Outline

2. Stochastic algorithms to minimize Empirical Risk.
Supervised Machine Learning

Goal: predict a phenomenon from “explanatory variables”, given a set of observations.

Bio-informatics

Input: DNA/RNA sequence,
Output: Disease predisposition / Drug responsiveness

$n \rightarrow 10$ to 10^4

d (e.g., number of basis) $\rightarrow 10^6$

Image classification

Input: Handwritten digits / Images,
Output: Digit

$n \rightarrow$ up to 10^9

d (e.g., number of pixels) $\rightarrow 10^6$

“Large scale” learning framework: both the number of examples n and the number of explanatory variables d are large.
Consider an input/output pair \((X, Y) \in \mathcal{X} \times \mathcal{Y}\), following some unknown distribution \(\rho\).

\(\mathcal{Y} = \mathbb{R}\) (regression) or \(\{-1, 1\}\) (classification).

Goal: find a function \(\theta : \mathcal{X} \rightarrow \mathbb{R}\), such that \(\theta(X)\) is a good prediction for \(Y\).

Prediction as a linear function \(\langle \theta, \Phi(X) \rangle\) of features \(\Phi(X) \in \mathbb{R}^d\).

Consider a loss function \(\ell : \mathcal{Y} \times \mathbb{R} \rightarrow \mathbb{R}_+:\) squared loss, logistic loss, 0-1 loss, etc.

Define the Generalization risk (a.k.a., generalization error, “true risk”) as

\[
\mathcal{R}(\theta) := \mathbb{E}_\rho [\ell(Y, \langle \theta, \Phi(X) \rangle)] .
\]
Empirical Risk minimization (I)

- Data: n observations $(x_i, y_i) \in X \times Y$, $i = 1, \ldots, n$, i.i.d.
 - n very large, up to 10^9
 - Computer vision: $d = 10^4$ to 10^6

- Empirical risk (or training error):

\[
\hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle).
\]

- Empirical risk minimization (ERM) (regularized): find $\hat{\theta}$ solution of

\[
\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle) + \mu \Omega(\theta).
\]

convex data fitting term + regularizer
Empirical Risk minimization (II)

For example, least-squares regression:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \langle \theta, \Phi(x_i) \rangle)^2 + \mu \Omega(\theta),$$

and logistic regression:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i \langle \theta, \Phi(x_i) \rangle) \right) + \mu \Omega(\theta).$$

Two fundamental questions: (1) computing $\hat{\theta}$.

Take home

- Problem is formalized as a (convex) optimization problem.
- In the large scale setting, high dimensional problem and many examples.
Stochastic algorithms for ERM

\[\min_{\theta \in \mathbb{R}^d} \left\{ \hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle) \right\} \].

1. High dimension \(d \) \(\implies \) First order algorithms

Gradient Descent (GD):

\[\theta_k = \theta_{k-1} - \gamma_k \hat{R}'(\theta_{k-1}) \]

Problem: computing the gradient costs \(O(dn) \) per iteration.

2. Large \(n \) \(\implies \) Stochastic algorithms

Stochastic Gradient Descent (SGD)
Stochastic Gradient descent

▶ Goal:

\[
\min_{\theta \in \mathbb{R}^d} f(\theta)
\]
given unbiased gradient estimates \(f'_n \)

▶ \(\theta_* := \arg\min_{\mathbb{R}^d} f(\theta) \).
SGD for ERM: $f = \hat{R}$

Loss for a single pair of observations, for any $j \leq n$:

$$f_j(\theta) := \ell(y_j, \langle \theta, \Phi(x_j) \rangle).$$

One observation at each step \implies complexity $O(d)$ per iteration.

For the empirical risk $\hat{R}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(y_k, \langle \theta, \Phi(x_k) \rangle)$.

- At each step $k \in \mathbb{N}^*$, sample $I_k \sim \mathcal{U}\{1, \ldots, n\}$, and use:

$$f_{I_k}'(\theta_{k-1}) = \ell'(y_{I_k}, \langle \theta_{k-1}, \Phi(x_{I_k}) \rangle)$$

- with $\mathcal{F}_k = \sigma((x_i, y_i)_{1 \leq i \leq n}, (I_i)_{1 \leq i \leq k})$,

$$\mathbb{E}[f_{I_k}'(\theta_{k-1}) | \mathcal{F}_{k-1}] = \frac{1}{n} \sum_{k=1}^{n} \ell'(y_k, \langle \theta, \Phi(x_k) \rangle) = \hat{R}'(\theta_{k-1}).$$

Mathematical framework: smoothness and/or strong convexity.
A function \(g : \mathbb{R}^d \rightarrow \mathbb{R} \) is \(L \)-smooth if and only if it is twice differentiable and

\[
\forall \theta \in \mathbb{R}^d, \text{eigenvalues}[g''(\theta)] \leq L
\]

For all \(\theta \in \mathbb{R}^d \):

\[
g(\theta) \leq g(\theta') + \langle g(\theta'), \theta - \theta' \rangle + L \| \theta - \theta' \|^2
\]
Mathematical framework: Strong Convexity

- A twice differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ is μ-strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{eigenvalues} \left[g''(\theta) \right] \geq \mu$$

For all $\theta \in \mathbb{R}^d$:

$$g(\theta) \geq g(\theta') + \langle g(\theta'), \theta - \theta' \rangle + \mu \|\theta - \theta'\|^2$$
Application to machine learning

- We consider an a.s. convex loss in θ. Thus $\hat{\mathcal{R}}$ and \mathcal{R} are convex.

- Hessian of $\hat{\mathcal{R}} \approx$ covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i)\Phi(x_i)^\top$

 ($\approx \mathbb{E}[\Phi(X)\Phi(X)^\top]$.)

\[
\hat{\mathcal{R}}''(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell''(\langle \theta, \Phi(X_i) \rangle, Y_i)\Phi(x_i)\Phi(x_i)^\top \right)
\]

- If ℓ is smooth, and $\mathbb{E}[\|\Phi(X)\|^2] \leq r^2$, \mathcal{R} is smooth.

- If ℓ is μ-strongly convex, and data has an invertible covariance matrix (low correlation/dimension), \mathcal{R} is strongly convex.
Analysis: behaviour of \((\theta_n)_{n \geq 0}\)

\[
\theta_k = \theta_{k-1} - \gamma_k f'_k(\theta_{k-1})
\]

Importance of the **learning rate** (or sequence of step sizes) \((\gamma_k)_{k \geq 0}\). For smooth and strongly convex problem, traditional analysis shows Fabian (1968); Robbins and Siegmund (1985) that \(\theta_k \to \theta_*\) almost surely if

\[
\sum_{k=1}^{\infty} \gamma_k = \infty \quad \text{and} \quad \sum_{k=1}^{\infty} \gamma_k^2 < \infty.
\]

And asymptotic normality \(\sqrt{k}(\theta_k - \theta_*) \overset{d}{\to} \mathcal{N}(0, V)\), for \(\gamma_k = \frac{\gamma_0}{k}, \gamma_0 \geq \frac{1}{\mu}\).

- Limit variance scales as \(1/\mu^2\)
- Very sensitive to ill-conditioned problems.
- \(\mu\) generally unknown, so hard to choose the step size...
Polyak Ruppert averaging

Introduced by Polyak and Juditsky (1992) and Ruppert (1988):

\[\bar{\theta}_k = \frac{1}{k+1} \sum_{i=0}^{k} \theta_i. \]

- off line averaging reduces the noise effect.
- on line computing: \[\bar{\theta}_{k+1} = \frac{1}{k+1} \theta_{k+1} + \frac{k}{k+1} \bar{\theta}_k. \]
- one could also consider other averaging schemes (e.g., Lacoste-Julien et al. (2012)).
Convex stochastic approximation: convergence

- **Known global** minimax rates of convergence for **non-smooth** problems Nemirovsky and Yudin (1983); Agarwal et al. (2012)
 - **Strongly convex**: $O((\mu k)^{-1})$
 - Attained by averaged stochastic gradient descent with $\gamma_k \propto (\mu k)^{-1}$
 - **Non-strongly convex**: $O(k^{-1/2})$
 - Attained by averaged stochastic gradient descent with $\gamma_k \propto k^{-1/2}$

- **Smooth** strongly convex problems
 - Rate $\frac{1}{\mu k}$ for $\gamma_k \propto k^{-1/2}$: adapts to strong convexity.
Convergence rate for $f(\tilde{\theta}_k) - f(\theta^*)$, smooth f.

$$\min \mathcal{R}$$

<table>
<thead>
<tr>
<th>Method</th>
<th>SGD</th>
<th>GD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O\left(\frac{1}{\sqrt{k}}\right)$</td>
<td>$O\left(\frac{1}{k}\right)$</td>
</tr>
<tr>
<td>Stgly-Cvx</td>
<td>$O\left(\frac{1}{\mu k}\right)$</td>
<td>$O(e^{-\mu k})$</td>
</tr>
</tbody>
</table>
Convergence rate for $f(\tilde{\theta}_k) - f(\theta^*)$, smooth f.

\[
\min \hat{R} \\
\begin{array}{ll}
\text{SGD} & O\left(\frac{1}{\sqrt{k}}\right) \\
\text{GD} & O\left(\frac{1}{k}\right) \\
\text{Stgly-Cvx} & O\left(\frac{1}{\mu k}\right) \\
& O(e^{-\mu k})
\end{array}
\]

Gradient descent update costs n times as much as SGD update.

Can we get best of both worlds?
Methods for finite sum minimization

- **GD**: at step k, use $\frac{1}{n} \sum_{i=0}^{n} f'_i(\theta_k)$
- **SGD**: at step k, sample $i_k \sim \mathcal{U}[1; n]$, use $f'_i(\theta_k)$
- **SAG**: at step k,
 - keep a “full gradient” $\frac{1}{n} \sum_{i=0}^{n} f'_i(\theta_{k_i})$, with $\theta_{k_i} \in \{\theta_1, \ldots, \theta_k\}$
 - sample $i_k \sim \mathcal{U}[1; n]$, use
 \[
 \frac{1}{n} \left(\sum_{i=0}^{n} f'_i(\theta_{k_i}) - f'_i(\theta_{k_{i_k}}) + f'_i(\theta_k) \right),
 \]

↬ ⊕ update costs the same as SGD
↬ ⊖ needs to store all gradients $f'_i(\theta_{k_i})$ at “points in the past”

Some references:

- **SAG** Schmidt et al. (2013), SAGA Defazio et al. (2014a)
- **SVRG** Johnson and Zhang (2013) (reduces memory cost but 2 epochs...)
- **FINITO** Defazio et al. (2014b)
- **S2GD** Konečný and Richtárik (2013)

And many others... See for example [Niao He’s lecture notes](#) for a nice overview.
Convergence rate for $f(\tilde{\theta}_k) - f(\theta_*)$, smooth objective f.

<table>
<thead>
<tr>
<th>Method</th>
<th>Convex</th>
<th>Stgly-Cvx</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD</td>
<td>$O\left(\frac{1}{\sqrt{k}}\right)$</td>
<td>$O\left(\frac{1}{\mu k}\right)$</td>
</tr>
<tr>
<td>GD</td>
<td>$O\left(\frac{1}{k}\right)$</td>
<td>$O(e^{-\mu k})$</td>
</tr>
<tr>
<td>SAG</td>
<td>$O\left(\frac{1}{\sqrt{k}}\right)$</td>
<td>$O\left(1 - (\mu \wedge \frac{1}{n})\right)^k$</td>
</tr>
</tbody>
</table>

GD, SGD, SAG (Fig. from Schmidt et al. (2013))
Convergence rate for $f(\tilde{\theta}_k) - f(\theta_*)$, smooth objective f.

<table>
<thead>
<tr>
<th></th>
<th>SGD</th>
<th>GD</th>
<th>SAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O\left(\frac{1}{\sqrt{k}}\right)$</td>
<td>$O\left(\frac{1}{k}\right)$</td>
<td>$O\left(\frac{1}{k}\right)$</td>
</tr>
<tr>
<td>Stgly-Cvx</td>
<td>$O\left(\frac{1}{\mu k}\right)$</td>
<td>$O(e^{-\mu k})$</td>
<td>$O\left(1 - (\mu \wedge \frac{1}{n})\right)^k$</td>
</tr>
<tr>
<td>Lower Bounds</td>
<td>α</td>
<td>β</td>
<td>γ</td>
</tr>
</tbody>
</table>

α: Stoch. opt. information theoretic lower bounds, Agarwal et al. (2012);
Convergence rate for $f(\tilde{\theta}_k) - f(\theta_*)$, smooth objective f.

<table>
<thead>
<tr>
<th></th>
<th>SGD</th>
<th>AGD</th>
<th>SAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O\left(\frac{1}{\sqrt{k}}\right)$</td>
<td>$O\left(\frac{1}{k^2}\right)$</td>
<td>$O\left(\frac{1}{\sqrt{k}}\right)$</td>
</tr>
<tr>
<td>Stgly-Cvx</td>
<td>$O\left(\frac{1}{\mu k}\right)$</td>
<td>$O(e^{-\sqrt{\mu k}})$</td>
<td>$O\left(1 - (\mu \land \frac{1}{n})\right)^k$</td>
</tr>
</tbody>
</table>

α, β, γ

α: Stoch. opt. information theoretic lower bounds, Agarwal et al. (2012);
β: Black box first order optimization, Nesterov (2004);
γ: Lower bounds for optimizing finite sums, Agarwal and Bottou (2014).
Take home
Stochastic algorithms for Empirical Risk Minimization.

- Several algorithms to optimize empirical risk, most efficient ones are stochastic and rely on finite sum structure
- Stochastic algorithms to optimize a deterministic function.
- Rates depend on the regularity of the function.
What about generalization risk

Generalization guarantees:

▶ Uniform upper bound \(\sup_{\theta} \left| \hat{R}(\theta) - R(\theta) \right| \). (empirical process theory)

▶ More precise: localized complexities (Bartlett et al., 2002), stability (Bousquet and Elisseeff, 2002).

Problems for ERM:

▶ Choose regularization (overfitting risk)
▶ How many iterations (i.e., passes on the data)?
▶ Generalization guarantees generally of order \(O(1/\sqrt{n}) \), no need to be precise

2 important insights:

1. No need to optimize below statistical error,
2. Generalization risk is more important than empirical risk.

SGD can be used to minimize the generalization risk.
SGD for the generalization risk: $f = \mathcal{R}$

SGD: key assumption $\mathbb{E}[f'_n(\theta_{n-1})|\mathcal{F}_{n-1}] = f'(\theta_{n-1})$.

For the risk

$$\mathcal{R}(\theta) = \mathbb{E}_\rho \left[\ell(Y, \langle \theta, \Phi(X) \rangle) \right]$$

- At step $0 < k \leq n$, use a new point independent of θ_{k-1}:

 $$f'_k(\theta_{k-1}) = \ell'(y_k, \langle \theta_{k-1}, \Phi(x_k) \rangle)$$

- For $0 \leq k \leq n$, $\mathcal{F}_k = \sigma((x_i, y_i)_{1 \leq i \leq k})$.

 $$\mathbb{E}[f'_k(\theta_{k-1})|\mathcal{F}_{k-1}] = \mathbb{E}_\rho[\ell'(y_k, \langle \theta_{k-1}, \Phi(x_k) \rangle)|\mathcal{F}_{k-1}]$$

 $$= \mathbb{E}_\rho\left[\ell'(Y, \langle \theta_{k-1}, \Phi(X) \rangle) \right] = \mathcal{R}'(\theta_{k-1})$$

- Single pass through the data, Running-time = $O(nd)$,

- “Automatic” regularization.
SGD for the generalization risk: \(f = \mathcal{R} \)

<table>
<thead>
<tr>
<th>ERM minimization</th>
<th>Gen. risk minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>several passes: (0 \leq k)</td>
<td>One pass (0 \leq k \leq n)</td>
</tr>
<tr>
<td>(x_i, y_i) is (\mathcal{F}_t)-measurable for any (t)</td>
<td>(\mathcal{F}_t)-measurable for (t \geq i).</td>
</tr>
</tbody>
</table>
Convergence rate for $f(\tilde{\theta}_k) - f(\theta_*)$, smooth objective f.

<table>
<thead>
<tr>
<th>Method</th>
<th>$\min \hat{\mathcal{R}}$</th>
<th>$\min \mathcal{R}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O\left(\frac{1}{\sqrt{k}}\right)$</td>
<td>$O\left(\frac{1}{k}\right)$</td>
</tr>
<tr>
<td>Stgly-Cvx</td>
<td>$O\left(\frac{1}{\mu k}\right)$</td>
<td>$O\left(e^{-\mu k}\right)$</td>
</tr>
</tbody>
</table>

Lower Bounds

- δ: Information theoretic LB - Statistical theory (Tsybakov, 2003).
- Gradient does not even exist
Convergence rate for $f(\tilde{\theta}_k) - f(\theta^*)$, smooth objective f.

<table>
<thead>
<tr>
<th>Type</th>
<th>SGD</th>
<th>GD</th>
<th>SAG</th>
<th>(\min \hat{R})</th>
<th>(\min R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O\left(\frac{1}{\sqrt{k}}\right))</td>
<td>(O\left(\frac{1}{k}\right))</td>
<td></td>
<td></td>
<td>(O\left(\frac{1}{\sqrt{n}}\right))</td>
</tr>
<tr>
<td>Stgly-Cvx</td>
<td>(O\left(\frac{1}{\mu k}\right))</td>
<td>(O(e^{-\mu k}))</td>
<td>(O\left(1 - (\mu \wedge \frac{1}{n})\right)^k)</td>
<td>(O\left(\frac{1}{\mu n}\right))</td>
<td></td>
</tr>
</tbody>
</table>

\(0 \leq k \leq n\)

Lower Bounds \(\alpha\) \(\beta\) \(\gamma\) \(\delta\)

\(\delta\): Information theoretic LB - Statistical theory (Tsybakov, 2003).

Gradient is unknown
Least Mean Squares: rate independent of μ

- Least-squares: $\mathcal{R}(\theta) = \frac{1}{2} \mathbb{E}[(Y - \langle \Phi(X), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^d$
 - SGD = least-mean-square algorithm
 - Usually studied without averaging and decreasing step-sizes.
- New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$ Bach and Moulines (2013)
 - Assume $\|\Phi(x_n)\| \leq r$ and $|y_n - \langle \Phi(x_n), \theta_* \rangle| \leq \sigma$ almost surely
 - No assumption regarding lowest eigenvalues of the Hessian
 - Main result:

\[
\mathbb{E}\mathcal{R}(\bar{\theta}_n) - \mathcal{R}(\theta_*) \leq \frac{4\sigma^2 d}{n} + \frac{\|\theta_0 - \theta_*\|^2}{\gamma n}
\]

- Matches statistical lower bound (Tsybakov, 2003).
- Optimal rate with “large” (constant) step sizes
Take home

- SGD can be used to minimize the true risk directly
- Stochastic algorithm to minimize unknown function
- No regularization needed, only one pass
- For Least Squares, with constant step, optimal rate.
Take home

- SGD can be used to minimize the true risk directly
- **Stochastic algorithm to minimize unknown function**
- No regularization needed, only one pass
- For Least Squares, with constant step, optimal rate.

 SharedModule}

Stochastic approximation, beyond Least Squares?
Beyond finite dimensional Least squares

- Beyond parametric models: Non Parametric Stochastic Approximation with Large step sizes. (Dieuleveut and Bach, 2015)
- Improved Sampling: Averaged least-mean-squares: bias-variance trade-offs and optimal sampling distributions. (Défossez and Bach, 2015)
- Acceleration: Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. (Dieuleveut et al., 2016)
- Beyond smoothness and euclidean geometry: Stochastic Composite Least-Squares Regression with convergence rate $O(1/n)$. (Flammarion and Bach, 2017)
- General smooth and strongly convex optimization: Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains (Dieuleveut et al., 2017).
Beyond least squares. Logistic regression

\[\min_{\theta \in \mathbb{D}^d} \mathbb{E} \log \left(1 + \exp \left(- Y \langle \theta, \Phi(X) \rangle \right) \right). \]

Logistic regression. Final iterate (dashed), and averaged recursion (plain).
Beyond least squares. Logistic regression, real data

Logistic regression, Covertype dataset, \(n = 581012, \ d = 54 \).
Comparison between a constant learning rate and decaying learning rate as \(\frac{1}{\sqrt{n}} \).
Motivation 2/ 2. Difference between quadratic and logistic loss

Logistic Regression

\[\mathbb{E} R(\tilde{\theta}_n) - R(\theta^*) = O(\gamma^2) \]

with \(\gamma = 1/(4R^2) \)

Least-Squares Regression

\[\mathbb{E} R(\tilde{\theta}_n) - R(\theta^*) = O \left(\frac{1}{n} \right) \]

with \(\gamma = 1/(4R^2) \)
SGD: an homogeneous Markov chain

Consider a L—smooth and μ—strongly convex function \mathcal{R}.

SGD with a step-size $\gamma > 0$ is an homogeneous Markov chain:

$$\theta^\gamma_{k+1} = \theta^\gamma_k - \gamma \left[\mathcal{R}'(\theta^\gamma_k) + \varepsilon_{k+1}(\theta^\gamma_k) \right],$$

- satisfies Markov property
- is homogeneous, for γ constant, $(\varepsilon_k)_{k \in \mathbb{N}}$ i.i.d.

Also assume:

- $\mathcal{R}'_k = \mathcal{R}' + \varepsilon_{k+1}$ is almost surely L-co-coercive.
- Bounded moments

$$\mathbb{E}[\|\varepsilon_k(\theta_*)\|^4] < \infty.$$
Stochastic gradient descent as a Markov Chain: Analysis framework†

▶ Existence of a limit distribution π_γ, and linear convergence to this distribution:

$$\theta_k^\gamma \xrightarrow{d} \pi_\gamma.$$

▶ Convergence of second order moments of the chain,

$$\bar{\theta}_k^\gamma \xrightarrow{L^2} \bar{\theta}_\gamma := \mathbb{E}_{\pi_\gamma}[\theta].$$

▶ Behavior under the limit distribution ($\gamma \rightarrow 0$): $\bar{\theta}_\gamma = \theta_* + ?$.

† Dieuleveut, Durmus, Bach [2017].
Existence of a limit distribution $\gamma \to 0$

Goal:

$$(\theta_k^\gamma)_{k \geq 0} \overset{d}{\to} \pi_\gamma.$$

Theorem

For any $\gamma < L^{-1}$, the chain $(\theta_k^\gamma)_{k \geq 0}$ admits a unique stationary distribution π_γ. In addition for all $\theta_0 \in \mathbb{R}^d$, $k \in \mathbb{N}$:

$$W_2^2(\theta_k^\gamma, \pi_\gamma) \leq (1 - 2\mu\gamma(1 - \gamma L))^k \int_{\mathbb{R}^d} \|\theta_0 - \vartheta\|_2^2 \, d\pi_\gamma(\vartheta).$$

Wasserstein metric: distance between probability measures.
Behavior under limit distribution.

Ergodic theorem: \(\bar{\theta}_k \rightarrow \mathbb{E}_{\pi_\gamma}[\theta] =: \bar{\theta}_\gamma \). Where is \(\bar{\theta}_\gamma \)?

If \(\theta_0 \sim \pi_\gamma \), then \(\theta_1 \sim \pi_\gamma \).

\[\theta_1^\gamma = \theta_0^\gamma - \gamma \left[\mathcal{R}'(\theta_0^\gamma) + \varepsilon_1(\theta_0^\gamma) \right]. \]

\[\mathbb{E}_{\pi_\gamma} \left[\mathcal{R}'(\theta) \right] = 0 \]

In the quadratic case (linear gradients) \(\Sigma \mathbb{E}_{\pi_\gamma} [\theta - \theta_*] = 0: \bar{\theta}_\gamma = \theta_*! \)
Constant learning rate SGD: convergence in the quadratic case
Constant learning rate SGD: convergence in the quadratic case
Constant learning rate SGD: convergence in the quadratic case
Constant learning rate SGD: convergence in the quadratic case
Behavior under limit distribution.

Ergodic theorem: \(\bar{\theta}_n \to \mathbb{E}_{\pi \gamma}[\theta] =: \bar{\theta}_\gamma \). Where is \(\bar{\theta}_\gamma \)?

If \(\theta_0 \sim \pi_\gamma \), then \(\theta_1 \sim \pi_\gamma \).

\[
\theta_1^\gamma = \theta_0^\gamma - \gamma \left[\mathcal{R}'(\theta_0^\gamma) + \varepsilon_1(\theta_0^\gamma) \right].
\]

\[
\mathbb{E}_{\pi \gamma} \left[\mathcal{R}'(\theta) \right] = 0
\]

In the quadratic case (linear gradients) \(\Sigma \mathbb{E}_{\pi \gamma} [\theta - \theta_*] = 0 \): \(\bar{\theta}_\gamma = \theta_* \)!

In the general case, Taylor expansion of \(\mathcal{R} \), and same reasoning on higher moments of the chain leads to

\[
\bar{\theta}_\gamma - \theta_* \simeq \gamma \mathcal{R}''(\theta_*)^{-1} \mathcal{R}'''(\theta_*) \left([\mathcal{R}''(\theta_*) \otimes I + I \otimes \mathcal{R}''(\theta_*)]^{-1} \mathbb{E}_\varepsilon [\varepsilon(\theta_*)^2] \right)
\]

Overall, \(\bar{\theta}_\gamma - \theta_* = \gamma \Delta + O(\gamma^2) \).
Constant learning rate SGD: convergence in the non-quadratic case
Constant learning rate SGD: convergence in the non-quadratic case
Constant learning rate SGD: convergence in the non-quadratic case
Constant learning rate SGD: convergence in the non-quadratic case
Richardson extrapolation

\[\theta_n^\gamma - \bar{\theta}_\gamma = O_p(\gamma^{1/2}) \]
\[\bar{\theta}_n^\gamma - \bar{\theta}_\gamma = O_p(n^{-1/2}) \]
\[\theta_* - \bar{\theta}_\gamma = O(\gamma) \]

Recovering convergence closer to \(\theta_* \) by Richardson extrapolation: \(2\bar{\theta}_n^\gamma - \bar{\theta}_n^{2\gamma} \)
Richardson extrapolation

\[\theta_n^\gamma - \bar{\theta}_\gamma = O_p(\gamma^{1/2}) \]
\[\bar{\theta}_n^\gamma - \bar{\theta}_\gamma = O_p(n^{-1/2}) \]
\[\theta_* - \bar{\theta}_\gamma = O(\gamma) \]

Recovering convergence closer to \(\theta_* \) by Richardson extrapolation \(2\bar{\theta}_n^\gamma - \bar{\theta}_n^{2\gamma} \)
Richardson extrapolation

\[\theta_n^\gamma - \bar{\theta}_\gamma = O_p(\gamma^{1/2}) \]
\[\bar{\theta}_n^\gamma - \bar{\theta}_\gamma = O_p(n^{-1/2}) \]
\[\theta_* - \bar{\theta}_\gamma = O(\gamma) \]

Recovering convergence closer to \(\theta_* \) by Richardson extrapolation 2 \(\bar{\theta}_n^\gamma - \bar{\theta}_n^{2\gamma} \)
Richardson extrapolation

\[\theta_n^\gamma - \bar{\theta}_\gamma = O_p(\gamma^{1/2}) \]
\[\bar{\theta}_n^\gamma - \bar{\theta}_\gamma = O_p(n^{-1/2}) \]
\[\theta_* - \bar{\theta}_\gamma = O(\gamma) \]

Recovering convergence closer to \(\theta_* \) by Richardson extrapolation
\[2\bar{\theta}_n^\gamma - \bar{\theta}_n^{2\gamma} \]
Recovering convergence closer to θ_* by Richardson extrapolation $2\bar{\theta}_n^\gamma - \bar{\theta}_{2\gamma}^\gamma$
Recovering convergence closer to θ_* by Richardson extrapolation $2\bar{\theta}_\gamma - \bar{\theta}_{2\gamma}$
Experiments: smaller dimension

\[\log_{10} \left[R(\theta) - R(\theta^*) \right] \]

Synthetic data, logistic regression, \(n = 8 \times 10^6 \)
Experiments: Double Richardson

Synthetic data, logistic regression, \(n = 8 \times 10^6 \)

“Richardson 3\(\gamma \)”: estimator built using Richardson on 3 different sequences:

\[
\tilde{\theta}_n^3 = \frac{8}{3} \tilde{\theta}_n^\gamma - 2 \tilde{\theta}_n^{2\gamma} + \frac{1}{3} \tilde{\theta}_n^{4\gamma}
\]
Conclusion MC

Take home

- Asymptotic sometimes matter less than first iterations: consider large step size.
- Constant step size SGD is a homogeneous Markov chain.
- Difference between LS and general smooth loss is intuitive.

For smooth strongly convex loss:

- Convergence in terms of Wasserstein distance.
- Decomposition as three sources of error: variance, initial conditions, and “drift”
- Detailed analysis of the position of the limit point: the direction does not depend on \(\gamma \) at first order \(\implies \) Extrapolation tricks can help.
Many stochastic algorithms not covered in this talk (coordinate descent, online Newton, composite optimization, non convex learning) ...

- Good introduction: Francis’s lecture notes at Orsay

