w∗ > α} and maximal minimizer {w∗ > α}

• Separable optimization equivalent to a sequence of submodular

function minimizations



Equivalence with submodular function minimization

Proof sketch (Bach, 2011)

• Duality gap for min
w∈Rp

f(w) +

p
∑

j=1

ψi(wj) = max
s∈B(F )

−
p

∑

j=1

ψ∗
j (−sj)

f(w) +

p
∑

j=1

ψi(wj)−
p

∑

j=1

ψ∗
j (−sj)

= f(w)− w⊤s+
p

∑

j=1

{

ψj(wj) + ψ∗
j (−sj) + wjsj

}

=

∫ +∞

−∞

{

(F + ψ′(α))({w > α})− (s+ ψ′(α))−(V )

}

dα

• Duality gap for convex problems = sums of duality gaps for

combinatorial problems



Separable optimization on base polyhedron

Quadratic case

• Let F be a submodular function and w ∈ R
p the unique minimizer

of w 7→ f(w) + 1
2‖w‖22. Then:

(a) s = −w is the point in B(F ) with minimum ℓ2-norm

(b) For all λ ∈ R, the maximal minimizer of A 7→ F (A) + λ|A| is

{w > −λ} and the minimal minimizer of F is {w > −λ}

• Consequences

– Threshold at 0 the minimum norm point in B(F ) to minimize

F (Fujishige and Isotani, 2011)

– Minimizing submodular functions with cardinality constraints (Nagano

et al., 2011)



From convex to combinatorial optimization

and vice-versa...

• Solving min
w∈Rp

∑

k∈V

ψk(wk) + f(w) to solve min
A⊂V

F (A)

– Thresholding solutions w at zero if ∀k ∈ V, ψ′
k(0) = 0

– For quadratic functions ψk(wk) =
1
2w

2
k, equivalent to projecting 0

on B(F ) (Fujishige, 2005)

– minimum-norm-point algorithm (Fujishige and Isotani, 2011)



From convex to combinatorial optimization

and vice-versa...

• Solving min
w∈Rp

∑

k∈V

ψk(wk) + f(w) to solve min
A⊂V

F (A)

– Thresholding solutions w at zero if ∀k ∈ V, ψ′
k(0) = 0

– For quadratic functions ψk(wk) =
1
2w

2
k, equivalent to projecting 0

on B(F ) (Fujishige, 2005)

– minimum-norm-point algorithm (Fujishige and Isotani, 2011)

• Solving min
A⊂V

F (A)− t(A) to solve min
w∈Rp

∑

k∈V

ψk(wk) + f(w)

– General decomposition strategy (Groenevelt, 1991)

– Efficient only when submodular minimization is efficient



Solving min
A⊂V

F (A)− t(A) to solve min
w∈Rp

∑

k∈V
ψk(wk)+f(w)

• General recursive divide-and-conquer algorithm (Groenevelt, 1991)

• NB: Dual version of Fujishige (2005)

1. Compute minimizer t ∈ R
p of

∑

j∈V ψ
∗
j (−tj) s.t. t(V ) = F (V )

2. Compute minimizer A of F (A)− t(A)

3. If A = V , then t is optimal. Exit.

4. Compute a minimizer sA of
∑

j∈Aψ
∗
j (−sj) over s ∈ B(FA) where

FA : 2A → R is the restriction of F to A, i.e., FA(B) = F (A)

5. Compute a minimizer sV \A of
∑

j∈V \Aψ
∗
j (−sj) over s ∈ B(FA)

where FA(B) = F (A ∪B)− F (A), for B ⊂ V \A
6. Concatenate sA and sV \A. Exit.



Solving min
w∈Rp

∑

k∈V
ψk(wk) + f(w) to solve min

A⊂V
F (A)

• Dual problem: maxs∈B(F )−
∑p

j=1ψ
∗
j (−sj)

• Constrained optimization when linear function can be maximized

– Frank-Wolfe algorithms

• Two main types for convex functions



Approximate quadratic optimization on B(F )

• Goal: min
w∈Rp

1

2
‖w‖22 + f(w) = max

s∈B(F )
−1

2
‖s‖22

• Can only maximize linear functions on B(F )

• Two types of “Frank-wolfe” algorithms

• 1. Active set algorithm (⇔ min-norm-point)

– Sequence of maximizations of linear functions over B(F )

+ overheads (affine projections)

– Finite convergence, but no complexity bounds



Minimum-norm-point algorithms
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Approximate quadratic optimization on B(F )

• Goal: min
w∈Rp

1

2
‖w‖22 + f(w) = max

s∈B(F )
−1

2
‖s‖22

• Can only maximize linear functions on B(F )

• Two types of “Frank-wolfe” algorithms

• 1. Active set algorithm (⇔ min-norm-point)

– Sequence of maximizations of linear functions over B(F )

+ overheads (affine projections)

– Finite convergence, but no complexity bounds

• 2. Conditional gradient

– Sequence of maximizations of linear functions over B(F )

– Approximate optimality bound



Conditional gradient with line search
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Approximate quadratic optimization on B(F )

• Proposition: t steps of conditional gradient (with line search)

outputs st ∈ B(F ) and wt = −st, such that

f(wt) +
1

2
‖wt‖22 −OPT 6 f(wt) +

1

2
‖wt‖22 +

1

2
‖st‖22 6

2D2

t



Approximate quadratic optimization on B(F )

• Proposition: t steps of conditional gradient (with line search)

outputs st ∈ B(F ) and wt = −st, such that

f(wt) +
1

2
‖wt‖22 −OPT 6 f(wt) +

1

2
‖wt‖22 +

1

2
‖st‖22 6

2D2

t

• Improved primal candidate through isotonic regression

– f(w) is linear on any set of w with fixed ordering

– May be optimized using isotonic regression (“pool-adjacent-

violator”) in O(n) (see, e.g. Best and Chakravarti, 1990)

– Given wt = −st, keep the ordering and reoptimize



Approximate quadratic optimization on B(F )

• Proposition: t steps of conditional gradient (with line search)

outputs st ∈ B(F ) and wt = −st, such that

f(wt) +
1

2
‖wt‖22 −OPT 6 f(wt) +

1

2
‖wt‖22 +

1

2
‖st‖22 6

2D2

t

• Improved primal candidate through isotonic regression

– f(w) is linear on any set of w with fixed ordering

– May be optimized using isotonic regression (“pool-adjacent-

violator”) in O(n) (see, e.g. Best and Chakravarti, 1990)

– Given wt = −st, keep the ordering and reoptimize

• Better bound for submodular function minimization?



From quadratic optimization on B(F )

to submodular function minimization

• Proposition: If w is ε-optimal for minw∈Rp
1
2‖w‖22 + f(w), then at

least a levet set A of w is
(

√
εp

2

)

-optimal for submodular function

minimization

• If ε =
2D2

t
,

√
εp

2
=
Dp1/2√

2t
⇒ no provable gains, but:

– Bound on the iterates At (with additional assumptions)

– Possible thresolding for acceleration



From quadratic optimization on B(F )

to submodular function minimization

• Proposition: If w is ε-optimal for minw∈Rp
1
2‖w‖22 + f(w), then at

least a levet set A of w is
(

√
εp

2

)

-optimal for submodular function

minimization

• If ε =
2D2

t
,

√
εp

2
=
Dp1/2√

2t
⇒ no provable gains, but:

– Bound on the iterates At (with additional assumptions)

– Possible thresolding for acceleration

• Lower complexity bound for SFM

– Proposition: no algorithm that is based only on a sequence of

greedy algorithms obtained from linear combinations of bases can

improve on the subgradient bound (after p/2 iterations).



Simulations on standard benchmark

“DIMACS Genrmf-wide”, p = 430

• Submodular function minimization

– (Left) optimal value minus dual function values (st)−(V )

(in dashed, certified duality gap)

– (Right) Primal function values F (At) minus optimal value
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Simulations on standard benchmark

“DIMACS Genrmf-long”, p = 575

• Submodular function minimization

– (Left) optimal value minus dual function values (st)−(V )

(in dashed, certified duality gap)

– (Right) Primal function values F (At) minus optimal value
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Simulations on standard benchmark

• Separable quadratic optimization

– (Left) optimal value minus dual function values −1
2‖st‖22

(in dashed, certified duality gap)

– (Right) Primal function values f(wt)+
1
2‖wt‖22 minus optimal value

(in dashed, before the pool-adjacent-violator correction)
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Submodularity (almost) everywhere

Sensor placement

• Each sensor covers a certain area (Krause and Guestrin, 2005)

– Goal: maximize coverage

• Submodular function maximization

• Extension to experimental design (Seeger, 2009)



Submodular function maximization

• Occurs in various form in applications but is NP-hard

• Unconstrained maximization: Feige et al. (2007) shows that that

for non-negative functions, a random subset already achieves at least

1/4 of the optimal value, while local search techniques achieve at

least 1/2

• Maximizing non-decreasing submodular functions with

cardinality constraint

– Greedy algorithm achieves (1− 1/e) of the optimal value

– Proof (Nemhauser et al., 1978)



Maximization with cardinality constraint

• Let A∗={b1, . . . , bk} be a maximizer of F with k elements, and aj the

j-th selected element. Let ρj=F ({a1, . . . , aj})−F ({a1, . . . , aj−1})

F (A∗) 6 F (A∗ ∪Aj−1) because F is non-decreasing,

= F (Aj−1) +
k
∑

i=1

[

F (Aj−1 ∪ {b1, . . . , bi})− F (Aj−1 ∪ {b1, . . . , bi−1})
]

6 F (Aj−1) +
k
∑

i=1

[

F (Aj−1 ∪ {bi})−F (Aj−1)
]

by submodularity,

6 F (Aj−1) + kρj by definition of the greedy algorithm,

=

j−1
∑

i=1

ρi + kρj.

• Minimize
∑k

i=1 ρi: ρj = (k − 1)j−1k−jF (A∗)



Submodular optimization problems

Summary

• Submodular function minimization

– Properties of minimizers

– Combinatorial algorithms

– Approximate minimization of the Lovász extension

• Convex optimization with the Lovász extension

– Separable optimization problems

– Application to submodular function minimization

• Submodular function maximization

– Simple algorithms with approximate optimality guarantees



Outline

1. Submodular functions

– Definitions

– Examples of submodular functions

– Links with convexity through Lovász extension

2. Submodular optimization

– Minimization

– Links with convex optimization

– Maximization

3. Structured sparsity-inducing norms

– Norms with overlapping groups

– Relaxation of the penalization of supports by submodular functions



Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn X = (x1, . . . , xp) ∈ R
n×p such that ∀j, ‖xj‖2 6 1

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖xj‖2 6 1 by Θ(xj) 6 1



Sparsity in signal processing

• Multiple responses/signals x = (x1, . . . , xk) ∈ R
n×k

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn D = (d1, . . . , dp) ∈ R
n×p such that ∀j, ‖dj‖2 6 1

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖dj‖2 6 1 by Θ(dj) 6 1



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

• Unstructed sparse PCA ⇒ many zeros do not lead to better

interpretability



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

• Unstructed sparse PCA ⇒ many zeros do not lead to better

interpretability



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion in face identification
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Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)
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Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

– Optimization problem minw∈Rp L(y,Xw) + λ‖w‖1 is unstable

– “Codes” wj often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

– When prior knowledge matches data (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

– Non-linear variable selection with 2p subsets (Bach, 2008)



Classical approaches to structured sparsity

• Many application domains

– Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

– Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)

– Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

– Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.

(2009)

• Convex approaches

– Design of sparsity-inducing norms



Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}
– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)
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Unit norm balls

Geometric interpretation

‖w‖2 ‖w‖1
√
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Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}
– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1

• However, the ℓ1-ℓ2 norm encodes fixed/static prior information,

requires to know in advance how to group the variables

• What happens if the set of groups H is not a partition anymore?



Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity
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Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

GG2

1G

3G

2

• The zero pattern of w is given by

{j, wj = 0} =
⋃

G∈H′
G for some H

′ ⊆ H

• Zero patterns are unions of groups



Examples of set of groups H

• Selection of contiguous patterns on a sequence, p = 6

– H is the set of blue groups

– Any union of blue groups set to zero leads to the selection of a

contiguous pattern



Examples of set of groups H

• Selection of rectangles on a 2-D grids, p = 25

– H is the set of blue/green groups (with their not displayed

complements)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Examples of set of groups H

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

– It is possible to extend such settings to 3-D space, or more complex

topologies



Unit norm balls

Geometric interpretation

‖w‖1
√

w2
1 + w2

2 + |w3| ‖w‖2 + |w1|+ |w2|



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

J(wt) + (w − wt)
⊤∇J(wt)+

L

2
‖w − wt‖22

– wt+1 = wt − 1
L∇J(wt)



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

J(wt) + (w − wt)
⊤∇J(wt)+

B

2
‖w − wt‖22

– wt+1 = wt − 1
B∇J(wt)

• Problems of the form: min
w∈Rp

L(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

L(wt)+(w−wt)
⊤∇L(wt)+λΩ(w)+

B

2
‖w − wt‖22

– Ω(w) = ‖w‖1 ⇒ Thresholded gradient descent

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Sparse Structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ

p
∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1



Application to face databases (1/3)

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task
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Dictionary learning vs. sparse structured PCA

Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ
k

∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1.

• Dictionary learning with structured sparsity for codes w:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi −Xwi‖22 + λΩ(wi) s.t. ∀j, ‖xj‖2 ≤ 1.

• Optimization: proximal methods

– Requires solving many times minw∈Rp
1
2‖y − w‖22 + λΩ(w)

– Modularity of implementation if proximal step is efficient

(Jenatton et al., 2010; Mairal et al., 2010)



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Structure on codes w (not on dictionary X)

• Hierarchical penalization: Ω(w) =
∑

G∈H
‖wG‖2 where groups G

in H are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

• Low-rank matrix factorization of word-document matrix

• Probabilistic topic models (Blei et al., 2003)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?



Modelling of text corpora - Dictionary tree



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input ℓ1-norm Structured norm



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ1-norm Structured norm



Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization
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Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization



Structured sparse PCA on resting state activity

(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,

and Bach, 2010)



ℓ1-norm = convex envelope of cardinality of support

• Let w ∈ R
p. Let V = {1, . . . , p} and Supp(w) = {j ∈ V, wj 6= 0}

• Cardinality of support: ‖w‖0 = Card(Supp(w))

• Convex envelope = largest convex lower bound (see, e.g., Boyd and

Vandenberghe, 2004)

1

0

||w||

||w||

−1 1

• ℓ1-norm = convex envelope of ℓ0-quasi-norm on the ℓ∞-ball [−1, 1]p



Convex envelopes of general functions of the support

(Bach, 2010)

• Let F : 2V → R be a set-function

– Assume F is non-decreasing (i.e., A ⊂ B ⇒ F (A) 6 F (B))

– Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

• Define Θ(w) = F (Supp(w)): How to get its convex envelope?

1. Possible if F is also submodular

2. Allows unified theory and algorithm

3. Provides new regularizers



Submodular functions (Fujishige, 2005; Bach, 2010)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2010)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave

• Intuition 2: behave like convex functions

– Polynomial-time minimization, conjugacy theory

• Used in several areas of signal processing and machine learning

– Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)

– Optimal design (Krause and Guestrin, 2005)



Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

• Entropies

– H((Xk)k∈A) from p random variables X1, . . . ,Xp

– Gaussian variables H((Xk)k∈A) ∝ log detΣAA

– Functions of eigenvalues of sub-matrices

• Network flows

– Efficient representation for set covers

• Rank functions of matroids



Submodular functions - Lovász extension

• Subsets may be identified with elements of {0, 1}p

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p

– f is piecewise affine and positively homogeneous

• F is submodular if and only if f is convex (Lovász, 1982)



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F

• Sparsity-inducing properties: Ω is a polyhedral norm

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

– A if stable if for all B ⊃ A, B 6= A⇒ F (B) > F (A)

– With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = |A|1/2
all possible extreme points

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}
Ω(w) = |w1|+ ‖w{2,3}‖∞

F (A) = 1{A∩{1,2,3}6=∅}
+1{A∩{2,3}6=∅}+1{A∩{3}6=∅}

Ω(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w3|



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero for some groups G

(

Supp(w)
)c

=
⋃

G∈H′
G for some H

′ ⊆ H



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G ∩A 6= ∅}
)

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero for some groups G

(

Supp(w)
)c

=
⋃

G∈H

G for some H
′ ⊆ H

– Justification not only limited to allowed sparsity patterns



Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero

leads to the selection of a contiguous pattern



Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero

leads to the selection of a contiguous pattern

• ∑

G∈H
‖wG‖∞ ⇒ F (A) = p− 2 + Range(A) if A 6= ∅

– Jump from 0 to p− 1: tends to include all variables simultaneously

– Add ν|A| to smooth the kink: all sparsity patterns are possible

– Contiguous patterns are favored (and not forced)



Extensions of norms with overlapping groups

• Selection of rectangles (at any position) in a 2-D grids

• Hierarchies



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G∩A 6= ∅}
)

– Justification not only limited to allowed sparsity patterns



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G∩A 6= ∅}
)

– Justification not only limited to allowed sparsity patterns

• From F (A) to Ω(w): provides new sparsity-inducing norms

– F (A) = g(Card(A)) ⇒ Ω is a combination of order statistics

– Non-factorial priors for supervised learning: Ω depends on the

eigenvalues of X⊤
AXA and not simply on the cardinality of A



Non-factorial priors for supervised learning

• Joint variable selection and regularization. Given support A ⊂ V ,

min
wA∈RA

1

2n
‖y −XAwA‖22 +

λ

2
‖wA‖22

• Minimizing with respect to A will always lead to A = V

• Information/model selection criterion F (A)

min
A⊂V

min
wA∈RA

1

2n
‖y −XAwA‖22 +

λ

2
‖wA‖22 + F (A)

⇔ min
w∈Rp

1

2n
‖y −Xw‖22 +

λ

2
‖w‖22 + F (Supp(w))



Non-factorial priors for supervised learning

• Selection of subset A from design X ∈ R
n×p with ℓ2-penalization

• Frequentist analysis (Mallow’s CL): trX
⊤
AXA(X

⊤
AXA + λI)−1

– Not submodular

• Bayesian analysis (marginal likelihood): log det(X⊤
AXA + λI)

– Submodular (also true for tr(X⊤
AXA)

1/2)

p n k submod. ℓ2 vs. submod. ℓ1 vs. submod. greedy vs. submod.
120 120 80 40.8 ± 0.8 -2.6 ± 0.5 0.6 ± 0.0 21.8 ± 0.9
120 120 40 35.9 ± 0.8 2.4 ± 0.4 0.3 ± 0.0 15.8 ± 1.0
120 120 20 29.0 ± 1.0 9.4 ± 0.5 -0.1 ± 0.0 6.7 ± 0.9
120 120 10 20.4 ± 1.0 17.5 ± 0.5 -0.2 ± 0.0 -2.8 ± 0.8
120 20 20 49.4 ± 2.0 0.4 ± 0.5 2.2 ± 0.8 23.5 ± 2.1
120 20 10 49.2 ± 2.0 0.0 ± 0.6 1.0 ± 0.8 20.3 ± 2.6
120 20 6 43.5 ± 2.0 3.5 ± 0.8 0.9 ± 0.6 24.4 ± 3.0
120 20 4 41.0 ± 2.1 4.8 ± 0.7 -1.3 ± 0.5 25.1 ± 3.5



Unified optimization algorithms

• Polyhedral norm with O(3p) faces and extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow



Unified optimization algorithms

• Polyhedral norm with O(3p) faces and extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow

• Proximal methods (e.g., Beck and Teboulle, 2009)

– minw∈Rp L(y,Xw) + λΩ(w): differentiable + non-differentiable

– Efficient when (P ) : minw∈Rp
1
2‖w − v‖22 + λΩ(w) is “easy”

• Proposition: (P ) is equivalent to min
A⊂V

λF (A) − ∑

j∈A |vj| with

minimum-norm-point algorithm

– Possible complexity bound O(p6), but empirically O(p2) (or more)

– Faster algorithm for special case (Mairal et al., 2010)



Proximal methods for Lovász extensions

• Proposition (Chambolle and Darbon, 2009): let w∗ be the solution

of minw∈Rp
1
2‖w − v‖22 + λf(w). Then the solutions of

min
A⊂V

λF (A) +
∑

j∈A

(α− vj)

are the sets Aα such that {w∗ > α} ⊂ Aα ⊂ {w∗ > α}

• Parametric submodular function optimization

– General decomposition strategy for f(|w|) and f(w) (Groenevelt,

1991)

– Efficient only when submodular minimization is efficient

– Otherwise, minimum-norm-point algorithm (a.k.a. Frank Wolfe) is

preferable



Comparison of optimization algorithms

• Synthetic example with p = 1000 and F (A) = |A|1/2

• ISTA: proximal method

• FISTA: accelerated variant (Beck and Teboulle, 2009)
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Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Small scale

• Specific norms which can be implemented through network flows
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Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Large scale

• Specific norms which can be implemented through network flows
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Unified theoretical analysis

• Decomposability

– Key to theoretical analysis (Negahban et al., 2009)

– Property: ∀w ∈ R
p, and ∀J ⊂ V , if minj∈J |wj| > maxj∈Jc |wj|,

then Ω(w) = ΩJ(wJ) + ΩJ(wJc)

• Support recovery

– Extension of known sufficient condition (Zhao and Yu, 2006;

Negahban and Wainwright, 2008)

• High-dimensional inference

– Extension of known sufficient condition (Bickel et al., 2009)

– Matches with analysis of Negahban et al. (2009) for common cases



Support recovery - minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w)

• Notation

– ρ(J) = minB⊂Jc
F (B∪J)−F (J)

F (B) ∈ (0, 1] (for J stable)

– c(J) = supw∈Rp ΩJ(wJ)/‖wJ‖2 6 |J |1/2maxk∈V F ({k})

• Proposition

– Assume y = Xw∗ + σε, with ε ∼ N (0, I)

– J = smallest stable set containing the support of w∗

– Assume ν = minj,w∗
j 6=0 |w∗

j | > 0

– Let Q = 1
nX

⊤X ∈ R
p×p. Assume κ = λmin(QJJ) > 0

– Assume that for η > 0, (ΩJ)∗[(ΩJ(Q
−1
JJQJj))j∈Jc] 6 1− η

– If λ 6
κν

2c(J), ŵ has support equal to J , with probability larger than

1− 3P
(

Ω∗(z) > ληρ(J)
√
n

2σ

)

– z is a multivariate normal with covariance matrix Q



Consistency - minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w)

• Proposition

– Assume y = Xw∗ + σε, with ε ∼ N (0, I)

– J = smallest stable set containing the support of w∗

– Let Q = 1
nX

⊤X ∈ R
p×p.

– Assume that ∀∆ s.t. ΩJ(∆Jc) 6 3ΩJ(∆J), ∆
⊤Q∆ > κ‖∆J‖22

– Then Ω(ŵ − w∗) 6
24c(J)2λ

κρ(J)2
and

1

n
‖Xŵ−Xw∗‖22 6

36c(J)2λ2

κρ(J)2

with probability larger than 1− P
(

Ω∗(z) > λρ(J)
√
n

2σ

)

– z is a multivariate normal with covariance matrix Q

• Concentration inequality (z normal with covariance matrix Q):

– T set of stable inseparable sets

– Then P (Ω∗(z) > t) 6
∑

A∈T 2|A| exp
(

− t2F (A)2/2

1⊤QAA1

)



Symmetric submodular functions (Bach, 2011)

• Let F : 2V → R be a symmetric submodular set-function

• Proposition: The Lovász extension f(w) is the convex envelope of

the function w 7→ maxα∈RF ({w > α}) on the set [0, 1]p + R1V =

{w ∈ R
p, maxk∈V wk −mink∈V wk 6 1}.



Symmetric submodular functions (Bach, 2011)

• Let F : 2V → R be a symmetric submodular set-function

• Proposition: The Lovász extension f(w) is the convex envelope of

the function w 7→ maxα∈RF ({w > α}) on the set [0, 1]p + R1V =

{w ∈ R
p, maxk∈V wk −mink∈V wk 6 1}.

(0,1,1)/F({2,3})

w > w >w2 1

w =w2 3
31w =w

w =w1 2

31w > w >w2

2w > w >w3 1

1w > w >w2 3

23w > w >w1

21w > w >w3

(0,1,0)/F({2})

(1,1,0)/F({1,2})

(1,0,0)/F({1})

(1,0,1)/F({1,3})

(0,0,1)/F({3})

3
(0,0,1)

(0,1,0)/2

(1,1,0)

(1,0,0)

(1,0,1)/2
(0,1,1)



Symmetric submodular functions - Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Cuts - total variation

F (A) =
∑

k∈A,j∈V \A
d(k, j) ⇒ f(w) =

∑

k,j∈V

d(k, j)(wk−wj)+

– NB: graph may be directed



Symmetric submodular functions - Examples

• From F (A) to Ω(w): provides new sparsity-inducing norms

– F (A) = g(Card(A)) ⇒ priors on the size and numbers of clusters
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– Convex formulations for clustering (Hocking, Joulin, Bach, and

Vert, 2011)



Symmetric submodular functions - Examples

• From F (A) to Ω(w): provides new sparsity-inducing norms

– Regular functions (Boykov et al., 2001; Chambolle and Darbon,

2009)

F (A)= min
B⊂W

∑

k∈B, j∈W\B
d(k, j)+λ|A∆B|
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ℓq-relaxation of combinatorial penalties

(Obozinski and Bach, 2011)

• Main result of Bach (2010):

– f(|w|) is the convex envelope of F (Supp(w)) on [−1, 1]p

• Problems:

– Limited to submodular functions

– Limited to ℓ∞-relaxation: undesired artefacts

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})



From ℓ∞ to ℓ2

• Variational formulations for subquadratic norms (Bach et al., 2011)

Ω(w) = min
η∈R

p
+

1

2

p
∑

j=1

w2
j

ηj
+

1

2
g(η) = min

η∈H

√

√

√

√

p
∑

j=1

w2
j

ηj

where g is a convex homogeneous and H = {η, g(η) 6 1}
– Often used for computational reasons (Lasso, group Lasso)

– May also be used to define a norm (Micchelli et al., 2011)



From ℓ∞ to ℓ2

• Variational formulations for subquadratic norms (Bach et al., 2011)

Ω(w) = min
η∈R

p
+

1

2

p
∑

j=1

w2
j

ηj
+

1

2
g(η) = min

η∈H

√

√

√

√

p
∑

j=1

w2
j

ηj

where g is a convex homogeneous and H = {η, g(η) 6 1}
– Often used for computational reasons (Lasso, group Lasso)

– May also be used to define a norm (Micchelli et al., 2011)

• If F is a nondecreasing submodular function with Lovász extension f

– Define Ω2(w) = min
η∈R

p
+

1

2

p
∑

j=1

w2
j

ηj
+

1

2
f(η)

– Is it the convex relaxation of some natural function?



ℓq-relaxation of submodular penalties

(Obozinski and Bach, 2011)

• F a nondecreasing submodular function with Lovász extension f

• Define Ωq(w) = min
η∈R

p
+

1

q

∑

i∈V

|wi|q
ηq−1
i

+
1

r
f(η) with

1

q
+

1

r
= 1.

• Proposition 1: Ωq is the convex envelope of w 7→ F (Supp(w))‖w‖q

• Proposition 2: Ωq is the homogeneous convex envelope of

w 7→ 1
rF (Supp(w)) +

1
q‖w‖qq

• Jointly penalizing and regularizing

– Special cases q = 1, q = 2 and q = ∞



Some simple examples

F Ωq

|A| ‖w‖1
1{A 6=∅} ‖w‖q

If H is a partition of V :
∑

B∈H
1{A∩B 6=∅}

∑

B∈H
‖wB‖q

• Recover results of Bach (2010) when q = ∞ and F submodular

• However

– when H is not a partition and q < ∞, Ωq is not in general an

ℓ1/ℓq-norm !

– F does not need to be submodular

⇒ New norms



ℓq-relaxation of combinatorial penalties

(Obozinski and Bach, 2011)

• F any strictly positive set-function (with potentially infinite values)

• Jointly penalizing and regularizing. Two formulations:

– homogeneous convex envelope of w 7→ F (Supp(w)) + ‖w‖qq
– convex envelope of w 7→ F (Supp(w))‖w‖q

• Proposition: These envelopes are equal to a constant times a

norm ΩF
q = Ωq defined through its dual norm

– its dual norm is equal to (Ωq)
∗(s) = max

A⊂V

‖sA‖r
F (A)1/r

, with 1
q+

1
r = 1

• Three-line proof



ℓq-relaxation of combinatorial penalties

Proof

• Denote Θ(w) = ‖w‖q F (Supp(w))1/r, and compute its Fenchel

conjugate:

Θ∗(s) = max
w∈Rp

w⊤s− ‖w‖q F (Supp(w))1/r

= max
A⊂V

max
wA∈(R∗)A

w⊤
AsA − ‖wA‖q F (A)1/r

= max
A⊂V

ι{‖sA‖r6F (A)1/r} = ι{Ω∗
q(s)61},

where ι{s∈S} is the indicator of the set S

• Consequence: If F is submodular and q = +∞, Ω(w) = f(|w|)



How tight is the relaxation?

What information of F is kept after the relaxation?

• When F is submodular and q = ∞
– the Lovász extension f = Ω∞ is said to “extend” F because

ΩF
∞(1A) = f(1A) = F (A)

• In general we can still consider the function : G(A)
△
= ΩF

∞(1A)

– Do we have G(A) = F (A)?

– How is G related to F?

– What is the norm ΩG
∞ which is associated with G?



Lower combinatorial envelope

• Given a function F : 2V → R, define its lower combinatorial envelope

as the function G given by

G(A) = max
s∈P (F )

s(A)

with P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) ≤ F (A)}.

• Lemma 1 (Idempotence)

– P (F ) = P (G)

– G is its own lower combinatorial envelope

– For all q ≥ 1, ΩF
q = ΩG

q

• Lemma 2 (Extension property)

ΩF
∞(1A) = max

(ΩF∞)∗(s)≤1
1⊤As = max

s∈P (F )
s⊤1A = G(A)



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms

• On-going work on structured sparsity

– Norm design beyond submodular functions

– Instance of general framework of Chandrasekaran et al. (2010)

– Links with greedy methods (Haupt and Nowak, 2006; Baraniuk

et al., 2008; Huang et al., 2009)

– Links between norm Ω, support Supp(w), and design X (see, e.g.,

Grave, Obozinski, and Bach, 2011)

– Achieving log p = O(n) algorithmically (Bach, 2008)



Conclusion

• Submodular functions to encode discrete structures

– Structured sparsity-inducing norms

• Convex optimization for submodular function optimization

– Approximate optimization using classical iterative algorithms

• Future work

– Primal-dual optimization

– Going beyond linear programming
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