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Sparsity in signal processing

• Let x ∈ R
m be a signal

• Let D = [d1, . . . , dp] ∈ R
m×p be a set

of normalized “basis vectors”.

We call it dictionary

• D is “adapted” to x if it can represent it with a few basis vectors:

– there exists a sparse vector α in R
p such that x ≈ Dα.

We call α the sparse code.
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Sparsity in signal processing

Sparse decomposition problem

min
α∈Rp

1
2||x−Dα||22︸ ︷︷ ︸
data fitting term

+ λψ(α)
︸ ︷︷ ︸

sparsity-inducing
regularization

• The term ψ induces sparsity

– the ℓ0 “pseudo-norm”: ||α||0
△
= #{i s.t. αi 6= 0} (NP-hard)

– the ℓ1 norm: ||α||1
△
=

∑p
i=1 |αi| (convex)

– . . .



Sparsity in signal processing

• Simultaneously denoise all patches of a given image

• Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009d)



Sparsity in signal processing

Applications to computer vision

• Uses the “code” α as representation of observations for subsequent

processing (Raina et al., 2007; Yang et al., 2009b)

• Adapt dictionary elements to specific tasks (Mairal et al., 2009c)

– Discriminative training for weakly supervised pixel classification (Mairal

et al., 2008a)



Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)



Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)
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Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e. min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

– Derivative at 0+: g+ = λ− y and 0−: g− = −λ− y

– x = 0 is the solution iff g+ > 0 and g− 6 0 (i.e., |y| 6 λ)

– x > 0 is the solution iff g+ 6 0 (i.e., y > λ) ⇒ x∗ = y − λ

– x 6 0 is the solution iff g− 6 0 (i.e., y 6 −λ) ⇒ x∗ = y + λ

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding



Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e. min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding
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Why ℓ1-norms lead to sparsity?

• Example 2: minimize quadratic function Q(w) subject to ‖w‖1 6 T .

– coupled soft thresholding

• Geometric interpretation

– NB : penalizing is “equivalent” to constraining

1

2
w

w 1

2
w

w



Non-smooth optimization

• Simple techniques might not work!

– Gradient descent or coordinate descent

• Special tools

– Subgradients or directional derivatives

• Typically slower than smooth optimization...

• ... except in some regularized problems



Counter-example

Coordinate descent for nonsmooth objectives
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Regularized problems - Proximal methods

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

µ

2
‖w − wt‖

2
2

– wt+1 = wt −
1
µ∇L(wt)



Regularized problems - Proximal methods

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

µ

2
‖w − wt‖

2
2

– wt+1 = wt −
1
µ∇L(wt)

• Problems of the form: min
w∈Rp

L(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

L(wt)+(w−wt)
⊤∇L(wt)+λΩ(w)+

µ

2
‖w − wt‖

2
2

– Thresholded gradient descent wt+1 = SoftThres(wt −
1
µ∇L(wt))

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

– depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

• Proximal methods
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• Proximal methods

• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding



Cheap (and not dirty) algorithms for all losses

• Proximal methods

• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

– Notice that
∑p

j=1 |wj| = minη>0
1
2

∑p
j=1

{w2
j

ηj
+ ηj

}

– Alternating minimization with respect to η (closed-form ηj = |wj|)

and w (weighted squared ℓ2-norm regularized problem)

– Caveat: lack of continuity around (wi, ηi) = (0, 0): add ε/ηj



Cheap (and not dirty) algorithms for all losses

• Proximal methods

• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

– Notice that
∑p

j=1 |wj| = minη>0
1
2

∑p
j=1

{w2
j

ηj
+ ηj

}

– Alternating minimization with respect to η (closed-form ηj = |wj|)

and w (weighted squared ℓ2-norm regularized problem)

– Caveat: lack of continuity around (wi, ηi) = (0, 0): add ε/ηi

• Dedicated algorithms that use sparsity (active sets/homotopy)



Piecewise linear paths
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Gaussian hare vs. Laplacian tortoise

• Coord. descent and proximal: O(pn) per iterations for ℓ1 and ℓ2

• “Exact” algorithms: O(kpn) for ℓ1 vs. O(p2n) for ℓ2



Additional methods - Softwares

• Many contributions in signal processing, optimization, mach. learning

– Extensions to stochastic setting (Bottou and Bousquet, 2008)

• Extensions to other sparsity-inducing norms

– Computing proximal operator

– F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization with

sparsity-inducing penalties. Foundations and Trends in Machine

Learning, 4(1):1-106, 2011.

• Softwares

– Many available codes

– SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/
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Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,

2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if

and only if there are low correlations between relevant and irrelevant

variables.



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if
‖QJcJQ

−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if
‖QJcJQ

−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)

• The Lasso is usually not model-consistent

– Selects more variables than necessary (see, e.g., Lv and Fan, 2009)

– Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed

Lasso (Meinshausen, 2008), thresholding (Lounici, 2008),

Bolasso (Bach, 2008a), stability selection (Meinshausen and

Bühlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

• Adaptive Lasso (Zou, 2006; Huang et al., 2008)

– Weighted ℓ1-norm: min
w∈Rp

L(w) + λ

p
∑

j=1

|wj|

|ŵj|α

– ŵ estimator obtained from ℓ2 or ℓ1 regularization

• Reformulation in terms of concave penalization

min
w∈Rp

L(w) +

p
∑

j=1

g(|wj|)

– Example: g(|wj|) = |wj|
1/2 or log |wj|. Closer to the ℓ0 penalty

– Concave-convex procedure: replace g(|wj|) by affine upper bound

– Better sparsity-inducing properties (Fan and Li, 2001; Zou and Li,

2008; Zhang, 2008b)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,

2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if

and only if there are low correlations between relevant and irrelevant

variables.

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen

and Yu, 2008): under appropriate assumptions, consistency is possible

as long as

log p = O(n)



High-dimensional inference

Variable selection without computational limits

• Approaches based on penalized criteria (close to BIC)

min
w∈Rp

1
2
‖y −Xw‖22 + Cσ2‖w‖0

(
1 + log

p

‖w‖0

)

• Oracle inequality if data generated by w with k non-zeros (Massart,

2003; Bunea et al., 2007):

1

n
‖Xŵ −Xw‖22 6 C

kσ2

n

(
1 + log

p

k

)

• Gaussian noise - No assumptions regarding correlations

• Scaling between dimensions:
k log p

n
small



High-dimensional inference (Lasso)

• Main result: we only need k log p = O(n)

– if w is sufficiently sparse

– and input variables are not too correlated



High-dimensional inference (Lasso)

• Main result: we only need k log p = O(n)

– if w is sufficiently sparse

– and input variables are not too correlated

• Precise conditions on covariance matrix Q = 1
nX

⊤X.

– Mutual incoherence (Lounici, 2008)

– Restricted eigenvalue conditions (Bickel et al., 2009)

– Sparse eigenvalues (Meinshausen and Yu, 2008)

– Null space property (Donoho and Tanner, 2005)

• Links with signal processing and compressed sensing (Candès and

Wakin, 2008)

• Slow rate if no assumptions:
√

k log p
n



Alternative sparse methods

Greedy methods

• Forward selection (a.k.a. orthogonal matching pursuit)

• Forward-backward selection

• Non-convex method

– Harder to analyze

– Simpler to implement

– Problems of stability

• Positive theoretical results (Zhang, 2009, 2008a)

– Similar sufficient conditions than for the Lasso



Comparing Lasso and other strategies for linear

regression

• Compared methods to reach the least-square solution

– Ridge regression: min
w∈Rp

1

2
‖y −Xw‖22 +

λ

2
‖w‖22

– Lasso: min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to ordinary least-

squares solution

• Regularization parameters selected on the test set



Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability
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Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability
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Going beyond the Lasso

• ℓ1-norm for linear feature selection in high dimensions

– Lasso usually not applicable directly

• Non-linearities

– Multiple kernel learning (Lanckriet et al., 2004; Bach et al., 2004)

• Sparse learning on matrices

– Dictionary learning and matrix factorization

• Dealing with structured set of features

– Specific sets of zeros
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Learning on matrices - Image denoising

• Simultaneously denoise all patches of a given image

• Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009d)



Learning on matrices - Collaborative filtering

• Given nX “movies” x ∈ X and nY “customers” y ∈ Y,

• predict the “rating” z(x,y) ∈ Z of customer y for movie x

• Training data: large nX ×nY incomplete matrix Z that describes the

known ratings of some customers for some movies

• Goal: complete the matrix.

1
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Learning on matrices - Source separation

• Single microphone (Benaroya et al., 2006; Févotte et al., 2009)



Learning on matrices - Multi-task learning

• k linear prediction tasks on same covariates x ∈ R
p

– k weight vectors wj ∈ R
p

– Joint matrix of predictors W = (w1, . . . ,wk) ∈ R
p×k

• Classical application

– Multi-category classification (one task per class) (Amit et al., 2007)

• Share parameters between tasks

• Joint variable selection (Obozinski et al., 2009)

– Select variables which are predictive for all tasks

• Joint feature selection (Pontil et al., 2007)

– Construct linear features common to all tasks



Matrix factorization - Dimension reduction

• Given data matrix X = (x1, . . . ,xn) ∈ R
p×n

– Principal component analysis: xi ≈ Dαi ⇒ X = DA

– K-means: xi ≈ dk ⇒ X = DA



Two types of sparsity for matrices M ∈ R
n×p

I - Directly on the elements of M

• Many zero elements: Mij = 0

M

• Many zero rows (or columns): (Mi1, . . . ,Mip) = 0

M



Two types of sparsity for matrices M ∈ R
n×p

II - Through a factorization of M = UV⊤

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Low rank: m small

=

T

U
V

M

• Sparse decomposition: U sparse

U= VM
T



Structured sparse matrix factorizations

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Structure on U and/or V

– Low-rank: U and V have few columns

– Dictionary learning / sparse PCA: U has many zeros

– Clustering (k-means): U ∈ {0, 1}n×m, U1 = 1

– Pointwise positivity: non negative matrix factorization (NMF)

– Specific patterns of zeros (Jenatton et al., 2010)

– Low-rank + sparse (Candès et al., 2009)

– etc.

• Many applications

• Many open questions (Algorithms, identifiability, etc.)



Multi-task learning

• Joint matrix of predictors W = (w1, . . . , wk) ∈ R
p×k

• Joint variable selection (Obozinski et al., 2009)

– Penalize by the sum of the norms of rows of W (group Lasso)

– Select variables which are predictive for all tasks



Multi-task learning

• Joint matrix of predictors W = (w1, . . . , wk) ∈ R
p×k

• Joint variable selection (Obozinski et al., 2009)

– Penalize by the sum of the norms of rows of W (group Lasso)

– Select variables which are predictive for all tasks

• Joint feature selection (Pontil et al., 2007)

– Penalize by the trace-norm (see later)

– Construct linear features common to all tasks

• Theory: allows number of observations which is sublinear in the

number of tasks (Obozinski et al., 2008; Lounici et al., 2009)

• Practice: more interpretable models, slightly improved performance



Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = UDiag(s)V⊤ where U and

V have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values



Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = UDiag(s)V⊤ where U and

V have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values

• Trace-norm (a.k.a. nuclear norm) = sum of singular values

• Convex function, leads to a semi-definite program (Fazel et al., 2001)

• First used for collaborative filtering (Srebro et al., 2005)

• Multi-category classif. (Amit et al., 2007; Harchaoui et al., 2012)



Sparse principal component analysis

• Given data X = (x⊤
1 , . . . ,x

⊤
n ) ∈ R

p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent



Sparse principal component analysis

• Given data X = (x⊤
1 , . . . ,x

⊤
n ) ∈ R

p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent

• Sparse extensions

– Interpretability

– High-dimensional inference

– Two views are differents

- For analysis view, see d’Aspremont, Bach, and El Ghaoui (2008)



Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n∑

i=1

min
αi∈Rm

∥
∥
∥
∥
xi −

k∑

j=1

(αi)jdj

∥
∥
∥
∥

2

2

=
n∑

i=1

min
αi∈Rm

∥
∥xi −Dαi

∥
∥
2

2
is small

– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small



Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n∑

i=1

min
αi∈Rm

∥
∥
∥
∥
xi −

k∑

j=1

(αi)jdj

∥
∥
∥
∥

2

2

=
n∑

i=1

min
αi∈Rm

∥
∥xi −Dαi

∥
∥
2

2
is small

– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small

• Sparse formulation (Witten et al., 2009; Bach et al., 2008)

– Penalize/constrain dj by the ℓ1-norm for sparsity

– Penalize/constrain αi by the ℓ2-norm to avoid trivial solutions

min
D,A

n∑

i=1

‖xi −Dαi‖
2
2 + λ

k∑

j=1

‖dj‖1 s.t. ∀i, ‖αi‖2 6 1



Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse



Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse

• Dictionary learning: xi ≈ Dαi, αi sparse



Structured matrix factorizations (Bach et al., 2008)

min
D,A

n∑

i=1

‖xi −Dαi‖
2
2 + λ

k∑

j=1

‖dj‖⋆ s.t. ∀i, ‖αi‖• 6 1

min
D,A

n∑

i=1

‖xi −Dαi‖
2
2 + λ

n∑

i=1

‖αi‖• s.t. ∀j, ‖dj‖⋆ 6 1

• Optimization by alternating minimization (non-convex)

• αi decomposition coefficients (or “code”), dj dictionary elements

• Two related/equivalent problems:

– Sparse PCA = sparse dictionary (ℓ1-norm on dj)

– Dictionary learning = sparse decompositions (ℓ1-norm on αi)

(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al.,

2007)



Dictionary learning for image denoising

x︸︷︷︸
measurements

= y
︸︷︷︸

original image

+ ε︸︷︷︸
noise



Dictionary learning for image denoising

• Solving the denoising problem (Elad and Aharon, 2006)

– Extract all overlapping 8× 8 patches xi ∈ R
64

– Form the matrix X = (x⊤
1 , . . . ,x

⊤
n ) ∈ R

n×64

– Solve a matrix factorization problem:

min
D,A

||X−DA||2F = min
D,A

n∑

i=1

||xi −Dαi||
2
2

where A is sparse, and D is the dictionary

– Each patch is decomposed into xi = Dαi

– Average the reconstruction Dαi of each patch xi to reconstruct a

full-sized image

• The number of patches n is large (= number of pixels)



Online optimization for dictionary learning

min
A∈Rk×n,D∈D

n∑

i=1

||xi −Dαi||
2
2 + λ||αi||1

D
△
= {D ∈ R

p×k s.t. ∀j = 1, . . . , k, ||dj||2 6 1}.

• Classical optimization alternates between D and A

• Good results, but very slow !



Online optimization for dictionary learning

min
A∈Rk×n,D∈D

n∑

i=1

||xi −Dαi||
2
2 + λ||αi||1

D
△
= {D ∈ R

p×k s.t. ∀j = 1, . . . , k, ||dj||2 6 1}.

• Classical optimization alternates between D and A.

• Good results, but very slow !

• Online learning (Mairal, Bach, Ponce, and Sapiro, 2009a) can

– handle potentially infinite datasets

– adapt to dynamic training sets

• Simultaneous sparse coding (Mairal et al., 2009d)

– Links with NL-means (Buades et al., 2008)



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009d)



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009d)



What does the dictionary D look like?



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Additional methods - Softwares

• Many contributions in signal processing, optimization, mach. learning

– Extensions to stochastic setting (Bottou and Bousquet, 2008)

• Extensions to other sparsity-inducing norms

– Computing proximal operator

– F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization with

sparsity-inducing penalties. Foundations and Trends in Machine

Learning, 4(1):1-106, 2011.

• Softwares

– Many available codes

– SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/
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– Task-driven dictionary learning
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Learning dictionaries

with a discriminative cost function

• Idea: consider 2 sets S−, S+ of signals representing 2 different

classes. Each set should admit a specific dictionary best adapted to

its reconstruction.

• Classification procedure for a signal x ∈ R
n:

min(R⋆(x,D−),R
⋆(x,D+))

where R⋆(x,D) = min
α∈Rp

||x−Dα||22 s.t. ||α||0 ≤ L.

• “Reconstructive” training
{

minD−

∑

i∈S−
R⋆(xi,D−)

minD+

∑

i∈S+
R⋆(xi,D+)

(Grosse et al., 2007; Huang and Aviyente, 2006; Sprechmann et al., 2010)



Learning dictionaries with a discriminative

cost function

• “Discriminative” training (Mairal, Bach, Ponce, Sapiro, and

Zisserman, 2008b)

min
D−,D+

∑

i

D
(

λzi
(
R⋆(xi,D−)−R⋆(xi,D+)

))

,

where zi ∈ {−1,+1} is the label of xi.

Logistic regression function



Learning dictionaries with a discriminative

cost function

• Mixed approach

min
D−,D+

∑

i

D
(

λzi
(
R⋆(xi,D−)−R⋆(xi,D+)

))

+ µR⋆(xi,Dzi),

where zi ∈ {−1,+1} is the label of xi.

• Keys of the optimization framework

– Alternation of sparse coding and dictionary updates.

– Continuation path with decreasing values of µ.

– OMP to address the NP-hard sparse coding problem. . .

– . . . or homotopy method when using ℓ1.

– Use softmax instead of logistic regression for N > 2 classes.



Learning dictionaries with a discriminative

cost function - Examples of dictionaries

Top: reconstructive, Bottom: discriminative

Left: Bicycle, Right: Background



Learning dictionaries with a discriminative

cost function - Texture segmentation



Learning dictionaries with a discriminative

cost function - Texture segmentation



Learning dictionaries with a discriminative

cost function - Pixelwise classification



Learning dictionaries with a discriminative

cost function - Multiscale scheme



Learning dictionaries with a discriminative

cost function - weakly-supervised pixel classification



Application to edge detection and classification

(Mairal, Leordeanu, Bach, Hebert, and Ponce, 2008c)

Good edges Bad edges



Application to edge detection and classification

Berkeley segmentation benchmark

Raw edge detection on the right



Application to edge detection and classification

Berkeley segmentation benchmark

Raw edge detection on the right



Application to edge detection and classification

Berkeley segmentation benchmark



Application to edge detection and classification

Contour-based classifier (Leordeanu, Hebert, and

Sukthankar, 2007)

Is there a bike, a motorbike, a car or a person on this image?



Application to edge detection and classification



Application to edge detection and classification

Performance gain due to the prefiltering

Ours + [Leordeanu ’07] [Leordeanu ’07] [Winn ’05]

96.8% 89.4% 76.9%

Recognition rates for the same experiment as (Winn et al., 2005) on

VOC 2005.

Category Ours+[Leordeanu ’07] [Leordeanu ’07]

Aeroplane 71.9% 61.9%

Boat 67.1% 56.4%

Cat 82.6% 53.4%

Cow 68.7% 59.2%

Horse 76.0% 67%

Motorbike 80.6% 73.6%

Sheep 72.9% 58.4%

Tvmonitor 87.7% 83.8%

Average 75.9% 64.2 %

Recognition performance at equal error rate for 8 classes on a subset

of images from Pascal 07.



Learning Codebooks for Image Classification

• Idea: Replacing Vector Quantization by Learned Dictionaries!

– unsupervised: (Yang et al., 2009a)

– supervised: (Boureau et al., 2010; Yang et al., 2010) (CVPR ’10)



Learning Codebooks for Image Classification

• Let an image be represented by a set of low-level descriptors xi at N

locations identified with their indices i = 1, . . . , N

– hard-quantization:

xi ≈ Dαi, αi ∈ {0, 1}p and

p
∑

j=1

(αi)j = 1

– soft-quantization:

(αi)j =
e−β‖xi−dj‖

2
2

∑p
k=1 e

−β‖xi−dk‖
2
2

– sparse coding:

xi ≈ Dαi, αi = argmin
α

1

2
‖xi −Dα‖22 + λ‖α‖1



Learning Codebooks for Image Classification

Table from Boureau, Bach, Lecun, and Ponce (2010)

Yang et al. (2009a) have won the PASCAL VOC’09 challenge using this

kind of techniques.



Task-driven dictionary learning

(Mairal, Bach, and Ponce, 2010a)

• Define α∗(D,x) = argminα
1
2
‖x−Dα‖22 + λ‖α‖1

• α is used as a code for x

• Direct optimization of α∗(D,x) with respect to D

– Application to image processing tasks such inverse half-

toning (Mairal, Bach, and Ponce, 2010a)

– Image super-resolution (Couzinie-Devy, Mairal, Bach, and Ponce,

2011)



Digital Zooming (Couzinie-Devy et al., 2011)



Digital Zooming (Couzinie-Devy et al., 2011)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Outline

Sparse methods for machine learning

and computer vision

• Introduction

• Tutorial on sparse methods

– Non-smooth optimization

– Theoretical analysis

• Sparsity for matrices

– Dictionary learning and collaborative filtering

• Sparsity for computer vision

– Task-driven dictionary learning

• Structured sparsity



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010b)



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

• Unstructed sparse PCA ⇒ many zeros do not lead to better

interpretability
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Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion in face identification
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Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010b)

• Stability and identifiability

– Optimization problem minw∈Rp L(y,Xw) + λ‖w‖1 is unstable

– “Codes” wj often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

– When prior knowledge matches data (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

– Non-linear variable selection with 2p subsets (Bach, 2008b)



Classical approaches to structured sparsity

• Many application domains

– Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

– Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)

– Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

– Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.

(2009)

• Convex approaches

– Design of sparsity-inducing norms



Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1



Unit norm balls

Geometric interpretation

‖w‖2 ‖w‖1
√

w2
1 + w2

2 + |w3|



Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1

• However, the ℓ1-ℓ2 norm encodes fixed/static prior information,

requires to know in advance how to group the variables

• What happens if the set of groups H is not a partition anymore?



Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

GG2

1G

3G

2



Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

GG2

1G

3G

2

• The zero pattern of w is given by

{j, wj = 0} =
⋃

G∈H′

G for some H′ ⊆ H

• Zero patterns are unions of groups



Examples of set of groups H

• Selection of contiguous patterns on a sequence, p = 6

– H is the set of blue groups

– Any union of blue groups set to zero leads to the selection of a

contiguous pattern



Examples of set of groups H

• Selection of rectangles on a 2-D grids, p = 25

– H is the set of blue/green groups (with their not displayed

complements)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Examples of set of groups H

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

– It is possible to extend such settings to 3-D space, or more complex

topologies



Unit norm balls

Geometric interpretation

‖w‖1
√

w2
1 + w2

2 + |w3| ‖w‖2 + |w1|+ |w2|



Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Small scale

• Specific norms which can be implemented through network flows
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Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Large scale

• Specific norms which can be implemented through network flows
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Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Input ℓ1-norm Structured norm



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Background ℓ1-norm Structured norm



Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization
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Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization



Sparse Structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
W∈Rk×n,X∈Rp×k

1

n

n∑

i=1

‖yi−Xwi‖22+λ

p
∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1



Application to face databases (1/3)

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task
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Structured sparse PCA on resting state activity

(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,

and Bach, 2010)



Dictionary learning vs. sparse structured PCA

Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

min
W∈Rk×n,X∈Rp×k

1

n

n∑

i=1

‖yi−Xwi‖22+λ
k∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1.

• Dictionary learning with structured sparsity for codes w:

min
W∈Rk×n,X∈Rp×k

1

n

n∑

i=1

‖yi −Xwi‖22 + λΩ(wi) s.t. ∀j, ‖xj‖2 ≤ 1.

• Optimization:

– Alternating optimization

– Modularity of implementation if proximal step is efficient

(Jenatton et al., 2010; Mairal et al., 2010b)



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Structure on codes w (not on dictionary X)

• Hierarchical penalization: Ω(w) =
∑

G∈H ‖wG‖2 where groups G

in H are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008b)



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

– Low-rank matrix factorization of word-document matrix

– Similar to NMF with multinomial loss

• Probabilistic topic models (Blei et al., 2003a)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?



Topic models and matrix factorization

• Latent Dirichlet allocation (Blei et al., 2003b)

– For a document, sample θ ∈ R
k from a Dirichlet(α)

– For the n-th word of the same document,

∗ sample a topic zn from a multinomial with parameter θ

∗ sample a word wn from a multinomial with parameter β(zn, :)

• Interpretation as multinomial PCA (Buntine and Perttu, 2003)

– Marginalizing over topic zn, given θ, each word wn is selected from

a multinomial with parameter
∑k

z=1 θzβ(z, :) = β⊤θ

– Row of β = dictionary elements, θ code for a document



Modelling of text corpora - Dictionary tree



Topic models, NMF and matrix factorization

• Three different views on the same problem

– Interesting parallels to be made

– Common problems to be solved

• Structure on dictionary/decomposition coefficients with adapted

priors, e.g., nested Chinese restaurant processes (Blei et al., 2004)

• Learning hyperparameters from data

• Identifiability and interpretation/evaluation of results

• Discriminative tasks (Blei and McAuliffe, 2008; Lacoste-Julien

et al., 2008; Mairal et al., 2009c)

• Optimization and local minima



Structure on codes within dictionary learning

min
A∈R

k×n

D∈R
p×k

n∑

i=1

‖xi −Dαi‖
2
2 + λψ(αi) s.t. ∀j, ‖dj‖2 ≤ 1.

• Impose topology between dictionary elements

– Hierarchical and topographic dictionaries for image patches

• Grouping atoms

– Source separation



Hierarchical dictionaries (Jenatton et al., 2010)



Topographic dictionaries (Mairal et al., 2010b)



Structured sparsity - Audio processing

Source separation (Lefèvre et al., 2011)
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Structured sparsity - Audio processing

Musical instrument separation (Lefèvre et al., 2011)

• Unsupervised source separation with group-sparsity prior

– Top: mixture

– Left: source tracks (guitar, voice). Right: separated tracks.
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ℓ1-norm = convex envelope of cardinality of support

• Let w ∈ R
p. Let V = {1, . . . , p} and Supp(w) = {j ∈ V, wj 6= 0}

• Cardinality of support: ‖w‖0 = Card(Supp(w))

• Convex envelope = largest convex lower bound (see, e.g., Boyd and

Vandenberghe, 2004)

1

0

||w||

||w||

−1 1

• ℓ1-norm = convex envelope of ℓ0-quasi-norm on the ℓ∞-ball [−1, 1]p



Convex envelopes of general functions of the support

(Bach, 2010)

• Let F : 2V → R be a set-function

– Assume F is non-decreasing (i.e., A ⊂ B ⇒ F (A) 6 F (B))

– Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

• Define Θ(w) = F (Supp(w)): How to get its convex envelope?

1. Possible if F is also submodular

2. Allows unified theory and algorithm

3. Provides new regularizers

• References on submodular functions (Fujishige, 2005; Bach, 2010)
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Conclusion

• Sparsity for machine learning and vision

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– May be adapted to a discriminative task



Conclusion

• Sparsity for machine learning and vision

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– May be adapted to a discriminative task

• On-going work on structured sparsity

– Norm design through submodular functions (Bach, 2010)

– Large-scale learning (Le Roux et al., 2012)
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N. Meinshausen and P. Bühlmann. Stability selection. Technical report, arXiv: 0809.2932, 2008.

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data.

Annals of Statistics, 37(1):246–270, 2008.

Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations

Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.

G. Obozinski, M.J. Wainwright, and M.I. Jordan. High-dimensional union support recovery in



multivariate regression. In Advances in Neural Information Processing Systems (NIPS), 2008.

G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for

multiple classification problems. Statistics and Computing, pages 1–22, 2009.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed

by V1? Vision Research, 37:3311–3325, 1997.

M. Pontil, A. Argyriou, and T. Evgeniou. Multi-task feature learning. In Advances in Neural Information

Processing Systems, 2007.

R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng. Self-taught learning: Transfer learning from

unlabeled data. In Proceedings of the 24th International Conference on Machine Learning (ICML),

2007.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning

Research, 9:2491–2521, 2008.

F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM.

Bioinformatics, 24(13):i375–i382, Jul 2008.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar. Collaborative hierarchical sparse modeling.

Technical report, 2010. Preprint arXiv:1003.0400v1.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances

in Neural Information Processing Systems 17, 2005.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of The Royal Statistical Society

Series B, 58(1):267–288, 1996.

G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion, and F. Bach. Sparse structured



dictionary learning for brain resting-state activity modeling. In NIPS Workshop on Practical

Applications of Sparse Modeling: Open Issues and New Directions, 2010.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ1-

constrained quadratic programming. IEEE transactions on information theory, 55(5):2183, 2009.

L. Wasserman and K. Roeder. High dimensional variable selection. Annals of statistics, 37(5A):2178,

2009.

J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2005.

D.M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications to

sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515–534, 2009.

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image

classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2009a.

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for

image classification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2009b.

J. Yang, K. Yu, , and T. Huang. Supervised translation-invariant sparse coding. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of

The Royal Statistical Society Series B, 68(1):49–67, 2006.

M. Yuan and Y. Lin. On the non-negative garrotte estimator. Journal of The Royal Statistical Society



Series B, 69(2):143–161, 2007.

T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. Advances

in Neural Information Processing Systems, 22, 2008a.

T. Zhang. Multi-stage convex relaxation for learning with sparse regularization. Advances in Neural

Information Processing Systems, 22, 2008b.

T. Zhang. On the consistency of feature selection using greedy least squares regression. The Journal

of Machine Learning Research, 10:555–568, 2009.

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research,

7:2541–2563, 2006.

P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute

penalties. Annals of Statistics, 37(6A):3468–3497, 2009.

H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association,

101(476):1418–1429, 2006.

H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models. Annals of

Statistics, 36(4):1509–1533, 2008.


