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Numerical abstractions used in Astree

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN; ™

BOOLEAN INIT; float P, X;
void filter () {
static float E[2], S[2]; Blipoids (s o+ (v B < [0t
if (INIT) { S[0] = X; P = X; E[0] =X; }

else { P = ((((C0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] * 0.7)); %

E[1] = E[0]; E[0] = X; S[1] = S[o]; sS[0] =

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
s
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

=0.9 * X + 35;
filter (); INIT = FALSE; }

}

t

Numerical abstractions used in Astree

()

void main()
{ FIRST = TRUE; t
while (TRUE) {
dev( );
FIRST = FALSE;
__ASTREE _wait_for_clock(());

% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

Exponentials a® < y

float P, X, A, B; 3}
@ dev( ) % cat retro.config
mel—pev __ASTREE_volatile_input((E [-15.0, 15.0]));
‘f ’(FI STy (P - ¥ 3 __ASTREE_volatile_input ((SWITCH [0,1]));
11 RST) =% __ASTREE_max_clock((3600000)) ;
else

{P= (P- ((((2.0 * P) - A) - B) % 5.0e-03)3Styee -exec-fn main -config-sem retro.config
B = A; retro.c | grep "IP|" | tail -n 1
if (SWITCH) {A = P;} IP| <=1.0000002%((15. +
else {A = X;} 5.8774718e-39/(1.0000002-1))*(1.0000002)lock —
} 5.8774718e — 39/(1.0000002 — 1)) + 5.8774718e — 39 <=
23.039353
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Non-numerical abstraction used in Astrée

— Code Sample:

/* boolean.c */ P
typedef enum {F=0,T=1} BOOL; N
void main () { (8" (B")
unsigned int X, Y; V__" F T//\ A\H
; i “u
while (1) { 9 o Y‘I
B=(X-==0); I-x .a-x X
1f ('B) {
1/ X The boolean relation abstract do-
} main is parameterized by the height
of the decision tree (an analyzer
¥ option) and the abstract domain at
} the leafs
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Reduction of Abstractions

Example: reduction of intervals [CC?G] by simple congruences [Grag9]

% cat -n congruence.c

1 /* congruence.c */

2 int main()

3 { int X;

4 X =0;

5 while (X <= 128)

6 {X=X+4; 1}

7 __ASTREE_log_vars((X));

8 }
% astree congruence.c -no-relational -exec-fn main [& egrep "(WARN)|(X in)'
direct = <integers (intv+cong+bitfield+set): X in {132} >
Intervals : X € [129,132] 4+ congruences : X = 0 mod 4 —
X € {132}.

Examples of Static Analyzers in Industrial Use

— For C critical synchronous embedded control/command pro
grams (for example for Electric Flight Control Software)

— aiT [FHL01] is a static analyzer to determine """
the Worst Case Execution Time (to guarantee
synchronization in due time) = | =

— AsTREE [BCC'03] is a static analyzer to verify
the absence of runtime errors

Examples of Programs Analyzed by Astrée

— Automatic proofs of absence of runtime
errors in Electric Flight Control Soft-

ware:
— A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb

(Nov. 2003)
— A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
no false alarm, World premiéres !

— Automatic proofs of absence of runtime

errors in the ATV software : -
— C version of the automatic docking software: 102.000 lines of

C, 23s on a Quad-Core AMD Opteron™ processor, 16 Gb (Apr.
2008)

(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.

Content

21 Mathematical Semantics . . . .. ... ... L.
2.2 Mathematical Invariants . . . . ... ... .00
23  Mathematical Invariant Equations . . . . ... ... ..
24 Solutions to the Mathematical Invariant Equations . .
25  Solving the Fixpoint Equations by Infinite Iteration . .
26 Machine Invariants . . . . . ... Lo
2.7  Interval Abstraction . .. ... ... ... ... ...
2.8  An Interval Abstract Interpreter . . . . ... ... ...
29  Finite but Slow Iteration . . . ... ... ... ... ..
210 Convergence Speed Up . . . .. .. ... ... ... ..
211 Convergence Acceleration . . . . .. ... ... ... ..
2111 Convergence Acceleration with Widening
211.2  Convergence Acceleration with Narrowing .
212 Chaotic and Structural Iteration . . . .. ... ... ..
213 Verification . . .. ..o




In this gentle introduction to Abstract Interpretation
Y

Intervals.
x € [a,b]
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Mathematical Semantics

A sample program

Let us start with the following example program.

P 2 'x:=1;while?true do 3x :=(x +1); od*.
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A sample program

Let us start with the following example program.
P 2 'x:=1;while?true do 3x :=(x +1); od*.
The mathematical semantics of this program can be informally described
at follows.

e Execution start at program point ' by assigning 1 to program vari-
able x and goes on at program point 2.

« When at program point 2 the evaluation of the loop test yields the
value true so execution continues at program 3 where the value of
variable x is incremented by 1 before coming back to 2.

e Since the loop condition is never false, program point * is unreach-
able so program execution never ends.




States

P 2 'x:=1;while’true do x :=(x+1); od*.

More formally, we write (¢, x) for the state of program execution where ex-
ecution is at program point ¢, ¢ = 1,2,3,4 and variable x has integer value
x € Z (where Z is the set of all mathematical integers).

Execution trace

P 2 'x:=1;while’true do >x :=(x+1); od*.

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

S YC DYC A DG YR ) DU C ) (C R TG A S

where z € Z can be any initial integer value of x.

Trace semantics

P 2 'x:=1;while’true do x :=(x+1); od*.

So the set of all such execution traces is

(0, 20, DE NDE, D6, 2.8, 063, % i+1)... | ze 7}

Mathematical Invariants




Invariance abstraction

P 2 'x:=1;while’true do x :=(x+1); od*.

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ¢, ¢ = 1234
the set I, of possible values that can be taken by variable x when execution
reaches program point ¢ along any of these traces.

Invariance semantics

P 2 'x:=1;while’true do >x :=(x+1); od*.

This set I, is called a program local invariant at program point ¢. We have

h = £«
L = {zeZ|z>0}
Lh = {zeZ|z>0}
ls = 0

Traces to invariants abstraction

a(T) = AN.A z|do,0:0(l,z)o € T}

The abstraction @ maps a set T of traces to a map a(T)
from program points / to the set «(T)/ of reachable

values x of program variable x during any possible
execution in T.

Mathematical Invariant
Equations

24




Invariance Equations

P 2 'x:=1;while’true do x :=(x+1); od*.

Observe that the set /; of possible values of variable x at program point ¢ =

1,23 4 satisfies the following conditions.
X1 = 7
X2 = {1}u{x+1]|xe X3} 1)
X5 = Xon{x€Z]|tue} '

Xa = XonN {X SYA | fa[se}

] 25

Fixpoint Equations

These conditions can be understood as a system of fixpoint equations X = f(X)
of the form

with unknowns X = (Xq, ..., X4).

Fixpoint Solutions

X, = 2
Xo = {1}U{X+1|XEX3} G1)
X3 = Xon{x € 7| true} '

Xy = Xon{x e Z]false}

e So solving this system of equations might lead to the desired invariant /.
e However these equations do not have a unique solution. For example
X1 = Xp = X3 = Z and X4 = @ is another solution which is larger for
componentwise set inclusion C.

e So we will prefer the smallest solution (called the least fixpoint Up f), which
is included in all other solutions' and turns out to be /.

by Tarski fixpoint theorem




Tarski’s fixpoint theorem
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Fixpoints of increasing functions (Tarski)

A

f(x)

> + 00

Another fixpoint at +00 1
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Fixpoint
Let S be a set

Let F be a function Fe S — S

A fixpoint of F is x € S such that
x = F(x)

i.e.a solution to the equation

31

Least fixpoint
® Let (S, <) be a set partially ordered by <

® The least fixpoint, if any,of Fe S — S is
® a fixpoint x = F(x)

® <-smaller than any other fixpoint
y=Fy) = x=<y

® Notation: Lfp F

32




Tarski’s fixpoint theorem

e let S be a set

P(S)={X| X c S}isthe power

F e P(S) — P(S) is increasing i.e.
XCY = KX)c FY)

implies

ifp F=N{ X | FX) < X}

33

Solving the Equations by
Exhaustive Enumeration

34

Solving the equations iteratively ...

The least solution / = Upf of X = f(X) for C can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial

states.

Solving the equations iteratively ... (Cont'd)

- X0 = (xP X9, XY, X)) = (0,0,0,0) (starting with the smallest
possible approximation§




Solving the equations iteratively ... (Cont'd)

- X0 = XV X9, X0 X9y = (9,0, 0, 0)
possible approximation§

- X' =X, X XD = (XY = (Z {1fuf{x+1|xe X},
Xn{xez|tuel, X¥n{xeZ|jfalse}) = (z, {1}, 8, 0)

{starting with the smallest
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Solving the equations iteratively ... (Cont'd)

- X0 = XV X9, X0 X9y = (9,0, 0, 0)
possible approximation§

- X' =X, X XD = (XY = (Z 1uf{x+1|xe X},
Xn{xez|tuel, X¥n{xeZ|false}) = (z, {1}, 8, 0)

- X2 = (X2 X3, X3, X2y = (XYY = (Z, {1ui{x+1|xe X}
XIn{xe7|tue}, 3N {x€7Z|false}) = (zZ, {1}, {1}, 0)

{starting with the smallest
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Solving the equations iteratively ... (Cont'd)

- X0 = XV X9, X0 X9y = (9,0, 0, 0)
possible approximation§

{starting with the smallest

- X' =X, X XD = (XY = (Z 1uf{x+1|xe X},
Xn{xez|tuel, X¥n{xeZ|jfalse}) = (z, {1}, 8, 0)
- X2 = (X2 X3, X3, X2y = (XYY = (Z, 1ui{x+1|xe X}

XIn{xeZ|tue}, XJn{xeZ]|false}) (z, {1}, {1}, 0)

- X = (XX, X)) = (XY = (Z {(1PU{x+1]xe X5},
X2n{xeZ|tue}, Xn{xeZ|false}) = (z, {1,2}, {1}, 0)
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Solving the equations iteratively ... (Cont'd)

- X0 = XV X9, X0 X9y = (9,0, 0, 0)
possible approximation§

{starting with the smallest

- X' =X, X XD = (XY = (Z {1uf{x+1|xeXI},
Xn{xez|tuel, X¥n{xeZ|false}) = (z, {1}, 8, 0)
- X2 = (X2 X3, X3, X2 = (XYY = (Z, 1ui{x+1|xe X}

XIn{xeZ|tue}, XJn{xeZ]|false} (z, {1}, {1}, 0)

- X3 = (X2 X, X, X)) = (XY = (Z {NYu{x+1|xe Xi}
X2n{xeZ|tue}, X2n{xeZ|false}) = (z, {1,2}, {1}, 0)
This calculation can go on like this ad infinitum since each iteration X*1 =
f(X%) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis
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Solving the equations iteratively ... (Cont'd)

- X = (X, X3, X3, XY = (Z, {1,...,n}, {1,...,n}, ©)
{induction hypothesis which holds for the basis n = 1§

_ X2n+1 — <X12n+1' X22n+1’ X32n+1’ X£n+1> f(XZn) — <Z, {1}U{X+
1] x € X"}, X" n{x € 7| teue}, X3" N {x € 7 | false}) = (Z,
..., n+1}, {1,..., n}, @)

_ X2n+2 — <X12n+2 X22n+2 X§n+2 X§n+2> f(X2n+1) (Z {1} U

x+1 ] x e Xx3"M}, X' nix e 7| twe}, 3" n{x € 7 |
false}) = (Z, {1,..., n+1}, {1,..., n+1}, #)

— By recurrence on n, we have proved that

Vo X2 = (XP", X3N, X3, XEY = (7, {1,..., n}, {1,..., n}, )

1 41
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Solving the equations iteratively ... (Cont'd)

X2 = (XE,OXP, X3, X3y = (z, {1,...,n}, {1.....n}, ©)
{induction hypothesis which holds for the basis n = 1§

42
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Solving the equations iteratively ... (Cont'd)

X2 = (XE,OXP, X3, X3y = (z, {1,...,n}, {1.....n}, ©)
{induction hypothesis which holds for the basis n = 1§

X2n+1 — <X12n+1' X22n+1’ X32n+1’ X£n+1> f(XZn) — <Z, {1}U{X+
11 x € X"} X" n{x € Z| true}, X3" N {x € Z | false}) = (Z,
..., n+1}, {1,..., n}, @)
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Solving the equations iteratively ... (Cont'd)

X2 = (XE, X, X3, XEy = (z, {1,...,n}, {1.....n}, ©)
{induction hypothesis which holds for the basis n = 1§

_ X2n+1 — <X12n+1' X22n+1’ X32n+1’ X£n+1> f(XZn) — <Z, {1}U{X+
1] x € X"}, X" n{x € 7| teue}, X3" N {x € 7 | false}) = (Z,
..., n+1}, {1,..., n}, @)

_ X2n+2 — <X12n+2 X22n+2 X§n+2 X§n+2> f(X2n+1) (Z {1} U

x+1 ] x e Xx3"}, X' n{x e 7| e}, 3" n{x € 7 |
false}) = (Z, {1,..., n+1}, {1,..., n+1}, #)

44
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Solving the equations iteratively ... (Cont'd)

- X = (X, X3, X3, XY = (Z, {1,...,n}, {1,...,n}, ©)
{induction hypothesis which holds for the basis n = 1§

_ X2n+1 — <X12n+1' X22n+1’ X32n+1’ X£n+1> f(in) — <Z, {1}U{X+
1] x € X3"}, X3"n{x € 7| true}, X3" N {x € Z | false}) = (Z,
..., n+1}, {1,..., n}, @)

_ X2n+2 — <X12n+2' X22n+2, X§n+2, X§n+2> f(X2n+1) (Z, {1} U
x+1 ] x e Xx3"M}, X' nix e 7| twe}, 3" n{x € 7 |

false}y = (Z, {1,..., n+1}, {1,..., n+1}, @)

— By recurrence on n, we have proved that

Vo X2 = (XP", X3N, X3, XEY = (7, {1,..., n}, {1,..., n}, )

1 45
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Solving the equations iteratively ... (Cont'd)

— Passing to the limit, we get the desired strongest invariant

I = (h, b, kK ls)

= lim X%

n—-+00

= (Z,{n€Z|n>0}, {neZ|n>0}0)

{invariant§
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f is increasing

e A fundamental property of the invariants equations X = f(X) is that f is
increasing.

e This means that if X C Y then f(X) C f(Y) where (Xi, ..., X,) € (1,
..., Ya)yifand only if Vi €[1,n]: X; C Vi

e The intuition is that if more states can be reached at some program point
then more states will be reachable at next program point.

e It follows that the iterates form an ascending chain meaning X0 x' ¢
L EXTEXMTC L Climygeo X" = Upf.
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Machine Invariants
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Machine Integers

e No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int, max_int] where
min_int < 0 < max_int are machine dependant?.

o It follows that we have to decide what happens in case of overflow when
evaluating expression (x +1).

e We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two's complement representation on 64 bits, we have generally have min_int =
—2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 =min_int in two’s complement representation.

1 49

Machine states and execution traces

Hence the set of program states S £ {1,2,3,4} x [min_int, max_int]| is
now finite and the execution traces are now finite of the form
{0, 20, 1. G006, % i+1)... (3, max_int) | z € [min_int,
max_int]} .

Machine Invariant Equations

P 2 'x:=1;while’true do x :=(x+1); od*.

It follows that the machine invariant satisfies the following equations

X1 = [min_int, max_int]

X = {1} U{x+1 €[min_int, max_int]| x € X3} 32)
X3 = XoN{x € [min_int, max_int] | true}

Xy = XoN{x € [min_int, max_int]| false}

Convergence

e Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.

e Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.




Interval Abstraction
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Interval Abstraction

o A further abstraction must be used to solve the machine invariant computer

representation problem.
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Interval Abstraction

o A further abstraction must be used to solve the machine invariant computer

representation problem.
o We will use intervals [[, h] £ {x € Z | < x < h} with the convention that

[[, h] = @ whenever h <[ .

Intervals:
x € [a,b]

55
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Interval Abstraction

o A further abstraction must be used to solve the machine invariant computer

representation problem.
o We will use intervals [[, h] £ {x € Z | | < x < h} with the convention that

[[, h] = @ whenever h <[ .
¢ In doing so we perform an approximation of a non-empty set X C [min_int,

max_int] by the interval [min X, max X].

56
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Interval Abstraction

o A further abstraction must be used to solve the machine invariant computer
representation problem.

o We will use intervals [[, h] £ {x € Z | l < x < h} with the convention that
[[, h] = @ whenever h <[ .

¢ In doing so we perform an approximation of a non-empty set X C [min_int,
max_int] by the interval [min X, max X].

o This approximation is sound in that whenever the value of variable x be-
longs to a set X; whenever execution reaches program point /, it definitely also
belongs to the set [min X;, max X;].

Interval Abstraction

o A further abstraction must be used to solve the machine invariant computer
representation problem.

o We will use intervals [[, h] £ {x € Z | | < x < h} with the convention that
[[, h] = @ whenever h <[ .

¢ In doing so we perform an approximation of a non-empty set X C [min_int,
max_int] by the interval [min X, max X].

o This approximation is sound in that whenever the value of variable x be-
longs to a set X; whenever execution reaches program point /, it definitely also
belongs to the set [min X;, max X;].

e This information is certainly correct but just less precise.

e The interval invariance equations are now

Traces to intervals abstraction
a(T) = Al.let X ={z |Jo,0": 0(l,z)0’ €T} in
[min X, max X]
The abstraction @ maps a set T of traces to a map a(T)
from program points / to the pair (m,M) = «(T)/ of

minimal m and maximal M reachable values « of
program variable x during any possible execution in T.

Interval Invariance Equations

P 2 'x:=1;while’true do x :=(x+1); od*.

The interval invariance equations are now

X1 = [min_int, max_int]

1, 1u(X3=0720:let[a, b= X3in
[min(a + 1, max_int), min(b + 1, max_int)])

9
I

X
I

X2 M[min_int, max_int]

Xo 1@

£
|




Interval Operations

e where the interval join is U@ =@, GU[L, h| =, h|UB 2], h)], and
[a, b]U[c, d] £ [min(a, c), max(b, d)]
e and the interval meetis @N@ =@, @[, h|2[l, NG = @, and

[a, b]M[c, d] £ [max(a,c), min(b,d)] whenb>cAd>a
[a, b]N[c, d] £ 0 when b <c Vd <a

Over-approximation

e [The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.
e For example the set {1,2,5} will be overapproximated by [1, 5] which
introduces the spurious values 3 and 4.

e Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value O is spurious).

Example of incorrect approximations
For x {1,2,5}

o Underapproximations (such as x are always greater than 10) would be
incorrect.

e Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join LI overapproximates the interval union
U and the interval meet M overapproximates the interval intersection N.

unsound. Inrpart'tcular the interval join LI overapproximates the interval union
U and the interval meet I overapproximates the interval intersection N.

An Interval Abstract
Interpreter




Obijective

o  We now briefly sketch the design and functional encoding in OCamL of the
interval abstract interpreter.

e Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

e For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

The Interval Abstract Domain

e We first encode the interval abstract domain, implementing a computer
representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set @). In OCaml, we have max_int = 1073741823 and
min_int = —1073741824 1.

e We also encode the basic interval operations C (less, interval inclusion),
LI (interval join), M (interval meet), interval printing (print) and interval in-
crementation (add1).

e Of course many more interval operations are needed to handle a full lan-
guage, but we aim at extreme simplicity.

10One of the 64 bits is used for garbage collection.
or max_int = 4611686018427387903 depending on the machine/compiler

(* interval.ml, interval abstract domain *)
type interval = EMPTY | INT of (int * int);;
let less x y = match x,y with

| EMPTY, _ -> true

| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (c<=a)&&(b<=d);;

let greater x y = less y Xx;;
let join x y = match x,y with
| EMPTY, _ ->y

| _, EMPTY -> x

| INT (a,b), INT (c,d) -> INT (min a c,max b d);;
let meet x y = match x,y with
| EMPTY, _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->
if (b<c) or (d<a) then EMPTY
else INT (max a c,min b d);;
let addl x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->
(INT ((if a<max_int then a+1 else max_int),
(if b<max_int then b+1 else max_int)));;

let print x = match x with
| EMPTY -> print_string "_|_ "
| INT (a,b) -> print_string "("; print_int a;

print_string ","; print_int b; print_string ") ";;
] 67

Abstract Environments

e For programs with more than one variable, we would have to encode an
abstract environment assigning intervals to program variables.

o Writing X = {x1 « v1,...,x, < v,} for the function X mapping x; to v;
such that X(x;) = vi, i =1, ..., n, the interval invariance equations would be
[ X1 = {x < [min_int, max_int]|}
Xo = {x<[1,1uU(X5x)=0 72 0 slet|a, b]= X3(x) in
4 [min(a + 1, max_int), min(b + 1, max_int)] |}
X3 = XoM{x < [min_int, max_int]}
[ Xa = XoN{x <« 0}

where the abstract operations are extended pointwise such as {xq « v, ...,
xpe vt N {xi v, . xp v} 2 {1 evny, ., x < v NV}

e Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).




Abstract Invariants

e Then we have to encode an abstract domain for representing abstract
invariants(X', X2, X3, X*) which attach to each program point ! an abstract
local invariant X‘ which holds whenever controls reaches program point ‘.

e FEach abstract local invariant X' is represented by an abstract environment
(abstract intervals in our simplified case).

e The encoding is very simple as a 4-tuple specifying the value of program

variable x at each program point (1, 2, 3, 4).

Abstract Invariants (Cont'd)

We essentially have to represent the logical structure, which boils down to

e the partial order C (pless), encoding abstract implication (C in set theory
and = in logic);

e 1 (pgreater), the abstract inverse implication (2 in set theory and <« in
logic);

e the pointwise infimum (#)* (pbot), the abstract encoding of false,
e the pointwise meet (for later use)irapdction 3.9), and

e the printing of local abstract invariants attached to program points (pprint).

(* invariant.ml, interval invariant abstract domain *)
open Interval
type invariant = interval*interval*interval*interval;;
let cless (x1,x2,x3,x4) (x°1,x°2,x°3,x°4) =

(less x1 x’1, less x2 x’2, less x3 x’3, less x4 x’4);;
let pless x x’ =

let (bl, b2, b3, b4d) = cless x x’ in

bl && b2 && b3 && b4;;

let pgreater x x’ = pless x’ x;;
let pbot = (EMPTY, EMPTY, EMPTY, EMPTY);;
let pmeet (x1,x2,x3,x4) (x°1,x°2,x°3,x’4) =

(meet x1 x’1, meet x2 x’2, meet x3 x’3, meet x4 x°4);;
let pprint (x1,x2,x3,x4) =

print_string " 1:";print x1; print_string " 2:";
print x2; print_string " 3:";print x3;
print_string " 4:";print x4; print_newline ();;

The Iterator

o Next the iterator module implements the iterative computation of the least
solution of the invariance equations (1fp°).

e Itis parameterized by the order (1eq), the starting point (a) and the abstract
transformer (£) so as to compute a, £(a), £%(a), ..., £"(a), ..., until reaching the
limit £%(a) such that £(£%(a)) C £(a).

e Of course, convergence may not be quaranteed in which case 1fp does not
terminate (or terminates with a runtime error, e.g. out of memory).

®least fixpoint.
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(*x iterator.ml, iteration of f from a to x >= f(x) *)
let 1fp leq a f =
let rec iterate x =
let y = £ x in
if leq y x then x
else iterate y
in iterate aj;;

Jacobi versus chaotic iteration strategies

Of course the Jacobi iteration strategy

{xik“ = filXf,.... X5 k=1,23,...

i=1,...,4

is simplistic, more elaborate ones would use e.g. a working list

] 74

Abstract Invariant Equations X=f(X)

Then we encode the abstract reachable state transformer f(X) = f((Xi,

..., X4)) using the environment abstract domain (the intervals in our simplified
case).

The Abstract Interpreter

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.

(* transformerUnbounded.ml, abstract transformer *)
open Interval

open Invariant

let f1 () = INT (min_int ,max_int);;

let f2 x1 x3 = join (INT (1,1)) (addl x3);;

let £3 x2 = meet x2 (INT (min_int ,max_int));;

let f4 x2 = meet x2 EMPTY;;

let £ (x1,x2,x3,x4) = (f1 (), f2 x1 x3, f3 x2, f4 x2);;

(¥ reachability interval analysis *)

open Invariant

open TransformerUnbounded

open Iterator

let analyzer () = pprint (lfp pless pbot £f);;
analyzer ();;

(X1 = |[min_int, max_int]

Xo = [1,1]|_|(]X3:ﬂ?ﬂglet[a,b]:X3in
encoding; J [min(a + 1, max_int), min(b + 1, max_int)]
X3 = XpMmin_int, max_int]

Xs = Xong
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Infinitary Iteration

> Cousot

Iterative Resolution of the Interval Equations

Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation®, we get

% ocamlc interval.ml invariant.ml transformeUnbounded.ml iterator.ml \
? reachability_unbounded.ml
% time ./a.out

1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1073741823) 4:_|
2977.460u 9.632s 50:43.46 98.1% 0+0k O0+0io Opf+0w
%

50n a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.

] 78

> Cousot

A look at the iterates...

The Jacobi iterates are as follows

% ocamlc interval.ml invariant.ml transformerUnbounded.ml \
? iteratorPartialUnboundedTrace.ml reachability_unbounded_trace.ml
% time ./a.out

1:_l_ 201 3:_1_ 4:_1_

1:(-1073741824,1073741823) 2:(1,1) 3:_1|_ 4:_|_
1:(-1073741824,1073741823) 2:(1,1) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,2) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,2) 3:(1,2) 4:_|_
1:(-1073741824,1073741823) 2:(1,3) 3:(1,2) 4:_|_
1:(-1073741824,1073741823) 2:(1,3) 3:(1,3) 4:_|_
1:(-1073741824,1073741823) 2:(1,1073741821) 3:(1,1073741820) 4:_|
1:(-1073741824,1073741823) 2:(1,1073741821) 3:(1,1073741821) 4:_|
1:(-1073741824,1073741823) 2:(1,1073741822) 3:(1,1073741821) 4:_|
1:(-1073741824,1073741823) 2:(1,1073741822) 3:(1,1073741822) 4:_|
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1073741822) 4:_|
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1073741823) 4:_|
converged to 1lfp.

1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1073741823) 4:_|_

3115.012u 7.706s 52:49.34 98.5% 0+0k 0+0io Opf+O0w
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> Cousot

On the Convergence Criterion

o Notice that the abstract invariance equations X = f(X) are increasing, if
X C Y then f(X) C ().

80
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On the Convergence Criterion

o Notice that the abstract invariance equations X = f(X) are increasing, if
X C Y then f(X) C ().

o [The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.
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On the Convergence Criterion

o Notice that the abstract invariance equations X = f(X) are increasing, if
X C Y then f(X) C ().

o [The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

o It follows that the iterates X C ... E X" C ... C lim, 100 X" are

increasing.
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On the Convergence Criterion

o Notice that the abstract invariance equations X = f(X) are increasing, if
X C Y then f(X) C ().

o [The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

o It follows that the iterates X C ... E X" C ... C lim, 100 X" are

increasing.

e Since the abstract interpreter stops iterating when reaching of postfixpoint

by antisymmetry.

83

F(Limy 400 X™) E limy—s 100 X7, the limit satisfies £(lim,_ 100 X™) = limy_, 400 X"

On Slow Convergence !

Of course the convergence is extremely slow and in practice must be acceler-
ated.

84




Convergence Acceleration

85 > Cousot

Obijective

e When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.(*)

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages

] 86 > Gousot

Obijective

e When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.(*)

e The only sound solution is then to have overapproximations of the desired

result.

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages
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Obijective

e When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.(*)

e The only sound solution is then to have overapproximations of the desired

result.
e We have already exploited the overapproximation idea when replacing sets

of integer values in the invariant equations by interval of values.

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages
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Obijective

e When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.(*)

e The only sound solution is then to have overapproximations of the desired
result.

e We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

e We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages
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Obijective

e When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.(*)

e The only sound solution is then to have overapproximations of the desired
result.

e We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

e We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

e The possibility of computing sound but approximate solutions to the in-

variant equations leads to powerful sound and fast static program analysis
methods.

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages
] 90

Convergence Acceleration
by Widening

9l

Convergence Acceleration by Widening

e The intuition for convergence acceleration is to speed up the increasing
iteration X0 = L, ..., X" = £(X"), ..., limy_ ;00 X" so as to reach an
overapproximation A of the least solution lim,_, 1 X" of the fixpoint equation
X = f(X)".

?The justification is again by Tarski since f(A) C A implies Ufp f C A




Convergence Acceleration by Widening Soundness

e The intuition for convergence acceleration is to speed up the increasing

iteration X0 = L, ..., X"t = £(X"), ..., limy_ ;100 X" so as to reach an o o .
overapproximation A of the least solution lim,_, 400 X™ of the fixpoint equation e For soundness, the widening must perform over-approximations, that is x C
X =f(X). xVyandyCxVy.

e Convergence acceleration means that X"*' will be a function of X" and
f(X") 8 and so X"*1 = X" V £(X") where V is called a widening®.

"The justification is again by Tarski since f(A) C A implies Ufp f C A.

8and more generally X"*' could depend on the sequence of previous iterates X°, f(X?), ...,
X", f(X"), but we can use a reencoding to prove that a proof by strong
induction can always be done by a weak recurrence and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings V and joins V, U, etc,

\SE 2015, September 14th, 2015, Naniing, China ] 93 , 94
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Convergence enforcement Example: Interval Widening

For example, a widening for intervals could be

e For convergence, the widening must ensure termination with an overapprox- gVy

y
imation of the desired solution. x Vg

X
[(c<a? —c0zga), (d>b 2 4+o0s b))

> > >

[a, b]Vc, d]

\SE 2015, September 14th, 2015, Nanjing, China ] 95 p N ) ] 96
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Example: Interval Widening

For example, a widening for intervals could be

6Vy = y
xVg =& x
[a, b]V]c, d] £ [(c<a? —o0sal), (d>b ? +oosb]]

e Recall than in xVy the x is an iterate and y is the next iterate f(x). So in
[a, b]V[c, d]if c < a the next iterate decreases the lower limit of the interval
so widening to —oo ensures this cannot happen infinitely often.

97
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Example: Interval Widening

For example, a widening for intervals could be

6Vy = y
xVg & x
[a, b]V]c,d] £ [(c<a? —o0sal), (d>b ? +oosb]]

e Recall than in xVy the x is an iterate and y is the next iterate f(x). So in
[a, b]V[c, d]if c < a the next iterate decreases the lower limit of the interval
so widening to —oo ensures this cannot happen infinitely often.

o OSimilarly, if d > b then the next iterate increases the upper limit of the
interval so widening to +oo ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

98

Example: Interval Widening (Cont'd)

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

~

X° (&) L xH Xt

v
v
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Widenings are not increasing!

e Observe than the interval widening is not increasing. For example [0, 1] C
[0, 2] but [0, 1]V [0, 2] = [0, +o0] I [0, 2] = [0, 2] V [0, 2], a point discussed
at length in chapter 30.

100




Widenings are not increasing!

e Observe than the interval widening is not anreasmg For example [0, 1] =

[0, 2] but [0, 1] V[0, 2] = [0, +00] IZ [0, 2] = [0, 2] V [0, 2], a point discussed
at length in chapter 30.

e It can be shown that if the widening stops loosing information
when a solution is found and is increasing then it cannot
enforce termination (*)

(*) see P. Cousot,VMCAI 2015

Encoding the interval widening

A functional encoding in of the widening in OCamL could be

(* intervalWidening.ml, interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY, _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->
let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in
INT (a’,b?);;

Environment Widening

If we had abstract environments to handle several variables, the widening
would have to be applied individually for each of these variables.

Invariant widening

x :=1; while 2true do Jx :=(x +1); od*.

We must also extend the widening to local invariants attached to pro-

gram points. In our example, the widening is applied once around the loop at
program point 2 as follows.

(* invariantWidening.ml, invariant widening x*)

open IntervalWidening

let pwiden (x1,x2,x3,x4) (x’1,x°2,x°3,x’4) =
(x’1,widen x2 x’2,x’3,x°4);;

] 104




Abstract Interpreter with Widening

The abstract interpreter now calls the iterator using the invariant widening.

(* reachability analysis with widening x)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in

pprint (1lfp pless pbot fw);;

analyzer ();;

Static Analysis with Widening

The result is now almost instantaneous.

% ocamlc interval.ml intervalWidening.ml invariant.ml \
invariantWidening.ml transformerUnbounded.ml iterator.ml \
? reachability_widening.ml
% time ./a.out

1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1073741823) 4:_|_
0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io Opf+Ow
h

Trace of the Iterations with Widening

The Jacobi iterates with widening are extremely fast as shown below.

% ocamlc interval.ml intervalWidening.ml invariant.ml \

invariantWidening.ml transformerUnbounded.ml \

iteratorTrace.ml reachability_widening_trace.ml

% time ./a.out

solo 2000 302 4:_ L

:(-1073741824,1073741823)

:(-1073741824,1073741823)

:(-1073741824,1073741823)

:(-1073741824,1073741823)
converged to lfp.
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1073741823) 4:_|_

0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io Opf+Ow

)

:(1,1) 3:_|_ 4:_|_

:(1,1) 3:(1,1) 4:_|_

:(1,1073741823) 3:(1,1) 4:_|_
:(1,1073741823) 3:(1,1073741823) 4:_|_

S TS
NN NN

Imprecision of the Widening

Of course, the widening cannot, in general, provide the exact result! To
see that, consider the bounded iteration

P £ 'x:=1;while?(x <= 100) do x :=(x + 1); od”.

so that the abstract interval equations become

[ X7 = {x < [min_int, max_int]}
Xo = {xe[1,1U(Xs5(x) =02 0 s let[a, b] = X(x) in
J [min(a + 1, max_int), min(b + 1, max_int)]|)}

X3 = XQf]{xe—[min_int,100”
L X4 = XoM{x « [101, max_int]}




I) Direct iteration (without widening)

A direct iteration

(¥ reachability interval analysis *)

open Invariant

open TransformerBounded

open Iterator

let analyzer () = pprint (1lfp pless pbot £);;
analyzer ();;

yields

% ocamlc interval.ml invariant.ml transformerBounded.ml \
? iterator.ml reachability_bounded.ml
% time ./a.out
1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)
0.001u 0.000s 0:00.00 0.0% 0+0k 0+0io Opf+O0w
yA

in more details

% ocamlc interval.ml invariant.ml transformerBounded.ml \
? iteratorPartialBoundedTrace.ml reachability_bounded_trace.ml
% time ./a.out

1ol 2:_1_ 3:_|_ 4:_1_

1:(-1073741824,1073741823) 2:(1,1) 3:_|_ 4:_|_
1:(-1073741824,1073741823) 2:(1,1) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,2) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,2) 3:(1,2) 4:_|_
1:(-1073741824,1073741823) 2:(1,3) 3:(1,2) 4:_|_
1:(-1073741824,1073741823) 2:(1,99) 3:(1,99) 4:_|_
1:(-1073741824,1073741823) 2:(1,100) 3:(1,99) 4:_|_
1:(-1073741824,1073741823) 2:(1,100) 3:(1,100) 4:_|_
1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:_|_
1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)
converged to 1lfp.

1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)

0.001u 0.001s 0:00.00 0.0% 0+0k 0+0io Opf+Ow

h

Again convergence is guaranteed but slow.

I1) Iteration with widening

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerBounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in

pprint (lfp pless pbot fw);;

analyzer ();;

we rapidly get a strictly less precise result.

% ocamlc interval.ml intervalWidening.ml invariant.ml \
? invariantWidening.ml transformerBounded.ml iterator.ml \
? reachability_widening_bounded.ml
% time ./a.out
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,100) 4:(101,1073741828)
0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io Opf+0w
YA
% ocamlc interval.ml intervalWidening.ml invariant.ml \
? invariantWidening.ml transformerBounded.ml iteratorTrace.ml \

In more details the widening effect is not compensated by the test on loop exit.

? reachability_widening_bounded_trace.ml
% time ./a.out

1: - 2:_1_ 3:_1_ 4:_1_

1:(-1073741824,1073741823) 2:(1,1) 3:_|_ 4:_|_
1:(-1073741824,1073741823) 2:(1,1) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,100) 4:(101,107374182
converged to 1lfp.

1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,100) 4:(101,107374182

0.000u 0.000s 0:00.00 0.0%
%

0+0k 0+0io Opf+Ow

B)

B)




Convergence Acceleration
by Narrowing

\SE 2015, September 14th, 2015, Nanjing, China

Intuition for Convergence Acceleration with Narrowing

o DBecause the upward iteration sequence with widening concerges to a post-
fixpoint A of f such that lfp f © AAf(A) C A, we have, by recurrence and since
f is increasing, that lfp f C f"(A) C A.

14 > Gousot
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Intuition for Convergence Acceleration with Narrowing

o DBecause the upward iteration sequence with widening concerges to a post-
fixpoint A of f such that UpfC A/\f(A) C A, we have, by recurrence and since
f is increasing, that lfpf C f1(A) C A.

e When A is not a fixpoint of f, any iterate in the sequence Y0 = A L
Y™ = f(Y") = f"(A) is an overapproximation of the unknown Ifp f more

A

precise than A.
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Intuition for Convergence Acceleration with Narrowing

o DBecause the upward iteration sequence with widening concerges to a post-
fixpoint A of f such that UpfC A/\f(A) C A, we have, by recurrence and since
f is increasing, that lfpf C f1(A) C A.

e When A is not a fixpoint of f, any iterate in the sequence Y0 = A L
Y™ = f(Y") = f"(A) is an overapproximation of the unknown Ifp f more

A

precise than A.
e However, this downward iteration (Y, n € N) might be infinite or con-

verging slowly.
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Intuition for Convergence Acceleration with Narrowing

e DBecause the upward iteration sequence with widening concerges to a post-
fixpoint A of f such that UpfC A/\f(A) C A, we have, by recurrence and since
f is increasing, that fp f C f1(A) C A.

e When A is not a fixpoint of f, any iterate in the sequence Y0 = A L
Y™t = f(Y") = f"(A) is an overapproximation of the unknown Ifp f more
precise than A.

e However, this downward iteration (Y, n € N) might be infinite or con-
verging slowly.

e It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y"*1 will be a function of Y" and f(¥")"° and so

Y"1 = y" A f(Y") where A is called a narrowing .

and more generally Y"*! could depend on the sequence of previous iterates Y°, f(Y?), ...,
Y", f(Y"), as was also the case for widening.

""We use a binary operator notation rather than a functional notation because of the analogy
between narrowing A and meets A, 1, etc

] 17

Soundness

e For soundness, the narrowing must perform over-approximations, that is
y C x Ay, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 2.

12By recurrence, if X = f(X) is any fixpoint of f such that X C Y” then X = f(X) C f(Y")
since f is increasing so X C Y" C Y” A f(Y") = Y™*' by the overapproximation hypothesis.

1 118

Convergence

e For convergence, the narrowing must ensure termination with a fixpoint.

Example: Interval Narrowing

For example, a narrowing for intervals could be

gAy g
x @
[a, b]Alc, d] & [(a=—-00Fcsal), (b=+0c0?dsb]]

(1>

(1>
=

Recall than in x A y the x is an iterate and y is the next iterate f(x). So [a,
b]Alc, d] will just eliminate the infinite bounds in [a, b] and replace them by
the bounds of the next iterate [c, d|].

So the narrowed interval is larger than [c, d] that is f(x) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.




Example: Interval Narrowing (Cont'd)

T 2 EE T =
BB B
224 ! A
- IRSEE L ELTETT b
X V) XAY
EEES ’ KT
e _ |
: E |
- 3 |
| |
~ > ol
X b XAy
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Encoding the Interval Narrowing

A functional encoding in of the narrowing in OCamL could be

(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY, _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->
let a’ = if a=min_int then c else a in
let b’ = if b=max_int then d else b in
INT (a’,b’);;
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Invariant Narrowing

P 2 'x:=1;while’true do x :=(x+1); od*.

In our example, the narrowing is applied once around the loop at program point
2, like the widening.

Abstract Interpreter with Widening/Narrowing

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.

(* invariantNarrowing.ml, invariant narrowing *)

open IntervalNarrowing

let pnarrow (x1,x2,x3,x4) (x’1,x°2,x°3,x°4) =
(x’1,narrow x2 x’°2,x°3,x°4);;

(¥ reachability analysis with widening and narrowing *)
open Invariant

open InvariantWidening

open InvariantNarrowing

open TransformerBounded

open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
let w = (1fp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (1lfp pgreater w fn);;
analyzer ();;
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Example of convergence acceleration by widening/narrowing

The result is now almost instantaneous.

% ocamlc interval.ml intervalWidening.ml intervalNarrowing.ml \
? invariant.ml invariantWidening.ml invariantNarrowing.ml \
? transformerBounded.ml iterator.ml \
? reachability_narrowing_bounded.ml
% time ./a.out
1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)
0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io Opf+O0w
h

Details of the iteration with Narrowing/Widening

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval.ml intervalWidening.ml intervalNarrowing.ml \
7?7 invariant.ml invariantWidening.ml invariantNarrowing.ml \

? transformerBounded.ml iteratorTrace.ml \

? reachability_narrowing_bounded_trace.ml

% time ./a.out

1: - 2:_1_ 3:_|_ 4:_1|_

1:(-1073741824,1073741823) 2:(1,1) 3:_1|_ 4:_|_
1:(-1073741824,1073741823) 2:(1,1) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,1) 4:_|_
1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,100) 4:(101,1073741828)
converged to 1lfp.

1:(-1073741824,1073741823) 2:(1,1073741823) 3:(1,100) 4:(101,107374182B)
1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,1073741823)

1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)
converged to 1lfp.
1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)
0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io Opf+O0w
%

On the (im)precision of the analysis...

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
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Widening/Narrowing are not duals

So we need four different notations, as follows.

Iteration | lteration

starts from | stabilizes
Widening V| below above
Narrowing A above above
Dual widening v above below
Dual narrowing A below below

No dual widening V has ever been found but trivial ones such as bounded
execution (bounded model-checking), execution on a few cases (debugging),
etc.
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On actual abstract interpreters

Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

e In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

On actual abstract interpreters

Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

e In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

e Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

¢ (An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). o

Chaotic Iterations:
A Structural Instance

Chaotic iterations

the iteration of the abstract equations need
not follow the Jacobi iteration strategy and can be done in any chaotic order
provided no equation is forgotten forever (or equivalently every equation is
evaluated infinitely often) until it is stabilized.

A particular instance of such an efficient chaotic iteration follows program
execution as defined by induction on its syntax

Starting from the entry condition at program point !, we can stabilize the
loop >—3 before computing the invariant at program point *.




Structural iterations

(* structural reachability analysis with widening and
narrowing *)

open
open
open
open
open
open

Interval
IntervalWidening
IntervalNarrowing
Invariant
TransformerBounded
Iterator

let analyzer () =
let pl = f1 () in
let p2 = let f x2 = f2 pl (£3 x2) in

let fw x2 = widen x2 (f x2) in
let w = (1fp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
(1fp greater w fn) in
let p3 = £3 p2 in
let p4 = f4 p2 in

pprint (pl, p2, p3, pd);;

analyzer ();;

Structural iterations (cont'd)

and get exactly the same global result (the trace shows the iteration with
widening and then the iteration with narrowing for the loop *—3)

% ocamlc interval.ml intervalWidening.ml intervalNarrowing.ml \
7 invariant.ml invariantWidening.ml invariantNarrowing.ml \

7?7 transformerBounded.ml iteratorTrace.ml \

? structural_reachability_narrowing_bounded_trace.ml

% time ./a.out

_l- (1,1) (1,1073741823) <converged to fixpoint.

(1,1073741823) (1,101) converged to fixpoint.
1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)
0.000u 0.000s 0:00.00 0.0% 0+0k O+0io Opf+O0w

A
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Verification
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Verifier

e The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.
e We can turn it into a verifier checking an interval specification.




Verifier

e [The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

e We can turn it into a verifier checking an interval specification.

e The specification can be provided by the user or remain implicit (e.g. ab-
sence of runtime errors such as overflows).

e One kind of user specification is a type declaration, for example an interval
declaration for integer variables like var x : 1..100;.

Verifier

e The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

e We can turn it into a verifier checking an interval specification.

e The specification can be provided by the user or remain implicit (e.g. ab-
sence of runtime errors such as overflows).

e One kind of user specification is a type declaration, for example an interval
declaration for integer variables like var x : 1..100;.

e Let us understand this declaration as: “only values between 1 and 100 can
be assigned to x, otherwise execution stops” (with a runtime error).

e Observe that this does not mean that x always has a value betwwen 1 and
100 because it can be initialized with any integer value."3.

3This interpretation of the interval declaration is that of the PascaL programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
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Verifier

e [The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

e We can turn it into a verifier checking an interval specification.

o The specification can be provided by the user or remain implicit (e.g. ab-
sence of runtime errors such as overflows).

e One kind of user specification is a type declaration, for example an interval
declaration for integer variables like var x : 1..100;.

e Let us understand this declaration as: “only values between 1 and 100 can
be assigned to x, otherwise execution stops” (with a runtime error).

e Observe that this does not mean that x always has a value betwwen 1 and
100 because it can be initialized with any integer value."3.

3This interpretation of the interval declaration is that of the PascaL programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
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Example of Interval Verification

For the following example
P 2 varx:1.100; 'x :=1; while %(x <= 100) do ’x := (x + 1); od*.

the abstract interval equations become

[ X1 = {x < [min_int, max_int]|}
Xo = {x< (1. 1u(X3(x)=0 7% @ ¢ let[a, b] = X3(x) in
J [min(a + 1, max_int), min(b + 1, max_int)]|)) M [1, 100}
X3 = XyM{x <« [min_int, 100]}
[ X4 = XoM{x < [101, max_int]}

since execution stops if and when a value outside [1, 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration

] 140




Encoding the Declaration

This declaration is encoded in OCaAmML as follows

(* declaration.ml x*)

open Interval

open Invariant

let d =
(INT (min_int ,max_int),
INT (1,100),
INT (min_int ,max_int),
INT (min_int ,max_int));;

Encoding the Verification Phase

The verification of absence of errors checks that at any point during an
execution without error up to some point in the computation will not have an
error at the next execution step.

(* verifier.ml, interval invariant abstract domain x*)
let pwarning (bl, b2, b3, b4) =

let m = "Potential error at line " in

if not bl then print_string (m~"1\n");

if not b2 then print_string (m~"2\n");

if not b3 then print_string (m~"3\n");

if not b4 then print_string (m~"4\n");;
let pverify leq f a d =

let b = leq (f a) d in

pwarning b;

Encoding the Verifier

The abstract interpreter performs the iterative abstract reachability fixpoint
overapproximation with widening/narrowing and intersection with the decla-
ration, then prints the least fixpoint result, and finally checks for errors.

Result of the Analysis

(¥ reachability verification with widening and narrowing #%
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
open Declaration
open Verifier
let verifier () =
let fw x = (pmeet (pwiden x (f x)) d) in
let w = (1fp pless pbot fw) in
let fn x = pnarrow x (f x) in
let a = (1lfp pgreater w fn) in

pprint a; pverify cless f a d;;

verifier ();;
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% ocamlc interval.ml intervalWidening.ml intervalNarrowing.ml \
invariant.ml invariantWidening.ml invariantNarrowing.ml \
transformerBounded.ml iterator.ml declaration.ml \
verifier.ml reachability_narrowing_declaration.ml

% time ./a.out

1:(-1073741824,1073741823) 2:(1,100) 3:(1,100) 4:_|_

Potential error at line 2

0.000u 0.000s 0:00.00 0.0%

%

0+0k 0+0io Opf+Ow

e Observe that the program execution always stops at program point 3 with
an overflow outside the range [1, 100] so program point * is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

« Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
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Details of the Analysis

Correcting the Declaration

% ocamlc interval.ml intervalWidening.ml intervalNarrowing.ml \
invariant.ml invariantWidening.ml invariantNarrowing.ml \
transformerBounded.ml iteratorTrace.ml declaration.ml\
verifier.ml reachability_narrowing_declaration_trace.ml

% time ./a.out

N I B R I

(* declarationCorrect.ml *)
open Interval
open Invariant

:(-1073741824,1073741823)
:(-1073741824,1073741823)
:(-1073741824,1073741823)

:(1,1) 3:
:(1,1) 3:(1,1) 4:
:(1,100) 3:(1,1) 4:_|

N S I

let d =
(INT (min_int ,max_int),
INT (1,101),
INT (min_int ,max_int),
INT (min_int ,max_int));;

N e e
NN NN

:(-1073741824,1073741823)
converged to 1lfp.
1:(-1073741824,1073741823) 2:(1,100) 3:(1,100) 4:_|_
converged to 1fp.

1:(-1073741824,1073741823) 2:(1,100) 3:(1,100) 4:_|
Potential error at line 2
0.000u 0.000s 0:00.00 0.0%
h

:(1,100) 3:(1,100) 4:_|

0+0k 0+0io Opf+Ow

yields no error, the verification is completed.
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% ocamlc interval.ml intervalWidening.ml intervalNarrowing.ml \
invariant.ml invariantWidening.ml invariantNarrowing.ml \
transformerBounded.ml iterator.ml declarationCorrect.ml \
verifier.ml reachability_narrowing_declaration_correct.ml

% time ./a.out

1:(-1073741824,1073741823) 2:(1,101) 3:(1,100) 4:(101,101)
0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io Opf+Ow
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When to do the verification?

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.
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A Touch of Abstract
Interpretation Theory

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, £
France, pages 106— 130, April 13-15 1976, Dunod, Paris.

of the second i i itm on Prog . Paris,

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. These Es Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303 —342, Prentice-
Hall, Inc.. Englewood Cliffs, New Jersey. US.A.. 1981.
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Abstract Interpreters

® Transitional abstract interpreters: proceed by
induction on program steps

® Structural abstract interpreters: proceed by induction
on the program syntax

® Common main problem: over/under-approximate
fixpoints in non-Noetherian® abstract domains )

(*) Iterative fixpoint computations may not converge in finitely many steps
(**) Or convergence may be guaranteed but to slow.

Fixpoint Iteration
Convergence Acceleration
by Extrapolation and
Interpolation

Patrick Cousot, Radhia Cousot:
nified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP 1992: 269-295

Patrick Cousot: Abstracting Induction by Extrapolation and Interpolation. VMCAI 2015: 19-42

Fixpoints Convergence acceleration with widening
e Poset <D,g, L,u> A
e Transformer:Fe D — D 7
e Least fixpoint: Ifp~ F = | |nen F*(L) (under appropriate
hypotheses)
Ifp F
Q) " = L & ]

F(X)=X

151

Infinite iteration

152




Convergence acceleration with widening

s

Ifp F

|

Ifp F

>
>

\ 4

Accelerated iteration with widening
(e.g. with a widening based on the derivative
as in Newton-Raphson method®)

Infinite iteration

®) Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33
(2010)
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Extrapolation by Widening
o X0=1
widening)

X! = X0 ¥ F(X")

(increasing iterates with

when F(X") z X"
Xl = Xn when F(X") C X"
® Widening V:

e YCLXVY (extrapolation)

® Enforces convergence of increasing iterates with
widening (to a limit X?)
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The oldest widenings

® Primitive widening [1,2]

(xﬁy):gxeva,yevjdans S
s = a,, b,19v [a,, b,] =
Bl B 4 [ 19 1] [ - 2] .
?2,0=>x; ’ .
[n;,m 1,00, ,m ] =: . B . .
Rty LBy mp) => [if a; < a then -« else a, fi,-
sim, > m alors +o sinonm, fsil ;

Hen if b2 > bl then +» else bl f£il

[sin, < n; alors —= sinon n, fsi ;

® Widening with thresholds [3]

Vxe Ly, L Vi(Dx=xVy(j) L=x
Uy ] Vo () [B, 5]
=[f0< L <, thenQ elsif I, < I, then —b — 1 else I, fi,
if u, < u, < 0 then 0 elsif u, < u, then b else u, fi]

[1] Patrick Cousot, Radhia Cousot: Véri statique de la é i des Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
[3] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.
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Extrapolation with widening

XC F(X) F(X)C X
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Interpolation with narrowing

The oldest narrowing

o YO=X (decreasing iterates with ° [2]
narrowing) it .
[a1,b1] A [az.bzl =
Y+l =Yn A F(Yn) when F(Yn) C Y [if a, = -= then a, glse MIN (a,.a,),
if b1='+°° then I:g2 else MAX (b,,b,]]
Y+ =yn when F(Y") = Y» e
e Narrowing A:
e YCLX = YCLXAYLCX (interpolation)
® Enforces convergence of decreasing iterates with
narrowing (to a limit Y*)
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
: 157 ; N —— 158
Interpolation with narrowing Duality
L4 Convergence above the limit | Convergence below the limit
Increasing iteration Widening V Dual-narrowing A
XEF(X) Decreasing iteration Narrowing A Dual widening v

Could stop when F(X) Z X A F(F(X)) E F(X) but not the current practice.
2 \, 2015, Nanjing, China 159

Extrapolators (V, v) and interpolators (/\, E)

® Extrapolators: VAR
<@ ®
® Interpolators: A




Extrapolators, Interpolators, and Duals

co-in-
duction

induct-
ion

161

Interpolation with dual narrowing

o 70=1 (increasing iterates with dual-narrowing)

Z™! = F(Z" AY*  when F(Z") £ Z"
Zrtl =70 when F(Z") C Z"
e Dual-narrowing A:

e XCY = XCXAYCY (interpolation)

® Enforces convergence of increasing iterates with
dual-narrowing

162

Example of dual-narrowing

° [a,b]

a.b] B [c.d] _

b

[c.d]

® (b Aled 2 [[c=-c0asl(atc)2))[d=co?bs[(b+d)2]]]
® The first method we tried in the late 70’s with Radhia

® Slow

® Does not easily generalize (e.g. to polyhedra)
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Interpolation with dual-narrowing

XCIF(X)

164




Relationship between narrowing and dual-
o N = A

e YCLX = YCLXAYCLX
(narrowing)

~

e YCLX = YLYA XCX (dual-

narrowing)
® Example: Craig interpolation

® Why not use a bounded wigening (bounded by B)?
o FX)CB= F(X)CF(X) ABCB (dual-
narrowing)
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Example of widenings (cont’d)
e Bounded widening (in [¢, h]):

a,b]

lc.d]

[a,b] Vo [c,d] £ [c+a-2¢, b+d+2h]
2 2
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Widenings

167

Widenings are not increasing

® A well-known fact

[1,1] € [1,2] but [1,1]V[1,2]=[1,00] S,Z [1,2]1V[1,2]=[1,2]
® A widening cannot both:

® Be increasing in its first parameter

® Enforce termination of the iterates

® Avoid useless over-approximations as soon as a
solution is found®

) A counter-exampleis x Vy=T
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Soundness

169

Soundness

® The fixpoint approximation soundness theorems cab
expressed with minimalist hypotheses ['l:

® No need for complete lattices, complete partial
orders (CPO’s):

® The concrete domain is a poset
® The abstract domain is a pre-order

® The concretization is defined for the abstract
iterates only.

[Patrick Cousot: Abstracting Induction by Extrapolation and Interpolation. VMCAI 2015: 19-42
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Soundness (cont’d)

® No need for increasingness/monotony hypotheses for
fixpoint theorems (Tarski, Kleene, etc)

® The concrete transformer is increasing and the limit
of the iterations does exist in the concrete domain

® No hypotheses on the abstract transformer (no
need for fixpoints in the abstract)

® Soundness hypotheses on the extrapolators/
interpolators with respect to the concrete

® |n addition, termination hypotheses on the
extrapolators/interpolators ensure convergence in
finitely many steps
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Soundness (cont’d)

® No need for increasingness/monotony hypotheses for
fixpoint theorems (Tarski, Kleene, etc)

® The concrete transformer is increasing and the limit
of the iterations does exist in the concrete domain

® No hypotheses on the abstract transformer (no
need for fixpoints in the abstract)

® Soundness hypotheses on the extrapolators/
interpolators with respect to the concrete
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Examples of interpolators

173

Craig interpolation
® Craig interpolation:

Given P = Q find I such that P = I = Q with
var(I) C var(P) n var(Q)

is a dual narrowing (already observed by Vijay D’Silva
and Leopold Haller as an inversed narrowing)
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Craig interpolation
® Craig interpolation:

Given P = Q find I such that P = I = Q with
var(I) C var(P) n var(Q)

is a dual narrowing (already observed by Vijay D’Silva
and Leopold Haller as an inversed narrowing)
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Craig interpolation
® Craig interpolation:

Given P = Q find I such that P = I = Q with
var(I) C var(P) n var(Q)

is a dual narrowing
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Conclusion

177

Conclusion & references

178

Conclusion

® The presentation relied purely on intuition, can be
made formal (see references)

® The abstraction ideas can scale up with enough
precision, e.g.

e ASTREE:

® http://www.astree.ens.fr/

® http://www.absint.de/astree/

® CCCheck: code contract Static checker

® MSR, Redmond (try online), public domain: https://

github.com/Microsoft/CodeContracts
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