
 TASE 2015
The 9th International Symposium on Theoretical Aspects of Software Engineering

September 12—14, 2015 — Nanjing, China

cims . nyu . edu /~pcousot

Patrick Cousot

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

A Gentle Introduction to
Abstract Interpretation

1]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example of picture abstraction

2

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example of picture abstraction

3]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstractions of a man / crowd

4

Height

Fingerprint

Eye color

DNA

...

...

,

Individual heights

min, max

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Numerical abstractions used in Astrée

5

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Numerical abstractions used in Astrée

6

Abstraction by ellipsoid for filters

x(t)

t

Ellipsoids (x` a)2 + (y ` b)2 » c [Fer05b]

CSE, SNU, Seoul, 09/30/2008 J�� � – 65 –? []¨ –⇤ ⇤⇤I © P. Cousot

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {

X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

CSE, SNU, Seoul, 09/30/2008 J�� � – 66 –? []¨ –⇤ ⇤⇤I © P. Cousot

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Numerical abstractions used in Astrée

7

Abstraction by exponentials for accumulation of small rounding
errors

x(t)

t

Exponentials ax » y

CSE, SNU, Seoul, 09/30/2008 J�� � – 66 –? []¨ –⇤ ⇤⇤I © P. Cousot

Example of analysis by Astrée (suite)

% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B) * 5.0e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

astree –exec-fn main –config-sem retro.config
retro.c | grep "|P|" | tail -n 1
|P| <=1.0000002*((15. +
5.8774718e-39/(1.0000002-1))*(1.0000002)clock `
5:8774718e` 39=(1:0000002` 1)) + 5:8774718e` 39 <=
23:039353

CSE, SNU, Seoul, 09/30/2008 J�� � – 67 –? []¨ –⇤ ⇤⇤I © P. Cousot]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Non-numerical abstraction used in Astrée

8

Example of abstract domain functor in Astrée: decision trees

– Code Sample:
/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {

unsigned int X, Y;
while (1) {

...
B = (X == 0);
...
if (!B) {

Y = 1 / X;
}
...

}
}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

CSE, SNU, Seoul, 09/30/2008 J�� � – 58 –? []¨ –⇤ ⇤⇤I © P. Cousot

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Reduction of Abstractions

9

Reduction [CC79, CCF+08]
Example: reduction of intervals [CC76] by simple congruences [Gra89]

% cat -n congruence.c
1 /* congruence.c */
2 int main()
3 { int X;
4 X = 0;
5 while (X <= 128)
6 { X = X + 4; };
7 __ASTREE_log_vars((X));
8 }

% astree congruence.c –no-relational –exec-fn main |& egrep "(WARN)|(X in)"
direct = <integers (intv+cong+bitfield+set): X in {132} >
Intervals : X 2 [129; 132] + congruences : X = 0 mod 4 =)
X 2 f132g.

CSE, SNU, Seoul, 09/30/2008 J�� � – 59 –? []¨ –⇤ ⇤⇤I © P. Cousot

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Examples of Static Analyzers in Industrial Use

10

Examples of sound static analyzers in industrial use
– For C critical synchronous embedded control/command pro-
grams (for example for Electric Flight Control Software)

– aiT [FHL+01] is a static analyzer to determine
the Worst Case Execution Time (to guarantee
synchronization in due time)

– Astrée [BCC+03] is a static analyzer to verify
the absence of runtime errors

CSE, SNU, Seoul, 09/30/2008 J�� � – 69 –? []¨ –⇤ ⇤⇤I © P. Cousot

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Examples of Programs Analyzed by Astrée

11

Industrial results obtained with Astrée
– Automatic proofs of absence of runtime
errors in Electric Flight Control Soft-
ware:
– A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb
(Nov. 2003)
– A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
no false alarm, World premières !

– Automatic proofs of absence of runtime
errors in the ATV software (2):
– C version of the automatic docking software: 102.000 lines of
C, 23s on a Quad-Core AMD Opteronó processor, 16 Gb (Apr.
2008)

(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.

Airbus, 12/04/2008 J�� � – 27 –? []¨ –⇤ ⇤⇤I © P. Cousot

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Content

12

Contents

2 An Informal Introduction to Static Analysis and Verification by Ab-
stract Interpretation 5

2.1 Mathematical Semantics . 5
2.2 Mathematical Invariants . 6
2.3 Mathematical Invariant Equations 6
2.4 Solutions to the Mathematical Invariant Equations 7
2.5 Solving the Fixpoint Equations by Infinite Iteration 8
2.6 Machine Invariants . 9
2.7 Interval Abstraction . 10
2.8 An Interval Abstract Interpreter 11
2.9 Finite but Slow Iteration . 14
2.10 Convergence Speed Up . 15
2.11 Convergence Acceleration . 15

2.11.1 Convergence Acceleration with Widening 16
2.11.2 Convergence Acceleration with Narrowing 20

2.12 Chaotic and Structural Iteration 24
2.13 Verification . 25
2.14 Conclusion . 28
2.15 Bibliography . 28
2.16 Exercices . 28
2.17 Answers to Exercices . 29

References 33
Citation Index 35
Index 37
Notation Index 39

3

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

In this gentle introduction to Abstract Interpretation

13

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Mathematical Semantics

14

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

A sample program

15

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x and goes on at program point 2.
When at program point 2 the evaluation of the loop test yields the
value true so execution continues at program 3 where the value of
variable x is incremented by 1 before coming back to 2.
Since the loop condition is never false, program point 4 is unreach-
able so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where execu-
tion is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value � � Z

(where Z is the set of all mathematical integers).

5

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

A sample program

16

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x and goes on at program point 2.
When at program point 2 the evaluation of the loop test yields the
value true so execution continues at program 3 where the value of
variable x is incremented by 1 before coming back to 2.
Since the loop condition is never false, program point 4 is unreach-
able so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where execu-
tion is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value � � Z

(where Z is the set of all mathematical integers).

5

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

States

17

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Execution trace

18

6 P. C�⌅⇥�⇤

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧
where ⇤ � Z can be any initial integer value of x.

So the set of all such execution traces is
{⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧ | ⇤ � Z}

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ⌅ , ⌅ = 1⌃ 2⌃ 3⌃ 4
the set I⌅ of possible values that can be taken by variable x when execution
reaches program point ⌅ along any of these traces. This set I⌅ is called a
program local invariant at program point ⌅ . We have

I1 = Z

I2 = {⇤ � Z | ⇤ > 0}
I3 = {⇤ � Z | ⇤ > 0}
I4 = ⇥

3.2 Mathematical Invariants
Observe that the set I⌅ of possible values of variable x at program point ⌅ =
1⌃ 2⌃ 3⌃ 4 satisfies the following conditions.

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = Z

X2 = {1} ⇤{ ⇥ + 1 | ⇥ � X3}
X3 = X2 ⌅ {⇥ � Z | true}
X4 = X2 ⌅ {⇥ � Z | false}

(3.1)

• At program point 1 the variable x can be initialized by any integer value
⇤ � Z and so X1 = Z

• At program point 2, either execution comes from program point 1 and so the
value of variable x is 1 or execution comes from program point 2 and so the
value of variable x is the value ⇥ that x had at this point 3 incremented by
1. So X2 = {1} ⇤ ({⇥ + 1 | ⇥ � X3}.

• At program point 3, the possible values of x are those at point 2 for which
the loop condition is true so X3 = X2 ⌅ {⇥ � Z | true} = X2.

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Trace semantics

19

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

6 P. C�⌅⇥�⇤

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧
where ⇤ � Z can be any initial integer value of x.

So the set of all such execution traces is
{⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧ | ⇤ � Z}

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ⌅ , ⌅ = 1⌃ 2⌃ 3⌃ 4
the set I⌅ of possible values that can be taken by variable x when execution
reaches program point ⌅ along any of these traces. This set I⌅ is called a
program local invariant at program point ⌅ . We have

I1 = Z

I2 = {⇤ � Z | ⇤ > 0}
I3 = {⇤ � Z | ⇤ > 0}
I4 = ⇥

3.2 Mathematical Invariants
Observe that the set I⌅ of possible values of variable x at program point ⌅ =
1⌃ 2⌃ 3⌃ 4 satisfies the following conditions.

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = Z

X2 = {1} ⇤{ ⇥ + 1 | ⇥ � X3}
X3 = X2 ⌅ {⇥ � Z | true}
X4 = X2 ⌅ {⇥ � Z | false}

(3.1)

• At program point 1 the variable x can be initialized by any integer value
⇤ � Z and so X1 = Z

• At program point 2, either execution comes from program point 1 and so the
value of variable x is 1 or execution comes from program point 2 and so the
value of variable x is the value ⇥ that x had at this point 3 incremented by
1. So X2 = {1} ⇤ ({⇥ + 1 | ⇥ � X3}.

• At program point 3, the possible values of x are those at point 2 for which
the loop condition is true so X3 = X2 ⌅ {⇥ � Z | true} = X2.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 20

Mathematical Invariants

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Invariance abstraction

21

6 P. C�⌅⇥�⇤

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧
where ⇤ � Z can be any initial integer value of x.

So the set of all such execution traces is
{⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧ | ⇤ � Z}

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ⌅ , ⌅ = 1⌃ 2⌃ 3⌃ 4
the set I⌅ of possible values that can be taken by variable x when execution
reaches program point ⌅ along any of these traces.

This set I⌅ is called a program local invariant at program point ⌅ . We have
I1 = Z

I2 = {⇤ � Z | ⇤ > 0}
I3 = {⇤ � Z | ⇤ > 0}
I4 = ⇥

3.2 Mathematical Invariants
Observe that the set I⌅ of possible values of variable x at program point ⌅ =
1⌃ 2⌃ 3⌃ 4 satisfies the following conditions.

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = Z

X2 = {1} ⇤{ ⇥ + 1 | ⇥ � X3}
X3 = X2 ⌅ {⇥ � Z | true}
X4 = X2 ⌅ {⇥ � Z | false}

(3.1)

• At program point 1 the variable x can be initialized by any integer value
⇤ � Z and so X1 = Z

• At program point 2, either execution comes from program point 1 and so the
value of variable x is 1 or execution comes from program point 2 and so the
value of variable x is the value ⇥ that x had at this point 3 incremented by
1. So X2 = {1} ⇤ ({⇥ + 1 | ⇥ � X3}.

• At program point 3, the possible values of x are those at point 2 for which
the loop condition is true so X3 = X2 ⌅ {⇥ � Z | true} = X2.

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Invariance semantics

22

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

6 P. C�⌅⇥�⇤

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧
where ⇤ � Z can be any initial integer value of x.

So the set of all such execution traces is
{⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧ | ⇤ � Z}

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ⌅ , ⌅ = 1⌃ 2⌃ 3⌃ 4
the set I⌅ of possible values that can be taken by variable x when execution
reaches program point ⌅ along any of these traces.

This set I⌅ is called a program local invariant at program point ⌅ . We have
I1 = Z

I2 = {⇤ � Z | ⇤ > 0}
I3 = {⇤ � Z | ⇤ > 0}
I4 = ⇥

3.2 Mathematical Invariants
Observe that the set I⌅ of possible values of variable x at program point ⌅ =
1⌃ 2⌃ 3⌃ 4 satisfies the following conditions.

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = Z

X2 = {1} ⇤{ ⇥ + 1 | ⇥ � X3}
X3 = X2 ⌅ {⇥ � Z | true}
X4 = X2 ⌅ {⇥ � Z | false}

(3.1)

• At program point 1 the variable x can be initialized by any integer value
⇤ � Z and so X1 = Z

• At program point 2, either execution comes from program point 1 and so the
value of variable x is 1 or execution comes from program point 2 and so the
value of variable x is the value ⇥ that x had at this point 3 incremented by
1. So X2 = {1} ⇤ ({⇥ + 1 | ⇥ � X3}.

• At program point 3, the possible values of x are those at point 2 for which
the loop condition is true so X3 = X2 ⌅ {⇥ � Z | true} = X2.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Traces to invariants abstraction

23

The abstraction ! maps a set T of traces to a map !(T)

from program points " to the set !(T)" of reachable

values # of program variable x during any possible
execution in T.

New York University, CIMS, Graduate Division, Computer Science, Course GCSCI-GA.3110-001-2012, Honors Programming Languages © P. Cousot

Traces to invariants abstraction

11

¸(T) = –l.f x j 9,0: hl, xi0 2 T g
The abstraction α maps a set T of traces to a map α(T)
from program points l to the set α(T)l of reachable
values x of program variable x during any possible
execution in T.

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Mathematical Invariant
Equations

24

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Invariance Equations

25

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

6 P. C�⌅⇥�⇤

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧
where ⇤ � Z can be any initial integer value of x.

So the set of all such execution traces is
{⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧ | ⇤ � Z}

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ⌅ , ⌅ = 1⌃ 2⌃ 3⌃ 4
the set I⌅ of possible values that can be taken by variable x when execution
reaches program point ⌅ along any of these traces.

This set I⌅ is called a program local invariant at program point ⌅ . We have
I1 = Z

I2 = {⇤ � Z | ⇤ > 0}
I3 = {⇤ � Z | ⇤ > 0}
I4 = ⇥

3.2 Mathematical Invariants
Observe that the set I⌅ of possible values of variable x at program point ⌅ =
1⌃ 2⌃ 3⌃ 4 satisfies the following conditions.

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = Z

X2 = {1} ⇤{ ⇥ + 1 | ⇥ � X3}
X3 = X2 ⌅ {⇥ � Z | true}
X4 = X2 ⌅ {⇥ � Z | false}

(3.1)

• At program point 1 the variable x can be initialized by any integer value
⇤ � Z and so X1 = Z

• At program point 2, either execution comes from program point 1 and so the
value of variable x is 1 or execution comes from program point 2 and so the
value of variable x is the value ⇥ that x had at this point 3 incremented by
1. So X2 = {1} ⇤ ({⇥ + 1 | ⇥ � X3}.

• At program point 3, the possible values of x are those at point 2 for which
the loop condition is true so X3 = X2 ⌅ {⇥ � Z | true} = X2.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Invariance Equations

26

6 P. C�⌅⇥�⇤

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧
where ⇤ � Z can be any initial integer value of x.

So the set of all such execution traces is
{⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧ | ⇤ � Z}

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ⌅ , ⌅ = 1⌃ 2⌃ 3⌃ 4
the set I⌅ of possible values that can be taken by variable x when execution
reaches program point ⌅ along any of these traces.

This set I⌅ is called a program local invariant at program point ⌅ . We have
I1 = Z

I2 = {⇤ � Z | ⇤ > 0}
I3 = {⇤ � Z | ⇤ > 0}
I4 = ⇥

3.2 Mathematical Invariants
Observe that the set I⌅ of possible values of variable x at program point ⌅ =
1⌃ 2⌃ 3⌃ 4 satisfies the following conditions.

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = Z

X2 = {1} ⇤{ ⇥ + 1 | ⇥ � X3}
X3 = X2 ⌅ {⇥ � Z | true}
X4 = X2 ⌅ {⇥ � Z | false}

(3.1)

• At program point 1 the variable x can be initialized by any integer value
⇤ � Z and so X1 = Z

• At program point 2, either execution comes from program point 1 and so the
value of variable x is 1 or execution comes from program point 2 and so the
value of variable x is the value ⇥ that x had at this point 3 incremented by
1. So X2 = {1} ⇤ ({⇥ + 1 | ⇥ � X3}.

• At program point 3, the possible values of x are those at point 2 for which
the loop condition is true so X3 = X2 ⌅ {⇥ � Z | true} = X2.C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥. So solving this system of equations might
lead to the desired invariant I.

However these equations do not have a unique solution. For example
X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Fixpoint Equations

27

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Fixpoint Solutions

28

6 P. C�⌅⇥�⇤

A complete program execution can be described by the following execution
trace which is an infinite sequence of states

⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧
where ⇤ � Z can be any initial integer value of x.

So the set of all such execution traces is
{⇧1⌃ ⇤⌃⇧2⌃ 1⌃⇧3⌃ 1⌃⇧2⌃ 2⌃⇧3⌃ 2⌃ ⇧ ⇧ ⇧ ⇧2⌃ �⌃⇧3⌃ �⌃⇧2⌃ � + 1⌃ ⇧ ⇧ ⇧ | ⇤ � Z}

Let us now consider an abstraction of the set of all possible execution
traces, which consists in remembering for each program point ⌅ , ⌅ = 1⌃ 2⌃ 3⌃ 4
the set I⌅ of possible values that can be taken by variable x when execution
reaches program point ⌅ along any of these traces.

This set I⌅ is called a program local invariant at program point ⌅ . We have
I1 = Z

I2 = {⇤ � Z | ⇤ > 0}
I3 = {⇤ � Z | ⇤ > 0}
I4 = ⇥

3.2 Mathematical Invariants
Observe that the set I⌅ of possible values of variable x at program point ⌅ =
1⌃ 2⌃ 3⌃ 4 satisfies the following conditions.

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = Z

X2 = {1} ⇤{ ⇥ + 1 | ⇥ � X3}
X3 = X2 ⌅ {⇥ � Z | true}
X4 = X2 ⌅ {⇥ � Z | false}

(3.1)

• At program point 1 the variable x can be initialized by any integer value
⇤ � Z and so X1 = Z

• At program point 2, either execution comes from program point 1 and so the
value of variable x is 1 or execution comes from program point 2 and so the
value of variable x is the value ⇥ that x had at this point 3 incremented by
1. So X2 = {1} ⇤ ({⇥ + 1 | ⇥ � X3}.

• At program point 3, the possible values of x are those at point 2 for which
the loop condition is true so X3 = X2 ⌅ {⇥ � Z | true} = X2.

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �.

So we will prefer the smallest solution (called the least fixpoint lfp �), which
is included in all other solutions 1 and turns out to be I.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

•
•

•

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Tarski’s fixpoint theorem

29 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Fixpoints of increasing functions (Tarski)

30

x

f(x)

+∞-∞
Another fixpoint at +∞ ↑

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Fixpoint

• Let S be a set

• Let F be a function F ∈ S ⟶ S

• A fixpoint of F is x ∈ S such that  
 x = F(x)

• i.e. a solution to the equation

31 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Least fixpoint

• Let ⟨S, ≼⟩ be a set partially ordered by ≼

• The least fixpoint, if any, of F ∈ S ⟶ S is

• a fixpoint x = F(x)

• ≼-smaller than any other fixpoint  
y = F(y) ⟹ x ≼ y

• Notation: Lfp F

32

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Tarski’s fixpoint theorem

• let & be a set

• '(&) = { (| (⊆ & } is the power  
(so ⟨ '(&), ⊆⟩ is a set partially ordered by ⊆)

•) ∈ '(&) ⟶ '(&) is increasing i.e.  
 (⊆ * ⟹)(() ⊆)(*) 
implies

• lfp) = ⋂{ (|)(() ⊆ (}

33 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the Equations by
Exhaustive Enumeration

34

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

35

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

36

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

37

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.
]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

38

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

39

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.
]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

40

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 7

• At program point 4, the possible values of x are those at point 2 for which
the loop condition is false so X4 = X2 ⇧ {⇤ ⇥ Z | false} = ⇤.

These conditions can be understood as a system of fixpoint equations X = �(X)
of the form� X⇥ = �⇥(X1⇧ ⌅ ⌅ ⌅ ⇧ X4)

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4
with unknowns X = ⌃X1⇧ ⌅ ⌅ ⌅ ⇧ X4⌥.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ⇤ is another solution which is larger for
componentwise set inclusion �. So we will prefer the smallest solution (called
the least fixpoint lfp �), which is included in all other solutions and turns out
to be I 1.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X) for � can be calculated iteratively,
essentially by enumeration of all possible states reachable from the initial
states.

X0 = ⌃X01 ⇧ X02 ⇧ X03 ⇧ X04 ⌥ = ⌃⇤⇧ ⇤⇧ ⇤⇧ ⇤⌥ Hstarting with the smallest
possible approximationI
X1 = ⌃X11 ⇧ X12 ⇧ X13 ⇧ X14 ⌥ = �(X0) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X03 }⇧
X02 ⇧ {⇤ ⇥ Z | true}⇧ X02 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ ⇤⇧ ⇤⌥
X2 = ⌃X21 ⇧ X22 ⇧ X23 ⇧ X24 ⌥ = �(X1) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X13 }⇧
X12 ⇧ {⇤ ⇥ Z | true}⇧ X12 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1}⇧ {1}⇧ ⇤⌥
X3 = ⌃X31 ⇧ X32 ⇧ X33 ⇧ X34 ⌥ = �(X2) = ⌃Z⇧ {1} ⌅ {⇤ + 1 | ⇤ ⇥ X23 }⇧
X22 ⇧ {⇤ ⇥ Z | true}⇧ X22 ⇧ {⇤ ⇥ Z | false}⌥ = ⌃Z⇧ {1⇧ 2}⇧ {1}⇧ ⇤⌥
This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis

1by Tarski fixpoint theorem 14.7 explained in chapter 14.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

41

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that �

is increasing. This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃
X⇤↵ ⇥̇ ⌦Y1⌃ ⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥. The intuition is that
is more states can be reached at some program point then more states will be
reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇
⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2. It follows that we have to
decide what happens in case of overflow when evaluating expression (x + 1).
We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

42

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that �

is increasing. This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃
X⇤↵ ⇥̇ ⌦Y1⌃ ⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥. The intuition is that
is more states can be reached at some program point then more states will be
reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇
⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2. It follows that we have to
decide what happens in case of overflow when evaluating expression (x + 1).
We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

43

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that �

is increasing. This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃
X⇤↵ ⇥̇ ⌦Y1⌃ ⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥. The intuition is that
is more states can be reached at some program point then more states will be
reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇
⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2. It follows that we have to
decide what happens in case of overflow when evaluating expression (x + 1).
We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

44

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that �

is increasing. This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃
X⇤↵ ⇥̇ ⌦Y1⌃ ⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥. The intuition is that
is more states can be reached at some program point then more states will be
reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇
⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2. It follows that we have to
decide what happens in case of overflow when evaluating expression (x + 1).
We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

45

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that �

is increasing. This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃
X⇤↵ ⇥̇ ⌦Y1⌃ ⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥. The intuition is that
is more states can be reached at some program point then more states will be
reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇
⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2. It follows that we have to
decide what happens in case of overflow when evaluating expression (x + 1).
We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Solving the equations iteratively ... (Cont’d)

46

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that �

is increasing. This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃
X⇤↵ ⇥̇ ⌦Y1⌃ ⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥. The intuition is that
is more states can be reached at some program point then more states will be
reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇
⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2. It follows that we have to
decide what happens in case of overflow when evaluating expression (x + 1).
We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

f is increasing

47

•

•

•

•

8 P. C�⌅⇥�⇤

This calculation can go on like this ad infinitum since each iteration X ⇥+1 =
�(X ⇥) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis
X2⇤ = X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ⌦ = Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌃⌦
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ⌦ = �(X2⇤) = Z⌃ {1}⌥{⌅ +
1 | ⌅ ⌅ X2⇤3 }⌃ X2⇤2 � {⌅ ⌅ Z | true}⌃ X2⇤2 � {⌅ ⌅ Z | false}⌦ = Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌃⌦
X2⇤+2 = X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ⌦ = �(X2⇤+1) = Z⌃ {1} ⌥
{⌅ + 1 | ⌅ ⌅ X2⇤+13 }⌃ X2⇤+12 � {⌅ ⌅ Z | true}⌃ X2⇤+12 � {⌅ ⌅ Z |
false}⌦ = Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌃⌦
By recurrence on ⇤, we have proved that
⇧⇤ : X2⇤ = X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ⌦ = Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌃⌦
Passing to the limit, we get the desired strongest invariant
I = I1⌃ I2⌃ I3⌃ I4⌦ HinvariantI

= lim⇤⇥+⇤ X2⇤

= Z⌃ {⇤ ⌅ Z | ⇤ > 0}⌃ {⇤ ⌅ Z | ⇤ > 0}⌃ ⌃⌦

A fundamental property of the invariants equations X = �(X) is that � is
increasing.

This means that if X �̇ Y then �(X) �̇ �(Y) where X1⌃ ⇧ ⇧ ⇧ ⌃ X⇤⌦ �̇ Y1⌃
⇧ ⇧ ⇧ ⌃ Y⇤⌦ if and only if ⇧⇥ ⌅ [1⌃ ⇤] : X⇥ � Y⇥.

The intuition is that if more states can be reached at some program point
then more states will be reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 �̇ X1 �̇
⇧ ⇧ ⇧ �̇ X⇤ �̇ X⇤+1 �̇ ⇧ ⇧ ⇧ �̇ lim⇤⇥+⇤ X⇤ = lfp � .

3.5 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Machine Invariants

48

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Machine Integers

49

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that � is

increasing.
This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃ X⇤↵ ⇥̇ ⌦Y1⌃

⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥.
The intuition is that is more states can be reached at some program point

then more states will be reachable at next program point.
It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇

⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants

No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2.

It follows that we have to decide what happens in case of overflow when
evaluating expression (x + 1).

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

8 P. C�⌅⇥�⇤

X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Hinduction hypothesis which holds for the basis ⇤ = 1I
X2⇤+1 = ⌦X2⇤+11 ⌃ X2⇤+12 ⌃ X2⇤+13 ⌃ X2⇤+14 ↵ = �(X2⇤) = ⌦Z⌃ {1}�{⌅ +
1 | ⌅ ⇧ X2⇤3 }⌃ X2⇤2 {⌅ ⇧ Z | true}⌃ X2⇤2 {⌅ ⇧ Z | false}↵ = ⌦Z⌃
{1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
X2⇤+2 = ⌦X2⇤+21 ⌃ X2⇤+22 ⌃ X2⇤+23 ⌃ X2⇤+24 ↵ = �(X2⇤+1) = ⌦Z⌃ {1} �
{⌅ + 1 | ⌅ ⇧ X2⇤+13 }⌃ X2⇤+12 {⌅ ⇧ Z | true}⌃ X2⇤+12 {⌅ ⇧ Z |
false}↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤ + 1}⌃ ⌥↵
By recurrence on ⇤, we have proved that
⌃⇤ : X2⇤ = ⌦X2⇤1 ⌃ X2⇤2 ⌃ X2⇤3 ⌃ X2⇤4 ↵ = ⌦Z⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ {1⌃ ⇧ ⇧ ⇧ ⌃ ⇤}⌃ ⌥↵
Passing to the limit, we get the desired strongest invariant
I = ⌦I1⌃ I2⌃ I3⌃ I4↵ HinvariantI

= lim⇤⇤+⌅X2⇤

= ⌦Z⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ {⇤ ⇧ Z | ⇤ > 0}⌃ ⌥↵
A fundamental property of the invariants equations X = �(X) is that � is

increasing.
This means that if X ⇥̇ Y then �(X) ⇥̇ �(Y) where ⌦X1⌃ ⇧ ⇧ ⇧ ⌃ X⇤↵ ⇥̇ ⌦Y1⌃

⇧ ⇧ ⇧ ⌃ Y⇤↵ if and only if ⌃⇥ ⇧ [1⌃ ⇤] : X⇥ ⇥ Y⇥.
The intuition is that is more states can be reached at some program point

then more states will be reachable at next program point.
It follows that the iterates form an ascending chain meaning X0 ⇥̇ X1 ⇥̇

⇧ ⇧ ⇧ ⇥̇ X⇤ ⇥̇ X⇤+1 ⇥̇ ⇧ ⇧ ⇧ ⇥̇ lim⇤⇤+⌅ X⇤ = lfp � .

3.4 Machine Invariants

No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int⌃ max_int] where
min_int < 0 < max_int are machine dependant 2.

It follows that we have to decide what happens in case of overflow when
evaluating expression (x + 1).

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
�2147483648 and max_int = 2147483647.

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states ↵ � {1 2 3 4} � [min_int max_int] is

now finite and the execution traces are now finite of the form
{⌥1 ⌥�⌥2 1� � � � ⌥2 ⌅�⌥3 ⌅�⌥2 ⌅+1� � � � ⌥3 max_int� | ⌥ ⇤ [min_int
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int max_int]
X2 = {1} ⇧{ ⌃ + 1 ⇤ [min_int max_int] | ⌃ ⇤ X3}
X3 = X2 ⌃ {⌃ ⇤ [min_int max_int] | true}
X4 = X2 ⌃ {⌃ ⇤ [min_int max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer
representation problem. We will use intervals [⇧ ⇤] � {⌃ ⇤ Z | ⇧ ⇥ ⌃ ⇥ ⇤}
with the convention that [⇧ ⇤] = ⌅ whenever ⇤ < ⇧. In doing so we perform
an approximation of a non-empty set X ⇥ [min_int max_int] by the interval
[min X max X]. This approximation is sound in that whenever the value of
variable x belongs to a set X⌅ whenever execution reaches program point ⌅, it
definitely also belongs to the set [min X⌅ max X⌅]. This information is certainly
correct but just less precise.

The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int max_int]}
X2 = [1 1] L X3 = ⌅ ? ⌅ : let [� ⇥] = X3 in

[min(� + 1 max_int) min(⇥ + 1 max_int)] M}
X3 = X2 ⌦ [min_int max_int]
X4 = X2 ⌦ ⌅

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states ↵ � {1 2 3 4} � [min_int max_int] is

now finite and the execution traces are now finite of the form
{⌥1 ⌥�⌥2 1� � � � ⌥2 ⌅�⌥3 ⌅�⌥2 ⌅+1� � � � ⌥3 max_int� | ⌥ ⇤ [min_int
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int max_int]
X2 = {1} ⇧{ ⌃ + 1 ⇤ [min_int max_int] | ⌃ ⇤ X3}
X3 = X2 ⌃ {⌃ ⇤ [min_int max_int] | true}
X4 = X2 ⌃ {⌃ ⇤ [min_int max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer
representation problem. We will use intervals [⇧ ⇤] � {⌃ ⇤ Z | ⇧ ⇥ ⌃ ⇥ ⇤}
with the convention that [⇧ ⇤] = ⌅ whenever ⇤ < ⇧. In doing so we perform
an approximation of a non-empty set X ⇥ [min_int max_int] by the interval
[min X max X]. This approximation is sound in that whenever the value of
variable x belongs to a set X⌅ whenever execution reaches program point ⌅, it
definitely also belongs to the set [min X⌅ max X⌅]. This information is certainly
correct but just less precise.

The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int max_int]}
X2 = [1 1] L X3 = ⌅ ? ⌅ : let [� ⇥] = X3 in

[min(� + 1 max_int) min(⇥ + 1 max_int)] M}
X3 = X2 ⌦ [min_int max_int]
X4 = X2 ⌦ ⌅

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Machine states and execution traces

50

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states ↵ � {1 2 3 4} � [min_int max_int] is

now finite and the execution traces are now finite of the form
{⌥1 ⌥�⌥2 1� � � � ⌥2 ⌅�⌥3 ⌅�⌥2 ⌅+1� � � � ⌥3 max_int� | ⌥ ⇤ [min_int
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int max_int]
X2 = {1} ⇧{ ⌃ + 1 ⇤ [min_int max_int] | ⌃ ⇤ X3}
X3 = X2 ⌃ {⌃ ⇤ [min_int max_int] | true}
X4 = X2 ⌃ {⌃ ⇤ [min_int max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer
representation problem. We will use intervals [⇧ ⇤] � {⌃ ⇤ Z | ⇧ ⇥ ⌃ ⇥ ⇤}
with the convention that [⇧ ⇤] = ⌅ whenever ⇤ < ⇧. In doing so we perform
an approximation of a non-empty set X ⇥ [min_int max_int] by the interval
[min X max X]. This approximation is sound in that whenever the value of
variable x belongs to a set X⌅ whenever execution reaches program point ⌅, it
definitely also belongs to the set [min X⌅ max X⌅]. This information is certainly
correct but just less precise.

The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int max_int]}
X2 = [1 1] L X3 = ⌅ ? ⌅ : let [� ⇥] = X3 in

[min(� + 1 max_int) min(⇥ + 1 max_int)] M}
X3 = X2 ⌦ [min_int max_int]
X4 = X2 ⌦ ⌅

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Machine Invariant Equations

51

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states ↵ � {1 2 3 4} � [min_int max_int] is

now finite and the execution traces are now finite of the form
{⌥1 ⌥�⌥2 1� � � � ⌥2 ⌅�⌥3 ⌅�⌥2 ⌅+1� � � � ⌥3 max_int� | ⌥ ⇤ [min_int
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int max_int]
X2 = {1} ⇧{ ⌃ + 1 ⇤ [min_int max_int] | ⌃ ⇤ X3}
X3 = X2 ⌃ {⌃ ⇤ [min_int max_int] | true}
X4 = X2 ⌃ {⌃ ⇤ [min_int max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer
representation problem. We will use intervals [⇧ ⇤] � {⌃ ⇤ Z | ⇧ ⇥ ⌃ ⇥ ⇤}
with the convention that [⇧ ⇤] = ⌅ whenever ⇤ < ⇧. In doing so we perform
an approximation of a non-empty set X ⇥ [min_int max_int] by the interval
[min X max X]. This approximation is sound in that whenever the value of
variable x belongs to a set X⌅ whenever execution reaches program point ⌅, it
definitely also belongs to the set [min X⌅ max X⌅]. This information is certainly
correct but just less precise.

The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int max_int]}
X2 = [1 1] L X3 = ⌅ ? ⌅ : let [� ⇥] = X3 in

[min(� + 1 max_int) min(⇥ + 1 max_int)] M}
X3 = X2 ⌦ [min_int max_int]
X4 = X2 ⌦ ⌅

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence

52

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states ↵ � {1 2 3 4} � [min_int max_int] is

now finite and the execution traces are now finite of the form
{⌥1 ⌥�⌥2 1� � � � ⌥2 ⌅�⌥3 ⌅�⌥2 ⌅+1� � � � ⌥3 max_int� | ⌥ ⇤ [min_int
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int max_int]
X2 = {1} ⇧{ ⌃ + 1 ⇤ [min_int max_int] | ⌃ ⇤ X3}
X3 = X2 ⌃ {⌃ ⇤ [min_int max_int] | true}
X4 = X2 ⌃ {⌃ ⇤ [min_int max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer
representation problem. We will use intervals [⇧ ⇤] � {⌃ ⇤ Z | ⇧ ⇥ ⌃ ⇥ ⇤}
with the convention that [⇧ ⇤] = ⌅ whenever ⇤ < ⇧. In doing so we perform
an approximation of a non-empty set X ⇥ [min_int max_int] by the interval
[min X max X]. This approximation is sound in that whenever the value of
variable x belongs to a set X⌅ whenever execution reaches program point ⌅, it
definitely also belongs to the set [min X⌅ max X⌅]. This information is certainly
correct but just less precise.

The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int max_int]}
X2 = [1 1] L X3 = ⌅ ? ⌅ : let [� ⇥] = X3 in

[min(� + 1 max_int) min(⇥ + 1 max_int)] M}
X3 = X2 ⌦ [min_int max_int]
X4 = X2 ⌦ ⌅

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states ↵ � {1 2 3 4} � [min_int max_int] is

now finite and the execution traces are now finite of the form
{⌥1 ⌥�⌥2 1� � � � ⌥2 ⌅�⌥3 ⌅�⌥2 ⌅+1� � � � ⌥3 max_int� | ⌥ ⇤ [min_int
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int max_int]
X2 = {1} ⇧{ ⌃ + 1 ⇤ [min_int max_int] | ⌃ ⇤ X3}
X3 = X2 ⌃ {⌃ ⇤ [min_int max_int] | true}
X4 = X2 ⌃ {⌃ ⇤ [min_int max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer
representation problem. We will use intervals [⇧ ⇤] � {⌃ ⇤ Z | ⇧ ⇥ ⌃ ⇥ ⇤}
with the convention that [⇧ ⇤] = ⌅ whenever ⇤ < ⇧. In doing so we perform
an approximation of a non-empty set X ⇥ [min_int max_int] by the interval
[min X max X]. This approximation is sound in that whenever the value of
variable x belongs to a set X⌅ whenever execution reaches program point ⌅, it
definitely also belongs to the set [min X⌅ max X⌅]. This information is certainly
correct but just less precise.

The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int max_int]}
X2 = [1 1] L X3 = ⌅ ? ⌅ : let [� ⇥] = X3 in

[min(� + 1 max_int) min(⇥ + 1 max_int)] M}
X3 = X2 ⌦ [min_int max_int]
X4 = X2 ⌦ ⌅

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interval Abstraction

53]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interval Abstraction

54

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states � {1⌥ 2⌥ 3⌥ 4} � [min_int⌥ max_int] is

now finite and the execution traces are now finite of the form
{⌥1⌥ ⇧�⌥2⌥ 1� ⌃ ⌃ ⌃ ⌥2⌥ ⇥�⌥3⌥ ⇥�⌥2⌥ ⇥+1� ⌃ ⌃ ⌃ ⌥3⌥ max_int� | ⇧ ⇤ [min_int⌥
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]
X2 = {1} ⇧{ ⌅ + 1 ⇤ [min_int⌥ max_int] | ⌅ ⇤ X3}
X3 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | true}
X4 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction

A further abstraction must be used to solve the machine invariant computer
representation problem.

We will use intervals [⇤⌥ �] � {⌅ ⇤ Z | ⇤ ⇥ ⌅ ⇥ �} with the convention that
[⇤⌥ �] = ⌅ whenever � <⇤ .

In doing so we perform an approximation of a non-empty set X ⇥ [min_int⌥
max_int] by the interval [min X ⌥ max X].

This approximation is sound in that whenever the value of variable x be-
longs to a set X⇥ whenever execution reaches program point ⇥, it definitely also
belongs to the set [min X⇥⌥ max X⇥].

This information is certainly correct but just less precise.
The interval invariance equations are now

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

•

•

•
•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interval Abstraction

55

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states � {1⌥ 2⌥ 3⌥ 4} � [min_int⌥ max_int] is

now finite and the execution traces are now finite of the form
{⌥1⌥ ⇧�⌥2⌥ 1� ⌃ ⌃ ⌃ ⌥2⌥ ⇥�⌥3⌥ ⇥�⌥2⌥ ⇥+1� ⌃ ⌃ ⌃ ⌥3⌥ max_int� | ⇧ ⇤ [min_int⌥
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]
X2 = {1} ⇧{ ⌅ + 1 ⇤ [min_int⌥ max_int] | ⌅ ⇤ X3}
X3 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | true}
X4 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction

A further abstraction must be used to solve the machine invariant computer
representation problem.

We will use intervals [⇤⌥ �] � {⌅ ⇤ Z | ⇤ ⇥ ⌅ ⇥ �} with the convention that
[⇤⌥ �] = ⌅ whenever � <⇤ .

In doing so we perform an approximation of a non-empty set X ⇥ [min_int⌥
max_int] by the interval [min X ⌥ max X].

This approximation is sound in that whenever the value of variable x be-
longs to a set X⇥ whenever execution reaches program point ⇥, it definitely also
belongs to the set [min X⇥⌥ max X⇥].

This information is certainly correct but just less precise.
The interval invariance equations are now

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

•

•

•
•

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interval Abstraction

56

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states � {1⌥ 2⌥ 3⌥ 4} � [min_int⌥ max_int] is

now finite and the execution traces are now finite of the form
{⌥1⌥ ⇧�⌥2⌥ 1� ⌃ ⌃ ⌃ ⌥2⌥ ⇥�⌥3⌥ ⇥�⌥2⌥ ⇥+1� ⌃ ⌃ ⌃ ⌥3⌥ max_int� | ⇧ ⇤ [min_int⌥
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]
X2 = {1} ⇧{ ⌅ + 1 ⇤ [min_int⌥ max_int] | ⌅ ⇤ X3}
X3 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | true}
X4 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction

A further abstraction must be used to solve the machine invariant computer
representation problem.

We will use intervals [⇤⌥ �] � {⌅ ⇤ Z | ⇤ ⇥ ⌅ ⇥ �} with the convention that
[⇤⌥ �] = ⌅ whenever � <⇤ .

In doing so we perform an approximation of a non-empty set X ⇥ [min_int⌥
max_int] by the interval [min X ⌥ max X].

This approximation is sound in that whenever the value of variable x be-
longs to a set X⇥ whenever execution reaches program point ⇥, it definitely also
belongs to the set [min X⇥⌥ max X⇥].

This information is certainly correct but just less precise.
The interval invariance equations are now

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

•

•

•
•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interval Abstraction

57

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states � {1⌥ 2⌥ 3⌥ 4} � [min_int⌥ max_int] is

now finite and the execution traces are now finite of the form
{⌥1⌥ ⇧�⌥2⌥ 1� ⌃ ⌃ ⌃ ⌥2⌥ ⇥�⌥3⌥ ⇥�⌥2⌥ ⇥+1� ⌃ ⌃ ⌃ ⌥3⌥ max_int� | ⇧ ⇤ [min_int⌥
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]
X2 = {1} ⇧{ ⌅ + 1 ⇤ [min_int⌥ max_int] | ⌅ ⇤ X3}
X3 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | true}
X4 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction

A further abstraction must be used to solve the machine invariant computer
representation problem.

We will use intervals [⇤⌥ �] � {⌅ ⇤ Z | ⇤ ⇥ ⌅ ⇥ �} with the convention that
[⇤⌥ �] = ⌅ whenever � <⇤ .

In doing so we perform an approximation of a non-empty set X ⇥ [min_int⌥
max_int] by the interval [min X ⌥ max X].

This approximation is sound in that whenever the value of variable x be-
longs to a set X⇥ whenever execution reaches program point ⇥, it definitely also
belongs to the set [min X⇥⌥ max X⇥].

This information is certainly correct but just less precise.
The interval invariance equations are now

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

•

•

•
•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interval Abstraction

58

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states � {1⌥ 2⌥ 3⌥ 4} � [min_int⌥ max_int] is

now finite and the execution traces are now finite of the form
{⌥1⌥ ⇧�⌥2⌥ 1� ⌃ ⌃ ⌃ ⌥2⌥ ⇥�⌥3⌥ ⇥�⌥2⌥ ⇥+1� ⌃ ⌃ ⌃ ⌥3⌥ max_int� | ⇧ ⇤ [min_int⌥
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]
X2 = {1} ⇧{ ⌅ + 1 ⇤ [min_int⌥ max_int] | ⌅ ⇤ X3}
X3 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | true}
X4 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction

A further abstraction must be used to solve the machine invariant computer
representation problem.

We will use intervals [⇤⌥ �] � {⌅ ⇤ Z | ⇤ ⇥ ⌅ ⇥ �} with the convention that
[⇤⌥ �] = ⌅ whenever � <⇤ .

In doing so we perform an approximation of a non-empty set X ⇥ [min_int⌥
max_int] by the interval [min X ⌥ max X].

This approximation is sound in that whenever the value of variable x be-
longs to a set X⇥ whenever execution reaches program point ⇥, it definitely also
belongs to the set [min X⇥⌥ max X⇥].

This information is certainly correct but just less precise.
The interval invariance equations are now

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

•

•

•
•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Traces to intervals abstraction

59

The abstraction ! maps a set T of traces to a map !(T)

from program points " to the pair (m,M) = !(T)" of

minimal m and maximal M reachable values + of
program variable x during any possible execution in T.

New York University, CIMS, Graduate Division, Computer Science, Course GCSCI-GA.3110-001-2012, Honors Programming Languages © P. Cousot

Traces to intervals abstraction

30

¸(T) = –l.let X =f x j 9,0: hl, xi0 2 T g in

 [min X, max X]

The abstraction α maps a set T of traces to a map α(T)
from program points l to the pair (m,M) = α(T)l of
minimal m and maximal M reachable values x of program
variable x during any possible execution in T.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interval Invariance Equations

60

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 9

We will assume that execution immediately stops in case of integer overflow 3.
Hence the set of program states � {1⌥ 2⌥ 3⌥ 4} � [min_int⌥ max_int] is

now finite and the execution traces are now finite of the form
{⌥1⌥ ⇧�⌥2⌥ 1� ⌃ ⌃ ⌃ ⌥2⌥ ⇥�⌥3⌥ ⇥�⌥2⌥ ⇥+1� ⌃ ⌃ ⌃ ⌥3⌥ max_int� | ⇧ ⇤ [min_int⌥
max_int]} .

It follows that the machine invariant satisfies the following equations
�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]
X2 = {1} ⇧{ ⌅ + 1 ⇤ [min_int⌥ max_int] | ⌅ ⇤ X3}
X3 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | true}
X4 = X2 ⌃ {⌅ ⇤ [min_int⌥ max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-
not be of any practical use, but for programs with very few program variables.
Moreover, mathematical sets of integers can be arbitrarily complex hence very
expensive to represent in computer memory which is likely to produce memory
overflows after lengthy computations, a flaw of all program verification methods
based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction

A further abstraction must be used to solve the machine invariant computer
representation problem.

We will use intervals [⇤⌥ �] � {⌅ ⇤ Z | ⇤ ⇥ ⌅ ⇥ �} with the convention that
[⇤⌥ �] = ⌅ whenever � <⇤ .

In doing so we perform an approximation of a non-empty set X ⇥ [min_int⌥
max_int] by the interval [min X ⌥ max X].

This approximation is sound in that whenever the value of variable x be-
longs to a set X⇥ whenever execution reaches program point ⇥, it definitely also
belongs to the set [min X⇥⌥ max X⇥].

This information is certainly correct but just less precise.
The interval invariance equations are now

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

10 P. C⌅⌥⇧⌅⌃

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⇧ L X3 = ⇥ ? ⇥ : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⌃ [min_int⌥ max_int]
X4 = X2 ⌃ ⇥

where the interval join is ⇥ ⇧ ⇥ � ⇥, ⇥ ⇧ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⇧ ⇥ � [⌃⌥ ⇧], and
[�⌥ ⇥] ⇧ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is ⇥ ⌃ ⇥ � ⇥, ⇥ ⌃ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌃ ⇥ � ⇥, and
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)] when min(�⌥ ⇤) ⇥ max(⇥⌥ ⌅)
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � ⇥ when min(�⌥ ⇤) > max(⇥⌥ ⌅)

The interval equations over-estimate the machine invariant in than they will
provide in general more states that possible in actual program executions. For
example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which introduces
the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the val-
ues of variable x are always greater than one at some program point then they
are certainly positive (although the value 0 is spurious). Underapproximations
(such as x are always greater than 10) would be incorrect. Similarly, incom-
parable approximations (such as x is negative) are also unsound. In particular
the interval join ⇧ overapproximates the interval union ⇤ and the interval meet
⌃ overapproximates the interval intersection ⌅.

3.6 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter. Such an interval abstract interpreter reads any
program, builds the interval invariance equations, and then solve them. For
simplicity, we concentrate on the second part and will provide encodings of
the interval invariance equations manually.

We first encode the interval abstract domain, implementing a computer
representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set ⇥). In OCaml, we have max_int = 1073741823 and
min_int = �1073741824 4.

4One of the 64 bits is used for garbage collection.

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

10 P. C⌅⌥⇧⌅⌃

This information is certainly correct but just less precise.
The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⌃ L X3 = � ? � : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⌥ [min_int⌥ max_int]
X4 = X2 ⌥ �

where the interval join is � ⌃ � � �, � ⌃ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌃ � � [⌃⌥ ⇧], and
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is � ⌥ � � �, � ⌥ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌥ � � �, and
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � [max(�⌥ ⇤)⌥ min(⇥⌥ ⌅)] when ⇥ ⇥ ⇤ ⌅ ⌅ ⇥ �
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � � when ⇥ <⇤ ⇧ ⌅ <�

The interval equations over-estimate the machine invariant in than they will
provide in general more states that possible in actual program executions. For
example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which introduces
the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join ⌃ overapproximates the interval union
⇥ and the interval meet ⌥ overapproximates the interval intersection ⇤.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

Interval Operations

61

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Over-approximation

62

10 P. C⌅⌥⇧⌅⌃

This information is certainly correct but just less precise.
The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⌃ L X3 = � ? � : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⌥ [min_int⌥ max_int]
X4 = X2 ⌥ �

where the interval join is � ⌃ � � �, � ⌃ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌃ � � [⌃⌥ ⇧], and
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is � ⌥ � � �, � ⌥ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌥ � � �, and
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � [max(�⌥ ⇤)⌥ min(⇥⌥ ⌅)] when ⇥ ⇥ ⇤ ⌅ ⌅ ⇥ �
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � � when ⇥ <⇤ ⇧ ⌅ <�

The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.

For example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which
introduces the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join ⌃ overapproximates the interval union
⇥ and the interval meet ⌥ overapproximates the interval intersection ⇤.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example of incorrect approximations

63

10 P. C⌅⌥⇧⌅⌃

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⇧ L X3 = ⇥ ? ⇥ : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⌃ [min_int⌥ max_int]
X4 = X2 ⌃ ⇥

where the interval join is ⇥ ⇧ ⇥ � ⇥, ⇥ ⇧ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⇧ ⇥ � [⌃⌥ ⇧], and
[�⌥ ⇥] ⇧ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is ⇥ ⌃ ⇥ � ⇥, ⇥ ⌃ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌃ ⇥ � ⇥, and
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)] when min(�⌥ ⇤) ⇥ max(⇥⌥ ⌅)
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � ⇥ when min(�⌥ ⇤) > max(⇥⌥ ⌅)

The interval equations over-estimate the machine invariant in than they will
provide in general more states that possible in actual program executions. For
example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which introduces
the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join ⇧ overapproximates the interval union
⇤ and the interval meet ⌃ overapproximates the interval intersection ⌅.

3.6 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter. Such an interval abstract interpreter reads any
program, builds the interval invariance equations, and then solve them. For
simplicity, we concentrate on the second part and will provide encodings of
the interval invariance equations manually.

We first encode the interval abstract domain, implementing a computer
representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set ⇥). In OCaml, we have max_int = 1073741823 and
min_int = �1073741824 4.

4One of the 64 bits is used for garbage collection.

•

•

For x ∈

10 P. C⌅⌥⇧⌅⌃

This information is certainly correct but just less precise.
The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⌃ L X3 = � ? � : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⌥ [min_int⌥ max_int]
X4 = X2 ⌥ �

where the interval join is � ⌃ � � �, � ⌃ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌃ � � [⌃⌥ ⇧], and
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is � ⌥ � � �, � ⌥ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌥ � � �, and
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � [max(�⌥ ⇤)⌥ min(⇥⌥ ⌅)] when ⇥ ⇥ ⇤ ⌅ ⌅ ⇥ �
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � � when ⇥ <⇤ ⇧ ⌅ <�

The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.

For example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which
introduces the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join ⌃ overapproximates the interval union
⇥ and the interval meet ⌥ overapproximates the interval intersection ⇤.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

10 P. C⌅⌥⇧⌅⌃

This information is certainly correct but just less precise.
The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⌃ L X3 = � ? � : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⌥ [min_int⌥ max_int]
X4 = X2 ⌥ �

where the interval join is � ⌃ � � �, � ⌃ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌃ � � [⌃⌥ ⇧], and
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is � ⌥ � � �, � ⌥ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌥ � � �, and
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � [max(�⌥ ⇤)⌥ min(⇥⌥ ⌅)] when ⇥ ⇥ ⇤ ⌅ ⌅ ⇥ �
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � � when ⇥ <⇤ ⇧ ⌅ <�

The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.

For example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which
introduces the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join ⌃ overapproximates the interval union
⇥ and the interval meet ⌥ overapproximates the interval intersection ⇤.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

An Interval Abstract
Interpreter

64

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Objective

65

10 P. C⌅⌥⇧⌅⌃

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⌅ L X3 = � ? � : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⇧ [min_int⌥ max_int]
X4 = X2 ⇧ �

where the interval join is � ⌅ � � �, � ⌅ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌅ � � [⌃⌥ ⇧], and
[�⌥ ⇥] ⌅ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is � ⇧ � � �, � ⇧ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⇧ � � �, and
[�⌥ ⇥] ⇧ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)] when min(�⌥ ⇤) ⇥ max(⇥⌥ ⌅)
[�⌥ ⇥] ⇧ [⇤⌥ ⌅] � � when min(�⌥ ⇤) > max(⇥⌥ ⌅)

The interval equations over-estimate the machine invariant in than they will
provide in general more states that possible in actual program executions. For
example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which introduces
the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join ⌅ overapproximates the interval union
⇥ and the interval meet ⇧ overapproximates the interval intersection ⇤.

3.6 An Interval Abstract Interpreter

We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

The Interval Abstract Domain

66

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 11

We first encode the interval abstract domain, implementing a computer
representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set ⇤). In OCaml, we have max_int = 1073741823 and
min_int = �1073741824 4.

We also encode the basic interval operations ⌃ (less, interval inclusion),
⌅ (interval join), ⇧ (interval meet), interval printing (print) and interval in-
crementation (add1). Of course many more interval operations are needed to
handle a full language, but we aim at extreme simplicity.

(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of (int * int);;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (a <=c)&&(b <=d);;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT (min a c, max b d);;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT (max a c, min b d);;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

(INT ((if a< max_int then a+1 else max_int),
(if b< max_int then b+1 else max_int)));;

let print x = match x with
| EMPTY -> print_string "_|_"
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ")";;

For programs with more than one variable, we would have to encode an
abstract environment assigning intervals to program variables. Writing X =
{x1 ⇥ ⇤1⇧ ⌅ ⌅ ⌅ ⇧ x⇥ ⇥ ⇤⇥} for the function X mapping x� to ⇤� such that X (x�) = ⇤�,
� = 1⇧ ⌅ ⌅ ⌅ ⇧ ⇥, the interval invariance equations would be

4One of the 64 bits is used for garbage collection.

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 11

We first encode the interval abstract domain, implementing a computer
representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set ⇤). In OCaml, we have max_int = 1073741823 and
min_int = �1073741824 4.

We also encode the basic interval operations ⌃ (less, interval inclusion),
⌅ (interval join), ⇧ (interval meet), interval printing (print) and interval in-
crementation (add1). Of course many more interval operations are needed to
handle a full language, but we aim at extreme simplicity.

(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of (int * int);;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (a <=c)&&(b <=d);;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT (min a c, max b d);;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT (max a c, min b d);;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

(INT ((if a< max_int then a+1 else max_int),
(if b< max_int then b+1 else max_int)));;

let print x = match x with
| EMPTY -> print_string "_|_"
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ")";;

For programs with more than one variable, we would have to encode an
abstract environment assigning intervals to program variables. Writing X =
{x1 ⇥ ⇤1⇧ ⌅ ⌅ ⌅ ⇧ x⇥ ⇥ ⇤⇥} for the function X mapping x� to ⇤� such that X (x�) = ⇤�,
� = 1⇧ ⌅ ⌅ ⌅ ⇧ ⇥, the interval invariance equations would be

4One of the 64 bits is used for garbage collection.

•

•

•

or max_int = 4611686018427387903 depending on the machine/compiler

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 11

encodes the empty set ⇤). In OCaml, we have max_int = 1073741823 and
min_int = �1073741824 4.

We also encode the basic interval operations ⌃ (less, interval inclusion),
⌅ (interval join), ⇧ (interval meet), interval printing (print) and interval in-
crementation (add1).

Of course many more interval operations are needed to handle a full lan-
guage, but we aim at extreme simplicity.

(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of (int * int);;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (a <=c)&&(b <=d);;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT (min a c, max b d);;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT (max a c, min b d);;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

(INT ((if a< max_int then a+1 else max_int),
(if b< max_int then b+1 else max_int)));;

let print x = match x with
| EMPTY -> print_string "_|_"
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ")";;

For programs with more than one variable, we would have to encode an
abstract environment assigning intervals to program variables. Writing X =
{x1 ⇥ ⇤1⇧ ⌅ ⌅ ⌅ ⇧ x⇥ ⇥ ⇤⇥} for the function X mapping x� to ⇤� such that X (x�) = ⇤�,
� = 1⇧ ⌅ ⌅ ⌅ ⇧ ⇥, the interval invariance equations would be

4One of the 64 bits is used for garbage collection.

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 67

12 P. C�⌅⇥�⇤

(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of (int * int);;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (c <=a)&&(b <=d);;
let greater x y = less y x;;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT (min a c, max b d);;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT (max a c, min b d);;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

(INT ((if a< max_int then a+1 else max_int),
(if b< max_int then b+1 else max_int)));;

let print x = match x with
| EMPTY -> print_string "_|_ "
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ") ";;

For programs with more than one variable, we would have to encode an
abstract environment assigning intervals to program variables.

Writing X = {x1 � ⇧1� ⌥ ⌥ ⌥ � x⌅ � ⇧⌅} for the function X mapping x⇤ to ⇧⇤
such that X (x⇤) = ⇧⇤, ⇤ = 1� ⌥ ⌥ ⌥ � ⌅, the interval invariance equations would be

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x � [min_int� max_int]}
X2 = {x � [1� 1] ⌅⌃ L X3(x) = ⇤⌃ ? ⇤⌃ : let [�� ⇥] = X3(x) in

[min(� + 1� max_int)� min(⇥ + 1� max_int)] M}
X3 = X2 ⇧̇⌃ {x � [min_int� max_int]}
X4 = X2 ⇧̇⌃ {x � ⇤⌃}

where the abstract operations are extended componentwise such as {x1 � ⇧1,
. . . , x⌅ � ⇧⌅} ⇧̇⌃ {x1 � ⇧ ⇥1, . . . , x⌅ � ⇧ ⇥⌅} � {x1 � ⇧1 ⇧⌃ ⇧ ⇥1, . . . , x⌅ � ⇧⌅ ⇧⌃ ⇧ ⇥⌅}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstract Environments

68

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 11

encodes the empty set ⇤). In OCaml, we have max_int = 1073741823 and
min_int = �1073741824 4.

We also encode the basic interval operations ⌃ (less, interval inclusion),
⌅ (interval join), ⇧ (interval meet), interval printing (print) and interval in-
crementation (add1).

Of course many more interval operations are needed to handle a full lan-
guage, but we aim at extreme simplicity.

(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of (int * int);;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (a <=c)&&(b <=d);;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT (min a c, max b d);;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT (max a c, min b d);;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

(INT ((if a< max_int then a+1 else max_int),
(if b< max_int then b+1 else max_int)));;

let print x = match x with
| EMPTY -> print_string "_|_"
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ")";;

For programs with more than one variable, we would have to encode an
abstract environment assigning intervals to program variables.

Writing X = {x1 ⇥ ⇤1⇧ ⌅ ⌅ ⌅ ⇧ x⇥ ⇥ ⇤⇥} for the function X mapping x� to ⇤�
such that X (x�) = ⇤�, � = 1⇧ ⌅ ⌅ ⌅ ⇧ ⇥, the interval invariance equations would be

4One of the 64 bits is used for garbage collection.

12 P. C�⌅⇥�⇤

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x � [min_int⌃ max_int]}
X2 = {x � [1⌃ 1] � L X3(x) = ⇧ ? ⇧ : let [�⌃ ⇥] = X3(x) in

[min(� + 1⌃ max_int)⌃ min(⇥ + 1⌃ max_int)] M}
X3 = X2 ̇ {x � [min_int⌃ max_int]}
X4 = X2 ̇ {x � ⇧}

where the abstract operations are extended pointwise such as {x1 � ⇧1, . . . ,
x⌅ � ⇧⌅} ̇ {x1 � ⇧ ⌅1, . . . , x⌅ � ⇧ ⌅⌅} � {x1 � ⇧1 ⇧ ⌅1, . . . , x⌅ � ⇧⌅ ⇧ ⌅⌅}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants⌃X1⌃ X2⌃ X3⌃ X4⌥ which attach to each program point ⇤ an abstract lo-
cal invariant X ⇤ which holds whenever controls reaches program point ⇤. Each
abstract local invariant X ⇤ is represented by an abstract environment (abstract
intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order ⌦̇ (pless), encoding logical implication ⇤ in the abstract;
• ↵̇ (pgreater), the inverse implication (⇥);
• the pointwise infimum (⇧)4 (pbot), encoding false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;
let pbot = (EMPTY , EMPTY , EMPTY , EMPTY);;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstract Invariants (Cont’d)

69

12 P. C�⌅⇥�⇤

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x � [min_int⌃ max_int]}
X2 = {x � [1⌃ 1] � L X3(x) = ⇧ ? ⇧ : let [�⌃ ⇥] = X3(x) in

[min(� + 1⌃ max_int)⌃ min(⇥ + 1⌃ max_int)] M}
X3 = X2 ̇ {x � [min_int⌃ max_int]}
X4 = X2 ̇ {x � ⇧}

where the abstract operations are extended pointwise such as {x1 � ⇧1, . . . ,
x⌅ � ⇧⌅} ̇ {x1 � ⇧ ⌅1, . . . , x⌅ � ⇧ ⌅⌅} � {x1 � ⇧1 ⇧ ⌅1, . . . , x⌅ � ⇧⌅ ⇧ ⌅⌅}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants⌃X1⌃ X2⌃ X3⌃ X4⌥ which attach to each program point ⇤ an abstract
local invariant X ⇤ which holds whenever controls reaches program point ⇤.

Each abstract local invariant X ⇤ is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order ⌦̇ (pless), encoding logical implication ⇤ in the abstract;
• ↵̇ (pgreater), the inverse implication (⇥);
• the pointwise infimum (⇧)4 (pbot), encoding false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;
let pbot = (EMPTY , EMPTY , EMPTY , EMPTY);;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstract Invariants (Cont’d)

70

12 P. C�⌅⇥�⇤

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x ⇤ [min_int⌃ max_int]}
X2 = {x ⇤ [1⌃ 1] ⌦ L X3(x) = ⌥ ? ⌥ : let [�⌃ ⇥] = X3(x) in

[min(� + 1⌃ max_int)⌃ min(⇥ + 1⌃ max_int)] M}
X3 = X2 ↵̇ {x ⇤ [min_int⌃ max_int]}
X4 = X2 ↵̇ {x ⇤ ⌥}

where the abstract operations are extended pointwise such as {x1 ⇤ ⇧1, . . . ,
x⌅ ⇤ ⇧⌅} ↵̇ {x1 ⇤ ⇧ ⌃1, . . . , x⌅ ⇤ ⇧ ⌃⌅} � {x1 ⇤ ⇧1 ↵ ⇧ ⌃1, . . . , x⌅ ⇤ ⇧⌅ ↵ ⇧ ⌃⌅}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1⌃ X2⌃ X3⌃ X4 which attach to each program point ⇤ an abstract
local invariant X ⇤ which holds whenever controls reaches program point ⇤.

Each abstract local invariant X ⇤ is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding abstract implication (� in set theory

and ⇧ in logic);
• �̇ (pgreater), the abstract inverse implication (⇥ in set theory and ⌅ in

logic);
• the pointwise infimum (⌥)4 (pbot), the abstract encoding of false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;

12 P. C�⌅⇥�⇤

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x ⇤ [min_int⌃ max_int]}
X2 = {x ⇤ [1⌃ 1] ⌦ L X3(x) = ⌥ ? ⌥ : let [�⌃ ⇥] = X3(x) in

[min(� + 1⌃ max_int)⌃ min(⇥ + 1⌃ max_int)] M}
X3 = X2 ↵̇ {x ⇤ [min_int⌃ max_int]}
X4 = X2 ↵̇ {x ⇤ ⌥}

where the abstract operations are extended pointwise such as {x1 ⇤ ⇧1, . . . ,
x⌅ ⇤ ⇧⌅} ↵̇ {x1 ⇤ ⇧ ⌃1, . . . , x⌅ ⇤ ⇧ ⌃⌅} � {x1 ⇤ ⇧1 ↵ ⇧ ⌃1, . . . , x⌅ ⇤ ⇧⌅ ↵ ⇧ ⌃⌅}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1⌃ X2⌃ X3⌃ X4 which attach to each program point ⇤ an abstract
local invariant X ⇤ which holds whenever controls reaches program point ⇤.

Each abstract local invariant X ⇤ is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding abstract implication (� in set theory

and ⇧ in logic);
• �̇ (pgreater), the abstract inverse implication (⇥ in set theory and ⌅ in

logic);
• the pointwise infimum (⌥)4 (pbot), the abstract encoding of false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 71

12 P. C�⌅⇥�⇤

�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x ⇤ [min_int⌃ max_int]}
X2 = {x ⇤ [1⌃ 1] ⌦ L X3(x) = ⌥ ? ⌥ : let [�⌃ ⇥] = X3(x) in

[min(� + 1⌃ max_int)⌃ min(⇥ + 1⌃ max_int)] M}
X3 = X2 ↵̇ {x ⇤ [min_int⌃ max_int]}
X4 = X2 ↵̇ {x ⇤ ⌥}

where the abstract operations are extended pointwise such as {x1 ⇤ ⇧1, . . . ,
x⌅ ⇤ ⇧⌅} ↵̇ {x1 ⇤ ⇧ ⌃1, . . . , x⌅ ⇤ ⇧ ⌃⌅} � {x1 ⇤ ⇧1 ↵ ⇧ ⌃1, . . . , x⌅ ⇤ ⇧⌅ ↵ ⇧ ⌃⌅}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1⌃ X2⌃ X3⌃ X4 which attach to each program point ⇤ an abstract
local invariant X ⇤ which holds whenever controls reaches program point ⇤.

Each abstract local invariant X ⇤ is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding abstract implication (� in set theory

and ⇧ in logic);
• �̇ (pgreater), the abstract inverse implication (⇥ in set theory and ⌅ in

logic);
• the pointwise infimum (⌥)4 (pbot), the abstract encoding of false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 13

let pbot = (EMPTY , EMPTY , EMPTY , EMPTY);;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least
solution of the invariance equations (lfp 5). It is parameterized by the order
(leq), the starting point (a) and the abstract transformer (f) so as to compute a,
f(a), f2(a), . . . , f⇤(a), . . . , until reaching the limit f⇧ (a) such that f(f⇧ (a)) ⇤ f⇧ (a).
Of course, convergence may not be guaranteed in which case lfp does not
terminate (or terminates with a runtime error, e.g. out of memory).
(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy
� X⌅+1⇥ = �⇥(X⌅1 ⌥ ⌃ ⌃ ⌃ ⌥ X⌅4) ⌅ = 1⌥ 2⌥ 3⌥ ⌃ ⌃ ⌃

⇥ = 1⌥ ⌃ ⌃ ⌃ ⌥ 4
is simplistic, more elaborate ones would use e.g. a working list (see algo-
rithm 23.9).

Then we encode the abstract reachable state transformer �(X) = �(�X1⌥
⌃ ⌃ ⌃ ⌥ X4⇥) using the environment abstract domain (the intervals in our simplified
case).
(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int , max_int)) ,
meet x2 EMPTY);;

5least fixpoint.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

The Iterator

72

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 13

let pbot = (EMPTY , EMPTY , EMPTY , EMPTY);;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least
solution of the invariance equations (lfp 5).

It is parameterized by the order (leq), the starting point (a) and the abstract
transformer (f) so as to compute a, f(a), f2(a), . . . , f⇤(a), . . . , until reaching the
limit f⇧ (a) such that f(f⇧ (a)) ⇤ f⇧ (a).

Of course, convergence may not be guaranteed in which case lfp does not
terminate (or terminates with a runtime error, e.g. out of memory).
(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy
� X⌅+1⇥ = �⇥(X⌅1 ⌥ ⌃ ⌃ ⌃ ⌥ X⌅4) ⌅ = 1⌥ 2⌥ 3⌥ ⌃ ⌃ ⌃

⇥ = 1⌥ ⌃ ⌃ ⌃ ⌥ 4
is simplistic, more elaborate ones would use e.g. a working list (see algo-
rithm 23.9).

Then we encode the abstract reachable state transformer �(X) = �(�X1⌥
⌃ ⌃ ⌃ ⌥ X4⇥) using the environment abstract domain (the intervals in our simplified
case).
(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int , max_int)) ,
meet x2 EMPTY);;

5least fixpoint.

•

•

•

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 13

let pbot = (EMPTY , EMPTY , EMPTY , EMPTY);;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least
solution of the invariance equations (lfp 5).

It is parameterized by the order (leq), the starting point (a) and the abstract
transformer (f) so as to compute a, f(a), f2(a), . . . , f⇤(a), . . . , until reaching the
limit f⇧ (a) such that f(f⇧ (a)) ⇤ f⇧ (a).

Of course, convergence may not be guaranteed in which case lfp does not
terminate (or terminates with a runtime error, e.g. out of memory).
(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy
� X⌅+1⇥ = �⇥(X⌅1 ⌥ ⌃ ⌃ ⌃ ⌥ X⌅4) ⌅ = 1⌥ 2⌥ 3⌥ ⌃ ⌃ ⌃

⇥ = 1⌥ ⌃ ⌃ ⌃ ⌥ 4
is simplistic, more elaborate ones would use e.g. a working list (see algo-
rithm 23.9).

Then we encode the abstract reachable state transformer �(X) = �(�X1⌥
⌃ ⌃ ⌃ ⌥ X4⇥) using the environment abstract domain (the intervals in our simplified
case).
(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int , max_int)) ,
meet x2 EMPTY);;

5least fixpoint.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 73

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 13

let pbot = (EMPTY , EMPTY , EMPTY , EMPTY);;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least
solution of the invariance equations (lfp 5).

It is parameterized by the order (leq), the starting point (a) and the abstract
transformer (f) so as to compute a, f(a), f2(a), . . . , f⇤(a), . . . , until reaching the
limit f⇧ (a) such that f(f⇧ (a)) ⇤ f⇧ (a).

Of course, convergence may not be guaranteed in which case lfp does not
terminate (or terminates with a runtime error, e.g. out of memory).
(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy
� X⌅+1⇥ = �⇥(X⌅1 ⌥ ⌃ ⌃ ⌃ ⌥ X⌅4) ⌅ = 1⌥ 2⌥ 3⌥ ⌃ ⌃ ⌃

⇥ = 1⌥ ⌃ ⌃ ⌃ ⌥ 4
is simplistic, more elaborate ones would use e.g. a working list (see algo-
rithm 23.9).

Then we encode the abstract reachable state transformer �(X) = �(�X1⌥
⌃ ⌃ ⌃ ⌥ X4⇥) using the environment abstract domain (the intervals in our simplified
case).
(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int , max_int)) ,
meet x2 EMPTY);;

5least fixpoint.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Jacobi versus chaotic iteration strategies

74

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 13

let pbot = (EMPTY , EMPTY , EMPTY , EMPTY);;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least
solution of the invariance equations (lfp 5).

It is parameterized by the order (leq), the starting point (a) and the abstract
transformer (f) so as to compute a, f(a), f2(a), . . . , f⇤(a), . . . , until reaching the
limit f⇧ (a) such that f(f⇧ (a)) ⇤ f⇧ (a).

Of course, convergence may not be guaranteed in which case lfp does not
terminate (or terminates with a runtime error, e.g. out of memory).
(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy
� X⌅+1⇥ = �⇥(X⌅1 ⌥ ⌃ ⌃ ⌃ ⌥ X⌅4) ⌅ = 1⌥ 2⌥ 3⌥ ⌃ ⌃ ⌃

⇥ = 1⌥ ⌃ ⌃ ⌃ ⌥ 4
is simplistic, more elaborate ones would use e.g. a working list (see algo-
rithm 23.9).

Then we encode the abstract reachable state transformer �(X) = �(�X1⌥
⌃ ⌃ ⌃ ⌥ X4⇥) using the environment abstract domain (the intervals in our simplified
case).
(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int , max_int)) ,
meet x2 EMPTY);;

5least fixpoint.

14 P. C�⌅⇥�⇤

Of course, convergence may not be guaranteed in which case lfp does not
terminate (or terminates with a runtime error, e.g. out of memory).
(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy
� X⇤+1⇥ = �⇥(X⇤1 ⇧ ⌅ ⌅ ⌅ ⇧ X⇤4) ⇤ = 1⇧ 2⇧ 3⇧ ⌅ ⌅ ⌅

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-
rithm 25.21) or structural iteration (see chapter 13).

Then we encode the abstract reachable state transformer �(X) = �(�X1⇧
⌅ ⌅ ⌅ ⇧ X4⇥) using the environment abstract domain (the intervals in our simplified
case).
(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f1 () = INT (min_int , max_int);;
let f2 x1 x3 = join (INT (1 ,1)) (add1 x3);;
let f3 x2 = meet x2 (INT (min_int , max_int));;
let f4 x2 = meet x2 EMPTY ;;
let f (x1 ,x2 ,x3 ,x4) = (f1 () , f2 x1 x3 , f3 x2 , f4 x2);;

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstract Invariant Equations X=f(X)

75

10 P. C⌅⌥⇧⌅⌃

This information is certainly correct but just less precise.
The interval invariance equations are now
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = [min_int⌥ max_int]}
X2 = [1⌥ 1] ⌃ L X3 = � ? � : let [�⌥ ⇥] = X3 in

[min(� + 1⌥ max_int)⌥ min(⇥ + 1⌥ max_int)] M}
X3 = X2 ⌥ [min_int⌥ max_int]
X4 = X2 ⌥ �

where the interval join is � ⌃ � � �, � ⌃ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌃ � � [⌃⌥ ⇧], and
[�⌥ ⇥] ⌃ [⇤⌥ ⌅] � [min(�⌥ ⇤)⌥ max(⇥⌥ ⌅)]

and the interval meet is � ⌥ � � �, � ⌥ [⌃⌥ ⇧] � [⌃⌥ ⇧] ⌥ � � �, and
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � [max(�⌥ ⇤)⌥ min(⇥⌥ ⌅)] when ⇥ ⇥ ⇤ ⌅ ⌅ ⇥ �
[�⌥ ⇥] ⌥ [⇤⌥ ⌅] � � when ⇥ <⇤ ⇧ ⌅ <�

The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.

For example the set {1⌥ 2⌥ 5} will be overapproximated by [1⌥ 5] which
introduces the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound.

In particular the interval join ⌃ overapproximates the interval union ⇥ and
the interval meet ⌥ overapproximates the interval intersection ⇤.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC�⇤⇥ of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

encoding:

14 P. C�⌅⇥�⇤

Of course, convergence may not be guaranteed in which case lfp does not
terminate (or terminates with a runtime error, e.g. out of memory).
(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy
� X⇤+1⇥ = �⇥(X⇤1 ⇧ ⌅ ⌅ ⌅ ⇧ X⇤4) ⇤ = 1⇧ 2⇧ 3⇧ ⌅ ⌅ ⌅

⇥ = 1⇧ ⌅ ⌅ ⌅ ⇧ 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-
rithm 25.21) or structural iteration (see chapter 13).

Then we encode the abstract reachable state transformer �(X) = �(�X1⇧
⌅ ⌅ ⌅ ⇧ X4⇥) using the environment abstract domain (the intervals in our simplified
case).
(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f1 () = INT (min_int , max_int);;
let f2 x1 x3 = join (INT (1 ,1)) (add1 x3);;
let f3 x2 = meet x2 (INT (min_int , max_int));;
let f4 x2 = meet x2 EMPTY ;;
let f (x1 ,x2 ,x3 ,x4) = (f1 () , f2 x1 x3 , f3 x2 , f4 x2);;

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

The Abstract Interpreter

76

14 P. C�⌅⇥�⇤

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Infinitary Iteration

77]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Iterative Resolution of the Interval Equations

78

14 P. C�⌅⇥�⇤

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.

14 P. C�⌅⇥�⇤

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

A look at the iterates...

79

14 P. C�⌅⇥�⇤

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On the Convergence Criterion

80

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇧ ⇧ ⇧ ⌃̇ X⇥ ⌃̇ ⇧ ⇧ ⇧ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration
When convergence requires infinitely many steps or is very slow, it may not
be possible, due to undecidability or high complexity, to exactly calculate the
least solution to the abstract system of equations. The only sound solution is
then to have overapproximations of the desired result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations. The possibility of computing sound
but approximate solutions to the invariant equations leads to powerful sound
and fast static program analysis methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

• For soundness, the widening must perform over-approximations, that is ⇤ ⌃
⇤ � ⌅ and ⌅ ⌃ ⇤ � ⌅.
7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On the Convergence Criterion

81

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇧ ⇧ ⇧ ⌃̇ X⇥ ⌃̇ ⇧ ⇧ ⇧ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration
When convergence requires infinitely many steps or is very slow, it may not
be possible, due to undecidability or high complexity, to exactly calculate the
least solution to the abstract system of equations. The only sound solution is
then to have overapproximations of the desired result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations. The possibility of computing sound
but approximate solutions to the invariant equations leads to powerful sound
and fast static program analysis methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

• For soundness, the widening must perform over-approximations, that is ⇤ ⌃
⇤ � ⌅ and ⌅ ⌃ ⇤ � ⌅.
7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On the Convergence Criterion

82

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇧ ⇧ ⇧ ⌃̇ X⇥ ⌃̇ ⇧ ⇧ ⇧ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration
When convergence requires infinitely many steps or is very slow, it may not
be possible, due to undecidability or high complexity, to exactly calculate the
least solution to the abstract system of equations. The only sound solution is
then to have overapproximations of the desired result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations. The possibility of computing sound
but approximate solutions to the invariant equations leads to powerful sound
and fast static program analysis methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

• For soundness, the widening must perform over-approximations, that is ⇤ ⌃
⇤ � ⌅ and ⌅ ⌃ ⇤ � ⌅.
7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On the Convergence Criterion

83

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇧ ⇧ ⇧ ⌃̇ X⇥ ⌃̇ ⇧ ⇧ ⇧ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration
When convergence requires infinitely many steps or is very slow, it may not
be possible, due to undecidability or high complexity, to exactly calculate the
least solution to the abstract system of equations. The only sound solution is
then to have overapproximations of the desired result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations. The possibility of computing sound
but approximate solutions to the invariant equations leads to powerful sound
and fast static program analysis methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

• For soundness, the widening must perform over-approximations, that is ⇤ ⌃
⇤ � ⌅ and ⌅ ⌃ ⇤ � ⌅.
7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On Slow Convergence !

84

14 P. C�⌅⇥�⇤

The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence Acceleration

85]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Objective

86

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇤ ⇤ ⇤ ⌃̇ X⇥ ⌃̇ ⇤ ⇤ ⇤ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

•

(*)

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Objective

87

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇤ ⇤ ⇤ ⌃̇ X⇥ ⌃̇ ⇤ ⇤ ⇤ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

•

(*)

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages
]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Objective

88

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇤ ⇤ ⇤ ⌃̇ X⇥ ⌃̇ ⇤ ⇤ ⇤ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

•

(*)

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Objective

89

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇤ ⇤ ⇤ ⌃̇ X⇥ ⌃̇ ⇤ ⇤ ⇤ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

•

(*)

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages
]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Objective

90

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇤ ⇤ ⇤ ⌃̇ X⇥ ⌃̇ ⇤ ⇤ ⇤ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

•

•

•

•

•

(*)

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence Acceleration
by Widening

91]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence Acceleration by Widening

92

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌅̇ Y then �(X) ⌅̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌅̇ ⇤ ⇤ ⇤ ⌅̇ X⇥ ⌅̇ ⇤ ⇤ ⇤ ⌅̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌅̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening

The intuition for convergence acceleration is to speed up the increasing
iteration X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an
overapproximation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation
X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) ⌅ Â implies lfp � ⌅ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy

•

•

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇤ ⇤ ⇤ ⌃̇ X⇥ ⌃̇ ⇤ ⇤ ⇤ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7The justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence Acceleration by Widening

93

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌅̇ Y then �(X) ⌅̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌅̇ ⇤ ⇤ ⇤ ⌅̇ X⇥ ⌅̇ ⇤ ⇤ ⇤ ⌅̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌅̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening

The intuition for convergence acceleration is to speed up the increasing
iteration X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an
overapproximation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation
X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) ⌅ Â implies lfp � ⌅ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy

•

•

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 15

Notice that the abstract invariance equations X = �(X) are increasing, if
X ⌃̇ Y then �(X) ⌃̇ �(Y).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⌃̇ ⇤ ⇤ ⇤ ⌃̇ X⇥ ⌃̇ ⇤ ⇤ ⇤ ⌃̇ lim⇥�+⇥ X⇥ are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim⇥�+⇥ X⇥) ⌃̇ lim⇥�+⇥ X⇥, the limit satisfies �(lim⇥�+⇥ X⇥) = lim⇥�+⇥ X⇥
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⇤, . . . , X⇥+1 = �(X⇥), . . . , lim⇥�+⇥ X⇥ so as to reach an overapprox-
imation Â of the least solution lim⇥�+⇥ X⇥ of the fixpoint equation X = �(X) 7.

Convergence acceleration means that X⇥+1 will be a function of X⇥ and
�(X⇥) 8 and so X⇥+1 = X⇥ � �(X⇥) where � is called a widening 9.

7The justification is again by Tarski theorem 14.7 since �(Â) ⌃ Â implies lfp � ⌃ Â.
8and more generally X⇥+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X⇥, �(X⇥), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ⌅, ⇧, etc, see chapter 30.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Soundness

94

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in
[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;
]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence enforcement

95

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in
[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example: Interval Widening (Cont’d)

96

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in

[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example: Interval Widening (Cont’d)

97

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in

[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example: Interval Widening (Cont’d)

98

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in

[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example: Interval Widening (Cont’d)

99

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in

[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 17

approximation Â of the least solution lim⌃⇤+⌅ X⌃ of the fixpoint equation
X = ⇧(X) 11.

Convergence acceleration means that X⌃+1 will be a function of X⌃ and
⇧(X⌃) 12 and so X⌃+1 = X⌃ � ⇧(X⌃) where � is called a widening 13.
• For soundness, the widening must perform over-approximations, that is ⌥ ⇥

⌥ � � and � ⇥ ⌥ � �.
• For convergence, the widening must ensure termination with an overapprox-

imation of the desired solution.
For example, a widening for intervals could be 14

⌥ � � � �
⌥ � ⌥ � ⌥

[�⌦ ⇥] � [⇤⌦ ⌅] � [L ⇤ < � ? �⌅ : � M⌦ L ⌅ >⇥ ? +⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So in

[�⌦ ⇥] � [⇤⌦ ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⌅ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⌅ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

11The justification is again by Tarski theorem 5.7 since ⇧(Â) ⇥ Â implies lfp ⇧ ⇥ Â.
12and more generally X⌃+1 could depend on the sequence of previous iterates X 0, ⇧(X 0), . . . ,

X⌃, ⇧(X⌃), but we can use a reencoding as we did in exercice 8-2 to prove that a proof by
strong induction in section 8.1.9 can always be done by a weak recurrence of section 8.1.6,
and inversely.

13We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins , � , etc, see chapter 7.

14�⌅ ⌃⇧ Z is smaller than any integer.
]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Widenings are not increasing!

100

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in

[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

It can be shown that if the widening stops loosing information
when a solution is found and is increasing then it cannot
enforce termination

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Widenings are not increasing!

101

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in

[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

It can be shown that if the widening stops loosing information
when a solution is found and is increasing then it cannot
enforce termination (*)

•

•

(*) see P. Cousot, VMCAI 2015

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Encoding the interval widening

102

16 P. C⌅⌥⇧⌅⌃

• For soundness, the widening must perform over-approximations, that is ⌃ ⇧
⌃ � ⌥ and ⌥ ⇧ ⌃ � ⌥.

• For convergence, the widening must ensure termination with an overapprox-
imation of the desired solution.

For example, a widening for intervals could be
⌅ � ⌥ � ⌥
⌃ � ⌅ � ⌃

[�� ⇥] � [⇤� ⌅] � [L ⇤ < � ? �⇥ : � M� L ⌅ >⇥ ? +⇥ : ⇥ M]
Recall than in ⌃ � ⌥ the ⌃ is an iterate and ⌥ is the next iterate ⇧(⌃). So in

[�� ⇥] � [⇤� ⌅] if ⇤ < � the next iterate decreases the lower limit of the interval
so widening to �⇥ ensures this cannot happen infinitely often.

Similarly, if ⌅ > ⇥ then the next iterate increases the upper limit of the
interval so widening to +⇥ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] ⇧
[0� 2] but [0� 1] � [0� 2] = [0� +⇥] ⇤⇧ [0� 2] = [0� 2] � [0� 2], a point discussed
at length in chapter 30.

A functional encoding in of the widening in OC�⇤⇥ could be
(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Environment Widening

103

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 17

If we had abstract environments to handle several variables, the widening
would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-
gram points. In our example, the widening is applied once around the loop at
program point 2 as follows.
(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.
(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To
see that, consider the bounded iteration

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Invariant widening

104

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 17

If we had abstract environments to handle several variables, the widening
would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-
gram points. In our example, the widening is applied once around the loop at
program point 2 as follows.
(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.
(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To
see that, consider the bounded iteration

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstract Interpreter with Widening

105

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 17

If we had abstract environments to handle several variables, the widening
would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-
gram points. In our example, the widening is applied once around the loop at
program point 2 as follows.
(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.
(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To
see that, consider the bounded iteration

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Static Analysis with Widening

106

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 17

If we had abstract environments to handle several variables, the widening
would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-
gram points. In our example, the widening is applied once around the loop at
program point 2 as follows.
(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.
(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To
see that, consider the bounded iteration

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Trace of the Iterations with Widening

107

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 17

If we had abstract environments to handle several variables, the widening
would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-
gram points. In our example, the widening is applied once around the loop at
program point 2 as follows.
(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.
(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To
see that, consider the bounded iteration

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Imprecision of the Widening

108

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 17

If we had abstract environments to handle several variables, the widening
would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-
gram points. In our example, the widening is applied once around the loop at
program point 2 as follows.
(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.
(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To
see that, consider the bounded iteration

18 P. C⌅⌥⇧⌅⌃

P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

so that the abstract interval equations become
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x � [min_int⇤ max_int]}
X2 = {x � [1⇤ 1] ⇤ L X3(x) = ⇥ ? ⇥ : let [�⇤ ⇥] = X3(x) in

[min(� + 1⇤ max_int)⇤ min(⇥ + 1⇤ max_int)] M}
X3 = X2 ⌅̇ {x � [min_int⇤ 100]}
X4 = X2 ⌅̇ {x � [101⇤ max_int]}

This transformer is encoded in OC�⇤⇥ as follows.
(* transformerBounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int ,100)) ,
meet x2 (INT (101 , max_int)));;

A direct iteration
(* reachability interval analysis *)
open Invariant
open TransformerBounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

yields
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iterator .ml reachability_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.001 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

in more details
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iteratorPartialBoundedTrace .ml reachability_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

18 P. C⌅⌥⇧⌅⌃

P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

so that the abstract interval equations become
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x � [min_int⇤ max_int]}
X2 = {x � [1⇤ 1] ⇤ L X3(x) = ⇥ ? ⇥ : let [�⇤ ⇥] = X3(x) in

[min(� + 1⇤ max_int)⇤ min(⇥ + 1⇤ max_int)] M}
X3 = X2 ⌅̇ {x � [min_int⇤ 100]}
X4 = X2 ⌅̇ {x � [101⇤ max_int]}

This transformer is encoded in OC�⇤⇥ as follows.
(* transformerBounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int ,100)) ,
meet x2 (INT (101 , max_int)));;

A direct iteration
(* reachability interval analysis *)
open Invariant
open TransformerBounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

yields
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iterator .ml reachability_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.001 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

in more details
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iteratorPartialBoundedTrace .ml reachability_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_

1) Direct iteration (without widening)

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 110

18 P. C⌅⌥⇧⌅⌃

P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

so that the abstract interval equations become
�⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⇥

X1 = {x � [min_int⇤ max_int]}
X2 = {x � [1⇤ 1] ⇤ L X3(x) = ⇥ ? ⇥ : let [�⇤ ⇥] = X3(x) in

[min(� + 1⇤ max_int)⇤ min(⇥ + 1⇤ max_int)] M}
X3 = X2 ⌅̇ {x � [min_int⇤ 100]}
X4 = X2 ⌅̇ {x � [101⇤ max_int]}

This transformer is encoded in OC�⇤⇥ as follows.
(* transformerBounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

(INT (min_int , max_int),
join (INT (1 ,1)) (add1 x3),
meet x2 (INT (min_int ,100)) ,
meet x2 (INT (101 , max_int)));;

A direct iteration
(* reachability interval analysis *)
open Invariant
open TransformerBounded
open Iterator
let analyzer () = pprint (lfp pless pbot f);;
analyzer ();;

yields
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iterator .ml reachability_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.001 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

in more details
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iteratorPartialBoundedTrace .ml reachability_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 19

1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
...
1:(-1073741824 ,1073741823) 2:(1 ,99) 3:(1 ,99) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,99) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.001 u 0.001 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Again convergence is guaranteed but slow.
Using the iteration with widening,

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerBounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

we rapidly get a strictly less precise result.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iterator .ml \
? reachability_widening_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iteratorTrace .ml \

In more details the widening e�ect is not compensated by the test on loop exit.
? reachability_widening_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 111

1I) Iteration with widening

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 19

1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
...
1:(-1073741824 ,1073741823) 2:(1 ,99) 3:(1 ,99) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,99) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.001 u 0.001 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Again convergence is guaranteed but slow.
Using the iteration with widening,

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerBounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

we rapidly get a strictly less precise result.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iterator .ml \
? reachability_widening_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iteratorTrace .ml \

In more details the widening e�ect is not compensated by the test on loop exit.
? reachability_widening_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 112

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 19

1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
...
1:(-1073741824 ,1073741823) 2:(1 ,99) 3:(1 ,99) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,99) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.001 u 0.001 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Again convergence is guaranteed but slow.
Using the iteration with widening,

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerBounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint (lfp pless pbot fw);;

analyzer ();;

we rapidly get a strictly less precise result.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iterator .ml \
? reachability_widening_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iteratorTrace .ml \

In more details the widening e�ect is not compensated by the test on loop exit.
? reachability_widening_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing
Because the upward iteration sequence with widening concerges to a postfix-
point Â of ⇧ such that lfp ⇧ Â ⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.

• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.

For example, a narrowing for intervals could be
⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 113

Convergence Acceleration
by Narrowing

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Intuition for Convergence Acceleration with Narrowing

114

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

•

•

•

•

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Intuition for Convergence Acceleration with Narrowing

115

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

•

•

•

•

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Intuition for Convergence Acceleration with Narrowing

116

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

•

•

•

•

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Intuition for Convergence Acceleration with Narrowing

117

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

•

•

•

•

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Soundness

118

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence

119

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example: Interval Narrowing (Cont’d)

120

20 P. C�⌅⇥�⇤

1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-
fixpoint Â of ⇧ such that lfp ⇧ Â⇧ ⇧(Â) Â, we have, by recurrence and since
⇧ is increasing, that lfp ⇧ ⇧⌃(Â) Â.

When Â is not a fixpoint of ⇧ , any iterate in the sequence Y 0 = Â, . . . ,
Y ⌃+1 = ⇧(Y ⌃) = ⇧⌃(Â) is an overapproximation of the unknown lfp ⇧ more
precise than Â.

However, this downward iteration ⌃Y ⌃ ⌃ ⇤ N⌥ might be infinite or con-
verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence
acceleration means that Y ⌃+1 will be a function of Y ⌃ and ⇧(Y ⌃) 10 and so
Y ⌃+1 = Y ⌃ � ⇧(Y ⌃) where � is called a narrowing 11.
• For convergence, the narrowing must ensure termination with a fixpoint.
• For soundness, the narrowing must perform over-approximations, that is

� ⌥ � �, so as to stay above the unknown least fixpoint, which requires
remaining above any fixpoint (which we have no way to distinguish from the
least one) 12.
For example, a narrowing for intervals could be

⌅ � � � ⌅
⌥ � ⌅ � ⌅

[� ⇥] � [⇤ ⌅] � [L � = �⇥ ? ⇤ : � M L ⇥ = +⇥ ? ⌅ : ⇥ M]
Recall than in ⌥ � � the ⌥ is an iterate and � is the next iterate ⇧(⌥). So [�
⇥] � [⇤ ⌅] will just eliminate the infinite bounds in [� ⇥] and replace them by
the bounds of the next iterate [⇤ ⌅].

10and more generally Y ⌃+1 could depend on the sequence of previous iterates Y 0, ⇧(Y 0), . . . ,
Y ⌃, ⇧(Y ⌃), as was also the case for widening.

11We use a binary operator notation rather than a functional notation because of the analogy
between narrowing � and meets ⇧, �, etc, see chapter 30.

12By recurrence, if X = ⇧(X) is any fixpoint of ⇧ such that X Y ⌃ then X = ⇧(X) ⇧(Y ⌃)
since ⇧ is increasing so X Y ⌃ Y ⌃ � ⇧(Y ⌃) = Y ⌃+1 by the overapproximation hypothesis.

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 21

So the narrowed interval is larger than [�⇧ ⇥] that is ⇤(⌅) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC� � could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example: Interval Narrowing (Cont’d)

121

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 21

So the narrowed interval is larger than [�⇧ ⇥] that is ⇤(⌅) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC� � could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Encoding the Interval Narrowing

122

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 21

So the narrowed interval is larger than [�⇧ ⇥] that is ⇤(⌅) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC� � could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Invariant Narrowing

123

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 21

So the narrowed interval is larger than [�⇧ ⇥] that is ⇤(⌅) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC� � could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write ⇥⇥ ⇤ �⇤ for the state of program execution where ex-
ecution is at program point ⇥ , ⇥ = 1⇤ 2⇤ 3⇤ 4, and variable x has integer value
� � Z (where Z is the set of all mathematical integers). A complete program

5

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstract Interpreter with Widening/Narrowing

124

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 21

So the narrowed interval is larger than [�⇧ ⇥] that is ⇤(⌅) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC� � could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator

22 P. C�⌅⇥�⇤

let analyzer () =
let fw x = pwiden x (f x) in

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (lfp pgreater w fn);;
analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example of convergence acceleration by widening/narrowing

125

22 P. C�⌅⇥�⇤

let analyzer () =
let fw x = pwiden x (f x) in

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (lfp pgreater w fn);;
analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Details of the iteration with Narrowing/Widening

126

22 P. C�⌅⇥�⇤

let analyzer () =
let fw x = pwiden x (f x) in

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (lfp pgreater w fn);;
analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

22 P. C�⌅⇥�⇤

let analyzer () =
let fw x = pwiden x (f x) in

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (lfp pgreater w fn);;
analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On the (im)precision of the analysis...

127

22 P. C�⌅⇥�⇤

let analyzer () =
let fw x = pwiden x (f x) in

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (lfp pgreater w fn);;
analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Widening/Narrowing are not duals

128

C⌃. ⇣⌘ — F⌥✏↵⌦⌥ � E✏���↵⌦���⇧⌅ A⇥����⇤�⌥⌦ 35

• The iteration with dual widening starts from above the greatest fixpoint and
stabilizes below to a prefixpoint;

• The iteration with dual narrowing starts from below the greatest fixpoint
and stabilizes below;

So we need four di�erent notations, as follows.
Iteration Iteration

starts from stabilizes
Widening � below above

Narrowing ⇥ above above
Dual widening �� above below

Dual narrowing �⇥ below below

No dual widening �� has ever been found but trivial ones such as bounded
execution (bounded model-checking), execution on a few cases (debugging),
etc.

27.12 Comparison of the Abstraction/Concretization-based
and Widening/Narrowing-based Fixpoint Approx-
imation

27.12.1 On the use of abstract domains satisfying ACC

Because of the frequent confusion between the static analysis of a given spe-
cific program P and the static analysis of all programs P �W of a language
with infinitely many di�erent programs, some common believe about widen-
ings/narrowings are erroneous such as the widening approach to program static
analysis is useless since it is always possible to perform an iterative static
analysis using a finite abstract domain 17 or widenings can always be designed
by further abstraction in an abstract domain satisfying the ascending chain
condition 18.

17R.B. Kieburtz and M. Napierala. Abstract semantics. In S. Abramsky and C. Hankin,
eds., Abstract Interpretation of Declarative Languages, chapter 7, pp. 143–180. Ellis Horwood,
Chichester, U.K., 1987.

18C. Hankin, S. Hunt: Approximate Fixed Points in Abstract Interpretation. In Sci. Comput.
Program. 22(3):283–306 (1994)

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On actual abstract interpreters

129

22 P. C�⌅⇥�⇤

let analyzer () =
let fw x = pwiden x (f x) in

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (lfp pgreater w fn);;
analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.
C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification
The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime. We
can turn it into a verifier checking an interval specification. The specification
can be provided by the user or remain implicit (e.g. absence of runtime errors
such as overflows). One kind of user specification is a type declaration, for
example an interval declaration for integer variables like var x : 1⇤⇤100;. Let
us understand this declaration as: “only values between 1 and 100 can be
assigned to x, otherwise execution stops” (with a runtime error). Observe that
this does not mean that x always has a value betwwen 1 and 100 because it
can be initialized with any integer value.13. For the follwoing example

P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.
(* declaration .ml *)
open Interval
open Invariant

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

•

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

On actual abstract interpreters

130

22 P. C�⌅⇥�⇤

let analyzer () =
let fw x = pwiden x (f x) in

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint (lfp pgreater w fn);;
analyzer ();;

The result is now almost instantaneous.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening
and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the
widening, in particular because it is blocked by fixpoints jumped over by the
widening.
Remark 3.1 For simplicity, we have designed a specific abstract interpreter
for a specific program.

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.
C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification
The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime. We
can turn it into a verifier checking an interval specification. The specification
can be provided by the user or remain implicit (e.g. absence of runtime errors
such as overflows). One kind of user specification is a type declaration, for
example an interval declaration for integer variables like var x : 1⇤⇤100;. Let
us understand this declaration as: “only values between 1 and 100 can be
assigned to x, otherwise execution stops” (with a runtime error). Observe that
this does not mean that x always has a value betwwen 1 and 100 because it
can be initialized with any integer value.13. For the follwoing example

P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.
(* declaration .ml *)
open Interval
open Invariant

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

•

•

•

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Chaotic Iterations:
A Structural Instance

131]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Chaotic iterations

132

24 P. C�⌅⇥�⇤

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need
not follow the Jacobi iteration strategy and can be done in any chaotic order
provided no equation is forgotten forever (or equivalently every equation is
evaluated infinitely often) until it is stabilized.

A particular instance of such an e�cient chaotic iteration follows program
execution as defined by induction on its syntax (see chapter 13). Starting from
the entry condition at program point 1, we can stabilize the loop 2—3 before
computing the invariant at program point 4.

We define
(* structural reachability analysis with widening and

narrowing *)
open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = (lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
(lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4);;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with
widening and then the iteration with narrowing for the loop 2—3)

24 P. C�⌅⇥�⇤

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need
not follow the Jacobi iteration strategy and can be done in any chaotic order
provided no equation is forgotten forever (or equivalently every equation is
evaluated infinitely often) until it is stabilized.

A particular instance of such an e�cient chaotic iteration follows program
execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point 1, we can stabilize the
loop 2—3 before computing the invariant at program point 4.

We define
(* structural reachability analysis with widening and

narrowing *)
open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = (lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
(lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4);;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with
widening and then the iteration with narrowing for the loop 2—3)

24 P. C�⌅⇥�⇤

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need
not follow the Jacobi iteration strategy and can be done in any chaotic order
provided no equation is forgotten forever (or equivalently every equation is
evaluated infinitely often) until it is stabilized.

A particular instance of such an e�cient chaotic iteration follows program
execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point 1, we can stabilize the
loop 2—3 before computing the invariant at program point 4.

We define
(* structural reachability analysis with widening and

narrowing *)
open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = (lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
(lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4);;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with
widening and then the iteration with narrowing for the loop 2—3)

24 P. C�⌅⇥�⇤

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need
not follow the Jacobi iteration strategy and can be done in any chaotic order
provided no equation is forgotten forever (or equivalently every equation is
evaluated infinitely often) until it is stabilized.

A particular instance of such an e�cient chaotic iteration follows program
execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point 1, we can stabilize the
loop 2—3 before computing the invariant at program point 4.

We define
(* structural reachability analysis with widening and

narrowing *)
open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = (lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
(lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4);;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with
widening and then the iteration with narrowing for the loop 2—3)

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 133

24 P. C�⌅⇥�⇤

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need
not follow the Jacobi iteration strategy and can be done in any chaotic order
provided no equation is forgotten forever (or equivalently every equation is
evaluated infinitely often) until it is stabilized.

A particular instance of such an e�cient chaotic iteration follows program
execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point 1, we can stabilize the
loop 2—3 before computing the invariant at program point 4.

We define
(* structural reachability analysis with widening and

narrowing *)
open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = (lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
(lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4);;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with
widening and then the iteration with narrowing for the loop 2—3)

Structural iterations (cont’d)

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 134

24 P. C�⌅⇥�⇤

In practice, abstract interpreters are parameterized by the program they
have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need
not follow the Jacobi iteration strategy and can be done in any chaotic order
provided no equation is forgotten forever (or equivalently every equation is
evaluated infinitely often) until it is stabilized.

A particular instance of such an e�cient chaotic iteration follows program
execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point 1, we can stabilize the
loop 2—3 before computing the invariant at program point 4.

We define
(* structural reachability analysis with widening and

narrowing *)
open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = (lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
(lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4);;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with
widening and then the iteration with narrowing for the loop 2—3)

Structural iterations (cont’d)
C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 25

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? structural_reachability_narrowing_bounded_trace .ml
% time ./a. out
| (1 ,1) (1 ,1073741823) converged to fixpoint .
(1 ,1073741823) (1 ,101) converged to fixpoint .
1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

2.13 Verification
The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⌅⌅100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.18.
For the following example
P ⇥ � var x : 1⌅⌅100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⇧ max_int]}
X2 = {x � �[1⇧ 1] ⌅⇤ L X3(x) = ⇤⇤ ? ⇤⇤ : let [�⇧ ⇥] = X3(x) in

[min(� + 1⇧ max_int)⇧ min(⇥ + 1⇧ max_int)] M⇥ ⇧⇤ [1⇧ 100]}
X3 = X2 ⇧̇⇤ {x � [min_int⇧ 100]}
X4 = X2 ⇧̇⇤ {x � [101⇧ max_int]}

since execution stops if and when a value outside [1⇧ 100] is going to be
assigned to x.

18This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Verification

135]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Verifier

136

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the follwoing example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

•

•
•

•

•

•

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the following example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Verifier

137

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the follwoing example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

•

•
•

•

•

•

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the following example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Verifier

138

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the follwoing example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

•

•
•

•

•

•

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the following example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Verifier

139

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the follwoing example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

•

•
•

•

•

•

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the following example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example of Interval Verification

140

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the following example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x. The result of the analysis is now the following. This declaration
is encoded in OC� � as follows 14.

13This interpretation of the interval declaration is that of the P��⇥�� programming language,
see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Encoding the Declaration

141

C⌃. ✓ — I⌦��↵⇤✏⇥�⌥↵⌦ �↵ ����⌥⇥ �⌦��⌘�⌥� �⌦⇤ ⇣⌅�⌥⇧⌥⇥��⌥↵⌦ 23

Observe that the code defining the transformer could be directly generated
from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and
an abstract interpreter would be used to evaluate the transformer by calls to
the interval abstract domain). �

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.
The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).
One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1⇤⇤100;.
Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).
Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.13.
For the following example
P ⇥ � var x : 1⇤⇤100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become
⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

X1 = {x � [min_int⌅ max_int]}
X2 = {x � �[1⌅ 1] ⌅ L X3(x) = ⇤ ? ⇤ : let [�⌅ ⇥] = X3(x) in

[min(� + 1⌅ max_int)⌅ min(⇥ + 1⌅ max_int)] M⇥ ⇧ [1⌅ 100]}
X3 = X2 ⇧̇ {x � [min_int⌅ 100]}
X4 = X2 ⇧̇ {x � [101⌅ max_int]}

since execution stops if and when a value outside [1⌅ 100] is going to be
assigned to x.

This declaration is encoded in OC� � as follows 14.
13This interpretation of the interval declaration is that of the P��⇥�� programming language,

see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
14Notice that the restriction of the mathematical invariance equations to machine integers as

well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

24 P. C�⌅⇥�⇤

(* declaration .ml *)
open Interval
open Invariant
let d =

(INT (min_int , max_int),
INT (1 ,100) ,
INT (min_int , max_int),
INT (min_int , max_int));;

The verification of absence of errors checks that at any point during an
execution without error up to some point in the computation will not have an
error at the next execution step.
(* verifier .ml , interval invariant abstract domain *)
let pwarning (b1 , b2 , b3 , b4) =

let m = " Potential error at line " in
if not b1 then print_string (m ^"1\ n ");
if not b2 then print_string (m ^"2\ n ");
if not b3 then print_string (m ^"3\ n ");
if not b4 then print_string (m ^"4\ n ");;

let pverify leq f a =
let b = leq (f a) a in

pwarning b;

The abstract interpreter performs the iterative abstract reachability fixpoint
overapproximation with widening/narrowing and intersection with the decla-
ration, then prints the least fixpoint result, and finally checks for errors.
(* reachability verification with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
open Declaration
open Verifier
let verifier () =

let fw x = (pmeet (pwiden x (f x)) d) in
let w = (lfp pless pbot fw) in

let fn x = pnarrow x (f x) in
let a = (lfp pgreater w fn) in

pprint a; pverify cless f a;;
verifier ();;

The result of the analysis is now the following.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Encoding the Verification Phase

142

24 P. C⌅⌥⇧⌅⌃

since execution stops if and when a value outside [1� 100] is going to be
assigned to x.

This declaration is encoded in OC�⇤⇥ as follows 14.
(* declaration .ml *)
open Interval
open Invariant
let d =

(INT (min_int , max_int),
INT (1 ,100) ,
INT (min_int , max_int),
INT (min_int , max_int));;

The verification of absence of errors checks that at any point during an
execution without error up to some point in the computation will not have an
error at the next execution step.
(* verifier .ml , interval invariant abstract domain *)
let pwarning (b1 , b2 , b3 , b4) =

let m = " Potential error at line " in
if not b1 then print_string (m ^"1\ n ");
if not b2 then print_string (m ^"2\ n ");
if not b3 then print_string (m ^"3\ n ");
if not b4 then print_string (m ^"4\ n ");;

let pverify leq f a d =
let b = leq (f a) d in

pwarning b;

The abstract interpreter performs the iterative abstract reachability fixpoint
overapproximation with widening/narrowing and intersection with the decla-
ration, then prints the least fixpoint result, and finally checks for errors.
(* reachability verification with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
open Declaration
open Verifier
let verifier () =

let fw x = (pmeet (pwiden x (f x)) d) in

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Encoding the Verifier

143

24 P. C⌅⌥⇧⌅⌃

since execution stops if and when a value outside [1� 100] is going to be
assigned to x.

This declaration is encoded in OC�⇤⇥ as follows 14.
(* declaration .ml *)
open Interval
open Invariant
let d =

(INT (min_int , max_int),
INT (1 ,100) ,
INT (min_int , max_int),
INT (min_int , max_int));;

The verification of absence of errors checks that at any point during an
execution without error up to some point in the computation will not have an
error at the next execution step.
(* verifier .ml , interval invariant abstract domain *)
let pwarning (b1 , b2 , b3 , b4) =

let m = " Potential error at line " in
if not b1 then print_string (m ^"1\ n ");
if not b2 then print_string (m ^"2\ n ");
if not b3 then print_string (m ^"3\ n ");
if not b4 then print_string (m ^"4\ n ");;

let pverify leq f a d =
let b = leq (f a) d in

pwarning b;

The abstract interpreter performs the iterative abstract reachability fixpoint
overapproximation with widening/narrowing and intersection with the decla-
ration, then prints the least fixpoint result, and finally checks for errors.
(* reachability verification with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
open Declaration
open Verifier
let verifier () =

let fw x = (pmeet (pwiden x (f x)) d) in

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 25

let w = (lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

let a = (lfp pgreater w fn) in
pprint a; pverify cless f a d;;

verifier ();;

The result of the analysis is now the following.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Result of the Analysis

144

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 25

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant

•

•

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Details of the Analysis

145

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 25

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Correcting the Declaration

146

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 25

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant

26 P. C�⌅⇥�⇤

let d =
(INT (min_int , max_int),

INT (1 ,101) ,
INT (min_int , max_int),
INT (min_int , max_int));;

3.10 Exercices
Exercice 3-1
Write the machine invariant equations (3.2) as a restriction of the mathemat-
ical invariant equations (3.1) to machine integers in the declarative style of
section 3.9.

Exercice 3-2
Add an appropriate interval declaration for x in the following program

P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 4); od4.

and verify its correctness by interval abstract interpretation.

3.11 Answers to Exercices
Answer to exercice 3-1
Let X = �(X) be the mathematical invariant equations (3.1). Define D = ⇤D1⌥
D2⌥ D3⌥ D4⌅ be the declaration such that D⇤ = [min_int⌥ max_int], ⇤ = 1⌥ ⌃ ⌃ ⌃ ⌥ 4
with [⌅⌥ ⇥] � {⇧ ⇥ N | ⌅ ⇥ ⇧ ⇥ ⇥}. Then the machine invariant equations (3.2)
are X = �(X) ⇧̇ D where ⇧̇ is the pointwise meet X ⇧̇ Y � ⇤X1 ⇧ Y1⌥ X2 ⇧ Y2⌥
X3 ⇧Y3⌥ X4 ⇧Y4⌅, which is the in the declarative style of section 3.9. Of course,
when implementing this transformer, the machine computation of � must avoid
overflows in the analyser.

Answer to exercice 3-2
The program

P � � var x : 1⌃⌃105 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 4); od4.

has the following abstract interval equations

26 P. C�⌅⇥�⇤

tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant
let d =

(INT (min_int , max_int),
INT (1 ,101) ,
INT (min_int , max_int),
INT (min_int , max_int));;

yields no error, the verification is completed.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declarationCorrect .ml \
? verifier .ml reachability_narrowing_declaration_correct .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.11 Conclusion
In this chapter 3 we introduced static analysis and verification methods based
on the idea of abstraction by the sole mean of examples. The mathematical
soundness of the approach was taken for granted, in particular the correctness
of the invariance and interval equations and the existence of a least solu-
tion was postulated. In the following chapters we provide the mathematical
foundations justifying the correctness of these examples and study in detail
the notion of abstraction and its application to the semantics, proof, automatic
analysis and verification of computer programs.

3.12 Bibliography
The static interval analysis with widening/narrowing was introduced by (Cousot
and Cousot, 1976) 15

15Interval static analysis uses intervals to overapproximate all possible computations of a
program without ever executing so that all possible execution paths are taken into account.
It should not be confused with Moore interval analysis or interval mathematics originating

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

When to do the verification?

147

C⌃. ⌘ — I �↵⌦⇤�⇥�⌥⌦ �⌦ ����⌥⇥ � ��⇣�⌥� � ⇤ ✏⌅↵⌥⇧⌥⇥��⌥⌦ 25

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:(-1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

A Touch of Abstract
Interpretation Theory

148

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris,
France, pages 106—130, April 13-15 1976, Dunod, Paris.

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Abstract Interpreters

• Transitional abstract interpreters: proceed by
induction on program steps

• Structural abstract interpreters: proceed by induction
on the program syntax

• Common main problem: over/under-approximate
fixpoints in non-Noetherian(*) abstract domains (**)

149

(*) Iterative fixpoint computations may not converge in finitely many steps
(**) Or convergence may be guaranteed but to slow.

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Fixpoint Iteration
Convergence Acceleration

by Extrapolation and
Interpolation

150

Patrick Cousot: Abstracting Induction by Extrapolation and Interpolation. VMCAI 2015: 19-42

Patrick Cousot, Radhia Cousot: 
Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: 
Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP 1992: 269-295

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Fixpoints

• Poset (or pre-order) <D, ⊑, ⊥, ⊔>

• Transformer: F ∈ D ⟼ D

• Least fixpoint: lfp⊑ F = ⨆n∈ℕ Fn(⊥) (under appropriate
hypotheses)

151

X ⊑ F(X) F(X) ⊑ X

F(X) = X

F ⊤
⊥

F1(⊥)

X ⊑⊒ F(X)̸ ̸

F F lfp⊑ F= ⨆n∈ℕFn(⊥)F0(⊥) F2(⊥)

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence acceleration with widening

152

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the derivative

as in Newton-Raphson method(*))

F

l fp F

(*) Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33
(2010)

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Convergence acceleration with widening

153

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the derivative

as in Newton-Raphson method(*))

F

l fp F

F

l fp F x

F!x)!x

(*) Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33
(2010)

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Extrapolation by Widening

• X0 = ⊥ (increasing iterates with
widening)

Xn+1 = Xn ∇ F(Xn) when F(Xn) ⊑ Xn

Xn+1 = Xn when F(Xn) ⊑ Xn

• Widening ∇:

• Y ⊑ X ∇ Y (extrapolation)

• Enforces convergence of increasing iterates with
widening (to a limit Xℓ)

154

/

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

The oldest widenings

• Primitive widening [1,2]

• Widening with thresholds [3]

155

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.[3]

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Extrapolation with widening

156

X ⊑ F(X) F(X) ⊑ X

F(X) = X

F

F
F

F ⊤
⊥

∇

∇ ∇

X0

X1 Xℓ-1

X ⊑⊒ F(X)̸ ̸

Xℓ

Yλ

F F lfp⊑ F

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interpolation with narrowing

• Y0 = Xℓ (decreasing iterates with
narrowing)

Yn+1 = Yn ∆ F(Yn) when F(Yn) ⊏ Yn

Yn+1 = Yn when F(Yn) = Yn

• Narrowing ∆:

• Y ⊑ X ⟹ Y ⊑ X ∆ Y ⊑ X (interpolation)

• Enforces convergence of decreasing iterates with
narrowing (to a limit Yλ)

157 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

The oldest narrowing

• [2]

158

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interpolation with narrowing

159

X ⊑ F(X) F(X) ⊑ X

F(X) = X
F

F
F

F ⊤
⊥

∇

∇ ∇

X0

X1 Xℓ-1

X ⊑⊒ F(X)̸ ̸

F

Y0=Xℓ
Y1

Yλ

∆

∆

F F
lfp⊑ F

Could stop when F(X) ⊑ X ∧ F(F(X)) ⊑ F(X) but not the current practice./
TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Duality

•

• Extrapolators:

• Interpolators:

160

or under-approximate the limit of increasing or decreasing �xpoint iterations, so that
the various possibilities of using the convergence acceleration operators of Table � are
illustrated in Fig. �. In [�], the approximation properties of extrapolation operators

Convergence above the limit Convergence below the limit

Increasing iteration Widening
`

Dual-narrowing Ha
Decreasing iteration Narrowing

a
Dual widening H̀

Table �. Extrapolators (
`

, H̀) and interpolators (
a

, Ha)

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of
known properties. The term interpolation is used for narrowing and its dual
since we want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

�

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion

�
F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of known
properties. The term interpolation is used for narrowing and its dual since we
want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2.� � � X � F (X) F (X) � X X ���� F (X) co-in-
duction

�

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

induct-
ion

�
F � F � F �� F �� The term extrapolation is used for

widening and its dual since we want to find properties outside the range of known
properties. The term interpolation is used for narrowing and its dual since we
want to find properties within the range of known properties.

applying the function as in Def. 2, its derivative is used to accelerate conver-
gence and ultimately reach a post-fixpoint which over-approximates the least
fixpoint [36]. A similar widening is implicitly used in [18].

The extrapolation operators used in abstract interpretation are the widening
[6], the narrowing [7] and their duals [11]. In [5], the approximation proper-
ties of extrapolation operators are considered separately from their convergence
properties. Their approximation properties are useful to approximate missing or
costly lattice operations. Independently, their convergence properties are useful
to ensure termination of iterations for fixpoint approximation. The objective is
to over-approximate or under-approximate the limit of increasing or decreasing
fixpoint iterations, so that the various possibilities are as follows

Convergence above the limit Convergence below the limit

Increasing iteration Widening � Dual narrowing ��

Decreasing iteration Narrowing � Dual widening ��

as illustrated in Fig. 2. � � � X = F (X) X � F (X) F (X) � X

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

[Semi-]dual abstract induction methods

101

(separate from termination conditions)

F(X) � X
X � F(X)

� �FF

�
� FF

X = F(X)

� ��

X �� F(X)��

co-in-
duction

induct-
tion

}
}

~ ~

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Examples of widening/narrowing

• Abstract induction for intervals:

• a widening [1,2]

• a narrowing [2]

102

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

On widening/narrowing/and their duals

• Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

• Any terminating widening is not increasing (in its 1st
parameter)

• Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

103
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Infinitary static analysis
with abstract induction

104

Fig. 2. Fixpoint iteration approximation put arrows

X ���� F (X) co-in-
duction

�
induct-

ion

�
F � F � F �� F �� The term

extrapolation is used for widening and its dual since we want to find properties
outside the range of known properties. The term interpolation is used for nar-
rowing and its dual since we want to find properties within the range of known
properties.

Fig. �. Fixpoint iteration approximation

are considered separately from their convergence properties. For example, their ap-
proximation properties are useful to approximate missing or costly la�ice join/meet
operations. Independently, their convergence properties are useful to ensure termina-
tion of iterations for �xpoint approximation.

�.� Terminating (dual) widenings are not monotone

An iteration sequence with widening in a poset hD, vi has the form X

0 , D, where
D 2 D is some initial approximation, and X

k+1 , X

k `
F (X k), k 2 N where F can be

assumed to be extensive on the iterates3. It follows that the iterates hX k
, k 2 Ni form

a v-increasing chain.
�e widening

`
2 D⇥ D 7! D should have the following properties.

(
`

.a) 8X ,Y 2 D : Y v X

`
Y .

Requiring the widening to be extensive in its second parameter, ensures that F (X k) v
X

k+1, which guarantees convergence to an over-approximation of the limit lim
k!+1

F

k (D)
of the exact iterates F 0(X) = X and F

n+1(X) = F (Fn(X)).

3 i.e. 8k 2 N : X

k v F (Xk). �is is also the case when D v F (D) and F is increasing i.e.
8X ,Y 2 D : (X v Y) =) F (X) v F (Y). It is also possible to use �X

.
X t F (X) when the

join t exists in the abstract domain D or �X

.
X

`
F (X) otherwise.

~

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Extrapolators, Interpolators, and Duals

161 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interpolation with dual narrowing

162

• Z0 = ⊥ (increasing iterates with dual-narrowing)

Zn+1 = F(Zn) ∆ Yλ when F(Zn) ⊑ Zn

Zn+1 = Zn when F(Zn) ⊑ Zn

• Dual-narrowing ∆:

• X ⊑ Y ⟹ X ⊑ X ∆ Y ⊑ Y (interpolation)

• Enforces convergence of increasing iterates with
dual-narrowing

/

~

~

~

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example of dual-narrowing

•

•

• The first method we tried in the late 70’s with Radhia

• Slow

• Does not easily generalize (e.g. to polyhedra)

163

Let the abstract domain hD, vi be a poset, the concretization � 2 D 7! D be in-
creasing, the abstract transformer be F 2 D 7! D,

a
2 D⇥ D 7! D be a narrowing

satisfying Hyp. �� (a) (or Hyp. �� (a0)) and
a
2 }(D) 7! D satis�es Hyp. �� (b) for

X = {X � | � 2 O}, where the abstract iterates are the trans�nite sequence hX � 2 D,

� 2 Oi such that D ✓ � (X 0), X �+1 , X

� a
F (X �), X � ,

a
�<�

X

�
for limit ordinals �, do

satisfy the semi-commutation condition 8� 2 O : F � � (X �) ✓ �

�
F (X �).

If the abstract transformer F 2 D 7! D is reductive on the abstract iterates hX �
,

� 2 Oi (i.e. 8� 2 O : F (X �) v X

�) then their concretization h� (X �), � 2 Oi is decreasing
and ultimately stationary with limit � (X �) such that 8� 2 O : gfp✓

D
F = X

� ✓ � (X �) ✓
� (X �). ut
Lemma ��. �e more traditional hypothesis that (P v Q) =) (P v P

a
Q v Q),

8i 2 � : (P v Qi) =) (P v
a

j 2�
Q j v Qi), F (X

0) v X

0
, and F is increasing imply that

F is reductive on the iterates. ut
�. Over-approximating bounded increasing abstract iterates by

interpolation with dual-narrowing
Because the over-approximation of decreasing abstract iterates by narrowing inter-
polation in Sect. �. yields an abstract �xpoint, it is no longer possible to improve this
abstract �xpoint by successive application of the abstract transformer F . However,
because this is an upper-bound of the concrete least �xpoint, it can be improve by
computing increasing abstract iterates with dual-narrowing interpolation.
�.� Dual-narrowing
�e dual-narrowing Ha satisfy the order dual of Hyp. �� hence the dual of �. �� re-
formulating [�, Ch. �, �. �.�.�.�.��].

Example �� (Interval dual-narrowing). If [a,b] ✓ [c,d] then c 6 a 6 b 6 d so we can
de�ne [a,b] Ha [c,d] , [(c = �1 ? a : b(a + c)/2c), (d = 1 ? b : d(b + d)/2e)] where
bxc is the largest integer not greater than real x and dxe is the smallest integer not less
than real x since c 6 b(a + c)/2c 6 a 6 b 6 d(b + d)/2e 6 d and therefore [a,b] ✓ ([a,
b] Ha [c,d]) ✓ [c,d]. ut
Example �� (Craig interpolation). Craig’s interpolation theorem [��] implies that for
all �rst-order formulae � and� such that ¬(� ^�) there exist a �rst-order formula �,
called an interpolant, such that� =) �, ¬(�^�), and VarsJ�K ✓ (VarsJ�K\VarsJ� K).
Le�ing � 0 , ¬� this means that if � =) �

0 then there exists an interpolant � such
that � =) � =) �

0. So a dual-narrowing can be de�ned as � Ha
� , � on the

poset of �rst-order formulæ partially ordered by implication =) . �e interpolant
is in general not unique, may contain exponentially more logical connectives than
�, and successive interpolations may not terminate. So arbitrary choices have to be
done, for example, to compute quanti�er-free interpolants with a minimal number of
components and symbols [��].

ut

Let the abstract domain hD, vi be a poset, the concretization � 2 D 7! D be in-
creasing, the abstract transformer be F 2 D 7! D,

a
2 D⇥ D 7! D be a narrowing

satisfying Hyp. �� (a) (or Hyp. �� (a0)) and
a
2 }(D) 7! D satis�es Hyp. �� (b) for

X = {X � | � 2 O}, where the abstract iterates are the trans�nite sequence hX � 2 D,

� 2 Oi such that D ✓ � (X 0), X �+1 , X

� a
F (X �), X � ,

a
�<�

X

�
for limit ordinals �, do

satisfy the semi-commutation condition 8� 2 O : F � � (X �) ✓ �

�
F (X �).

If the abstract transformer F 2 D 7! D is reductive on the abstract iterates hX �
,

� 2 Oi (i.e. 8� 2 O : F (X �) v X

�) then their concretization h� (X �), � 2 Oi is decreasing
and ultimately stationary with limit � (X �) such that 8� 2 O : gfp✓

D
F = X

� ✓ � (X �) ✓
� (X �). ut
Lemma ��. �e more traditional hypothesis that (P v Q) =) (P v P

a
Q v Q),

8i 2 � : (P v Qi) =) (P v
a

j 2�
Q j v Qi), F (X

0) v X

0
, and F is increasing imply that

F is reductive on the iterates. ut
�. Over-approximating bounded increasing abstract iterates by

interpolation with dual-narrowing
Because the over-approximation of decreasing abstract iterates by narrowing inter-
polation in Sect. �. yields an abstract �xpoint, it is no longer possible to improve this
abstract �xpoint by successive application of the abstract transformer F . However,
because this is an upper-bound of the concrete least �xpoint, it can be improve by
computing increasing abstract iterates with dual-narrowing interpolation.
�.� Dual-narrowing
�e dual-narrowing Ha satisfy the order dual of Hyp. �� hence the dual of �. �� re-
formulating [�, Ch. �, �. �.�.�.�.��].

Example �� (Interval dual-narrowing). If [a,b] ✓ [c,d] then c 6 a 6 b 6 d so we can
de�ne [a,b] Ha [c,d] , [(c = �1 ? a : b(a + c)/2c), (d = 1 ? b : d(b + d)/2e)] where
bxc is the largest integer not greater than real x and dxe is the smallest integer not less
than real x since c 6 b(a + c)/2c 6 a 6 b 6 d(b + d)/2e 6 d and therefore [a,b] ✓ ([a,
b] Ha [c,d]) ✓ [c,d]. ut
Example �� (Craig interpolation). Craig’s interpolation theorem [��] implies that for
all �rst-order formulae � and� such that ¬(� ^�) there exist a �rst-order formula �,
called an interpolant, such that� =) �, ¬(�^�), and VarsJ�K ✓ (VarsJ�K\VarsJ� K).
Le�ing � 0 , ¬� this means that if � =) �

0 then there exists an interpolant � such
that � =) � =) �

0. So a dual-narrowing can be de�ned as � Ha
� , � on the

poset of �rst-order formulæ partially ordered by implication =) . �e interpolant
is in general not unique, may contain exponentially more logical connectives than
�, and successive interpolations may not terminate. So arbitrary choices have to be
done, for example, to compute quanti�er-free interpolants with a minimal number of
components and symbols [��].

ut

Let the abstract domain hD, vi be a poset, the concretization � 2 D 7! D be in-
creasing, the abstract transformer be F 2 D 7! D,

a
2 D⇥ D 7! D be a narrowing

satisfying Hyp. �� (a) (or Hyp. �� (a0)) and
a
2 }(D) 7! D satis�es Hyp. �� (b) for

X = {X � | � 2 O}, where the abstract iterates are the trans�nite sequence hX � 2 D,

� 2 Oi such that D ✓ � (X 0), X �+1 , X

� a
F (X �), X � ,

a
�<�

X

�
for limit ordinals �, do

satisfy the semi-commutation condition 8� 2 O : F � � (X �) ✓ �

�
F (X �).

If the abstract transformer F 2 D 7! D is reductive on the abstract iterates hX �
,

� 2 Oi (i.e. 8� 2 O : F (X �) v X

�) then their concretization h� (X �), � 2 Oi is decreasing
and ultimately stationary with limit � (X �) such that 8� 2 O : gfp✓

D
F = X

� ✓ � (X �) ✓
� (X �). ut
Lemma ��. �e more traditional hypothesis that (P v Q) =) (P v P

a
Q v Q),

8i 2 � : (P v Qi) =) (P v
a

j 2�
Q j v Qi), F (X

0) v X

0
, and F is increasing imply that

F is reductive on the iterates. ut
�. Over-approximating bounded increasing abstract iterates by

interpolation with dual-narrowing
Because the over-approximation of decreasing abstract iterates by narrowing inter-
polation in Sect. �. yields an abstract �xpoint, it is no longer possible to improve this
abstract �xpoint by successive application of the abstract transformer F . However,
because this is an upper-bound of the concrete least �xpoint, it can be improve by
computing increasing abstract iterates with dual-narrowing interpolation.
�.� Dual-narrowing
�e dual-narrowing Ha satisfy the order dual of Hyp. �� hence the dual of �. �� re-
formulating [�, Ch. �, �. �.�.�.�.��].

Example �� (Interval dual-narrowing). If [a,b] ✓ [c,d] then c 6 a 6 b 6 d so we can
de�ne [a,b] Ha [c,d] , [(c = �1 ? a : b(a + c)/2c), (d = 1 ? b : d(b + d)/2e)] where
bxc is the largest integer not greater than real x and dxe is the smallest integer not less
than real x since c 6 b(a + c)/2c 6 a 6 b 6 d(b + d)/2e 6 d and therefore [a,b] ✓ ([a,
b] Ha [c,d]) ✓ [c,d]. ut
Example �� (Craig interpolation). Craig’s interpolation theorem [��] implies that for
all �rst-order formulae � and� such that ¬(� ^�) there exist a �rst-order formula �,
called an interpolant, such that� =) �, ¬(�^�), and VarsJ�K ✓ (VarsJ�K\VarsJ� K).
Le�ing � 0 , ¬� this means that if � =) �

0 then there exists an interpolant � such
that � =) � =) �

0. So a dual-narrowing can be de�ned as � Ha
� , � on the

poset of �rst-order formulæ partially ordered by implication =) . �e interpolant
is in general not unique, may contain exponentially more logical connectives than
�, and successive interpolations may not terminate. So arbitrary choices have to be
done, for example, to compute quanti�er-free interpolants with a minimal number of
components and symbols [��].

ut

��

�.� Decreasing iteration with narrowing
We have the following reformulation of [�, Ch. �, �. �.�.�.�.��].

�eorem �� (Over-approximation of decreasing iterates with narrowing). By the
dual of Def. �, let hX � , � 2 Oi be the greatest lower bound iterates of the increasing
transformer F 2 D 7! D on a concrete poset hD, ✓i from D 2 D such that F (D) ✓ D.
By the dual of Lem. � (b), hX � , � 2 Oi is therefore decreasing and ultimately stationary
at X � = gfp✓

D
F .

Let the abstract domain hD, vi be a poset, the concretization � 2 D 7! D be in-
creasing, the abstract transformer be F 2 D 7! D,

a
2 D⇥ D 7! D be a narrowing

satisfying Hyp. �� (a) (or Hyp. �� (a0)) and
a
2 }(D) 7! D satis�es Hyp. �� (b) for

X = {X � | � < � ^ � 2 O is a limit ordinal}, where the abstract iterates are the trans�-
nite sequence hX � 2 D, � 2 Oi such that D ✓ � (X 0),X �+1 , X

� a
F (X �),X � ,

a
�<�

X

�

for limit ordinals �, do satisfy the semi-commutation condition 8� 2 O : F � � (X �) ✓
�

�
F (X �).
If the abstract transformer F 2 D 7! D is reductive on the abstract iterates hX �

,

� 2 Oi (i.e. 8� 2 O : F (X �) v X

�) then their concretization h� (X �), � 2 Oi is decreasing
and ultimately stationary with limit � (X �) such that 8� 2 O : gfp✓

D
F = X

� ✓ � (X �) ✓
� (X �). ut

Lemma ��. �e more traditional hypothesis that (P v Q) =) (P v P

a
Q v Q),

8i 2 � : (P v Qi) =) (P v
a

j 2�
Q j v Qi), F (X

0) v X

0
, and F is increasing imply that

F is reductive on the iterates. ut

�. Over-approximating bounded increasing abstract iterates by
interpolation with dual-narrowing

When the upper bound � (Xn) of the concrete least �xpoint can no longer be improved
in the decreasing abstract iterates with narrowing interpolation of Sect. �., i.e. F (Xn) ✓
X

n+1
= X

n a
F (Xn) = X

n , the upper bound X

n can still be further improved by
computing increasing abstract iterates with dual-narrowing interpolation bounded by
X

n .

�.� Dual-narrowing

�e dual-narrowing Ha satisfy the order dual of Hyp. �� hence the dual of �. �� refor-
mulating [�, Ch. �, �. �.�.�.�.��].

Example �� (Interval dual-narrowing). If [a,b] ✓ [c,d] then c 6 a 6 b 6 d so we can
de�ne [a,b] Ha [c,d] , [(c = �1 ? a : b(a + c)/2c),(d = 1 ? b : d(b + d)/2e)] where
bxc is the largest integer not greater than real x and dxe is the smallest integer not less
than real x since c 6 b(a + c)/2c 6 a 6 b 6 d(b + d)/2e 6 d and therefore [a,b] ✓ ([a,
b] Ha [c,d]) ✓ [c,d]. ut

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Interpolation with dual-narrowing

164

X ⊑ F(X)
F(X) ⊑ X

F(X) = X
F

F
F

F ⊤
⊥

∇

∇ ∇

X0

X1 Xℓ-1

X ⊑⊒ F(X)̸ ̸

F

Y0=Xℓ
Y1

Yλ

∆

∆

F F lfp⊑ F

F
F

∆~
∆~

F

Zμ

F

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Relationship between narrowing and dual-

• ∆ = ∆-1

• Y ⊑ X ⟹ Y ⊑ X ∆ Y ⊑ X
(narrowing)

• Y ⊑ X ⟹ Y ⊑ Y ∆ X ⊑ X (dual-
narrowing)

• Example: Craig interpolation

• Why not use a bounded widening (bounded by B)?

• F(X) ⊑ B ⟹ F(X) ⊑ F(X) ∆ B ⊑ B (dual-
narrowing)

165

~

~

~

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Example of widenings (cont’d)

• Bounded widening (in [ℓ, h]):

[a,b] ∇[ℓ,h] [c,d] ≜ [c+a-2ℓ, b+d+2h]

166

Let the abstract domain hD, vi be a poset, the concretization � 2 D 7! D be in-
creasing, the abstract transformer be F 2 D 7! D,

a
2 D⇥ D 7! D be a narrowing

satisfying Hyp. �� (a) (or Hyp. �� (a0)) and
a
2 }(D) 7! D satis�es Hyp. �� (b) for

X = {X � | � 2 O}, where the abstract iterates are the trans�nite sequence hX � 2 D,

� 2 Oi such that D ✓ � (X 0), X �+1 , X

� a
F (X �), X � ,

a
�<�

X

�
for limit ordinals �, do

satisfy the semi-commutation condition 8� 2 O : F � � (X �) ✓ �

�
F (X �).

If the abstract transformer F 2 D 7! D is reductive on the abstract iterates hX �
,

� 2 Oi (i.e. 8� 2 O : F (X �) v X

�) then their concretization h� (X �), � 2 Oi is decreasing
and ultimately stationary with limit � (X �) such that 8� 2 O : gfp✓

D
F = X

� ✓ � (X �) ✓
� (X �). ut
Lemma ��. �e more traditional hypothesis that (P v Q) =) (P v P

a
Q v Q),

8i 2 � : (P v Qi) =) (P v
a

j 2�
Q j v Qi), F (X

0) v X

0
, and F is increasing imply that

F is reductive on the iterates. ut
�. Over-approximating bounded increasing abstract iterates by

interpolation with dual-narrowing
Because the over-approximation of decreasing abstract iterates by narrowing inter-
polation in Sect. �. yields an abstract �xpoint, it is no longer possible to improve this
abstract �xpoint by successive application of the abstract transformer F . However,
because this is an upper-bound of the concrete least �xpoint, it can be improve by
computing increasing abstract iterates with dual-narrowing interpolation.
�.� Dual-narrowing
�e dual-narrowing Ha satisfy the order dual of Hyp. �� hence the dual of �. �� re-
formulating [�, Ch. �, �. �.�.�.�.��].

Example �� (Interval dual-narrowing). If [a,b] ✓ [c,d] then c 6 a 6 b 6 d so we can
de�ne [a,b] Ha [c,d] , [(c = �1 ? a : b(a + c)/2c), (d = 1 ? b : d(b + d)/2e)] where
bxc is the largest integer not greater than real x and dxe is the smallest integer not less
than real x since c 6 b(a + c)/2c 6 a 6 b 6 d(b + d)/2e 6 d and therefore [a,b] ✓ ([a,
b] Ha [c,d]) ✓ [c,d]. ut
Example �� (Craig interpolation). Craig’s interpolation theorem [��] implies that for
all �rst-order formulae � and� such that ¬(� ^�) there exist a �rst-order formula �,
called an interpolant, such that� =) �, ¬(�^�), and VarsJ�K ✓ (VarsJ�K\VarsJ� K).
Le�ing � 0 , ¬� this means that if � =) �

0 then there exists an interpolant � such
that � =) � =) �

0. So a dual-narrowing can be de�ned as � Ha
� , � on the

poset of �rst-order formulæ partially ordered by implication =) . �e interpolant
is in general not unique, may contain exponentially more logical connectives than
�, and successive interpolations may not terminate. So arbitrary choices have to be
done, for example, to compute quanti�er-free interpolants with a minimal number of
components and symbols [��].

ut

Let the abstract domain hD, vi be a poset, the concretization � 2 D 7! D be in-
creasing, the abstract transformer be F 2 D 7! D,

a
2 D⇥ D 7! D be a narrowing

satisfying Hyp. �� (a) (or Hyp. �� (a0)) and
a
2 }(D) 7! D satis�es Hyp. �� (b) for

X = {X � | � 2 O}, where the abstract iterates are the trans�nite sequence hX � 2 D,

� 2 Oi such that D ✓ � (X 0), X �+1 , X

� a
F (X �), X � ,

a
�<�

X

�
for limit ordinals �, do

satisfy the semi-commutation condition 8� 2 O : F � � (X �) ✓ �

�
F (X �).

If the abstract transformer F 2 D 7! D is reductive on the abstract iterates hX �
,

� 2 Oi (i.e. 8� 2 O : F (X �) v X

�) then their concretization h� (X �), � 2 Oi is decreasing
and ultimately stationary with limit � (X �) such that 8� 2 O : gfp✓

D
F = X

� ✓ � (X �) ✓
� (X �). ut
Lemma ��. �e more traditional hypothesis that (P v Q) =) (P v P

a
Q v Q),

8i 2 � : (P v Qi) =) (P v
a

j 2�
Q j v Qi), F (X

0) v X

0
, and F is increasing imply that

F is reductive on the iterates. ut
�. Over-approximating bounded increasing abstract iterates by

interpolation with dual-narrowing
Because the over-approximation of decreasing abstract iterates by narrowing inter-
polation in Sect. �. yields an abstract �xpoint, it is no longer possible to improve this
abstract �xpoint by successive application of the abstract transformer F . However,
because this is an upper-bound of the concrete least �xpoint, it can be improve by
computing increasing abstract iterates with dual-narrowing interpolation.
�.� Dual-narrowing
�e dual-narrowing Ha satisfy the order dual of Hyp. �� hence the dual of �. �� re-
formulating [�, Ch. �, �. �.�.�.�.��].

Example �� (Interval dual-narrowing). If [a,b] ✓ [c,d] then c 6 a 6 b 6 d so we can
de�ne [a,b] Ha [c,d] , [(c = �1 ? a : b(a + c)/2c), (d = 1 ? b : d(b + d)/2e)] where
bxc is the largest integer not greater than real x and dxe is the smallest integer not less
than real x since c 6 b(a + c)/2c 6 a 6 b 6 d(b + d)/2e 6 d and therefore [a,b] ✓ ([a,
b] Ha [c,d]) ✓ [c,d]. ut
Example �� (Craig interpolation). Craig’s interpolation theorem [��] implies that for
all �rst-order formulae � and� such that ¬(� ^�) there exist a �rst-order formula �,
called an interpolant, such that� =) �, ¬(�^�), and VarsJ�K ✓ (VarsJ�K\VarsJ� K).
Le�ing � 0 , ¬� this means that if � =) �

0 then there exists an interpolant � such
that � =) � =) �

0. So a dual-narrowing can be de�ned as � Ha
� , � on the

poset of �rst-order formulæ partially ordered by implication =) . �e interpolant
is in general not unique, may contain exponentially more logical connectives than
�, and successive interpolations may not terminate. So arbitrary choices have to be
done, for example, to compute quanti�er-free interpolants with a minimal number of
components and symbols [��].

ut

ℓ h

2 2

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Widenings

167 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Widenings are not increasing

• A well-known fact
[1,1] ⊆ [1,2] but [1,1]∇[1,2]=[1,∞] ⊆ [1,2]∇[1,2]=[1,2]

• A widening cannot both:

• Be increasing in its first parameter

• Enforce termination of the iterates

• Avoid useless over-approximations as soon as a
solution is found(*)

168

(*) A counter-example is x ∇ y = ⊤

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Soundness

169 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Soundness (cont’d)

• The fixpoint approximation soundness theorems cab
expressed with minimalist hypotheses [1]:

• No need for complete lattices, complete partial
orders (CPO’s):

• The concrete domain is a poset

• The abstract domain is a pre-order

• The concretization is defined for the abstract
iterates only.

170

[1] Patrick Cousot: Abstracting Induction by Extrapolation and Interpolation. VMCAI 2015: 19-42

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Soundness (cont’d)
• No need for increasingness/monotony hypotheses for

fixpoint theorems (Tarski, Kleene, etc)

• The concrete transformer is increasing and the limit
of the iterations does exist in the concrete domain

• No hypotheses on the abstract transformer (no
need for fixpoints in the abstract)

• Soundness hypotheses on the extrapolators/
interpolators with respect to the concrete

• In addition, termination hypotheses on the
extrapolators/interpolators ensure convergence in
finitely many steps

171 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Soundness (cont’d)
• No need for increasingness/monotony hypotheses for

fixpoint theorems (Tarski, Kleene, etc)

• The concrete transformer is increasing and the limit
of the iterations does exist in the concrete domain

• No hypotheses on the abstract transformer (no
need for fixpoints in the abstract)

• Soundness hypotheses on the extrapolators/
interpolators with respect to the concrete

• In addition, termination hypotheses on the
extrapolators/interpolators ensure convergence in
finitely many steps

172

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Examples of interpolators

173 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Craig interpolation

• Craig interpolation:

Given P ⟹ Q find I such that P ⟹ I ⟹ Q with
var(I) ⊆ var(P) ∩ var(Q)

is a dual narrowing (already observed by Vijay D’Silva
and Leopold Haller as an inversed narrowing)

• This evidence looked very controversial to some
reviewers

• The generalization of an idea does not diminish in any
way the merits and originality of this idea

174

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Craig interpolation

• Craig interpolation:

Given P ⟹ Q find I such that P ⟹ I ⟹ Q with
var(I) ⊆ var(P) ∩ var(Q)

is a dual narrowing (already observed by Vijay D’Silva
and Leopold Haller as an inversed narrowing)

• This evidence looked very controversial to some
reviewers

• The generalization of an idea does not diminish in any
way the merits and originality of this idea

175 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Craig interpolation

• Craig interpolation:

Given P ⟹ Q find I such that P ⟹ I ⟹ Q with
var(I) ⊆ var(P) ∩ var(Q)

is a dual narrowing

176

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Conclusion

177 TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Conclusion & references

178

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Conclusion

• The presentation relied purely on intuition, can be
made formal (see references)

• The abstraction ideas can scale up with enough
precision, e.g.

• ASTRÉE:

• http://www.astree.ens.fr/

• http://www.absint.de/astree/

• CCCheck: code contract Static checker

• MSR, Redmond (try online), public domain: https://
github.com/Microsoft/CodeContracts

179]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Bibliography

180

An online course : http://web.mit.edu/afs/athena.mit.edu/
course/16/16.399/www/

An online introduction (in French) : http://www.di.ens.fr/
~cousot/COUSOTtalks/CollegeDeFrance08.shtml

Patrick Cousot, Radhia Cousot:  
A gentle introduction to formal verification of computer systems by abstract interpretation.
Logics and Languages for Reliability and Security 2010: 1-29

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Introductions
• http://www.di.ens.fr/~cousot/COUSOTpapers/

MARKTOBERDORF-09.shtml

• http://www.di.ens.fr/~cousot/COUSOTpapers/
WCC04.shtml

• http://www.di.ens.fr/~cousot/COUSOTpapers/TSI00.shtml
(in french)

• http://www.di.ens.fr/~cousot/COUSOTpapers/
Marktoberdorf98.shtml

• http://www.di.ens.fr/~cousot/COUSOTpapers/JLC92.shtml

• http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml

181]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

References
Bourdoncle, F. (1993). E⇥cient chaotic iteration strategies with widenings, in

D. Bjørner, M. Broy and I. Pottosin (eds), Proceedings of the International
Conference on Formal Methods in Programming and their Applications,
Akademgorodok, Novosibirsk, Lecture Notes in Computer Science 735,
Springer, Berlin, pp. 128–141.

Cousot, P. (1978). Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique de
programmes (in French), Thèse d’État ès sciences mathématiques, Univer-
sité scientifique et médicale de Grenoble, Grenoble.

Cousot, P. (1981). Semantic foundations of program analysis, invited chapter,
in S. Muchnick and N. Jones (eds), Program Flow Analysis: Theory and
Applications, Prentice-Hall, Inc., Englewood Cli�s, chapter 10, pp. 303–
342.

Cousot, P. and Cousot, R. (1975). Static verification of dynamic type properties
of variables, Research report R.R. 25, Laboratoire IMAG, Université scien-
tifique et médicale de Grenoble, Grenoble. 18 p.

Cousot, P. and Cousot, R. (1976). Static determination of dynamic proper-
ties of programs, Proceedings of the Second International Symposium on
Programming, Dunod, Paris, Paris, pp. 106–130.

Cousot, P. and Cousot, R. (1977a). Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints, Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM
Press, New York, Los Angeles, pp. 238–252.

Cousot, P. and Cousot, R. (1977b). Static determination of dynamic properties
of recursive procedures, in E. Neuhold (ed.), IFIP Conference on Formal

47

48 P. C�⌅⇥�⇤

Description of Programming Concepts, St-Andrews, N.B., North-Holland
Pub. Co., Amsterdam, pp. 237–277.

Cousot, P. and Cousot, R. (1992). Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation, invited paper,
in M. Bruynooghe and M. Wirsing (eds), Proceedings of the Fourth Inter-
national Symposium on Programming Language Implementation and Logic
Programming, PLILP ’92, Leuven, 26–28 August 1992, Lecture Notes in
Computer Science 631, Springer, Berlin, pp. 269–295.

Cousot, P. and Halbwachs, N. (1978). Automatic discovery of linear restraints
among variables of a program, Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ACM Press, New York, Tucson, pp. 84–97.

Halbwachs, N. (1979). Détermination automatique de relations linéaires véri-
fiées par les variables d’un programme, Thèse de 3ème cycle d’informatique,
Université scientifique et médicale de Grenoble, Grenoble.

References

182106

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot 183

48 P. C�⌅⇥�⇤

Description of Programming Concepts, St-Andrews, N.B., North-Holland
Pub. Co., Amsterdam, pp. 237–277.

Cousot, P. and Cousot, R. (1992). Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation, invited paper,
in M. Bruynooghe and M. Wirsing (eds), Proceedings of the Fourth Inter-
national Symposium on Programming Language Implementation and Logic
Programming, PLILP ’92, Leuven, 26–28 August 1992, Lecture Notes in
Computer Science 631, Springer, Berlin, pp. 269–295.

Cousot, P. and Halbwachs, N. (1978). Automatic discovery of linear restraints
among variables of a program, Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ACM Press, New York, Tucson, pp. 84–97.

Halbwachs, N. (1979). Détermination automatique de relations linéaires véri-
fiées par les variables d’un programme, Thèse de 3ème cycle d’informatique,
Université scientifique et médicale de Grenoble, Grenoble.

References
Cousot, P. and Cousot, R. (1976). Static determination of dynamic proper-

ties of programs, Proceedings of the Second International Symposium on
Programming, Dunod, Paris, Paris, pp. 106–130.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D. and Vouillon, J. (2009). The
Objective Caml system release 3.11, documentation and user’s manual,
Technical report, INRIA, Rocquencourt, France. http://caml.inria.fr/
pub/docs/manual-ocaml/.

33

