Bi-directional compression for Federated Learning: Artemis & MCM

Aymeric Dieuleveut CMAP, École Polytechnique, Institut Polytechnique de Paris

Joint work with Constantin Philippenko

Artemis: a framework for bi-compression in heterogeneous settings Theorems Experiments

Reducing the impact of downlink compression: MCM

Learning from a set of N agents: $\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathscr{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}.$

Learning from a set of N agents: $\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathscr{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}.$

Learning from a set of N agents: $\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathscr{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}.$

 \rightarrow 4 major challenges.

Learning from a set of N agents: $\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathscr{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}.$

 \rightarrow 4 major challenges.

Privacy

Learning from a set of N agents: $\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathscr{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}.$

 \rightarrow 4 major challenges.

Privacy Non i.i.d. agents

Learning from a set of N agents: $\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathscr{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}.$

 \rightarrow 4 major challenges.

Privacy Non i.i.d. Optimization with agents bandwidth constraints

Learning from a set of N agents: $\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathscr{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}.$

 \rightarrow 4 major challenges.

Privacy	Non i.i.d.	Optimization with	Partial
	agents	bandwidth constraints	participation

Two Classical Examples

Collaboration between hospitals:

Map of the hospitals in 13-14th arrondissements

Two Classical Examples

Collaboration between hospitals:

Map of the hospitals in 13-14th arrondissements

Building a collaborative and personalized text model:

Two Classical Examples

Collaboration between hospitals:

Map of the hospitals in 13-14th arrondissements

Building a collaborative and personalized text model:

4 / 30

Artemis: a framework for bi-compression in heterogeneous settings

Goal: Learn a **consensus** $w_* = \operatorname{argmin} F(w)$.

Algorithm: Stochastic Gradient Descent (SGD):

- We iteratively build a sequence of models $(w_k)_{k\geq 0}$.
- Worker *i* can compute an unbiased estimate g_k^i of the gradient of F_i at the current point w_{k-1} : e.g., $g_k^i := \nabla_w \ell(w_{k-1}, z_k^i)$.
- The central server can update the model computing: $w_k = w_{k-1} - \gamma \frac{1}{N} \sum_{i=1}^N g_k^i.$

Goal: Learn a **consensus** $w_* = \operatorname{argmin} F(w)$.

Algorithm: Stochastic Gradient Descent (SGD):

- We iteratively build a sequence of models $(w_k)_{k\geq 0}$.
- Worker *i* can compute an unbiased estimate g_k^i of the gradient of F_i at the current point w_{k-1} : e.g., $g_k^i := \nabla_w \ell(w_{k-1}, z_k^i)$.
- The central server can update the model computing: $w_k = w_{k-1} - \gamma \frac{1}{N} \sum_{i=1}^N g_k^i.$

4 challenges / constraints:

- 0. potentially large group of N agents, with high dimensional data,
- 1. bandwidth constraints
- 2. potentially with inactive agents at certain iterations
- 3. distribution shift between agents
- 4. "weak" assumptions on the noise on the gradients estimates

In the following, we will enumerate 4 assumptions.

Compression

Several papers considered unidirectional compression, only from the workers to the server.

• Relies on the assumption that the communication cost is higher from the workers to the central node than in the other direction.

Compression

Several papers considered unidirectional compression, only from the workers to the server.

• Relies on the assumption that the communication cost is higher from the workers to the central node than in the other direction.

Figure 1: Upload/download speed (in Mbps) for mobile and fixed broadband on left axe. The dataset is gathered from *Speedtest.net*

To limit the number of bits exchanged, we **compress** each signal before transmitting it.

We introduce compression operators \mathscr{C}_{down} and \mathscr{C}_{up} .

Assumption 1

For dir \in {up, down}, there exists a constant $\omega_{\mathscr{C}}^{\text{dir}} \in \mathbb{R}^*$ s.t. \mathscr{C}_{dir} satisfies. for all Δ in \mathbb{R}^d :

$$\mathbb{E}[\mathscr{C}_{\operatorname{dir}}(\Delta)] = \Delta \quad \text{and} \quad \mathbb{E}\left[\|\mathscr{C}_{\operatorname{dir}}(\Delta) - \Delta\|^2\right] \le \omega_{\mathscr{C}}^{\operatorname{dir}} \|\Delta\|^2.$$

Several well-known compression operator: quantization, sparsification, top-k coordinates.

 \hookrightarrow Assumption on the compression operator & compression level

An example of compression operator

Definition 1 (s-quantization operator)

Given $\Delta \in \mathbb{R}^d$, the *s*-quantization operator \mathscr{C}_s is defined by:

$$\mathscr{C}_{s}(\Delta) := sign(\Delta) \times \|\Delta\|_{2} \times \frac{\psi}{s}.$$

 $\psi \in \mathbb{R}^d$ is a random vector with *j*-th element defined as:

$$\psi_j := \left\{ \begin{array}{ll} l+1 & \text{with probability } s \frac{|\Delta_j|}{\|\Delta\|_2} - l \\ l & \text{otherwise.} \end{array} \right.$$

where the level l is such that $\frac{\Delta_i}{\|\Delta\|_2} \in \left[\frac{l}{s}, \frac{l+1}{s}\right]$.

Bi-directional compression

Figure 2: The mechanism of bi-directional compression. First we compress the gradients sent from remote devices, secondly we compress the average of compressed gradient that will be broadcast by the server.

 $\Rightarrow \text{ The update equation becomes: } w_k = w_{k-1} - \gamma \mathscr{C}_{\text{down}} \left(\frac{1}{N} \sum_{i=1}^N \mathscr{C}_{\text{up}}(g_k^i) \right)$

Motivation: The distribution of the observations on worker i and j are often different.

Assumption 2	
For all $i \in [N]$:	$\ \nabla F_i(w_*)\ ^2 \le \mathbf{B}^2$

Motivation: The distribution of the observations on worker i and j are often different.

Assumption 2

For all $i \in [N]$:

$$\|\nabla F_i(w_*)\|^2 \le \mathbf{B}^2$$

Challenge: Compression of a quantity that goes to 0 ! **Solution:** Compute (on the server and the worker independently) a "**memory**" h_k^i s.t. $h_k^i \rightarrow_{k\rightarrow\infty} \nabla F_i(w_*)$.

Motivation: The distribution of the observations on worker i and j are often different.

Assumption 2

For all $i \in [N]$:

$$\|\nabla F_i(w_*)\|^2 \le \mathbf{B}^2$$

Challenge: Compression of a quantity that goes to 0 !

Solution: Compute (on the server and the worker independently) a "memory" h_k^i s.t. $h_k^i \rightarrow_{k \rightarrow \infty} \nabla F_i(w_*)$.

 \Rightarrow The update equation becomes:

$$w_k = w_{k-1} - \gamma \mathcal{C}_{\text{down}} \left(\frac{1}{N} \sum_{i=1}^N \mathcal{C}_{\text{up}}(g_k^i - h_k^i) + h_k^i \right)$$
$$h_{k+1}^i = h_k^i + \alpha \mathcal{C}_{\text{up}}(g_k^i - h_k^i)$$

Motivation: In practice, some workers may be unavailable / switched off.

 w_k model at iteration k. $\mathcal{C}_{\text{down}}$, \mathcal{C}_{up} compression operators. h_k^i memory term and g_k^i gradient. α learning rate for the memory, γ step size for the training.

 \Rightarrow The update equation becomes:

$$w_{k} = w_{k-1} - \gamma \mathscr{C}_{\text{down}} \left(\frac{1}{pN} \sum_{i \in S_{k}} \mathscr{C}_{\text{up}}(g_{k}^{i} - h_{k}^{i}) + h_{k}^{i} \right)$$
$$h_{k+1}^{i} = h_{k}^{i} + \alpha \mathscr{C}_{\text{up}}(g_{k}^{i} - h_{k}^{i})$$

We maintain the same models on all active workers by broadcasting the updates they have missed.

Motivation: In practice, some workers may be unavailable / switched off.

 w_k model at iteration k. $\mathcal{C}_{\text{down}}$, \mathcal{C}_{up} compression operators. h_k^i memory term and g_k^i gradient. α learning rate for the memory, γ step size for the training.

 \Rightarrow The update equation becomes:

$$w_{k} = w_{k-1} - \gamma \mathscr{C}_{\text{down}} \left(\frac{1}{pN} \left(\sum_{i \in S_{k}} \mathscr{C}_{\text{up}}(g_{k}^{i} - h_{k}^{i}) \right) + h_{k} \right)$$
$$h_{k+1}^{i} = h_{k}^{i} + \alpha \mathscr{C}_{\text{up}}(g_{k}^{i} - h_{k}^{i}), \quad h_{k} = \frac{1}{N} \sum_{i=1}^{N} h_{k}^{i}$$

We maintain the same models on all active workers by broadcasting the updates they have missed.

Classical assumption: uniformly bounded variance:

$$\forall k \geq 1, \forall i \in [N], \quad \mathbb{E}\left[\left\|g_k^i(w_k) - \nabla F_i(w_k)\right\|^2\right] \leq \sigma^2.$$

Assumption 3

Bounded variance at the optimal point:

$$\forall k \ge 1, \forall i \in [N], \quad \mathbb{E}\left[\left\|g_k^i(w_*) - \nabla F_i(w_*)\right\|^2\right] \le \sigma_*^2.$$

Important in the interpolation regime and because the uniform one is not valid for Least Squares regression !

Table 1: Relationship with other papers

	QSGD [1]	Diana [4]	Dore [2]	Double Squeeze [6]	Dist EF-SGD [7]	Artemis (new) [5]
Data	i.i.d	non i.i.d	i.i.d	i.i.d	i.i.d	non i.i.d
Bounded variance	Uniformly	Uniformly	Uniformly	Uniformly	Uniformly	At optimal point
Compression Error compensation	One-way	One-way	Two-way ✓	Two-way ✓	Two-way ✓	Two-way
Memory		1	~			~
Device sampling						1

Convergence for an *L*-smooth and μ -strongly convex *F*

Theorem 1 (Convergence of Artemis)

For a step size γ , for a learning rate α and for any k in \mathbb{N} ,

$$\mathbb{E}\left[\|w_{k} - w_{*}\|^{2}\right] \le (1 - \gamma\mu)^{k} \left(\|w_{0} - w_{*}\|^{2} + 2C\gamma^{2}B^{2}\right) + 2\gamma \frac{E}{\mu N}$$

with

Variant	E	С
$\alpha = 0$	$(\omega_{\mathscr{C}}^{\text{down}}+1)\left((\omega_{\mathscr{C}}^{\text{up}}+1)\sigma_{*}^{2}+(\omega_{\mathscr{C}}^{\text{up}}+1)B^{2}\right)$	0
$\alpha \neq 0$	$\sigma_*^2 \left((2\omega_{\mathscr{C}}^{\text{up}} + 1)(\omega_{\mathscr{C}}^{\text{down}} + 1) \right)$	>0

and $\alpha(\omega_{\mathscr{C}}^{up}+1)=1/2$ in the second line

- Linear rate up to a constant of the order of E
- Memory $(\alpha \neq 0)$ is needed to obtain linear convergence when $\sigma_*^2 = 0$, in the non i.i.d. case, $B^2 \neq 0$.
- Recovers classical SGD rate in the absence of compression.
- The limit variance increases with the compression level.
- See paper for impact of *p*

We define a Lyapunov function V_k [as in 4], with k in [1,K] and p in \mathbb{R}^* :

$$V_k = \|w_k - w_*\|^2 + 2\gamma^2 C \frac{1}{N} \sum_{i=1}^N \left\|h_k^i - h_*^i\right\|^2.$$

The second part of the Lyapunov corresponds to the memory term: it is the distance between the next element prediction h_k^i and the true gradient $h_*^i = \nabla F_i(w_*)$.

We want to prove that is is a $(1 - \gamma \mu)$ contraction, we need to:

- 1. Get a first bound on $||w_k w_*||^2$
- 2. Find a recurrence over the memory term $\left\|h_k^i h_*^i\right\|^2$
- 3. Combines the two equations using regularity assumptions:

$$\mathbb{E}V_{k+1} \le (1 - \gamma\mu)\mathbb{E}V_k + 2\gamma^2 \frac{E}{N}$$

More general convergence

Theorem 2

Sublinear convergence rate for non-strongly convex functions.

Matching lower bound

Theorem 3

Lower bound on the asymptotic variance. For a constant step size, the distribution of the iterates converges (in W_2 distance) to a limit distribution which variance matches the upper bound.

Conclusions:

- Artemis provides provable reduction of the communication budget for a low precision threshold, and comes with tight guarantees.
- The noise variance at the optimal point is the meaningful quantity.
- For high-precision regimes, Double compression can become less efficient than vanilla SGD.

Experiments : 1 -Numerical validation of the results

Figure 3: Illustration of Artemis compared to existing algorithms on i.i.d. data. **Figure 4:** Illustration of the memory benefits when $\sigma_* = 0$: i.i.d. *vs* non-i.i.d.

Experiments : 1 -Numerical validation of the results

300 400

SGD QSGD $F(w^*))$ -2 Diana -4BIOSGE -6 Artemit SGD -6oson -8 -1040 200 Number of passes on data Number of passes on data (N=20, d=20) (N=20, d=2) (b) LR (non-i.i.d.)

Figure 3: Illustration of Artemis compared to existing algorithms on i.i.d. data.

Figure 4: Illustration of the memory benefits when $\sigma_* = 0$: i.i.d. vs non-i.i.d.

Group heterogeneity:

Experiments : 2 - Real Datasets

Figure 6: Superconduct (LSR), b = 200 (1000 iter.)

Figure 7: Quantum (LR), *b* = 800 (1000 iter.)

Experiments : 2 - Real Datasets

Figure 6: Superconduct (LSR), b = 200 (1000 iter.)

Group heterogeneity:

Figure 7: Quantum (LR), *b* = 800 (1000 iter.)

Figure 8: TSNE representation for quantum

Reducing the impact of downlink compression: MCM

Artemis:

$$w_{k} = w_{k-1} - \gamma \mathscr{C}_{\text{down}} \left(\frac{1}{N} \sum_{i=1}^{N} \mathscr{C}_{\text{up}}(g_{k}^{i}(w_{k-1})) \right)$$

MCM: key idea - preserve the model on the central server.

$$w_{k} = w_{k-1} - \gamma \left(\frac{1}{N} \sum_{i=1}^{N} \mathscr{C}_{up}(g_{k}^{i}(\hat{w}_{k-1})) \right)$$
$$\hat{w}_{k} = w_{k-1} - \gamma \mathscr{C}_{down} \left(\frac{1}{N} \sum_{i=1}^{N} \mathscr{C}_{up}(g_{k}^{i}(\hat{w}_{k-1})) \right)$$

1. Gradient is taken at a random point \hat{w}_k s.t. $\mathbb{E}[\hat{w}_k|w_k] = w_k$

2. Not realistic as it is: Ghost algorithm

Convergence for Ghost

1. Control the variance of the local iterate

Theorem 4 (Variance of the local iterates, Ghost)

$$\mathbb{E}\left[\|w_{k-1} - \widehat{w}_{k-1}\|^2 \mid \widehat{w}_{k-2}\right] \leq \gamma^2 \omega_{\mathscr{C}}^{\text{down}}\left(\frac{(1 + \omega_{\mathscr{C}}^{\text{up}})\sigma^2}{Nb} + \left(1 + \frac{\omega_{\mathscr{C}}^{\text{up}}}{N}\right) \|\nabla F(\widehat{w}_{k-2})\|^2\right).$$

Convergence for Ghost

1. Control the variance of the local iterate

Theorem 4 (Variance of the local iterates, Ghost)

$$\mathbb{E}\left[\|w_{k-1} - \widehat{w}_{k-1}\|^2 \mid \widehat{w}_{k-2}\right] \leq \gamma^2 \omega_{\mathcal{C}}^{\text{down}}\left(\frac{(1 + \omega_{\mathcal{C}}^{\text{up}})\sigma^2}{Nb} + \left(1 + \frac{\omega_{\mathcal{C}}^{\text{up}}}{N}\right)\|\nabla F(\widehat{w}_{k-2})\|^2\right).$$

2. Deduce convergence of the iterate sequence Proof technique: Perturbed iterate analysis [3]

$$\mathbb{E} \| w_k - w_* \|^2 = \mathbb{E} \| w_{k-1} - w_* \|^2 - 2\gamma \mathbb{E} \langle \nabla F(\hat{w}_{k-1}) | w_{k-1} - w_* \rangle + \gamma^2 \mathbb{E} \left[\left\| \widehat{g}_k(\hat{w}_{k-1}) \right\|^2 \right]$$

$$-2\gamma \mathbb{E} \langle \nabla F(\widehat{w}_{k-1}) \mid \widehat{w}_{k-1} - w_* \rangle + 2\gamma \mathbb{E} \langle \nabla F(\widehat{w}_{k-1}) - \nabla F(w_{k-1}) \mid w_{k-1} - \widehat{w}_{k-1} \rangle \,.$$

Convergence for Ghost

1. Control the variance of the local iterate

Theorem 4 (Variance of the local iterates, Ghost)

$$\mathbb{E}\left[\|w_{k-1} - \widehat{w}_{k-1}\|^2 \mid \widehat{w}_{k-2}\right] \leq \gamma^2 \omega_{\mathscr{C}}^{\text{down}}\left(\frac{(1 + \omega_{\mathscr{C}}^{\text{up}})\sigma^2}{Nb} + \left(1 + \frac{\omega_{\mathscr{C}}^{\text{up}}}{N}\right) \|\nabla F(\widehat{w}_{k-2})\|^2\right).$$

2. Deduce convergence of the iterate sequence

Theorem 5 (Contraction for Ghost, convex case)

For smooth & convex objective, bounded variance (uniform), if $\gamma L(1 + \omega_{\mathscr{C}}^{\mathrm{up}} / N) \leq \frac{1}{2}$.

$$\begin{split} \mathbb{E} \| w_k - w_* \|^2 &\leq \mathbb{E} \| w_{k-1} - w_* \|^2 - \gamma \mathbb{E} (F(w_{k-1}) - F_*) - \frac{\gamma}{2L} \mathbb{E} \left[\| \nabla F(\hat{w}_{k-1}) \|^2 \right] \\ &+ 2\gamma^3 \omega_{\mathscr{C}}^{\text{down}} L \left(1 + \frac{\omega_{\mathscr{C}}^{\text{up}}}{N} \right) \mathbb{E} \| \nabla F(\hat{w}_{k-2}) \|^2 + \gamma^2 \frac{(1 + \omega_{\mathscr{C}}^{\text{up}}) \sigma^2}{Nb} \left(1 + 2\gamma L \omega_{\mathscr{C}}^{\text{down}} \right). \end{split}$$

Corollary 6 (Convergence of Ghost, convex case)

For a given step size $\gamma = 1/(L\sqrt{K})$, after running K in \mathbb{N} iterations, we have, for $\bar{w}_K = K^{-1} \sum_{i=1}^K w_i$:

$$\mathbb{E}[F(\bar{w}_{K}) - F_{*}] \leq \frac{\|w_{0} - w_{*}\|^{2} L}{\sqrt{K}} + \frac{\sigma^{2} \Phi}{N b L \sqrt{K}},$$

with $\Phi = (1 + \omega_{\mathscr{C}}^{\text{up}}) \left(1 + 2 \frac{\omega_{\mathscr{C}}^{\text{down}}}{\sqrt{K}} \right).$

Simplest solution:

$$\left\{ \begin{array}{l} w_{k+1} = w_k - \gamma \frac{1}{N} \sum_{i=1}^N \mathcal{C}_{\rm up} \left(g_{k+1}^i(\hat{w}_k) \right) . \\ \hat{w}_{k+1} = C_{\rm down}(w_{k+1}) \end{array} \right.$$

Simplest solution:

$$\left\{ \begin{array}{l} w_{k+1} = w_k - \gamma \frac{1}{N} \sum_{i=1}^N \mathcal{C}_{\mathrm{up}} \left(g_{k+1}^i(\hat{w}_k) \right) . \\ \hat{w}_{k+1} = C_{\mathrm{down}}(w_{k+1}) \end{array} \right.$$

Compress difference $w_{k+1} - \widehat{w}_k$

$$\begin{cases} w_{k+1} = w_k - \gamma \frac{1}{N} \sum_{i=1}^N \mathcal{C}_{\rm up} \left(g_{k+1}^i(\hat{w}_k) \right) .\\ \hat{w}_{k+1} = \hat{w}_k + C_{\rm down}(w_{k+1} - \hat{w}_k) \end{cases}$$

Simplest solution:

$$\begin{cases} w_{k+1} = w_k - \gamma \frac{1}{N} \sum_{i=1}^N \mathcal{C}_{\text{up}} \left(g_{k+1}^i(\hat{w}_k) \right), \\ \hat{w}_{k+1} = C_{\text{down}}(w_{k+1}) \end{cases}$$

Compress difference $w_{k+1} - \widehat{w}_k$

$$\begin{cases} w_{k+1} = w_k - \gamma \frac{1}{N} \sum_{i=1}^N \mathcal{C}_{\rm up} \left(g_{k+1}^i(\hat{w}_k) \right) .\\ \hat{w}_{k+1} = \hat{w}_k + C_{\rm down}(w_{k+1} - \hat{w}_k) \end{cases}$$

 \hookrightarrow add a downlink memory term $(H_k)_k$,

$$\begin{cases} \Omega_{k+1} = w_{k+1} - H_k, \\ \widehat{w}_{k+1} = H_k + \mathscr{C}_{\text{down}}(\Omega_{k+1}) \\ H_{k+1} = H_k + \alpha \mathscr{C}_{\text{down}}(\Omega_{k+1}). \end{cases}$$

2. Deduce convergence of the iterate sequence

Comparison between the three variants

Figure 9: Comparing MCM with three other algorithms using a non-degraded update, $\gamma = 1/L$. Artemis-ND stands for Artemis with a non-degraded update. Best seen in colors.

Convergence rate ${\tt MCM}$ algorithm

1. Control the variance of the local iterate

Theorem 7

Consider the MCM update. If $\gamma \leq 1/(8\omega_{\mathscr{C}}^{\text{down}}L)$ and $\alpha \leq 1/(4\omega_{\mathscr{C}}^{\text{down}})$, for $k \in \mathbb{N}$:

$$\mathbb{E}[\left\|\boldsymbol{w}_{k}-\hat{\boldsymbol{w}}_{k}\right\|^{2}] \leq \gamma^{2} \omega_{\mathscr{C}}^{\mathrm{down}}\left(\frac{4\sigma^{2}(1+\omega_{\mathscr{C}}^{\mathrm{up}})}{Nb\alpha}+2\left(\frac{1}{\alpha}+\frac{\omega_{\mathscr{C}}^{\mathrm{up}}}{N}\right)\sum_{t=1}^{k}\left(1-\frac{\alpha}{2}\right)^{k-t} \mathbb{E}\left\|\nabla F(\hat{\boldsymbol{w}}_{t-1})\right\|^{2}\right).$$

Convergence rate MCM algorithm

1. Control the variance of the local iterate

Theorem 7

Consider the MCM update. If $\gamma \leq 1/(8\omega_{\mathscr{C}}^{\text{down}}L)$ and $\alpha \leq 1/(4\omega_{\mathscr{C}}^{\text{down}})$, for $k \in \mathbb{N}$:

$$\mathbb{E}[\left\|w_k - \hat{w}_k\right\|^2] \leq \gamma^2 \omega_{\mathscr{C}}^{\mathrm{down}}\left(\frac{4\sigma^2(1+\omega_{\mathscr{C}}^{\mathrm{up}})}{Nb\alpha} + 2\left(\frac{1}{\alpha} + \frac{\omega_{\mathscr{C}}^{\mathrm{up}}}{N}\right)\sum_{t=1}^k \left(1 - \frac{\alpha}{2}\right)^{k-t} \mathbb{E}\left\|\nabla F(\hat{w}_{t-1})\right\|^2\right).$$

2. Deduce convergence of the iterate sequence

Theorem 8 (Convergence of MCM)

For a given K in \mathbb{N} large enough, a step size $\gamma = 1/(L\sqrt{K})$, a given learning rate $\alpha = 1/(8\omega_{\mathscr{C}}^{\text{down}})$, after running K iterations, we have:

$$\mathbb{E}[F(\bar{w}_K) - F_*] \leq \frac{\|w_0 - w_*\|^2 L}{\sqrt{K}} + \frac{\sigma^2 \Phi}{NbL\sqrt{K}},$$

with
$$\Phi = (1 + \omega_{\mathscr{C}}^{\text{up}}) \left(1 + \frac{64(\omega_{\mathscr{C}}^{\text{down}})^2}{\sqrt{K}} \right).$$

Extensions:

- 1. Convergence in the strongly-convex, non convex cases.
- 2. Worker dependent compression: Rand-MCM

$$\widehat{w}_{k+1}^{i} = H_{k}^{i} + \mathcal{C}_{\text{down}}^{i}(w_{k+1} - H_{k}^{i})$$

- Useful with partial participation
- Memory limitation
- Improves the convergence rate (on quadratics)
- Business applications

Experiments i

Figure 10: Toy dataset, X axis in # bits.

Experiments ii

Figure 11: Quantum with b = 400, $\gamma = 1/L$ (LSR).

Experiments iii

Figure 12: Superconduct with b = 50, $\gamma = 1/L$ (LR).

Take home message

- 1. New algorithm for bi-directional compression:
 - *preserved* central model.
 - relying on memory trick on the downlink communication
- 2. Reduces (nearly cancels) impact of downlink compression
- 3. Achieves the same rate of convergence as unidirectional compression.
- 4. Rand-MCM framework enables multiple possible extensions.

Open questions

- 1. Even faster ? no dependence in ω_{down} ?
- 2. Variance reduced modification.
- 3. Proofs with partial participation.

Thank you for your attention :)

Bi-directional compression for Federated Learning: Artemis & MCM

Aymeric Dieuleveut CMAP, École Polytechnique, Institut Polytechnique de Paris

Joint work with Constantin Philippenko

References:

- Artemis paper
- MCM paper

References

- Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding. arXiv:1610.02132 [cs], December 2017. arXiv: 1610.02132.
- [2] Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A Double Residual Compression Algorithm for Efficient Distributed Learning. arXiv:1910.07561 [cs, stat], October 2019. arXiv: 1910.07561.
- [3] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and Michael Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. 07 2015.
- [4] Konstantin Mishchenko, Eduard Gorbunov, Martin TakÃąÄD, and Peter RichtÃąrik. Distributed Learning with Compressed Gradient Differences. arXiv:1901.09269 [cs, math, stat], June 2019. arXiv: 1901.09269.
- [5] Constantin Philippenko and Aymeric Dieuleveut. Artemis: tight convergence guarantees for bidirectional compression in federated learning.
- [6] Hanlin Tang, Xiangru Lian, Chen Yu, Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression. arXiv:1905.05957 [cs], June 2019. arXiv: 1905.05957.
- [7] Shuai Zheng, Ziyue Huang, and James Kwok. Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle AlchÃl'-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 11450–11460. Curran Associates, Inc., 2019.