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Questions

1. Feel free to ask any question.

2. Let me ask a few ones first:

• Who knows about Stochastic Gradient Descent?

• Who knows the convergence rate for the last iterate instead of the
averaged iterate?

• Who knows about Pflug’s convergence diagnosis?
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Why would we still talk about SGD ?

Objective function f : D →R to minimize

θn+1 = θn −γn+1 f ′
n+1(θn) = θn −γn+1

(
f ′(θn)+ξn+1(θn)

)
.

What choice for the learning rate (γn)n∈N ?

As often:

• Theoreticians (♥) came up with optimal answers (convex setting).
• Practitioners do not use them !

If it works in theory it also works in practice – in theory.

Why not?

1. Step size in SGD often depends on unknown parameters (esp.
µ-strong convexity).

2. May be very sensitive to those parameters.
3. Does not adapt to the noise and function regularity.
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A few observations

a) Large learning rates often converge faster at the beginning

b) But then results in saturation: two phases behavior.

c) Theory suggests to use the Polyak-Ruppert averaged iterate, but the
final one might not be that bad.

d) In Deep Learning, common practice is to use a constant learning
rate, reduced occasionally.
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a) Large learning rates often converge faster at the beginning

SGD nearly always results in a Bias (initial condition) - Variance (noise)
tradeoff.

A large initial learning rate maximizes the decay of the bias.
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Figure 1: Logistic regression on the Covertype Dataset / Synthetic Dataset
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b) Saturation and limit distribution: two phases

• “Transient phase" during which the initial conditions are forgotten
exponentially fast.

• "Stationary phase" where the iterates oscillate around θ∗
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Figure 2: Constant step size SGD (2 dimensionnal) path illustration.

For smooth and strongly convex functions, θn
(d)
 πγ, “limit distribution”.

πγ is a stationary distribution.
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c) Polyak-Ruppert averaged iterate vs final one.

Instead of just the final iterate θ(γ)
n , we can consider the PR-averaged:

θ̄
(γ)
n = 1

n

n−1∑
k=0

θ
(γ)
k .

# Strongly reduces the impact of the noise.
# Slows down the Bias term.

How bad is the last iterate...?

It depends!
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c) Polyak-Ruppert averaged iterate vs final one. 2

Final Iterate Average

Convex & Smooth

Strongly convex & Smooth

No noise (deterministic)

Finite dimensional quadratic

Kernel Regression

The Proof by Shamir & Zhang is nice !
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c) Polyak-Ruppert averaged iterate vs final one. 2
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Previous work: with decreasing step-sizes

(Moulines & Bach 2011), smooth + strongly convex

Setting γn = 1
µn we get

E
[∥∥θn −θ∗

∥∥2
]
=O

(
1

µ2n

)
.

(Shamir & Zhang 2012), bounded gradients + strongly convex

Setting γn = 1
µn we get

E
[

f (θn)− f (θ∗)
]=O

(
log(n)

µn

)
.

(Shamir & Zhang 2012), bounded gradients + weakly convex

Setting γn = 1p
n
we get

E
[

f (θn)− f (θ∗)
]=O

(
log(n)p

n

)
.
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d) Deep Learning: training NN

(1 - test_accuracy)
━ classical_1_wdb

learning rate divided by 10

Figure 3: Typical accuracy curve in deep learning (Cifar10 dataset, Resnet18).

11 / 47



Overall...

• in the strongly convex case, µ is often unknown and hard to evaluate.

• a slight misspecification of µ can lead to arbitrarily slow convergence
rates (see Moulines & Bach 2011)

• we would like to make use of the uniform convexity assumption

• ideally we would like a learning rate sequence that adapts to f

• these stepsize sequences are not used in practice for deep learning
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Outline

Natural strategy:

decrease learning rate when no more progress

Hopes: adaptive “restarts” to

• use “maximal step size” as long as useful

• adapt to unknown parameters.

Outline:

1. Convergence properties of SGD with piecewise constant learning
rates.

2. Detecting Stationarity: Pflug’s Statistic

3. Detecting Stationarity: new heuristic.

“Restart” : nothing to restart, just changing the learning rate !
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“Omniscient strategies”. What
can we achieve with piecewise
constant step sizes ?



What rate can you get if you use a large step size for as long as possible
and you decrease it when the loss saturates ?
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Oracle algorithm

Theorem (Needell 2014)

E
[∥∥θn −θ∗

∥∥2
]
≤ (1−bγ)n ∥∥θ0 −θ∗

∥∥2 + cσ2γ+O(γ2),

where b, c depend on f and σ2 = E[‖ξ(θ∗)‖2].
Theoretical procedure: Let p,r ∈ [0,1]. Start with l.r. γ0, stop at ∆n1:

E
[∥∥θn −θ∗

∥∥2
]
≤ [1−2γ0µ]nE

[∥∥θ0 −θ∗
∥∥2

]
︸ ︷︷ ︸

∆n1 s.t ( )

+ σ2

µ
γ0︸ ︷︷ ︸

= p×( )

.

Set γ1 = rγ0 and restart from θn1 = θ∆n1 :

E
[∥∥θn −θ∗

∥∥2
]
≤ [1−2γ1µ](n−n1)E

[∥∥θn1 −θ∗
∥∥2

]
︸ ︷︷ ︸
∆n2 s.t ( )

+ σ2

µ
γ1︸ ︷︷ ︸

= p×( )

.

etc.

(Related but slightly different from Hazan Kale 2010, e.g.)
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Oracle algorithm analysis, good news

Theorem (Strongly convex + smooth)
Following the previous oracle procedure and assuming that
‖θ0 −θ∗‖2 ≤ (p +1)σ

2

µ γ0:

E
[∥∥θnk −θ∗

∥∥2
]
≤ (p +1)

σ2

1− r
ln

(
(1+ 1

p
)

1

µr

)
1

µ2nk
.

≤O

(
1

µ2nk

)

• The upper bound can be optimized over p and r

• Purely theoretical result since none of these constants are known.

• The step size sequence produced is piecewise constant and ’imitates’
γn = 1/µn.

Beyond the Smooth & Strongly convex : uniformly convex functions
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Assumptions on f

Convexity:

• Weak convexity: f (θ1) ≥ f (θ2)+〈 f ′(θ2), θ1 −θ2〉
• Strong convexity, µ> 0: f (θ1) ≥ f (θ2)+〈 f ′(θ2), θ1−θ2〉+ µ

2 ‖θ1 −θ2‖2

• Uniform convexity: f is uniformly convex with parameters µ> 0,
ρ ∈ [2,+∞[ if:

f (θ1) ≥ f (θ2)+〈 f ′(θ2), θ1 −θ2〉+ µ

ρ
‖θ1 −θ2‖ρ

.

Smoothness:

• (L-smoothness) for any n ∈N, fn is L-smooth:∥∥ f ′
n(θ1)− f ′

n(θ2)
∥∥≤ L ‖θ1 −θ2‖ a.s.

• (Non-smooth, bounded gradients) bounded gradients framework:

E
[∥∥ f ′

n(θn−1)
∥∥2

]
≤G2
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Non-smooth, uniformly convex setting

Proposition (PDF 2020)
If f is a uniformly convex function with parameter ρ > 2 with
G-bounded gradients then:

E
[

f (θn)− f (θ∗)
]≤C

(
1

γn

)1/τ

+G2 log(n)γ

Where τ= 1− 2
ρ ∈ [0,1]

In the finite horizon framework, this results in:

E
[

f (θn)− f (θ∗)
]≤O

(
log N

N 1/(1+τ)

)
Notice that 1

1+τ ∈ [0.5,1], we have an interpolation between the weakly
convex and strongly convex cases.

• Juditsky Nesterov 2014 have a similar rate with a different algorithm

• Roulet et d’Aspremont have the N−1/τ rate for GD.
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Restart at saturation

Considering the previous upper bound: and following the previous
“oracle” procedure (restart when Bias= p ×Var )

Theorem (PDF 20)

f (θnk )− f (θ∗) ≤O

(
log(nk )n

− 1
1+τ

k

)

As before, the strategy of constant steps with “restart at saturation” gives
satisfying rates (as good as the best known strategy for decaying steps)
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Numerical simulation in the quadratic case
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Figure 4: Oracle constant piece wise SGD
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Numerical simulation in the uniformly convex case

Vanilla example: f (θ) = 1
ρ
‖θ‖ρ where ρ = 2.5, rate of ∼ n−0.8.
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Figure 5: Oracle constant piece wise SGD for a uniformly convex function
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Conclusion 1

Oracle procedure has good theoretical guarantees and it adapts to the
framework (smoothness, uniform convexity, deterministic).

But:

• Constants are un-known.

• Computing the loss to detect saturation would be very time
consuming

Can we detect saturation without having access to the loss values ?
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Detecting stationarity with
statistics. Pflug’s statistic:

S(γ)
n = 1

n

n−1∑
k=0

〈 f ′
k+1, f ′

k+2〉



Pflug’s statistic S(γ)
n = 1

n

∑n−1
k=0〈 f ′

k+1, f ′
k+2〉

Pflug’s idea:

• During transient phase: E
[〈 f ′

n+1, f ′
n+2〉

]> 0

• Stationary phase: E
[〈 f ′

n+1, f ′
n+2〉

]< 0
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Pflug’s algorithm (1983)

Algorithm 1 Piecewise constant SGD using Pflug’s statistic

INPUT: θ0, γ0 > 0, nb > 0, r ∈ [0,1], N > 0 OUTPUT: θN

S ← 0

last_restart← 0

θ1 ← θ0 −γ f ′
1(θ0)

for n = 2 to N do
θn ← θn−1 −γ′n(θn−1)

S ← S +〈 f ′
n(θn−1), f ′

n−1(θn−2)〉
if n > last_restart+nb and S < 0 then

last_restart← n

S ← 0

γ← r ×γ

end if
end for
return θN
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Our results

2 main results:

1. Proving that it makes sense

2. Proving that it fails

Why ?
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Formalization

Proposition (Pflug 1990), (Chee & Toulis 2018) (PDF 2020)

In the quadratic semi-stochastic setting where f (θ) = 1
2θ

T Hθ and i.i.d
noise ξi (E

[
ξξT

]=C):

Eπγ
[〈 f ′

1, f ′
2〉

]= Eπγ [〈 f ′
1(θ), f ′

2(θ−γ f ′
1(θ))〉]=−γTr HC (2I −γH)−1 < 0.

1. Proves that asymptotically, under stationary distribution, the inner
product is negative on average.

2. The proof in Chee & Toulis (Aistats 18) is incomplete

3. We also extend the result to a non asymptotic version of the
expectation under the restart startegy: if θrestart ∼πγ and we restart
with a new constant step size γnew = r ×γ, . Then:

Eθ0∼πγ
[

S(rγ)
n

]
= 1

4n

(
1

r
−1

)
Tr

[
I − (I − rγH)2n]

C − 1

2
rγTr HC +on(γ)
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General loss function

We extend the proof to general functions, exhibiting the same balance
between the positive and negative parts.

Theorem (general smooth + strongly convex setting) (PDF 2020)
For f verifying adequate assumptions:

Eπγ
[〈 f ′

1, f ′
2〉

]=−1

2
γTr f ′′(θ∗)C (θ∗)+O(γ3/2),

where C (θ∗) = E[
ξ(θ∗)ξ(θ∗)T

]
Conclusion: “it makes sense” the mean of Pflug’s statistic is negative
once we have reached the stationary distribution.

So why does it fail ?
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Implementation of Pflug’s algorithm

100 101 102 103 104 105 106
iteration n

10−3

10−2

10−1

100

101

||θ
n
−
θ
*|
|2

T tal number  f restarts = 34

SGD with Pflug's statistic
averaged 1 / 2 R2

Pflug restarts
0.0 0.2 0.4 0.6 0.8 1.0

iterati n n 1e6
−400

−200

0

200

400

600

Rescaled Pflug statistic

nSn since last restart
Pflug restarts

Figure 6: Pflug SGD: way to many restarts
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Implementation of Pflug’s algorithm
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Figure 7: Pflug SGD: way to many restarts
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Taking a closer look

• Eπγ
[〈 f ′

1, f ′
2〉

]
∝ γ.

• Var〈 f ′
1, f ′

2〉 =C ⊥⊥ γ

To detect Sn < 0 we typically need:

E
[

S(γ)
n

]
+

√
Var(S(γ)

n ) < 0

⇔ n > 1

γ2 Ànopt =O

(
1

γ

)
0.0 0.2 0.4 0.6 0.8 1.0

iteration n 1e6

−40

−20

0

20

40

< 
 f

n
+
1,
 f

n
+
2
>

Semi-stochastic least squares dataset, d = 10
1 / 2 R2

1 / 512 R2

Figure 8: High variance of 〈 f ′k , f ′k+1〉

Figure 9: High variance of Sn .

The averaging window needed to detect the signal is order of magnitude bigger
than the optimal restart time...
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Formalization

Theorem (Quadratic semi-stochastic framework)
Under symmetry assumptions on the noise, it holds that for all A > 0

and 0 ≤α< 2. Let nγ = bA/γαc. It holds that:

Pθ0∼πγ/r

(
S(γ)

nγ
≤ 0

)
−→
γ→0

1

2

• Therefore no fixed burn-in nb can solve the variance issue

• We would have to use at least a burn-in scaling as nγ = 1
γ2 , useless

since nopt ∝ 1
γ .

Conclusion: it fails... :(

(badly... Even mini-batch are not enough... Works if only multiplicative
noise but then useless...)
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Another heuristic: use
‖Ωn‖2 = ‖θn −θ0‖2.



Intuition B
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‖Ωn‖2 = ∥∥ηn
∥∥2 +∥∥η0

∥∥2 −2〈ηn , η0〉
E
[‖Ωn‖2]= E[∥∥ηn

∥∥2
]
+E

[∥∥η0
∥∥2

]
−2ηT

0 (I −γH)nη0.
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First few plots
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Algorithm

Algorithm 2 Piecewise constant SGD with new diagnosis
INPUT: θ0, γ0 > 0, r ∈ [0,1], N > 0, q > 1, threshold ∈ [0,1]

OUTPUT: θN

θrestart ← θ0

for n = 2 to N do
θn ← θn−1 −γ f ′

n(θn−1)

Compute ‖Ωn‖2

if ‖Ωn‖2 "has stopped increasing" then
γ← r ×γ

θr est ar t ← θn

end if
end for
return θN
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Experiments: Least squares
(smooth, strongly convex, synthetic dataset)
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Experiments: Logistic regression
(smooth, weakly convex, synthetic dataset)

100 101 102 103 104 105 106

iterate n

10−5

10−4

10−3

10−2

10−1

f(θ
n)
(
f(θ

*)

Log omega SGD (r = 1/2,   = 1.5)

online newton
current iterate
restarts

100 101 102 103 104 105 106
iterate n

10(8

10(6

10(4

10(2

100

||θ
n
(
θ r

es
ta
rt
||2

Omega statistic evolution

100 101 102 103 104 105 106
iterate n

10(5

10(4

10(3

10(2

10(1

f(θ
n)
(
f(θ

*)

Log omega SGD (r = 1/4,   = 2)

online newton
current iterate
restarts

100 101 102 103 104 105 106
iterate n

10(8

10(6

10(4

10(2

100

||θ
n
(
θ r

es
ta
rt
||2

Omega statistic evolution

100 101 102 103 104 105 106
iterate n

10(5

10(4

10(3

10(2

10(1

f(θ
n)
(
f(θ

*)

Log omega SGD (r = 1/16,   = 2)

online newton
current iterate
restarts

100 101 102 103 104 105 106
iterate n

10(9

10(7

10(5

10(3

10(1

101

||θ
n
(
θ r

es
ta
rt
||2

Omega statistic evolution

38 / 47



Experiments: Logistic regression
COVERTYPE dataset
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Experiments: SVM
(non-smooth, strongly-convex, synthetic dataset)
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Experiments: LASSO
(non-smooth, weakly convex, synthetic dataset)
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Experiments: Uniformly convex ρ = 2.5
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Back to the beginning
Training a ResNet18 on Cifar10

test_loss

━ omega_stat_r=10━ state_of_art

omega

━ omega_stat_r=10

Figure 11: Single statistic for whole network
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Back to the beginning
Training a ResNet18 on Cifar10

test_loss

━ mult_omegas_r=10━ state_of_art

omega

━ mult_omegas_r=10━ state_of_art

Figure 12: Statistic for each layer (multiple learning rates)
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Conclusions

1. Constant step size strategies for SGD restarting “at saturation”
result in good convergence rates (in both smooth + strongly convex
and uniformly convex settings).

2. Pflug’s strategy for detecting convergence seems sound but cannot
work a priori

3. We propose a new statistic based on heuristic arguments, that works
well in practice.
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Directions

Open directions:

1. Theoretical analysis for the “new restart” strategy

2. Restart for the averaged iterate ?

3. Better understanding in deep learning.

46 / 47



Shameless advertisement

Positions at Polytechnique:

• 2 tenure track assistant professors (Stat & Stat + Energy)
• Postdoc & PhD

Optimization, Learning, Federated Learning, High dimensional statistics.

Figure 13: The place to be 47 / 47



Thank you for listening!
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