Adaptativity of Stochastic Gradient Descent

Aymeric Dieuleveut F. Bach, Non parametric stochastic approximation with large step sizes, in the Annals of Statistics

Setting : random-design least-squares regression problem in a RKHS framework.

Risk : for \(g : \mathcal{X} \rightarrow \mathbb{R} \)

\[
\varepsilon(g) := \mathbb{E}_\rho \left[(g(X) - Y)^2 \right].
\]

We thus want to minimize prediction error.

Regression function : \(g_\rho(X) = \mathbb{E}[Y|X] \) minimises \(\varepsilon \) on \(L^2_{\rho_X} \).

We build a sequence \((g_k)\) of estimators in an RKHS \(\mathcal{H} \).

Why considering RKHS ?

- hypothesis space for non parametric regression,
- high dimensional problem (\(d \gg n \)) analysis framework,
- natural analysis when mapping data in feature space via a p.d. kernel.
Regularity assumptions

Algorithm (Stochastic approximation)

Simple one pass stochastic gradient descent with constant step sizes and averaging.

Difficulty of the problem

- Let $\Sigma = \mathbb{E}[K_x K_x^t]$ be the covariance operator. We assume that $\text{tr}(\Sigma^{1/\alpha}) < \infty$
- We assume $g_\rho \in \Sigma^r(L^2_{\rho_X})$.

(α, r) encode the difficulty of the problem.
Results

Theorem (Non parametric regression)

Under a suitable choice of the learning rate, we get the optimal rate of convergence for non parametric regression.

Theorem (Adaptativity in Euclidean spaces)

If \mathcal{H} is a d-dimensional Euclidean space :

$$
\mathbb{E} [\varepsilon (\tilde{g}_n) - \varepsilon (g_\rho)] \leq \min_{1 \leq \alpha, \frac{-1}{2} \leq q \leq \frac{1}{2}} \left(16 \frac{\sigma^2 \text{tr}(\Sigma^{1/\alpha})(\gamma n)^{1/\alpha}}{n} + 8 \frac{||T^{-q} \theta_{\mathcal{H}}||_{\mathcal{H}}^2}{(n\gamma)^{2q+1}} \right).
$$

SGD is adaptative to the regularity of the objective function and to the decay of the spectrum of the covariance matrix.

brero explains behaviour for $d >> n$.