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Software is everywhere
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Software is replacing humans

– Paris métro line 12
accident 1: the driver was
going too fast
– New high-speed métro
line 14 (Météor): fully
automated, no operators
– Software is in all mission-
critical and safety-critical
industrial infrastructures

1 On August 30th, 2000, at the Notre-Dame-de-Lorette métro station in Paris, a car flipped over on its side
and slid to a stop just a few feet from a train stopped on the opposite platform (24 injured).
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Why bugs in software?
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(1) Software gets huge
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As computer hardware capacity grows. . .

ENIAC NEC Earth Simulator
5,000 flops 2 35ˆ 1012 flops 3

2 Floating point operations per second
3 1012 = Thousand Billion
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Software size grows. . .

Text editor Operating system
1,700,000 lines of C 4 35,000,000 lines of C 5

1,700 bugs (estimation) 30,000 known bugs

4 3 months for full-time reading of the code
5 5 years for full-time reading of the code
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. . . and so does the number of bugs
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(2) Computers are finite
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Computers are finite

– Engineers use mathematics to deal with continuous,
infinite structures (e.g. R)
– Computers can only handle discrete, finite structures
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Putting big things into small containers
– Numbers are encoded
onto a limited number of
bits (binary digits)
– Some operations may
overflow (e.g. integers: 32
bits ˆ 32 bits = 64 bits)
– Using different number
sizes (32, 64, . . . bits) can
also be the source of over-
flows
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The Ariane 5.01 maiden flight failure
– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher self-
detroyed after 42 seconds
of flight because of a
software overflow

A 16 bits piece of code of Ariane 4 had been reused within the new 32 bits code for Ari-
ane 5. This caused an uncaught overflow, ultimately making the launcher uncontrolable.
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The Ariane 5.01 maiden flight failure
– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher was de-
troyed after 40 seconds
of flight because of a
software overflow6

6 A 16 bit piece of code of Ariane 4 had been reused within the new 32 bit code for Ariane 5.
This caused an uncaught overflow, making the launcher uncontrolable.
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(3) Computers go round
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Modular arithmetic. . .

– Todays, computers avoid integer overflows thanks to
modular arithmetic
– Example: integer 2’s complement encoding on 8 bits
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. . . can be contrary to common sense

# 1073741823 + 1;;

- : int = -1073741824

# -1073741824 - 1;;

- : int = 1073741823

# -1073741824 ¨ -1;;

- : int = -1073741824
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Mapping many to few

– Reals are mapped to floats (floating-point arithmetic)
˚d0:d1d2 : : : dp`1˛

e 7

– For example on 6 bits (with p = 3, ˛ = 2, emin =
`1, emax = 2), there are 32 normalized floating-point
numbers. The 16 positive numbers are

7 where - d0 6= 0,
- p is the number of significative digits,
- ˛ is the basis (2), and
- e is the exponant (emin » e » emax)
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Rounding

– Computations returning reals that are not floats, must
be rounded
– Most mathematical identities on R are no longer valid
with floats
– Rounding errors may either compensate or accumulate
in long computations
– Computations converging in the reals may diverge with
floats (and ultimately overflow)
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Example of rounding error
/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
134217728.000000
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Example of rounding error
/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951487.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
0.000000
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Explanation of the huge rounding error
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Example of accumulation of
small rounding errors

% ocaml

Objective Caml version 3.08.1

# let x = ref 0.0;;

val x : float ref = {contents = 0.}

# for i = 1 to 1000000000 do

x := !x +. 1.0/.10.0

done; x;;

- : float ref = {contents = 99999998.7454178184}

since (0:1)10 = (0:0001100110011001100 : : :)2
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The Patriot missile failure
– “On February 25th, 1991, a Patriot
missile . . . failed to track and in-
tercept an incoming Scud 8.”
– The software failure was due to
a cumulated rounding error 9

8 This Scud subsequently hit an Army barracks, killing 28 Americans.
9
– “Time is kept continuously by the system’s internal clock in tenths
of seconds”

– “The system had been in operation for over 100 consecutive hours”

– “Because the system had been on so long, the resulting inaccuracy
in the time calculation caused the range gate to shift so much that
the system could not track the incoming Scud”

Minta Martin Lecture, MIT, May 13th, 2005 — 22 — ľ P. Cousot



What can be done about bugs?
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Warranty
Excerpt from an GPL open software licence:

NO WARRANTY. . . . BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

You get nothing for free!
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Warranty
Excerpt from Microsoft software licence:

DISCLAIMER OF WARRANTIES. . . . MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FIT-
NESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. . . .

You get nothing for your money either!
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Traditional software validation methods

– The law cannot enforce more than “best practice”
– Manual software validation methods (code reviews, sim-
ulations, tests, etc.) do not scale up
– The capacity of programmers/computer scientists re-
mains essentially the same
– The size of software teams cannot grow significantly
without severe efficiency losses
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Mathematics and computers can help

– Software behavior can be mathematically formalized
! semantics
– Computers can perform semantics-based program analy-
ses to realize verification ! static analysis
- but computers are finite so there are intrinsic lim-
itations ! undecidability, complexity
- which can only be handled by semantics approxi-
mations ! abstract interpretation
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Abstract interpretation
(1) very informally
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Operational semantics

x(t)

t
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Safety property

x(t)

t
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3&##-/4"%
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Test/debugging is unsafe

x(t)

t
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Abstract interpretation is safe

x(t)

t
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Soundness requirement: erroneous abstraction 10

x(t)

t

5**&1"&>#%$*(+",$&*<%(/#$*(,$-&1

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

5**&*%666

10 This situation is always excluded in static analysis by abstract interrpetation.
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Imprecision ) false alarms

x(t)
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Global interval abstraction ! false alarms

x(t)

t
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Local interval abstraction ! false alarms

x(t)
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Refinement by partitionning

x(t)
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Intervals with partitionning
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The ASTRÉE static analyzer
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C programming language
with:
– boolean, integer & floating point computations
– pointers (on functions, etc), structures & arrays
– tests, loops and function calls
– limited branching (forward goto, break, continue)
without:
union, dynamic memory allocation, recursive function
calls, unstructured backward branching, conflicting side
effects 11, C libraries
11 The ASTRÉE analyzer checks the absence of ambiguous side effects since otherwise the semantics of the
C program would not be defined deterministically
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Operational semantics

– International norm of C (ISO/IEC 9899:1999)
– restricted by implementation-specific behaviors depend-
ing upon the machine and compiler 12

– restricted by user-defined programming guidelines 13

– restricted by program specific user requirements 14

– restricted by a volatile environment as specified by a
trusted configuration file.

12 e.g. representation and size of integers, IEEE 754-1985 norm for floats and doubles
13 e.g. no modular arithmetic for signed integers, even though this might be the hardware choice
14 e.g. assert
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Implicit specification:
absence of runtime errors

– No violation of the norm of C 15

– No implementation-specific undefined behaviors 16

– No violation of the programming guidelines 17

– No violation of the programmer assertions 18

15 e.g. array index out of bounds
16 e.g. maximum short integer is 32767, no float overflow
17 e.g. static variables are not be assumed to be initialized to 0
18 must all be statically verified
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Application domain

– Safety critical embedded real-time synchronous soft-
ware for non-linear control of very complex control/com-
mand systems 19

– Strictly disciplined programming methodology
– 75% of the code is automatically generated from a
high-level specification language 20

– The external controlled system is unknown (but for
the range of a few volatile variables, maximal duration,
. . . as specified in the configuration file)

19 e.g. flight control software, engine control software
20 e.g. S.A.O. (proprietary ), Simulink, Scade
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Verification of flight control software
– Primary flight control software of the Airbus A340
family and the A380 digital fly-by-wire systems

– Most critical software on board 21

– ASTRÉE verifies the absence of runtime errors with-
out any false alarms!

21 controls automatically the airplane surface deflections and power settings, performs envelope protection,
. . . with precedence over the pilot
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Examples of abstractions
in ASTRÉE
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Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =

¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract

– Polyhedral approximations are unstable
– The simplest stable surface is an ellipsoid

X U F(X)

X

F(X)

F(X)
X

X U F(X)

execution trace unstable interval stable ellipsoid
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Filter Exampletypedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {

X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}
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Arithmetic-geometric progressions
% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;

BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev( )

{ X=E;

if (FIRST) { P = X; }

else

{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };

B = A;

if (SWITCH) {A = P;}

else {A = X;}

}

void main()

{ FIRST = TRUE;

while (TRUE) {

dev( );

FIRST = FALSE;

__ASTREE_wait_for_clock(());

}}

% cat retro.config

__ASTREE_volatile_input((E [-15.0, 15.0]));

__ASTREE_volatile_input((SWITCH [0,1]));

__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1 +

1.19209290217e-07)ˆclock -

5.87747175411e-39 / 1.19209290217e-07

<= 23.0393526881
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Abstract interpretation
(2) with a touch of formalism
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Semantics
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Syntax of programs
X variables X 2 X
T types T 2 T
E arithmetic expressions E 2 E
B boolean expressions B 2 B
D ::= T X;

j T X ; D0

C ::= X = E; commands C 2 C
j while B C 0

j if B C 0 else C 00

j { C1 . . . Cn }, (n – 0)
P ::= D C program P 2 P
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Final states semantics
x(t)

t

3&##-/4"%
$*(+",$&*-"#

R

S!P"R
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States
Values of given type:

V"T # : values of type T 2 T
V"int# def= fz 2 Z j min_int » z » max_intg

Program states ˚"P # 22:
˚"D C# def= ˚"D#
˚"T X;# def= fXg 7! V"T #

˚"T X; D# def= (fXg 7! V"T #) [˚"D#
22 States  2 ˚"P # of a program P map program variables X to their values (X)
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Final states semantics
S"X = E; #R def

= f[X  E"E#] j  2 Rg
[X  v](X)

def
= v; [X  v](Y )

def
= (Y )

S"if B C 0 else C 00#R def
= S"C 0#(B"B#R) [ S"C 00#(B":B#R)

B"B#R def
= f 2 R j B holds in g

S"while B C 0#R def
= let W = lfp

„
–X .R [ S"C 0#(B"B#X )

in (B":B#W)
S"fg#R def

= R

S"fC1 : : : Cng#R def
= S"Cn# ‹ : : : ‹ S"C1#R n > 0

S"D C#R def
= S"C#(R) (R „ ˚"D#, initial states)
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Undecidability
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Undecidability

– The program’s semantics, which is an infinite object,
is not computable by a finite device
– All non-trivial questions about a program’s semantics
are undecidable (no computer can always answer, for
sure, in a finite amount of time)
– Example: termination 23

23

- Assume Termination(P) is a terminating program answering correctly the following question about any
program P (P is a parameter encoded as text): Are all trajectories of P finite?

- A contradiction immediately appears when considering the program which text is:
program Goedel(P);

while termination(P) do {} od

- So termination is undecidable (whence so is any interesting semantic program property)
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Complexity
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Polynomial Time Complexity
– Polynomial-time computability is identified with the
intuitive notion of algorithmic efficiency
– Intuitively valid only for small powers:

Execution time at 109 ops/s
n O(n) O(n:log(n)) O(n2) O(n3)
1 › › › ›
10 › › 0:1—s 1—s
103 1—s 6—s 1ms 1s
106 1ms 13ms 16mn 32 years
109 1s 20s 32 years 300 000 000 centuries
1012 16mn 7:7h 300 000 centuries —
1015 11:6 days 1 year — —
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Abstract interpretation
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Property abstraction

– h}(˚"P #); „i `̀ !̀ ̀`̀¸
‚
hL; vi

– L encodes abstractions of properties in }(˚"P #)
– v abstracts implication „ 24

– ¸(I) encodes an overapproximation of property I 25

– ‚(I) is the meaning of the abstract property I
– Approximation is from above I „ ‚ ‹ ¸(I)
– In case of best approximation (¸ ‹ ‚(I) v I), h¸; ‚i is
a Galois connection

24 ¸ and ‚ order preserving
25 e.g. ¸(set of points) = polyhedron and ‚(polyhedron) = set of interior points
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ExamplesInterval abstraction:

¸

Polyhedral abstraction:

¸
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Function Abstraction
!

"

!

!"#$%&'$ ()*&+,

-),'%.$. ()*&+,

F] = ¸ ‹ F ‹ ‚

hP; „i `̀ !̀ ̀`̀¸
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Fixpoint abstraction
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Abstract final state semantics

S]"X = E; #R def
= ¸(f[X  E"E#] j  2 ‚(R)g)

S]"if B C 0 else C 00#R def
= S]"C 0#(B]"B#R) t S]"C 00#(B]":B#R)

B]"B#R def
= ¸(f 2 ‚(R) j B holds in g)

S]"while B C 0#R def
= let W = lfp

v
–X .R t S]"C 0#(B]"B#X )

in (B]":B#W)
S]"fg#R def

= R

S]"fC1 : : : Cng#R def
= S]"Cn# ‹ : : : ‹ S]"C1# n > 0

S]"D C#R def
= S]"C#(¸(R)) (initial states)

The v-least fixpoint can be computed by elimination methods or by chaotic/asynchronous
iteration methods but rapid convergence may not be guaranteed in infinite or very large
abstract domains.
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Convergence acceleration by extrapolation 26
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26 r is a widening operator
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Abstract semantics with convergence acceleration 27

S]"X = E; #R def
= ¸(f[X  E"E#] j  2 ‚(R)g)

S]"if B C 0 else C 00#R def
= S]"C 0#(B]"B#R) t S]"C 00#(B]":B#R)

B]"B#R def
= ¸(f 2 ‚(R) j B holds in g)

S]"while B C 0#R def
= let F ] = –X . let Y = R t S]"C 0#(B]"B#X )

in if Y v X then X else X
$
Y

and W = lfp
v
F ] in (B]":B#W)

S]"fg#R def
= R

S]"fC1 : : : Cng#R def
= S]"Cn# ‹ : : : ‹ S]"C1# n > 0

S]"D C#R def
= S]"C#(¸(R)) (initial states)

27 Note: F ] not monotonic!

Minta Martin Lecture, MIT, May 13th, 2005 — 66 — ľ P. Cousot

Applications of
Abstract Interpretation
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Applications of Abstract Interpretation (Cont’d)

Abstract interpretation formalizes sound approximations
as found everywhere in computer science:

– Syntax Analysis [TCS 290(1) 2002]

– Hierarchies of Semantics (including Proofs) [POPL ’92],
[TCS 277(1–2) 2002]

– Program Transformation [POPL ’02]

– Typing & Type Inference [POPL ’97]

– (Abstract) Model Checking [POPL ’00]
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Applications of Abstract Interpretation (Cont’d)

– Bisimulations [RT-ESOP ’04]

– Software Watermarking [POPL ’04]

– Code obfuscation [DPG-ICALP ’05]

– Static Program Analysis [POPL ’77], [POPL ’78], [POPL ’79]
including
- Dataflow Analysis [POPL ’79], [POPL ’00],

- Set-based Analysis [FPCA ’95],

- Predicate Abstraction [Manna’s festschrift ’03], . . .

- WCET [EMSOFT ’01], . . .
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Project while visiting MIT
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Computer controlled systems

Approximations: program ! precise, system! precise
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Software analysis & verification
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Abstractions: program ! precise, system ! coarse
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System analysis & verification

Abstractions: program ! precise, system ! precise
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Conclusion
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Grand challenge

Software verification
– is the grand challenge for computer scientists and en-
gineers in the next 15 years
– will not be convincing without global system verifica-
tion
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THE END

My MIT web site is www.mit.edu/~cousot, where these slides are available
My ENS web site is www.di.ens.fr/~cousot

For more technical details, see the MIT course 16.399 on Abstract interpretation
web.mit.edu/16.399/
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