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Questions

1. Feel free to ask any question.
2. Let me ask a few ones first:

e Who knows about Stochastic Gradient Descent?

e Who knows the convergence rate for the last iterate instead of the
averaged iterate?

e Who knows about Pflug's convergence diagnosis?
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Why would we still talk about SGD ?

Objective function f:D — R to minimize

0n1=0, _Yn+1f,;+1(9n) =0, —Yn+1 (f,(en) + Stn+1(9n))-
What choice for the learning rate (yn)nen ?
As often:

e Theoreticians (¥) came up with optimal answers (convex setting).
e Practitioners do not use them !

If it works in theory it also works in practice — in theory.
Why not?

1. Step size in SGD often depends on unknown parameters (esp.
u-strong convexity).

2. May be very sensitive to those parameters.

3. Does not adapt to the noise and function regularity.
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A few observations

Large learning rates often converge faster at the beginning
But then results in saturation: two phases behavior.

Theory suggests to use the Polyak-Ruppert averaged iterate, but the
final one might not be that bad.

In Deep Learning, common practice is to use a constant learning
rate, reduced occasionally.
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a) Large learning rates often converge faster at the beginni

SGD nearly always results in a Bias (initial condition) - Variance (noise)
tradeoff.

A large initial learning rate maximizes the decay of the bias.
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Figure 1: Logistic regression on the Covertype Dataset / Synthetic Dataset
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Saturation and limit distribution: two phases

e “Transient phase" during which the initial conditions are forgotten
exponentially fast.
e "Stationary phase" where the iterates oscillate around 6*

Synthetic logistic dataset d = 2 Synthetic logistic dataset d = 2

1/128 R transient
1/128 R? stationnary
— averaged

0o 02 oa 05 08 10 o0 Tor oz To* Tot o> Toe
iteration n

Figure 2: Constant step size SGD (2 dimensionnal) path illustration.
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For smooth and strongly convex functions, Hn(w)ﬂ,,, limit distribution”.
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my is a stationary distribution.
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c) Polyak-Ruppert averaged iterate vs final one.

Instead of just the final iterate 99/), we can consider the PR-averaged:

% Strongly reduces the impact of the noise.
% Slows down the Bias term.

How bad is the last iterate...?

It depends!
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c) Polyak-Ruppert averaged iterate vs final one.

Final Iterate Average

Convex & Smooth

Strongly convex & Smooth
No noise (deterministic)
Finite dimensional quadratic

Kernel Regression

The Proof by Shamir & Zhang is nice !
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c) Polyak-Ruppert averaged iterate vs final one. 2

Qr\ = ortm:aQ
Final Iterate Average
Convex & Smooth foq v A
rE o wt ,,J_
Strongly convex & Smooth Oﬁ + o A opt
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No noise (deterministic) v ed\lc
Finite dimensional quadratic \/ °r\,
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The Proof by Shamir & Zhang is nice !
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Previous work: with decreasing step-sizes

(Moulines & Bach 2011), smooth + strongly convex

Setting vy, = W we get

e [lo.-0° 1] =0

)
(Shamir & Zhang 2012), bounded gradients + strongly convex

Setting y, = Nl we get

n
w1 ~[log(n)
E[f©6,)-f©O )]_o(—lm )

(Shamir & Zhang 2012), bounded gradients + weakly convex
Setting v, = \/Lﬁ we get

log(n))

E[f©6,) - fO")] = o( NG
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d) Deep Learning: training NN

(1 - test_accuracy)

0.3 learning rate divided by 10

Step

20k 40k 60k 80k 100k

Figure 3: Typical accuracy curve in deep learning (Cifarl0 dataset, Resnet18).

11/47



Overall...

e in the strongly convex case, u is often unknown and hard to evaluate.

e a slight misspecification of y can lead to arbitrarily slow convergence
rates (see Moulines & Bach 2011)

e we would like to make use of the uniform convexity assumption
e ideally we would like a learning rate sequence that adapts to f

e these stepsize sequences are not used in practice for deep learning
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Qutline

Natural strategy:
decrease learning rate when no more progress

Hopes: adaptive “restarts” to

e use “maximal step size” as long as useful

e adapt to unknown parameters.
Outline:

1. Convergence properties of SGD with piecewise constant learning
rates.

2. Detecting Stationarity: Pflug’s Statistic

3. Detecting Stationarity: new heuristic.

“Restart” : nothing to restart, just changing the learning rate !
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“Omniscient strategies’. What
can we achieve with piecewise
constant step sizes ?



What rate can you get if you use a large step size for as long as possible
and you decrease it when the loss saturates 7
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Oracle algorithm

Theorem (Needell 2014)

E

where b, ¢ depend on f and o =E[lIE(@%)1I%].

1626 |2] < 1= by |60 - 6°|* + co?y + 00/,

Theoretical procedure: Let p,r €10,1]. Start with l.r. yg, stop at Any:

E

T

~~

Any st ( )

100-0"17] +

Set y1 = ryp and restart from 0, =0ap,:

E

00 =0 "] < 12y e [0, ~0° ] +

Any st ( )

etc.

(Related but slightly different from Hazan Kale 2010, e.g.)
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Oracle algorithm analysis, good news

Theorem (Strongly convex + smooth)
Following the previOszs oracle procedure and assuming that
160 6*11% < (p+ 1) % yo:

2
* |2 g 1 1 1
E[ 6, - 0" ]S(p+l):ln((l+;)m)uznk.

<0

m
p2ny

e The upper bound can be optimized over p and r

e Purely theoretical result since none of these constants are known.

e The step size sequence produced is piecewise constant and 'imitates’
Yn=1/un.



Assumptions on f

Convexity:

e Weak convexity: f(01) = f(02) + (f'(02), 01 —02)
e Strong convexity, 11> 0: f(61) = f(62)+(f'(62), 61—02)+ 5110 — 62
e Uniform convexity: f is uniformly convex with parameters >0,

p € [2,+o0] if:

FO) = F02)+(f©0), 01—62>+%||01—02||P

Smoothness:
e (L-smoothness) for any n€N, f;, is L-smooth:
[ £701) = £,02)|| < L1601 621 as.
e (Non-smooth, bounded gradients) bounded gradients framework:

E[I£10,0 ] =6
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Non-smooth, uniformly convex setting

Proposition (PDF 2020)
If £ is a uniformly convex function with parameter p >2 with
G-bounded gradients then:

1 l/T
E[£On) - 0] < c(y—n) o iy
Where TZI—%E [0,1]

In the finite horizon framework, this results in:
B logN
E[f(6n) - f0O9)] < O(m)

Notice that ﬁ €[0.5,1], we have an interpolation between the weakly

convex and strongly convex cases.

e Juditsky Nesterov 2014 have a similar rate with a different algorithm

e Roulet et d’Aspremont have the N™1/T rate for GD.
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Restart at saturation

Considering the previous upper bound: and following the previous
“oracle” procedure (restart when Bias = p x Var )

Theorem (PDF 20)

_ 1
fOn) -0 < O(log(nk)nk M)

As before, the strategy of constant steps with “restart at saturation” gives
satisfying rates (as good as the best known strategy for decaying steps)

19/47



Numerical simulation in the quadratic case

Synthetic LS SGD, oracle piecewise constant, r = 1/4

10°
1071
_ 10
e
.
€10 .
10 s
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e o
10°° piecewise constant
10 10’ 1 10° 10* 10° 10°

Figure 4: Oracle constant piece wise SGD
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Numerical simulation in the uniformly convex case

Vanilla example: f(0) = % [011° where p =2.5, rate of ~n=08,
SGD with (6) = [|6]I",r = 2.5, T=1 - 2/r, d = 200
Va following restart strategy 10714 Y, from restart strategy
. o JRlihosy
Yn=1Wn — Ya=1N7

8,
",

= R .
) >
=
107t
104
107
10
107
10°¢
10° 10t 102 10° 10" 10° 108 10° 100 107 107 10° 10° 108
iteration n iteration n

Figure 5: Oracle constant piece wise SGD for a uniformly convex function
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Conclusion 1

Oracle procedure has good theoretical guarantees and it adapts to the
framework (smoothness, uniform convexity, deterministic).

But:

e Constants are un-known.

e Computing the loss to detect saturation would be very time
consuming

Can we detect saturation without having access to the loss values ?
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Detecting stationarity with
statistics. Pflug’s statistic:

1 n—-1

(62]

Sn =~ Z<flé+1’ o
n o




Pflug's statistic

Pflug’s idea:

e During transient phase: E[(f] ,, f,,,)] >0
e Stationary phase: E[flq [l <O

Synthetic logistic dataset d = 2

— 35,

x 6, transient

x
X 6, stationnary Ok
e 6 x
A 6.

0.0 0.2 0.4 0.6 0.8 1.0

(6,) - f6+)

Synthetic logistic dataset d = 2
-1 ]
00 e 1/128 R? transient
..... 1/128 R? stationnary
102 ] — averaged
10734
1074 4
107° 4
1076 4
10° 101 10° 10° 10 10° 108

iteration n
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Pflug's algorithm (1983)

Algorithm 1 Piecewise constant SGD using Pflug’s statistic

INPUT: 6y, y0>0, n,>0, r€[0,1], N>0 OUTPUT: 0y

§—0
last restart — 0
01— 00—y f{(00)
for n=2to N do
Qn — Hn—l - Y’n(gn—l)
S—S+ <frll(9n—1)r f,’l_l(en—Z»
if n>last restart+ny, and S<0 then
last restart —n
S0
Y —rxy
end if
end for

return Oy
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Our results

2 main results:

1. Proving that it makes sense

2. Proving that it fails

Why ?
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Formalization

Proposition (Pflug 1990), (Chee & Toulis 2018) (PDF 2020)

In the quadratic semi-stochastic setting where f(0) =167 HO and i.i.d
noise &; (E[£¢T] = C):

Ex, [(fl, 1] =Ex, [(1©), £O-7fO))]=~yTr HC@I-yH)™ <O0.

1. Proves that asymptotically, under stationary distribution, the inner
product is negative on average.

2. The proof in Chee & Toulis (Aistats 18) is incomplete

3. We also extend the result to a non asymptotic version of the
expectation under the restart startegy: if Orestart ~ 7, and we restart
with a new constant step size Ypew =7 %7y, . Then:

n

1 (1 1
S(m] = (7 _ I)Tr[l— (I— ryH)Z"] C- 5ryT1rHC+ 0,(y)

[E30~71y

N
[¢3)
~
N
~



General loss function

We extend the proof to general functions, exhibiting the same balance
between the positive and negative parts.

Theorem (general smooth + strongly convex setting) (PDF 2020)

For f verifying adequate assumptions:
1
Er, [f, ] = =57 T 10960 +00™),
where €(0*) =E[£(0")E0%)T]

Conclusion: “it makes sense” the mean of Pflug's statistic is negative
once we have reached the stationary distribution.

So why does it fail ?
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Implementation of Pflug’s algorithm

Total number of restarts = 34 Rescaled Pflug statistic
10t 600
o 10° 400
-
© 107! 200
[ {
<
D 1072 i EEE (0] ma 1| [ | St ] 0 a—

—— SGD with Pflug's statistic
10-3 averaged 1/2 R? -200
Pflug restarts

—— nS, since last restart
Pflug restarts

10° 10t 10% 10° 10% 10° 10° 0.0 0.2 0.4 0.6 0.8 1.
iteration n iteration n 1e6

Figure 6: Pflug SGD: way to many restarts
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Implementation of Pflug’s algorithm

r=1/4,n,=10? Rescaled Pflug statistic

200
—— nS, since last restart
150 Pflug restarts
100
H 50
—— SGD with Pflug's statistic
103 averaged 1/2 R? 0
0 Pflug restarts
~ = =50
10° 10t 102 10° 104 10° 10° 10° 10! 102 10° 104 10° 109
iteration n iteration n
r=1/10, n,=10* Rescaled Pflug statistic
H 1000
10 T
500
04-
H -500
—— SGD with Pflug's statistic 1000
i averaged 1/2 R? —— nS, since last restart
10 Pflug restarts —=1500 Pflug restarts

0.0 0.2 0.4 0.6 0.8 1.0

100 10* 102 10® 10° .
iteration n le6

iteration n

Figure 7: Pflug SGD: way to many restarts
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Taking a closer look

o Exn, [(f], ]y s
o Var(f], fy=Clly . =i

To detect S, <0 we typically need:

+y/Var(s?) <0

Wpor Vhyaa>

E

s

1 1
& n> }7>>no,,t =0|- EE

Figure 8: High variance of (f]é, flé+1>

window size = noge = 1€3 window size = 4., = 204063

0~ 0.}

Figure 9: High variance of S,.
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Formalization

Theorem (Quadratic semi-stochastic framework)
Under symmetry assumptions on the noise, it holds that for all A>0
and 0<sa<2. Let n, = [A/y®]. It holds that:

%) 1
|P60~ny/r (Sn], = 0) }:6 E

e Therefore no fixed burn-in n; can solve the variance issue

e We would have to use at least a burn-in scaling as n, = Y_lz useless

H 1
since n oC =,
opt

Conclusion: it fails... :(

(badly... Even mini-batch are not enough... Works if only multiplicative
noise but then useless...)
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Another heuristic: use
120,017 = 118, — 0olI%.




Intuition A\

Synthetic logistic dataset d = 2 Synthetic logistic dataset d = 2
— 5, 10 1/128 R? transient
X 6, transient X 1/128 R? stationnary
x 6, stationnary % . — averaged
. 0 x .
A 6 *
10
s
g
]
<107
2
10°°
10°°
0.0 0.2 0.4 06 08 10 10° 10! 10? ? 104 10° 10°

iteration n

12,12 = [7])* + |70])* = 27, 10>
E(19412]) = E{na]®| +E [ Inoll*| - 208 (1 =y ED"no.
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First few plots

116 — 6|2 in plain, f(6,) — f(6-) in dotted
Synthetic logistic regression

— 1/8R?
1/512R?

o
o
o
10° 10 10? . 1:!3 104 10° 10°
Figure 10: [0, -6yl in plain, "H”Z(Gn—H*) 2 in dotted
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Algorithm

Algorithm 2 Piecewise constant SGD with new diagnosis
INPUT: 6y, y0>0, re[0,1], N>0, g>1, threshold € [0,1]
OUTPUT: 0y

Grestart - 90
for n=2to N do
On—0n1-7fOn-1)
Compute Q2,11
if 1Q,1? "has stopped increasing" then
Y —rxy
Orestart - en
end if
end for
return Oy
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Experiments: Least squares
(smooth, strongly convex, synthetic dataset)
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Experiments: Logistic regression
(smooth, weakly convex, synthetic dataset)
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Experiments: Logistic regression

COVERTYPE dataset

1/2,9 =15, thresh = 0.4 Evolution of the distance-based statistic
N 100 restarts
= 10
= 8 /
10 4
| — online newton @ 10 / /
5 averaged 1/RWVTT |C 1o
T 10) — averaged CRAVT o
— distance-based SGD 10
B restarts 100
e e e W Tor  1or 107 10° 16°  10°  10°
iteration n iteration n
Params: r = 1/4, g = 2, thresh = 0.9 Evolution of the distance-based statistic
_— 100 1
e b0 /#» (/(F
g % 10
10 <
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< averaged 1RV L
T 10] — averaged CRAVA @ 10
— distance-based SGD =
restarts 10710 restarts
R T A e Tor 1ot 107 10° 167 166 10°
iteration n iteration n
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Experiments: SVM

(non-smooth, strongly-convex, synthetic dataset)

LS omega SGD (r = 1/4, q = 2) Omega statistic evolution
. 100 /_J/—”/-/_‘
10°
1072 //f./”'
P
o © 107 r~
) H
= & 100
107 "
= £ 100
102 10-10
1/un
current terate 1012
Lo restarts
10° 10* 102 10° 10* 10° 10° 10° 10t 107 10° 10t 10° 10°
iterate n iterate n
LS omega SGD (r = 1/16, q = 2) Omega statistic evolution
10"
100 /—"_/_/_,v
1072
107!
- 107
)
]
L0 < 1070
€ <
102 10-11
1/un
" current iterate 1071
10 restarts.
10° 10° 102 10° 10* 10° 10° 10° 10t 107 10° 10t 10° 10°
iterate n iterate n
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Experiments: LASSO

(non-smooth, weakly convex, synthetic dataset)

Lasso, omega SGD (r = 1/2, q = 2) Omega statistic evolution
10 restarts
107!
10° *
1 v
! N
s A
= 10 o 107
1/VA stepsizes 106
Loue ] e current terate
estarts
100 10t 107 10° 104 10° 10° 100 10t 102 10® 104 10% 106
ferate n ferate n
Lasso, omega SGD (r = 1/4, q = 2) Omega statistic evolution
1T stepsizes restarts
. current terate )
restarts 10
_ 107t
S
i
=102
c
1073
107
100 10t 107 10® 104 10° 10° 100 10t 102 10® 104 10° 106

iterate n iterate n
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Experiments: Uniformly convex p=2.5

fle,) —fie*)

_1 -
f6)=53110117, p=2.5 Step sizes Distance-based statistic
— distance-based, r= 112
distance-based, r= 114
—— distance based, r= 18

o
[

w0 100 100

10 100 100 10 w0 100 100 100 100
iteration n iteration n iteration n
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Back to the beginning

Training a ResNet18 on Cifar1l0

test_loss omega
- omega_stat_r=10 - omega_stat_r=10
8000
1
09
0.8 6000
0.7
0.6
05 4000
0.4
2000
0.3
Step, Stej
Do 0 P
20k 40k 60k 80k 100k 20k 40k 60k 80k 100k

Figure 11: Single statistic for whole network
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Back to the beginning

Training a ResNet18 on Cifar1l0

test_loss omega
- mult_omegas_r=16 - mult omegas_r=16
8000
1
09
0.8 6000
0.7
0.6
05 4000
0.4
03 2000
Step Stej
F 0 p
20k 40k 60k 80k 100k 20k 40k 60k 80k 100k

Figure 12: Statistic for each layer (multiple learning rates)
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Conclusions

1. Constant step size strategies for SGD restarting “at saturation”
result in good convergence rates (in both smooth + strongly convex
and uniformly convex settings).

2. Pflug's strategy for detecting convergence seems sound but cannot
work a priori

3. We propose a new statistic based on heuristic arguments, that works
well in practice.
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Directions

Open directions:

1. Theoretical analysis for the “new restart” strategy
2. Restart for the averaged iterate ?

3. Better understanding in deep learning.

46 / 47



Shameless advertisement

Positions at Polytechnique:

e 2 tenure track assistant professors (Stat & Stat + Energy)
e Postdoc & PhD

Optimization, Learning, Federated Learning, High dimensional statistics.

Figure 13: The place to be 47 / 47



Thank you for listening!
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