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Abstract

It is widely believed that financial markets cannot be liquid without centralised processes to manage
counterparty risk. We propose an alternative method for liquidity based on reversible and composable
contracts run atop a blockchain. Novel instruments for zero-collateral intermediation can be defined.

1 Introduction
Financial trades face a liquidity/risk trade-off [1]. Forcing real-time settlements introduces cash con-
straints for Buyers [3] since they must have the cash on hand before entering a trade. This precludes
short-selling, impedes intermediation, ultimately hurting liquidity. One can relax the cash constraint by
allowing for deferred payments. But deferred payments introduce risk. How does one make sure that a
deferred payment is eventually made?

We introduce a trade protocol where payment defaults are handled by reversing trades. Not only
can players buy without paying first, but, crucially, they can sell again while still withholding payments.
Trades are no longer disjoint bilateral contracts resolved independently, but aggregate into trade lines. The
ownership of an underlying asset becomes distributed among players with positions in the trade line. The
course of the game determines who ends up owning that asset and the overall payoffs of the participants.
The game can be implemented as a smart contract on a blockchain.

We also define and investigate a specific liquidity instrument (§7). Its basic brick is a standard cancel-
lation contract: if Buyer has not paid the agreed amount by a certain date, Seller can cancel the deal and
receive a compensation fee. By chaining two copies of this contract, one obtains a ternary trade line. The
question is whether one can set the parameters of each bilateral contract (terms and fees) so that the mid-
dle player has an incentive to play the composite game. Indeed, we show that a middle player achieves
zero-collateral intermediation in the game-theoretic equilibrium provided certain natural conditions on
the contract parameters hold (and players are rational).

We start with the definition of unilateral contracts (§2) and associated operations. We then define
bilateral contracts and give standard examples of such (§3). Then we define tradelines (§4) and the trade
game proper. We establish quantitative soundness (§5) and stability properties of the trade game (§6). In
(§7) we give a heuristic derivation of the game-theoretic equilibrium of a parameterised ternary instance
of the trade game, and infer conditions on the parameters for the game to provide liquidity. Proofs are
ommitted to save space.
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2 Unilateral contracts
Our first task is to set up a language for elementary contracts -which we call clauses. Throughout we
use a functional notation for clauses and see them as functions of pairs of positions. A clause embodies a
(time-dependent) promise of one player to another. It is directed. Bilateral contracts (next Section) consist
of pairs of reciprocal promises.

We write T ∈ Z for the global time variable (block time in the basic implementation). We assume a
countable set of positions.

Definition 1 A clause over positions x, y is defined as:

Θxy = ⊕I∈I T ∈ I 7→ θxy time-dependent clause
θxy = θxy ∨ θxy | γxy ` ηxy clause
γxy = > | ⊥ | ωxy | γxy ∧ γxy guard
ωxy = (x→a y)+ | (y →a x)− active payment
ηxy = y →b x | ηxy; ηxy | ε passive payment (effect)

with I s a finite family of disjoint time intervals, a ∈ R+, b ∈ R.

Thus a clause is a time-dependent disjunction of pairs of guards and effects.
In a guard γxy, players at positions x and y play dual roles: x’s player can activate the clause with a

payment (x →a y)+, while y’s can inhibit the clause with a payment (x ←a y)−. One says that x is the
active position in γxy, while y is the reactive one.

Payments included in guards are referred to as active payments. Clauses also incorporate passive
payments or effects ηxy = y →b x, with b ≥ 0 when payment flows from y to x, ie from the reactive to
the active position. The direction of passive payments is unconstrained. As their name indicate, passive
payments are made as a consequence of a (forward or backward) move being played and require no
intervention from the players.

We write 1 := > ` ε for the trivial clause with a guard which is always true and has no effect.
We define the following quotient over payment expressions of the same type:

(x→0 y)ε = >
(x→a y)ε ∧ (x→a′ y)ε = (x→a+a′ y)ε

whereby any guard γxy which is not ⊥ can be rewritten uniquely to a simple conjuction (x →a y)+ ∧
(x→a′ y)− with a, a′ ≥ 0.

One can identify a guard with a pair a, a′ of non-negative real numbers, and a real number b describing
its effect part. Thus, one has a concrete form for clauses as finite sets of tuples (a, a′, b) with a ≥ 0 an
(active) activation payment, a′ ≥ 0 an (active) inhibition payment, and b a passive effect payment. Each
element of the set corresponds to one disjunct of the clause disjunction. In this linear representation a
clause is simply an element Pfin(R+ × R+ × R). For example 1 is (0, 0, 0).

I Hereafter, we will mostly assume deterministic clauses, where the disjunction has just one term.
This keeps notations lighter, while the generalisation to non-deterministic clauses is straightforward. To
simplify things further, we leave out inhibition payments. However we will use and discuss both exten-
sions freely in examples.

To express interesting contracts, one needs time-dependent clauses. They are defined as partial and
finite piecewise-constant functions of discrete time with values in (constant) clauses. We will write Θ(t)
when we want to stress time-dependency.

The latest finite date mentioned in Θ is called its time horizon, and the set of times at which Θ is
defined |Θ| = ∪I , is called its time domain. Outside its time domain, Θ is undefined and cannot be
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triggered. Past its horizon, its guards and effects can no longer change if they are defined. One says Θ is
eventually defined if [M,+∞) ⊆ |Θ| for some M .

Using the linear representation of clauses, time-dependent clauses can be seen as finitary piece-wise
constant and partial maps from Z to Pfin(R2) (or R3 if one includes inhibition payments). We write C ⊆
Z → Pfin(R2) for the set of such clauses. Wherever a time-dependent clause Θ is undefined, its linear
representation returns the empty set. Therefore, one can redefine equivalently in the linear representation
the domain of a clause as |Θ| = {t | Θ(t) 6= ∅}, and the set of deterministic clauses C0 as those such
that Θ(t) has always at most one element.

We will use onwards whichever representation is most convenient for the question at hand.

Definition 2 Let Θ, Θ′ be in C , define:

(Θ + Θ′)(t) = Θ(t) + Θ′(t) (1)
(Θ ∨Θ′)(t) = Θ(t) ∨Θ′(t) (2)

In Eq. 1, the rhs is the pairwise sum {θi}+ {θ′j} = {θi + θ′j}; in Eq. 2, the rhs is the union. If either Θ(t)
or Θ′(t) is the empty set, then so is the product Θ(t) × Θ′(t) and therefore (Θ + Θ′)(t) = ∅ as well.
Hence |Θ + Θ′| = |Θ| ∩ |Θ′|. Clearly, |Θ ∨Θ′| = |Θ| ∪ |Θ′|.

We will use the additive operator to shift clauses from one contract to another when composing con-
tracts. Shifting clauses may lead to clauses with smaller domains.

Clause addition Θ + Θ′ should not be confused with the disjoint sum Θ ⊕ Θ′ (used in def. 1) which
is a particular case of union.

Proposition 1 The triple (C ,∨,+) form a commutative idempotent semi-ring, with respective neutral
elements: the everywhere defined clause with value 1, and the nowhere defined clause 0. The subset Ce
of eventually defined clauses form a sub-semi-ring of C . The domain map is a semi-ring morphism from
(C ,∨,+,0,1) to (Pfin(Z),∪,∩,∅,Z).

The union operator may lead in general to non-deterministic clauses, but absent inhibition payments,
it has a compelling determinisation. The idea is that, at any given time, the active player can compare
her options and pick up the most rewarding -ie minimise expenses and amount provisioned. This partial
ordering can be linearised by maximising funds locked in the protocol, leading to:

Definition 3 Let Θ, Θ′ be in C , define:

max(Θ,Θ′)(t) = max(Θ(t) ∨Θ′(t)) (3)

As for the plain union we have |max(Θ,Θ′)| = |Θ| ∪ |Θ′|. The novelty is that the determinised union
max preserves deterministic clauses, just like the addition does.

The subset of deterministic clauses C0 also forms a semi-ring (C0,max,+); the unary version of
max, max1 is a semi-ring morphism from (C ,∨,+) to (C0,max,+); it is onto and preserves domains
in the sense that | | ◦max1 = | |.

3 Bilateral contracts
Definition 4 A bilateral contract, or trade arc, consists of a pair of time-dependent clauses φ, β, and
a pair of positions: u, v; where φ, β are called the forward and backward clauses, u, v are called the
Seller’s and Buyer’s position. We use the following graphical notation to summarise the data:

u
φvu−−−→
βuv

v
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u
φvu−−−→
βuv

v

Bu|βuv

{{

Fv|φvu

##(
πB − ε
−πB

) (
−πF
πF − ε

)

Figure 1: Tree of the basic game: ε is a parameter representing the constant cost of a move; πB (πF ) is the aggregated
payoff to u (v) described in clause βuv (φvu); the backward (forward) move Bu (Fv) is only available in contexts
where βuv (φvu) holds.

The forward clause specifies conditions under which Buyer can complete the trade, and conditions
under which Seller can block its completion. Symmetrically, the backward clause specifies conditions
under which Seller can cancel the trade, and conditions under which Seller can block its cancellation. The
basic game is symmetric. The Seller/Buyer distinction only makes sense when basic games are composed,
and there is a distinguished root position which holds an asset underlying the trade line (§4).

Note that, in the forward clause, the active position is Buyer’s, that is to say the clause is φvu (not
φuv). In the backward one, the active position is Seller’s, and the clause is βuv.

Clauses are evaluated in a context which includes the current time and a complete list of (active)
payments made. We do not describe explicitly the part of the context tracking payments. A trade arc φ, β
between u and v is said to be in an F -state (B-state) in a given context, if φvu (βuv) holds in this context.
Buyer (Seller) can play his move and complete (cancel) the trade iff the arc is in an F -state (B-state).

Notice that the game tree (Fig. 1) is not strictly speaking that of a sequential game [2]: the availability
of moves to either player is context-dependent and so are the payoffs; and moves may (depending on the
context) be available simultaneously to both players.

Definition 5 A bilateral contract φ, β is said to be BF -exclusive (or simply exclusive) if |φ| ∩ |β| = ∅.
It is said to be idle in a given context, if it is neither in a B-state or an F -state in that context. A bilateral
contract φ, θ is said to be eventually-F if φ is eventually defined, and eventually-B if β is.

If a contract is BF -exclusive there is no context in which it can be both in a B-state and an F -state.
Absent this property, players may move simultaneously. In a blockchain implementation, this means that
plays depend on the order in which the moves are ordered by the block-makers -clearly not a good thing.

To avoid deadlocks, one can restrict contracts to be eventually never idle. This way no player can lock
a contract inadvertently.

Definition 6 The standard bilateral contract is defined as:

φvu = T ≥ −∞ 7→ (v →a u)+ ` ε
βuv = T ≥ ∆ 7→ > ` v →p u

where ∆ is called the delay, a the price, and p ≥ 0 the penalty.

Buyer has an option to conclude the deal at any time, and thus obtain some underlying asset irreversibly by
paying a to Seller. However, starting at T = ∆, and onwards, Seller has the right (but not the obligation)
to cancel the deal and recall the underlying asset. When that happens Buyer has to pay a penalty p to
Seller for immobilising the asset. This contract defined above is eventually-B, as after its time horizon
∆, the β-clause holds forever.
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One can refine it by introducing another delay ∆′ to restrict the forward clause:

φ′vu = T < ∆′ 7→ (v →a u)+ ` ε

so that |φ′| = (−∞,∆′), |β| = [∆,+∞). Now Buyer has a limited time to exercise his buying option.
The refined contract is BF -exclusive iff ∆′ ≤ ∆, and if ∆′ < ∆, it will be idle during the [∆′,∆)
interval. For ∆′ = +∞, we recover the original contract.

4 Composite contracts
Definition 7 A tradeline is a non-empty list of positions u1, . . . , un connected by trade arcs:

u1
φ1−−−→
β1

u2
φ2−−−→
β2

· · · un−1
φn−1−−−−−→
βn−1

un

u1 is called the origin and un the end of the trade line. If u1 = un, one says the trade line is resolved.
If, in a given context: no trade arc is in an F - or a B-state, one says the trade line is irreducible, or a
normal form (NF); if every arc is in an F - or a B-state, one says the trade line is connected.

Each position in a trade line has an owner. We often designate the owner of a position by the position
itself, and speak of player u instead of the player owning u. A trade line represents the state of a game
being played between the owners of its positions. Each move induces modifications of the trade line
and payoffs to the players. Moves are attached to positions (and not directly to players). We distinguish
two types of moves: contraction moves which generalise the moves already considered in the bilateral
contracts, and extension moves whereby the trade line grows and new players come in the game.

4.1 Contractions
Contractions are defined as follows. The active player and clause are in red, and we assume that the active
clause holds in the current context. The evicted player is in blue. Fusion operators µXY are defined below.
The rest of the trade line before u, and after w stays unchanged. Effects attached to the trigger clause are
evaluated at the same time as the transition is performed.

u
φ−−→
β

v
φ′−−→
β′

w
Fv===⇒
φvu

v
µFF (φ,φ′)−−−−−−−→
µFB(β,β′)

w (4)

u
φ−−→
β

v
φ′−−→
β′

w
Bu===⇒
βuv

u
µBF (φ,φ′)−−−−−−−→
µBB(β,β′)

w (5)

It may be that that v is the end of the trade line, in which case we write v ·:

u
φ−−→
β

v · Fv===⇒
φvu

v · (6)

u
φ−−→
β

v · Bu===⇒
βuv

u · (7)

If there is no position before u either, the trade line has fully resolved and the owner of the last remaining
position is now in full possession of the underlying asset.

A connected trade line is one where each arc defines at least one contraction move; an irreducible
trade line is one where no arc defines a contraction move.

Transitions (4) and (5) involve binary operations on clauses: µFB , µFF (forward fusions), and µBB ,
µBF (backward fusions). In game terms, one can think of a contraction as a move whereby the owner
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of an active position acquires an adjacent position. Fusions give a precise meaning to ‘acquiring a new
position’. Fusions are the core of novation (a new party substitutes for another in a contract) and decide
the nature of the composite game being played.

Definition 8 (standard fusions) The standard fusions are as follows:

µFF (φ, φ′) = µBF (φ, φ′) = φ+ φ′

µFB(β, β′) = β′

µBB(β, β′) = β

The idea behind the choice of µBB is that u is carrying over his original cancellation condition in the
new contract with w (more about this shortly). The idea behind µFB is that the contraction preserves the
cancellation condition of v. Finally, the idea behind the choice for the forward fusions µFF , and µBF , is
that the payment just made (or promised) by v is transferred onto w’s forward clause (with clause sum as
defined in Eq. 1).

Instead of the standard backward fusion µBB(β, β′) = β, we could keep only the logical part of β
and not propagate its effects -eg penalties or fees imputed to the middle position v for not playing Fv in
the standard contract (Def. 6). Another option is µBB(β, β′) = β ∨ β′ (with clause union as defined in
Eq. 2). All are reasonable in that the fused backward clause µBB(β, β′) which ties in u and w is implied
by β. This means that the player triggering the B-move does not have to stop after the first contraction
and can sweep the entire trade line if she wishes to, for as long as β holds.

With the combinators obtained earlier, we can define an alternative to Def. 8:

Definition 9 (semi-ring fusions) The semi-ring fusions are as follows:

µFF (φ, φ′) = µBF (φ, φ′) = φ+ φ′

µBB(β, β′) = µFB(β, β′) = β ∨ β′

With this choice, all calculations happen in the semi-ring structure. This set of fusions also satisfies the
B-sweep property mentioned above.

Lemma 1 Let γ, γ′ be trade lines, and suppose γ contracts to γ′ under semi-ring fusions. The following
holds: (i) if γ is connected, so is γ′; (ii) if γ is exclusive, so is γ′; (iii) if all arcs in γ are eventually-B or
-F , so are the ones in γ′.

Standard fusions on the other hand satisfy only point (ii), and a weaker form of (iii). We will work
with both sets of fusions.

4.2 Extension
A player at the end u of the trade line can extend it using the sell rule Suv(φ, β) and append a new bilateral
contract with clauses φ, β, thereby adding a new position v to the game:

u · Suv(φ,β)
======⇒ u

φ−−→
β

v · (8)

Contractions are under the control of a single player: Seller for the backward contraction, and Buyer for
the forward one. Extensions are different. Both players must consent.

One may wonder whether extensions could be made at the start of the trade line as well (or even
inserted in the middle of it). In fact, such extensions are dangerous. Suppose one extends a trade line by
introducing a new position u0 left of the origin:

u0
0−−−−−−−→

>`u1→au0

u1 −−−→ · · · −−−→ un
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The new player at the origin u0 can now sweep through the entire line by iterating Bu0 and collect an
arbitrary fee a from everyone. In §5 we show that our design choices prevent such catastrophic events.

We can return to the standard contracts defined earlier (§6). With simplified and self-evident notations
we get the following contraction rules using (under standard fusions):

u
∆′1, a1−−−−→
∆1, p1

v
∆′2, a2−−−−→
∆2, p2

w
Bu=====⇒

v→p1u
u

min(∆′1,∆
′
2), a1+a2−−−−−−−−−−−−−→

∆1, p1
w for T ≥ ∆1

u
∆′1, a1−−−−→
∆1, p1

v
∆′2, a2−−−−→
∆2, p2

w
Fv=====⇒

v→a1u
v

min(∆′1,∆
′
2), a1+a2−−−−−−−−−−−−−→

∆2, p2
w for T < ∆′1

Note that the backward clauses depend on the previous move. To restore the symmetry, we could use the
semi-ring fusion to obtain:

βxw = (T ≥ ∆1 7→ > ` w →p1 x) ∨ (T ≥ ∆2 7→ > ` w →p2 x)

with x = u, v depending on the preceding move. This means that at max(∆1,∆2) and onwards, the
player in Seller position x can choose to be paid either penalties p1 or p2, and will likely choose the
highest. This is an instance of the determinising idea seen in Def. 3.

5 Soundness of the trade game
A basic form of soundness of the trade game is that it should never be possible to end up in a state where
the asset underlying the trade is lost because the state cannot be resolved to a single position. As said,
a way to solve the problem is to restrict to arcs which are eventually-B (or F ). In this section, we are
looking for a more quantitative notion of soundness, namely an upper bound on the expenses incurred by
playing the game.

Such an upper bound also allows one to statically compute the amount of cash to stake in, upon
entering the game, so that passive payments (in effects) are fully provisioned.

I The derivation assumes standard fusions and deterministic clauses. Similar bounds can be derived
with the semi-ring ones and/or general clauses. To follow the calculations below it is convenient to take a
player-centric view. Consider a generic position v in a trade line:

· · · −−→ u
φ−−→
β

v
φ′−−→
β′

w −−→ · · ·

Let t be the current time; we decompose the current values of the various clauses of interest in their
components map (assuming they are all defined at t):

φ(t) = φ1(t), φ2(t) β(t) = β1(t), β2(t)
φ′(t) = φ′1(t), φ′2(t) β′(t) = β′1(t), β′2(t)

These define four contraction moves which are the only moves in the trade line that impinge directly on
v’s payoffs. Moves and payoffs are shown in Fig. 2. For Fv , Bv (solid lines) v is the active player; for
Bu, Fw (dotted lines) v is passive and evicted by the move. Accordingly, from v’s viewpoint we call,
φ2(t)− φ1(t), and β′2(t)− β′1(t) active payoffs, and β1(t)− β2(t), φ′1(t)− φ′2(t) passive ones.

Let γ be a trade line, and let t be a time. We denote by< the positional ordering in γ. For any position
i ∈ γ not at the end of γ, we denote by φi(t), βi(t) the clauses where i is Seller.

Payoffs at fixed time are specified by pairs of real numbers. We use the following notations: φ1
i (t) ≥ 0

is the active payment i’s Buyer makes to i to complete the deal; and φ2
i (t) is the (possibly negative)

passive payment from i to his Buyer which follows. When i’s Buyer plays that forward move, i’s payoff
is therefore: φ1

i (t)− φ2
i (t).
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u

Fv

φ2(t)−φ1(t)

��
\\

Bu

β1(t)−β2(t)

v
��

Bv

β′2(t)−β′1(t)

Fw

φ′1(t)−φ′2(t)

BBw

Figure 2: Moves which change the balance of v and the implied payoffs.

I We will suppose henceforth that φ1
i (t) − φ2

i (t) ≥ 0, which means that a forward move is always
profitable to the Seller. This constraint is stable under all fusions considered so far.

Likewise: β1
i (t) ≥ 0 is the active payment i needs to make to i’s Buyer to cancel the deal; and β2

i (t)
is the (possibly negative) passive payment from i’s Buyer to i which follows. When i plays that backward
move, i’s payoff is therefore: β2

i (t)− β1
i (t).

For a position v ∈ γ we define upstream looking bounds:

β(v, t) = maxi<v(sups≥t(β
2
i (s)− β1

i (s))) passive expense on a B-move
φ(v, t) =

∑
i<v sups≥t(φ

1
i (s)− φ2

i (s)) active expense on an F -move

where maxes and sums leave out positions for which the quantities of interest are undefined - eg an i < v
such that |φi| ∩ [t,+∞) = ∅ indicating an arc that cannot be in an F -state.

The idea is that β(v, t) is an upper bound for the expenses v may incur upon eviction by a B-move,
whichever is the trace followed. Likewise, φ(v, t) is an upper bound for the price v will ever have to pay
to acquire the underlying (by buying all positions upstream using a series of F -moves). Both quantities
depend only on the arcs upstream of v in γ. (Incidentally, as there are no rules for inserting arcs other
than at the end, the set of arcs upstream of v never increases as the tradeline evolves or time advances.)

We define also downstream looking bounds:

ηBv (t) = sups≥t(β
1
v(s)− β2

v(s)) active expense on a B-move

The idea is that ηBv (t) upper bounds the active payment made by v on a B-move. This bound will work
also for the semi-ring backward fusion, as long as player is not fool enough to pick an option worse than
his original one. Here the control is local to v, ie does not depend at all on the trade line, because v’s
β clause propagates via the standard µBB when triggered (see 8). Note that ηBv (t) ≤ 0 if v’s backward
clause always specifies a profit for v (as in the standard bilateral contracts). There is no need to define a
symmetric ηFv (t) to control for passive expenses on an F -move, as we have assumed above that F -moves
are always profitable to the Seller.

Proposition 2 (max expenses) Let γ be a trade line, and let v be a position in γ. Along any standard
trace starting from γ where v extends the trade line (meaning plays no Svw), v’s expenses are upper
bounded by:

φ(v, t) + β(v, t) +NηBv (t)

with N the number of Bv moves played by v in the trace. In particular, if ηBv (t) ≤ 0, the expenses of v
are upper bounded by β(v, t) + φ(v, t).

To cope with general traces where it may also happen that v extends the trade line, ie plays possibly
multiple moves of type Svw(βk, φk), we can readily modify the estimate ηBv (t) to also maximise over
such moves k:

η̂Bv (t) = maxk sups≥t(β
1
k(s)− β2

k(s))
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If all these payments are Seller-positive, ie η̂Bv (t) ≤ 0, we can forget this term as we did in the statement
above.

The fact that expenses are unbounded if v’s Seller contract specifies that v has to pay to trigger a
backward move (so the opposite of a penalty) should not overly concern us (although maybe it should
concern v’s owner!). Indeed this cost is under the control of the player owning v. The same remark applies
to the expenses incurred by extending repeatedly the end of the trade line.

The above statement gives a direct upper bound on the prepayments needed for a player to join the
game. Depending on the specific time-dependencies - some of this provision can be returned as time
advances and provisions are re-evaluated. Predictability is convenient here, as one knows the amount to
provision.

The same inductive proof (ommitted) also shows the following reasonable property, namely that the
evolution of a trade line cannot lead to a solution where a Seller receives less than the originally asked
price for a forward as well as a backward move.

Proposition 3 (Monotonicity) Let γ be a trade line, and let v be a position in γ: v’s forward payoff (as
Seller) can only increase, and the backward payment made by v (as Buyer) stays invariant.

Regarding the first statement, one should not construe it as saying that the forward payoff will necessarily
happen. Even if there are Buyers waiting to join, that is. To see this, suppose v faces a w who extends the
tradeline with a forward-dead contract Swx(0,1), and w never plays Fw, the only way out for v - a way
which we know exists by general results explained next Section - is to B-sweep the trade line entirely
(using additive forward fusions, at least).

The situation with the second statement is different as there is the B-sweep guarantee, namely that
the entire trade line can be recalled by a position v under v’s original condition βv . However, as we have
seen, the sweep may have a price if ηBv > 0.

We can also remark that the number of F -steps for v to obtain control of the underlying is upper
bounded by the length of γ at the time v enters (necessarily as a Buyer); and, depending on the fusions
used, it may become cheaper (for fixed time) as players upstream move forward.

Thus players can upper bound their costs. This is akin to so-called ‘safety properties’, namely that
something bad never happens. Now we turn to the question of ‘liveness’, ie whether something good can
happen.

6 Confluence of the trade game
Clearly, starting from a given trade line, and even assuming no-one else enters the game, players are
able to resolve the tradeline in fundamentally different ways. What happens if one freezes time as well
as extension moves? This ‘frozen game’ still has exponentially many moves (in the length of the trade
line). Perhaps surprisingly, we will now show that, if the game is BF -exclusive, there is at each instant
in time a unique maximally contracted form of the trade line which is reachable by the players. There is
no guarantee that this irreducible form is a resolution of the trade line, neither is the result saying that the
players will want to reach this normal form. Nevertheless, it is an interesting structural property of this
class of games: the local property of BF -exclusivity generates a global property of stability.

To establish this we study critical pairs in the game, that is to say pairs of contractions (of the same
type or not) which are both concurrently possible and can interact. For each of these, we exhibit a pair
of contractions which converge back to the same trade line. Because of the dependency of the individual
payoffs in the actual path, players may have conflicting preferences for the paths to be followed.

I We proceed axiomatically and use generic fusions for which we derive sufficient conditions to
prove the above results.
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Backward critical pairB1B2 We start by examining the case where both moves involved in the critical
pair are of the same type. Let us look at the backward case first. Two B-moves interact non trivially only
if their triggering positions u1, u2 are contiguous. We call this first critical pair B1B2 in reference to the
two positions triggering the concurrent moves (indicated in red below). Transitions in the diagram are
labelled by the type of move and the clause being triggered (time not shown):

u1
φ1−−→
β1

u2
φ2−−→
β2

u3
φ3−−→
β3

u4

Bu1

β1u1u2uu

Bu2

β2u2u3 ))

u1
µBF (φ1,φ2)−−−−−−−−→
µBB(β1,β2)

u3
φ3−−→
β3

u4

B′u1

µBB(β1,β2)u1u3

))

u1
φ1−−→
β1

u2
µBF (φ2,φ3)−−−−−−−−→
µBB(β2,β3)

u4

Bu1

β1u1u2

uu

u1
µBF (µBF (φ1,φ2),φ3)∼µBF (φ1,µBF (φ2,φ3))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µBB(µBB(β1,β2),β3)∼µBB(β1,µBB(β2,β3))

u4

For both legs of the opening span Bu1
, Bu2

to exist at the same time, and therefore constitute an actual
critical pair, it must be that both β1 and β2 hold in the current context. One can close this span of tran-
sitions with the co-span B′u1

, Bu1 provided µBB(β1, β2) also holds. This co-timeliness condition can be
written β1 ∧ β2 ⇒ µBB(β1, β2) -where the implication is simply the inclusion of time domains.

To obtain confluence on the state, we also need both paths to lead to the same forward and backward
clauses. Clearly, this amounts to asking that the backward fusion operators µBB , µBF are associative.

Payoffs combine passive and active payments and depend on the paths followed. To record the differ-
ence between to two paths we introduce the payoff commutator:

B′u1
Bu1 −Bu1Bu2 = µBB(β1, β2)u1u3 − β2u2u3

With the projective variant of µBB , the commutator simplifies to β1u1u3− β2u2u3. If, as in the standard
contract, a backward effect is a penalty paid by Buyer, then u2 prefers the right path where he receives
this payment, while u1 prefers the left path for the same reason, and u3 prefers the path where he pays
the least penalty (but he does not have a say).

In the case where u4 does not exist and u3 is the end of the trade line, the above diagram still makes
sense and converges on u1· (with no conditions), which becomes the new end.

Forward critical pair F2F3 We have a symmetric diagram for the (F2F3) critical pair:

u1
φ1−−→
β1

u2
φ2−−→
β2

u3
φ3−−→
β3

u4

Fu2

φ1u1u2uu

Fu3

φ2u2u3 ))

u2
µFF (φ1,φ2)−−−−−−−−→
µFB(β1,β2)

u3
φ3−−→
β3

u4

Fu3

µFF (φ1,φ2)u2u3

))

u1
φ1−−→
β1

u3
µFF (φ2,φ3)−−−−−−−−→
µFB(β2,β3)

u4

F ′u3

φ1u1u3

uu

u3
µFF (µFF (φ1,φ2),φ3)∼µFF (φ1,µFF (φ2,φ3))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µFB(µFB(β1,β2),β3)∼µFB(β1,µFB(β2,β3))

u4
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The co-timeliness condition for the closing co-span is now φ1∧φ2 ⇒ µFF (φ1, φ2). State confluence
amounts to associativity of the forward fusions µFB , µFF . The payoff commutator is:

Fu3
Fu2
− F ′u3

Fu3
= φ1u1u2 + µFF (φ1, φ2)u2u3 − (φ1u1u3 + φ2u2u3)

It simplifies to φ1u1u2 − φ1u1u3 for the projective µFF (φ1, φ2) = φ2. Prior remarks on the players’
preferences apply mutatis mutandis. If forward clauses are straight payments, it is advantageous to u3 to
go down the Fu3Fu2 path, and let u2 move first, as u3 shares the forward price with u2. On the other
hand, if the game uses the additive µFF (φ1, φ2) = φ1 + φ2, the commutator contains now an additional
contribution (in red) φ1u1u2 +φ1u2u3−φ1u1u3. Thus, this variant makes paths indifferent to the players
provided φ1u1u2 + φ1u2u3 = φ1u1u3, a reasonable quotient by transitivity of payments.

The diagram still makes sense if u4 is absent and u3 is the end.
We assume henceforth that our fusions are associative.

Tug-of-war critical pair (B2F3) There are three critical pairs mixing both types of contractions. The
most obvious one is the “tug-of-war” critical pair (B2F3) where players contract the same trade arc. If
both clauses φ1, β1 are indeed simultaneously fireable, there is no general way to close this critical pair.

u1
φ1−−→
β1

u2

Imagine u1 is the origin, and u2 the end, then both moves lead to distinct irreducible forms.
I Henceforth we set the game in the BF -exclusive fragment and hence forbid the (B2F3) pair.

Self-critical pair B2F2 The next critical pair involves just one player:

u1
φ1−−→
β1

u2
φ2−−→
β2

u3
φ3−−→
β3

u4

Fu2

φ1u1u2uu

Bu2

β2u2u3 ))

u2
µFF (φ1,φ2)−−−−−−−−→
µFB(β1,β2)

u3
φ3−−→
β3

u4

Bu2

µFB(β1,β2)u2u3 ))

u1
φ1−−→
β1

u2
µBF (φ2,φ3)−−−−−−−−→
µBB(β2,β3)

u4

Fu2

φ1u1u2uu

u2
µBF (µFF (φ1,φ2),φ3)∼µFF (φ1,µBF (φ2,φ3))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µBB(µFB(β1,β2),β3)∼µFB(β1,µBB(β2,β3))

u4

The associated co-timeliness condition for closure is β2 ⇒ µFB(β1, β2).
State confluence has now a variety of solutions, investigated below jointly with the next and last

critical pair.
The payoff commutator is:

Bu2
Fu2
− Fu2

Bu2
= µFB(β1, β2)u2u3 − β2u2u3

which is zero if µFB(β1, β2) = β2. This is natural. In other cases, there is potentially order-sensitiveness
in that the block-maker will decide the payoff of u2. However, u2 is directly responsible for signing on
both trade arcs, so may mitigate this dependency at the strategic level.
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Brokering critical pair B1F3 The last critical pair (B1F3) is the most interesting, in that it is not a
simple commutation, and one has two closing options, either the B co-span (in green):

u1
φ1−−→
β1

u2
φ2−−→
β2

u3
φ3−−→
β3

u4

Bu1

β1u1u2tt

Fu3

φ2u2u3 **

u1
µBF (φ1,φ2)−−−−−−−−→
µBB(β1,β2)

u3
φ3−−→
β3

u4

B′u1

µBB(β1,β2)u1u3

))

u1
φ1−−→
β1

u3
µFF (φ2,φ3)−−−−−−−−→
µFB(β2,β3)

u4

Bu1

β1u1u3

uu

u1
µBF (µBF (φ1,φ2),φ3)∼µBF (φ1,µFF (φ2,φ3))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µBB(µBB(β1,β2),β3)∼µBB(β1,µFB(β2,β3))

u4

or the F one (in red):

u1
φ1−−→
β1

u2
φ2−−→
β2

u3
φ3−−→
β3

u4

Bu1

β1u1u2tt

Fu3

φ2u2u3 **

u1
µBF (φ1,φ2)−−−−−−−−→
µBB(β1,β2)

u3
φ3−−→
β3

u4

Fu3

µBF (φ1,φ2)u1u3 ))

u1
φ1−−→
β1

u3
µFF (φ2,φ3)−−−−−−−−→
µFB(β2,β3)

u4

F ′u3

φ1u1u3uu

u3
µFF (µBF (φ1,φ2),φ3)∼µFF (φ1,µFF (φ2,φ3))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µFB(µBB(β1,β2),β3)∼µFB(β1,µFB(β2,β3))

u4

The associated co-timeliness conditions for closure depends on which closing option one chooses:

β1 ⇒ µBB(β1, β2) B co-span
φ2 ⇒ φ1 ∧ µBF (φ1, φ2) F co-span

Note that the first condition implies the one obtained earlier for the B1B2 critical pair. As to the F co-
span, the co-timeliness constraint couples φ2 to φ1. Worse, under the BF -ex condition, it cannot be that
φ1 holds, since β1 does, so the F co-span option to close is not available. For this reason, we continue
our analysis with the B co-span only.

The payoff commutator is:

Bu1
Fu3
−B′u1

Bu1
= β1u1u2 + µBB(β1, β2)u1u3 − (φ2u2u3 + β1u1u3)

which simplifies to β1u1u2 − φ2u2u3 for the projective variant. Anticipating on the strategic analysis
of the standard ternary game given in §7, we can see that the B1F3 critical pair embeds in this game,
assuming u3 is the end of the trade line. Specifically, F ′u3

Fu3
is the green branch in Fig. 3, while Fu3

Bu1

is the red one (the one to be avoided if the game is to be of interest to a broker). In the light of this
embedding, we can map this commutator to the special case where β1u1u2 is the standard penalty owed
by u2, and φ2u2u3 is a commission paid by the final Buyer. In this case, the commutator has a strategic
interpretation, in that it measures, from the point of view of the middle player, the difference between a
satisfactory brokering process where the player is paid the expected commission, and one where he is not.
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Solving for confluence With all four critical pairs in place, we see that solving confluence leads to the
same pair of equations:

f(g(x, y), z) = g(x, f(y, z)) (9)
f(f(x, y), z) = f(x, g(y, z)) (10)

with f = µBF , g = µFF for the forward fusions, and f = µBB , g = µFB for the backward ones.
Thus, so far as confluence is concerned, one can choose independently the forward and backward

fusions. Moreover, any symmetric assignment µFF = µBF , µFB = µBB is a solution as long as the
fusions chosen are associative and satisfy the co-timeliness conditions. For instance fusions based on max
may lead to interesting dynamics. If we restrict to linear fusions, we can characterise the non-degenerate
solutions to confluence:

Proposition 4 (confluent fusions) Associative and linear confluent fusions are of the following forms:

f(x, y) = g(x, y) = x+ y
f(x, y) = x, g(x, y) = cx+ dy
f(x, y) = g(x, y) = y

with c, d ∈ {0, 1} and c + d > 0; f = µBF , g = µFF for the fwd fusions; f = µBB , g = µFB for
the bwd ones, with in this case only the first two forms available and with the additional restriction that
d > 0. Moreover the combination µFF (x, y) = x, µFB(x, y) = y is forbidden.

Among the linear solutions, we recognise the standard fusions µFF (x, y) = µBF (x, y) = x + y
(additive fwd fusion), and µBB(x, y) = x, µFB(x, y) = y (projective bwd fusion).

6.1 Fixed-time confluence
It is easy to verify that we have already considered all critical pairs: the three mixed ones: B1F2, B1F3,
and B2F2, and the two pairs of the same type: B1B2 and F2F3. Critical pairs involving the S-moves are
trivially closable. Other pairs of concurrently fireable moves trivially commute as they have no overlap.
It follows that the dynamics of the fixed-time game is locally confluent in the BF -exclusive fragment
(which is closed under all moves), wich forbids the bad pair B2F3. As in addition spans are closed by
co-spans of length one, contractions form a confluent system at fixed time (up to payoffs). In particular:

Proposition 5 (fixed-time confluence) Let γ be a BF -exclusive tradeline, there is a unique irreducible
form γ0 reachable from γ in the fixed-time closed game.

Thus maximal plays at fixed-time (or during any lapse of time where all clauses in the game are constant)
lead to exactly the same trade line in the closed game. Besides, as this restricted game is clearly finite,
there is indeed a unique reachable irreducible form. When time clicks, however, γ0 may cease to be
irreducible. Our machinery for reversible and composable trades is all about timing. Indeed: (i) the one
potential winner will change over time in general; (ii) not because there is a unique normal form means
that the players want to reach it -some will want to run the clock for better payoffs; finally, (iii) not
because there is a unique normal form means players can reach it -to exploit the confluence property their
pockets must be deep enough. Another way to phrase (iii) is to say that the local confluence analysis is
independent of the effects/payoffs, and only depends on the logical part of clauses (to make sure pairs are
closable in the same instant).
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6.2 Game-theoretic confluence
Looking back at the critical pairs (CPs), we see that they contain more information than local confluence:
in each case, there is a prevailing player which can perform a move regardless of whether his initial
move is first past the block-maker post or not. We capture this idea of game-theoretic confluence in a
stronger statement of confluence: at fixed time, there is a unique ‘focal’ player who can, under additional
assumptions, drive the game all alone to resolution. (The usual caveat applies: not because the focal player
can collapse the trade line means that he wants to.)

Recall that we say a trade line γ is connected in a given context if none of its arcs is idle. If γ is also
exclusive, this means that every arc in γ has a definite orientation.

Lemma 2 Connectedness is preserved by contraction under standard fusions (see Def. 8).

Definition 10 (focal position) Let γ, γ′ be trade lines. We write γ ⇒? γ′ for a sequence of moves (pos-
sibly empty), ie a trace, leading from γ to γ′. Let u be a position in γ, t a time. Say a trace γ ⇒? γ′ is a
u-trace at t if it consists entirely of u-moves executed a time t. Say u is a focal point of γ at t if there is a
(maximal) u-trace at t which resolves γ to position u.

A focal position is one (the owner of which) can collapse the trade line all alone. When time clicks, it
may change, but at a given time it is unique (by confluence).

Lemma 3 (lifting) Suppose γ is BF -exclusive and γ ⇒uε γ′ (with ε the move’s direction). Then 1) u is
focal in γ at t iff u is focal in γ′ at t; 2) if u is focal in γ at t then all maximal u-traces lead to u.

Notice that: 1) the above statement makes sense as u exists in γ′ because uε does not evict u from
the game; 2) is not trivial in that we know that all maximal traces lead to the same normal form (by
confluence); but some maximal u-traces may not be maximal as traces.

Proposition 6 (pacman) Let γ be a BF -exclusive trade line. If γ is connected at time t, it has a focal
position at t. Furthermore, if γ ⇒? γ′ and u is focal in γ, then u is focal in γ′.

Hence, not only is there always a focal player who can collapse the tradeline on his position at fixed
time - but, whatever the other players do, the focal player retain that power. Concretely, it is easy to see
that the focal position in a connected trade line is the position furthest away from the origin upstream of
which all arcs are in an F -state.

7 The standard ternary game
We now consider two chained copies of the standard bilateral contract (§6) with a view to understanding
the strategic aspects of this particular game, ie how it is played by rational players. We suppose each copy
has its own independent parameters. The direct way to build this ternary game on positions u, v, w is to
follow the sequence Suv(∆, p; a);Svw(∆′, p′; a′):

·u· Suv +3 ·u a−−−→
∆, p

v· Svw +3 ·u a−−−→
∆, p

v
a′−−−−→

∆′, p′
w·

Payoffs include a ‘pay-per-move’ amount ε which abstracts running costs (gas). Costs associated to set-
ting up the game are not considered. We write c© for the asset underlying the trade line. We also write
Ux(α c©+a) for the utility function of the player at position x with α ∈ {0, 1} representing an amount of
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the underlying asset, and a some amount of cash (possibly negative). We suppose Ux is non-decreasing
in both arguments α and a.

Our specific question is whether the game provides liquidity. That is to say, is it possible to set its
parameters in such a way that it is profitable for a pure broker (a player who will not buy the asset) to
enter the game at the middle position v assuming rational co-players. We leave to further research the
analysis of the game under incomplete information about players’ preferences.

Game analysis For the overall trade to be Pareto-improving, players must have different preferences
for the asset. In the language of preferences (or utilities), this assumption reads:

Uu( c©) < Uu(a)
Uw( c©) > Uw(a+ a′ + 2ε)

The second inequality says that w is willing to play the sequence Fw;Fw and thus to fully resolve the
trade line and acquire the asset. The first one says that u is willing to sell the asset at the price offered to
v.

The initial ternary trade line has 8 resolutions. Let us start with the resolutions where v does not play
at all. The corresponding sub-game is shown in Fig. 3 with the payoff vectors indicated at the leaves.
There are two plays where w gets the asset: a full forward play Fw;Fw (in green), or a play Bu;Fw (in
red) where the mediating player v is evicted by u. There are two plays where u cancels the trade line and
recovers the asset: a full backward play Bu;Bu, and a play Fw;Bu where w is frustrated in her attempt
to buy the asset. The opening span is an instance of the B1F3 critical pair (§6).

·u a−−−→
∆, p

v
a′−−−−→

∆′, p′
w·

Bu|∆

uu

Fw

&&
·u a+a′−−−→

∆, p
w·

Bu|∆

��

Fw

  

·u a−−−→
∆, p

w·

Bu|∆

��

Fw

��2(p − ε)
−p
−p

 − c© + (a + a′) + p − ε
−p

c©− (a + a′) − ε

  p − ε
a′

−p − a′ − ε

  − c© + a

a′
c©− (a + a′) − 2ε



Figure 3: Game tree with passive broker: ∆ is the time at which the Bu cancellation option of u becomes active
(indicated by the conditioning notation Bu | ∆). The rightmost (green) branch is the desired execution of the trade
line. The leftmost one (red), which for certain parameters is the subgame perfect equilibrium, one would rather avoid
as it robs the broker from his fee.

Backward moves are only available at ∆, ∆′ and onwards. Backward induction shows that the (red)
sequence Bu;Fw is the only subgame-perfect equilibrium as long as a′ + p > ε. This condition is mild
since it assumes that computational costs ε are lower than the sum of the broker’s fee a′ and punishment
p for not closing the deal. Obviously, this is not the intended equilibrium since the broker v is bypassed
(and even punished for not forwarding the trade). Intuitively, the buyer w does not exercise her forward
option before ∆ because she knows that the seller u will close the deal on his own, by first triggering his
backward option and then letting w execute her forward option to buy the token. The benefits for u is that
he gets the broker fee (and the punishment), while w does not have to pay the computational costs of the
first move which are now covered by u.

This result indicates that the standard ternary game is not incentive compatible when the middle
player v is passive. Consider now the game tree when the broker v moves first. Focus on the leftmost
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u
a−−−→

∆, p
v

a′−−−−→
∆′, p′

w

Bv|∆′

ww

Fv

''
u

a−−−→
∆, p

v

Bu|∆

��

Fv

��

v
a′−−−−→

∆′, p′
w

Bv|∆′

��

Fw

�� p − ε
p′ − p − ε
−p′

  − c© + a

c©− a + p′ − 2ε

−p′

  − c© + a

c©− a + p′ − 2ε

−p′

  − c© + a

−a + a′ − ε
c©− a′ − ε



Figure 4: Game tree of broker: ∆′ is the time at which v’s cancellation option becomes active. The blue branch is
a deterrence path, not played, yet useful to incite w to play the other subgame.

(blue) branch of the tree in Fig. 4. From ∆′ onwards, v can exercise her option to cancel the trade with w.
(Crucially, without reversibility, v has no such option!) This move guarantees that w receives a negative
payoff, and is therefore a threat. Setting the penalty p′ > p + ε ensures that v will always get a positive
payoff, which makes the threat credible. Hence a rational w will never wait past ∆′ as v would exercise
her backward option and punish w for trying to bypass her intermediation. The cancellation option of
v deters w from playing the “bad” subgame perfect equilibrium depicted in Fig. 3. Note, however, that
deterrence is not operational if u can expel v before v can expel w, that is to say if ∆ ≤ ∆′.

Proposition 7 The desired execution Fw;Fw is the only subgame perfect equilibrium of the standard
ternary game when (i) ∆ > ∆′, and (ii) p′ > p+ ε.

By the same reasoning, one sees that v can resist a collusion between u and w in which they try to extort
p from v, with w having no intention of buying. As v can always do Bv after ∆′ and stop there with
a guaranteed positive payoff. The Bv deterrence move works its magic: v will not play that move, but
the fact that she may, drives the equilibrium where she wants it. Importantly, the suitable constraints on
parameters can be met at the time of the extension move Svw, ie when ∆′, p′ are chosen by v and agreed
by w, because, then, ∆ and p are known. Even more importantly, v does not need to have the cash to buy
the asset, ie zero-collateral intermediation is feasible. It is also interesting to see that the inequalities are
purely structural, ie they do not depend on the value of the underlying.

It is only because the standard bilateral contract is extensible that more players (vs) may want to join
the trade line than those willing to enter the single game. The analysis above shows that a v with just
enough cash to provision for the game will join the game.

The two inequalities in Prop. 7 are necessary since the game is not incentive compatible when they are
violated (meaning rational players will not follow the desired execution). Whether they are also sufficient
conditions with less stringent assumptions is a more complicated matter. In particular, it seems important
to also consider situations where w’s willingness to pay is uncertain. Then one would like to prove that
w cannot gain even if she is of the ‘impostor’ type, ie if she does not prefer the asset over a+ a′, so that
Uw( c©) < Uw(a+ a′ + 2ε). To discuss the problem informally, notice that at ∆′, w loses exclusivity, as
v can at any time onwards fire Bv , and then resample the pool of possible buyers by reversibly selling its
position to find a more reactive Buyer. Reversibility allows v to repeatedly kick out slow ws by playing
Bv at ∆′ and obtain payoff (with timeouts expressed as delays):

πv ≥ −p+ λ(p′ − ε)(∆′/∆) ≥ −p

where λ < 1 (which depends on the spread a′) measures the frequency at which v resamples, ie how
good a broker v is for a given level of demand, and −p is a lower bound on v’s loss (in the case v finds
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no w at all during ∆). If v never finds a true Buyer during the allotted time ∆, despite resampling as soon
as possible, v will still break even provided ∆p ≤ λ∆′(p′ − ε).

8 Aside on implementation
In a direct implementation of our protocol, the trade line and its evolution rules are interpreted by a
dedicated smart contract, relying on an external custodial contract to define the ownership of the assets
used in the trade game. These assets can be security tokens or currencies in the popular ERC20 model
from Ethereum. When the game starts, the owner of the asset transfers its property to an account of the
custodial contract which is controlled by the interpreter contract. When the trade line finally resolves, it
remains for the interpreter contract to ask the custodial contract to transfer the ownership of the asset to the
owner of the one remaining position in the game (which implies that the owner is known to the custodial
contract). To implement passive payments, one can forward payment obligations to an external system
managing the players’ debts. Another more decentralised approach is to ask players to pre-provision for
passive payments at the time of joining the game, so that there is no risk of them not being paid. The max
expense Lemma (§5) shows this can be done. There is no such concern for active payments, as these are
payments which players have to make to change the state of the game. Players will do as they please.

9 Conclusion
We have defined a trade protocol to manage chains of reversible bilateral contracts. Its design derives
entirely from a simple premise: the need for a theory of differed payments which allows one to postpone
payments, and resell an asset one has not paid for yet. To do this there is no magic, one has to keep
somehow a memory of past transactions, and be able, as the need may occur, to revert some. This leads us
to a protocol where each chain of transactions, or trade line as we call them, defines the state of an open
game; the evolution of which relies on the reversibility of the component games. One way to think of our
framework is as a basic consistent calculus of deferred payments and novation, Contracts which one can
express therein are expressive enough so that novel financial objects can be built and experimented with,
and yet simple enough that contracts are financially sound and have a transparent cognitive model.

There are many avenues to enrich and refine our trade games. One can explore other forms of con-
tractions for the trade line. For example, it may be that one can emulate directly auction structures by
using max-based clause fusions instead of linear fusions. Another change in the rules of the trade game
would be to introduce batched extensions such as Suv;Svw where w and u are positions held by the same
player. These are already possible over-the-counter and can improve fungibilisation of positions in a trade
line. Another more speculative direction is that of splitting trade lines. The intention is to let players enter
a given trade line competitively. Competing here amounts to allow for non-exclusive extensions of the
trade structure. This leads to trade trees and can perhaps further improve liquidity. It remains to be seen
whether one can set up such an extension in a sound way.
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