
Abstract Interpretation–based Formal
Verification of Complex Computer Systems

Patrick Cousot
Jerome C. Hunsaker Visiting Professor

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

cousot mit edu www.mit.edu/~cousot

École normale supérieure, Paris
cousot ens fr www.di.ens.fr/~cousot

Minta Martin Lecture, May 13th, 2005
Minta Martin Lecture, MIT, May 13th, 2005 — 1 — ľ P. Cousot

Software is everywhere

xx§x!xxx§x!xx

Minta Martin Lecture, MIT, May 13th, 2005 — 2 — ľ P. Cousot

Software is replacing humans

– Paris métro line 12
accident 1: the driver was
going too fast
– New high-speed métro
line 14 (Météor): fully
automated, no operators
– Software is in all mission-
critical and safety-critical
industrial infrastructures

1 On August 30th, 2000, at the Notre-Dame-de-Lorette métro station in Paris, a car flipped over on its side
and slid to a stop just a few feet from a train stopped on the opposite platform (24 injured).

Minta Martin Lecture, MIT, May 13th, 2005 — 3 — ľ P. Cousot

Why bugs in software?

Minta Martin Lecture, MIT, May 13th, 2005 — 4 — ľ P. Cousot

(1) Software gets huge

Minta Martin Lecture, MIT, May 13th, 2005 — 5 — ľ P. Cousot

As computer hardware capacity grows. . .

ENIAC NEC Earth Simulator
5,000 flops 2 35ˆ 1012 flops 3

2 Floating point operations per second
3 1012 = Thousand Billion

Minta Martin Lecture, MIT, May 13th, 2005 — 6 — ľ P. Cousot

Software size grows. . .

Text editor Operating system
1,700,000 lines of C 4 35,000,000 lines of C 5

1,700 bugs (estimation) 30,000 known bugs

4 3 months for full-time reading of the code
5 5 years for full-time reading of the code

Minta Martin Lecture, MIT, May 13th, 2005 — 7 — ľ P. Cousot

. . . and so does the number of bugs

Text editor Operating system
1,700,000 lines of C 4 35,000,000 lines of C 5

1,700 bugs (estimation) 30,000 known bugs

4 3 months for full-time reading of the code
5 5 years for full-time reading of the code

Minta Martin Lecture, MIT, May 13th, 2005 — 8 — ľ P. Cousot

(2) Computers are finite

Minta Martin Lecture, MIT, May 13th, 2005 — 9 — ľ P. Cousot

Computers are finite

– Engineers use mathematics to deal with continuous,
infinite structures (e.g. R)
– Computers can only handle discrete, finite structures

Minta Martin Lecture, MIT, May 13th, 2005 — 10 — ľ P. Cousot

Putting big things into small containers
– Numbers are encoded
onto a limited number of
bits (binary digits)
– Some operations may
overflow (e.g. integers: 32
bits ˆ 32 bits = 64 bits)
– Using different number
sizes (32, 64, . . . bits) can
also be the source of over-
flows

Minta Martin Lecture, MIT, May 13th, 2005 — 11 — ľ P. Cousot

The Ariane 5.01 maiden flight failure
– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher self-
detroyed after 42 seconds
of flight because of a
software overflow

A 16 bits piece of code of Ariane 4 had been reused within the new 32 bits code for Ari-
ane 5. This caused an uncaught overflow, ultimately making the launcher uncontrolable.

Minta Martin Lecture, MIT, May 13th, 2005 — 12 — ľ P. Cousot

The Ariane 5.01 maiden flight failure
– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher was de-
troyed after 40 seconds
of flight because of a
software overflow6

6 A 16 bit piece of code of Ariane 4 had been reused within the new 32 bit code for Ariane 5.
This caused an uncaught overflow, making the launcher uncontrolable.

Minta Martin Lecture, MIT, May 13th, 2005 — 12 — ľ P. Cousot

(3) Computers go round

Minta Martin Lecture, MIT, May 13th, 2005 — 13 — ľ P. Cousot

Modular arithmetic. . .

– Todays, computers avoid integer overflows thanks to
modular arithmetic
– Example: integer 2’s complement encoding on 8 bits

! "

#

$

%

&

'

()*)(

)'

)&

)%

)$

)#

)"
!!!!

!!!"

!!"!

!!""

!"!!

!"!"

!""!

!"""
"!!!

"!!"

"!"!

"!""

""!!

""!"

"""!

""""

Minta Martin Lecture, MIT, May 13th, 2005 — 14 — ľ P. Cousot

. . . can be contrary to common sense

1073741823 + 1;;

- : int = -1073741824

-1073741824 - 1;;

- : int = 1073741823

-1073741824 ¨ -1;;

- : int = -1073741824

Minta Martin Lecture, MIT, May 13th, 2005 — 15 — ľ P. Cousot

. . . can be contrary to common sense

1073741823 + 1;;

- : int = -1073741824

-1073741824 - 1;;

- : int = 1073741823

-1073741824 ¨ -1;;

- : int = -1073741824

Minta Martin Lecture, MIT, May 13th, 2005 — 16 — ľ P. Cousot

Mapping many to few

– Reals are mapped to floats (floating-point arithmetic)
˚d0:d1d2 : : : dp`1˛

e 7

– For example on 6 bits (with p = 3, ˛ = 2, emin =
`1, emax = 2), there are 32 normalized floating-point
numbers. The 16 positive numbers are

7 where - d0 6= 0,
- p is the number of significative digits,
- ˛ is the basis (2), and
- e is the exponant (emin » e » emax)

Minta Martin Lecture, MIT, May 13th, 2005 — 17 — ľ P. Cousot

Rounding

– Computations returning reals that are not floats, must
be rounded
– Most mathematical identities on R are no longer valid
with floats
– Rounding errors may either compensate or accumulate
in long computations
– Computations converging in the reals may diverge with
floats (and ultimately overflow)

Minta Martin Lecture, MIT, May 13th, 2005 — 18 — ľ P. Cousot

Example of rounding error
/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
134217728.000000

Minta Martin Lecture, MIT, May 13th, 2005 — 19 — ľ P. Cousot

Example of rounding error
/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951487.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
0.000000

Minta Martin Lecture, MIT, May 13th, 2005 — 19 — ľ P. Cousot

Explanation of the huge rounding error

(1)
x

!"#$%

&$'#(%
x)*+

,*
x-*+

,*
x

!'./01/2

(2)
x

3'.4$"%

!"#$%

&$'#(%

x)*x-*
x

!'./01/2

*56,*77,89+

,

Minta Martin Lecture, MIT, May 13th, 2005 — 20 — ľ P. Cousot

Example of accumulation of
small rounding errors

% ocaml

Objective Caml version 3.08.1

let x = ref 0.0;;

val x : float ref = {contents = 0.}

for i = 1 to 1000000000 do

x := !x +. 1.0/.10.0

done; x;;

- : float ref = {contents = 99999998.7454178184}

since (0:1)10 = (0:0001100110011001100 : : :)2

Minta Martin Lecture, MIT, May 13th, 2005 — 21 — ľ P. Cousot

The Patriot missile failure
– “On February 25th, 1991, a Patriot
missile . . . failed to track and in-
tercept an incoming Scud 8.”
– The software failure was due to
a cumulated rounding error 9

8 This Scud subsequently hit an Army barracks, killing 28 Americans.
9
– “Time is kept continuously by the system’s internal clock in tenths
of seconds”

– “The system had been in operation for over 100 consecutive hours”

– “Because the system had been on so long, the resulting inaccuracy
in the time calculation caused the range gate to shift so much that
the system could not track the incoming Scud”

Minta Martin Lecture, MIT, May 13th, 2005 — 22 — ľ P. Cousot

What can be done about bugs?

Minta Martin Lecture, MIT, May 13th, 2005 — 23 — ľ P. Cousot

Warranty
Excerpt from an GPL open software licence:

NO WARRANTY. . . . BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

You get nothing for free!

Minta Martin Lecture, MIT, May 13th, 2005 — 24 — ľ P. Cousot

Warranty
Excerpt from an GPL open software licence:

NO WARRANTY. . . . BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

You get nothing for free!

Minta Martin Lecture, MIT, May 13th, 2005 — 24 — ľ P. Cousot

Warranty
Excerpt from Microsoft software licence:

DISCLAIMER OF WARRANTIES. . . . MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FIT-
NESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. . . .

You get nothing for your money either!

Minta Martin Lecture, MIT, May 13th, 2005 — 25 — ľ P. Cousot

Warranty
Excerpt from Microsoft software licence:

DISCLAIMER OF WARRANTIES. . . . MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FIT-
NESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. . . .

You get nothing for your money either!

Minta Martin Lecture, MIT, May 13th, 2005 — 25 — ľ P. Cousot

Traditional software validation methods

– The law cannot enforce more than “best practice”
– Manual software validation methods (code reviews, sim-
ulations, tests, etc.) do not scale up
– The capacity of programmers/computer scientists re-
mains essentially the same
– The size of software teams cannot grow significantly
without severe efficiency losses

Minta Martin Lecture, MIT, May 13th, 2005 — 26 — ľ P. Cousot

Mathematics and computers can help

– Software behavior can be mathematically formalized
! semantics
– Computers can perform semantics-based program analy-
ses to realize verification ! static analysis
- but computers are finite so there are intrinsic lim-
itations ! undecidability, complexity
- which can only be handled by semantics approxi-
mations ! abstract interpretation

Minta Martin Lecture, MIT, May 13th, 2005 — 27 — ľ P. Cousot

Abstract interpretation
(1) very informally

Minta Martin Lecture, MIT, May 13th, 2005 — 28 — ľ P. Cousot

Operational semantics

x(t)

t

!"##$%&'(
)*+,'-)"*$'#

Minta Martin Lecture, MIT, May 13th, 2005 — 29 — ľ P. Cousot

Safety property

x(t)

t

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

Minta Martin Lecture, MIT, May 13th, 2005 — 30 — ľ P. Cousot

Test/debugging is unsafe

x(t)

t

!"#$%&'%(%'")%$*(+",$&*-"#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

5**&*%666

Minta Martin Lecture, MIT, May 13th, 2005 — 31 — ľ P. Cousot

Abstract interpretation is safe

x(t)

t

7/#$*(,$-&1%&'%$8"%$*(+",$&*-"#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

Minta Martin Lecture, MIT, May 13th, 2005 — 32 — ľ P. Cousot

Soundness requirement: erroneous abstraction 10

x(t)

t

5**&1"&>#%$*(+",$&*<%(/#$*(,$-&1

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

5**&*%666

10 This situation is always excluded in static analysis by abstract interrpetation.

Minta Martin Lecture, MIT, May 13th, 2005 — 33 — ľ P. Cousot

Imprecision) false alarms

x(t)

t

9:;*",-#"%$*(+",$&*<%(/#$*(,$-&1

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

.(4#"%(4(*:

Minta Martin Lecture, MIT, May 13th, 2005 — 34 — ľ P. Cousot

Global interval abstraction ! false alarms

x(t)

t

9:;*",-#"%$*(+",$&*<%(/#$*(,$-&1%/<%-1$"*=(4#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

.(4#"%(4(*:#

Minta Martin Lecture, MIT, May 13th, 2005 — 35 — ľ P. Cousot

Local interval abstraction ! false alarms

x(t)

t

9:;*",-#"%$*(+",$&*<%(/#$*(,$-&1%/<%-1$"*=(4#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

.(4#"%(4(*:#

Minta Martin Lecture, MIT, May 13th, 2005 — 36 — ľ P. Cousot

Refinement by partitionning

x(t)

t

3(*$-$-&11-1?

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

Minta Martin Lecture, MIT, May 13th, 2005 — 37 — ľ P. Cousot

Intervals with partitionning

x(t)

t

@"'-1":"1$%&'%-1$"*=(4#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

Minta Martin Lecture, MIT, May 13th, 2005 — 38 — ľ P. Cousot

The ASTRÉE static analyzer

Minta Martin Lecture, MIT, May 13th, 2005 — 39 — ľ P. Cousot

C programming language
with:
– boolean, integer & floating point computations
– pointers (on functions, etc), structures & arrays
– tests, loops and function calls
– limited branching (forward goto, break, continue)
without:
union, dynamic memory allocation, recursive function
calls, unstructured backward branching, conflicting side
effects 11, C libraries
11 The ASTRÉE analyzer checks the absence of ambiguous side effects since otherwise the semantics of the
C program would not be defined deterministically

Minta Martin Lecture, MIT, May 13th, 2005 — 40 — ľ P. Cousot

Operational semantics

– International norm of C (ISO/IEC 9899:1999)
– restricted by implementation-specific behaviors depend-
ing upon the machine and compiler 12

– restricted by user-defined programming guidelines 13

– restricted by program specific user requirements 14

– restricted by a volatile environment as specified by a
trusted configuration file.

12 e.g. representation and size of integers, IEEE 754-1985 norm for floats and doubles
13 e.g. no modular arithmetic for signed integers, even though this might be the hardware choice
14 e.g. assert

Minta Martin Lecture, MIT, May 13th, 2005 — 41 — ľ P. Cousot

Implicit specification:
absence of runtime errors

– No violation of the norm of C 15

– No implementation-specific undefined behaviors 16

– No violation of the programming guidelines 17

– No violation of the programmer assertions 18

15 e.g. array index out of bounds
16 e.g. maximum short integer is 32767, no float overflow
17 e.g. static variables are not be assumed to be initialized to 0
18 must all be statically verified

Minta Martin Lecture, MIT, May 13th, 2005 — 42 — ľ P. Cousot

Application domain

– Safety critical embedded real-time synchronous soft-
ware for non-linear control of very complex control/com-
mand systems 19

– Strictly disciplined programming methodology
– 75% of the code is automatically generated from a
high-level specification language 20

– The external controlled system is unknown (but for
the range of a few volatile variables, maximal duration,
. . . as specified in the configuration file)

19 e.g. flight control software, engine control software
20 e.g. S.A.O. (proprietary), Simulink, Scade

Minta Martin Lecture, MIT, May 13th, 2005 — 43 — ľ P. Cousot

Verification of flight control software
– Primary flight control software of the Airbus A340
family and the A380 digital fly-by-wire systems

– Most critical software on board 21

– ASTRÉE verifies the absence of runtime errors with-
out any false alarms!

21 controls automatically the airplane surface deflections and power settings, performs envelope protection,
. . . with precedence over the pilot

Minta Martin Lecture, MIT, May 13th, 2005 — 44 — ľ P. Cousot

Examples of abstractions
in ASTRÉE

Minta Martin Lecture, MIT, May 13th, 2005 — 45 — ľ P. Cousot

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =

¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract

– Polyhedral approximations are unstable
– The simplest stable surface is an ellipsoid

X U F(X)

X

F(X)

F(X)
X

X U F(X)

execution trace unstable interval stable ellipsoid

Minta Martin Lecture, MIT, May 13th, 2005 — 46 — ľ P. Cousot

Filter Exampletypedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {

X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

Minta Martin Lecture, MIT, May 13th, 2005 — 47 — ľ P. Cousot

Arithmetic-geometric progressions
% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;

BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev()

{ X=E;

if (FIRST) { P = X; }

else

{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };

B = A;

if (SWITCH) {A = P;}

else {A = X;}

}

void main()

{ FIRST = TRUE;

while (TRUE) {

dev();

FIRST = FALSE;

__ASTREE_wait_for_clock(());

}}

% cat retro.config

__ASTREE_volatile_input((E [-15.0, 15.0]));

__ASTREE_volatile_input((SWITCH [0,1]));

__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1 +

1.19209290217e-07)ˆclock -

5.87747175411e-39 / 1.19209290217e-07

<= 23.0393526881

Minta Martin Lecture, MIT, May 13th, 2005 — 48 — ľ P. Cousot

Abstract interpretation
(2) with a touch of formalism

Minta Martin Lecture, MIT, May 13th, 2005 — 49 — ľ P. Cousot

Semantics

Minta Martin Lecture, MIT, May 13th, 2005 — 50 — ľ P. Cousot

Syntax of programs
X variables X 2 X
T types T 2 T
E arithmetic expressions E 2 E
B boolean expressions B 2 B
D ::= T X;

j T X ; D0

C ::= X = E; commands C 2 C
j while B C 0

j if B C 0 else C 00

j { C1 . . . Cn }, (n – 0)
P ::= D C program P 2 P

Minta Martin Lecture, MIT, May 13th, 2005 — 51 — ľ P. Cousot

Final states semantics
x(t)

t

3&##-/4"%
$*(+",$&*-"#

R

S!P"R

Minta Martin Lecture, MIT, May 13th, 2005 — 52 — ľ P. Cousot

States
Values of given type:

V"T # : values of type T 2 T
V"int# def= fz 2 Z j min_int » z » max_intg

Program states ˚"P # 22:
˚"D C# def= ˚"D#
˚"T X;# def= fXg 7! V"T #

˚"T X; D# def= (fXg 7! V"T #) [˚"D#
22 States 2 ˚"P # of a program P map program variables X to their values (X)

Minta Martin Lecture, MIT, May 13th, 2005 — 53 — ľ P. Cousot

Final states semantics
S"X = E; #R def

= f[X E"E#] j 2 Rg
[X v](X)

def
= v; [X v](Y)

def
= (Y)

S"if B C 0 else C 00#R def
= S"C 0#(B"B#R) [S"C 00#(B":B#R)

B"B#R def
= f 2 R j B holds in g

S"while B C 0#R def
= let W = lfp

„
–X .R [S"C 0#(B"B#X)

in (B":B#W)
S"fg#R def

= R

S"fC1 : : : Cng#R def
= S"Cn# ‹ : : : ‹ S"C1#R n > 0

S"D C#R def
= S"C#(R) (R „ ˚"D#, initial states)

Minta Martin Lecture, MIT, May 13th, 2005 — 54 — ľ P. Cousot

Undecidability

Minta Martin Lecture, MIT, May 13th, 2005 — 55 — ľ P. Cousot

Undecidability

– The program’s semantics, which is an infinite object,
is not computable by a finite device
– All non-trivial questions about a program’s semantics
are undecidable (no computer can always answer, for
sure, in a finite amount of time)
– Example: termination 23

23

- Assume Termination(P) is a terminating program answering correctly the following question about any
program P (P is a parameter encoded as text): Are all trajectories of P finite?

- A contradiction immediately appears when considering the program which text is:
program Goedel(P);

while termination(P) do {} od

- So termination is undecidable (whence so is any interesting semantic program property)

Minta Martin Lecture, MIT, May 13th, 2005 — 56 — ľ P. Cousot

Complexity

Minta Martin Lecture, MIT, May 13th, 2005 — 57 — ľ P. Cousot

Polynomial Time Complexity
– Polynomial-time computability is identified with the
intuitive notion of algorithmic efficiency
– Intuitively valid only for small powers:

Execution time at 109 ops/s
n O(n) O(n:log(n)) O(n2) O(n3)
1 › › › ›
10 › › 0:1—s 1—s
103 1—s 6—s 1ms 1s
106 1ms 13ms 16mn 32 years
109 1s 20s 32 years 300 000 000 centuries
1012 16mn 7:7h 300 000 centuries —
1015 11:6 days 1 year — —

Minta Martin Lecture, MIT, May 13th, 2005 — 58 — ľ P. Cousot

Abstract interpretation

Minta Martin Lecture, MIT, May 13th, 2005 — 59 — ľ P. Cousot

Property abstraction

– h}(˚"P #); „i `̀ !̀ ̀`̀¸
‚
hL; vi

– L encodes abstractions of properties in }(˚"P #)
– v abstracts implication „ 24

– ¸(I) encodes an overapproximation of property I 25

– ‚(I) is the meaning of the abstract property I
– Approximation is from above I „ ‚ ‹ ¸(I)
– In case of best approximation (¸ ‹ ‚(I) v I), h¸; ‚i is
a Galois connection

24 ¸ and ‚ order preserving
25 e.g. ¸(set of points) = polyhedron and ‚(polyhedron) = set of interior points

Minta Martin Lecture, MIT, May 13th, 2005 — 60 — ľ P. Cousot

ExamplesInterval abstraction:

¸

Polyhedral abstraction:

¸

Minta Martin Lecture, MIT, May 13th, 2005 — 61 — ľ P. Cousot

Function Abstraction
!

"

!

!"#$%&'$ ()*&+,

-),'%.$. ()*&+,

F] = ¸ ‹ F ‹ ‚

hP; „i `̀ !̀ ̀`̀¸

‚
hQ; vi)

hP
mon
7 !̀ P; _„i `̀ `̀ `̀ `̀ `̀! ̀`̀ `̀ `̀ `̀`

–F .¸‹F ‹‚

–F] . ‚‹F]‹¸
hQ

mon
7 !̀ Q; _vi

Minta Martin Lecture, MIT, May 13th, 2005 — 62 — ľ P. Cousot

Fixpoint abstraction

F

F

Concrete domain

Abstract domain

F F F F F
F

F
! F

! F
!

F
!

Approximation
relation

⊥

⊥
!

"

]

!

F ‹ ‚ v ‚ ‹ F]) lfpF v ‚(lfpF])

Minta Martin Lecture, MIT, May 13th, 2005 — 63 — ľ P. Cousot

Abstract final state semantics

S]"X = E; #R def
= ¸(f[X E"E#] j 2 ‚(R)g)

S]"if B C 0 else C 00#R def
= S]"C 0#(B]"B#R) t S]"C 00#(B]":B#R)

B]"B#R def
= ¸(f 2 ‚(R) j B holds in g)

S]"while B C 0#R def
= let W = lfp

v
–X .R t S]"C 0#(B]"B#X)

in (B]":B#W)
S]"fg#R def

= R

S]"fC1 : : : Cng#R def
= S]"Cn# ‹ : : : ‹ S]"C1# n > 0

S]"D C#R def
= S]"C#(¸(R)) (initial states)

The v-least fixpoint can be computed by elimination methods or by chaotic/asynchronous
iteration methods but rapid convergence may not be guaranteed in infinite or very large
abstract domains.

Minta Martin Lecture, MIT, May 13th, 2005 — 64 — ľ P. Cousot

Convergence acceleration by extrapolation 26

F Concrete domain

Abstract domain

F F F F F
F

Approximation
relation

⊥

⊥
!

"

]

!

#

F

#

F
!

#

F
!

F
!

26 r is a widening operator

Minta Martin Lecture, MIT, May 13th, 2005 — 65 — ľ P. Cousot

Abstract semantics with convergence acceleration 27

S]"X = E; #R def
= ¸(f[X E"E#] j 2 ‚(R)g)

S]"if B C 0 else C 00#R def
= S]"C 0#(B]"B#R) t S]"C 00#(B]":B#R)

B]"B#R def
= ¸(f 2 ‚(R) j B holds in g)

S]"while B C 0#R def
= let F] = –X . let Y = R t S]"C 0#(B]"B#X)

in if Y v X then X else X
$
Y

and W = lfp
v
F] in (B]":B#W)

S]"fg#R def
= R

S]"fC1 : : : Cng#R def
= S]"Cn# ‹ : : : ‹ S]"C1# n > 0

S]"D C#R def
= S]"C#(¸(R)) (initial states)

27 Note: F] not monotonic!

Minta Martin Lecture, MIT, May 13th, 2005 — 66 — ľ P. Cousot

Applications of
Abstract Interpretation

Minta Martin Lecture, MIT, May 13th, 2005 — 67 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

Abstract interpretation formalizes sound approximations
as found everywhere in computer science:

– Syntax Analysis [TCS 290(1) 2002]

– Hierarchies of Semantics (including Proofs) [POPL ’92],
[TCS 277(1–2) 2002]

– Program Transformation [POPL ’02]

– Typing & Type Inference [POPL ’97]

– (Abstract) Model Checking [POPL ’00]

Minta Martin Lecture, MIT, May 13th, 2005 — 68 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

– Bisimulations [RT-ESOP ’04]

– Software Watermarking [POPL ’04]

– Code obfuscation [DPG-ICALP ’05]

– Static Program Analysis [POPL ’77], [POPL ’78], [POPL ’79]
including
- Dataflow Analysis [POPL ’79], [POPL ’00],

- Set-based Analysis [FPCA ’95],

- Predicate Abstraction [Manna’s festschrift ’03], . . .

- WCET [EMSOFT ’01], . . .
Minta Martin Lecture, MIT, May 13th, 2005 — 69 — ľ P. Cousot

Project while visiting MIT

Minta Martin Lecture, MIT, May 13th, 2005 — 70 — ľ P. Cousot

Computer controlled systems

Approximations: program ! precise, system! precise

Minta Martin Lecture, MIT, May 13th, 2005 — 71 — ľ P. Cousot

Software analysis & verification

!"#$%&'()*&+)"'�
,+)$+-.

/0*1)+1 2(&3-&)+1

4

Abstractions: program ! precise, system ! coarse

Minta Martin Lecture, MIT, May 13th, 2005 — 72 — ľ P. Cousot

System analysis & verification

Abstractions: program ! precise, system ! precise

Minta Martin Lecture, MIT, May 13th, 2005 — 73 — ľ P. Cousot

Conclusion

Minta Martin Lecture, MIT, May 13th, 2005 — 74 — ľ P. Cousot

Grand challenge

Software verification
– is the grand challenge for computer scientists and en-
gineers in the next 15 years
– will not be convincing without global system verifica-
tion

Minta Martin Lecture, MIT, May 13th, 2005 — 75 — ľ P. Cousot

THE END

My MIT web site is www.mit.edu/~cousot, where these slides are available
My ENS web site is www.di.ens.fr/~cousot

For more technical details, see the MIT course 16.399 on Abstract interpretation
web.mit.edu/16.399/

Minta Martin Lecture, MIT, May 13th, 2005 — 76 — ľ P. Cousot

References

[1] www.astree.ens.fr [3, 4, 5, 6, 7, 8, 9, 10]

[2] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathéma-
tiques, Université scientifique et médicale de Grenoble, Grenoble, France, 21 March 1978.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. Design and implementation of a special-purpose static program analyzer for safety-critical real-time
embedded software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedi-
cated to Neil D. Jones, LNCS 2566, pp. 85–108. Springer, 2002.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, pp. 196–207, ACM Press, 2003.

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY, USA.

[PACJM ’79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82(1):43–57 (1979).

[POPL ’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY, U.S.A.

Minta Martin Lecture, MIT, May 13th, 2005 — 77 — ľ P. Cousot

[POPL ’79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

[POPL ’92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Con-
ference Record of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming
Languages, pages 83–94, Albuquerque, New Mexico, 1992. ACM Press, New York, U.S.A.

[FPCA ’95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis
by Abstract Interpretation. In SIGPLAN/SIGARCH/WG2.8 7th Conference on Functional Programming
and Computer Architecture, FPCA’95. La Jolla, California, U.S.A., pages 170–181. ACM Press, New York,
U.S.A., 25-28 June 1995.

[POPL ’97] P. Cousot. Types as Abstract Interpretations. In Conference Record of the 24th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, pages 316–331, Paris, France,
1997. ACM Press, New York, U.S.A.

[POPL ’00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twen-
tyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
12–25, Boston, Mass., January 2000. ACM Press, New York, NY.

[POPL ’02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract
Interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178–190, Portland, Oregon, January 2002. ACM Press, New
York, NY.

[TCS 277(1–2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Theoretical Computer Science 277(1–2):47–103, 2002.

Minta Martin Lecture, MIT, May 13th, 2005 — 78 — ľ P. Cousot

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theo-
ret. Comput. Sci., 290:531–544, 2003.

[Manna’s festschrift ’03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification –
Theory & Practice – Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June
29 – July 4, 2003. Lecture Notes in Computer Science, vol. 2772, pp. 243–268.ľ Springer-Verlag, Berlin,
Germany, 2003.

[5] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE analyser.
ESOP 2005, Edinburgh, LNCS 3444, pp. 21–30, Springer, 2005.

[6] J. Feret. Static analysis of digital filters. ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

[7] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–
58, Springer, 2005.

[8] Laurent Mauborgne & Xavier Rival. Trace Partitioning in Abstract Interpretation Based Static Analyzers.
ESOP’05, Edinburgh, LNCS 3444, pp. 5–20, Springer, 2005.

[9] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO’2001, LNCS
2053, Springer, 2001, pp. 155–172.

[10] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP’04,
Barcelona, LNCS 2986, pp. 3—17, Springer, 2004.

[POPL ’04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking.
In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173–185, Venice, Italy, January 14-16, 2004. ACM Press, New York, NY.

Minta Martin Lecture, MIT, May 13th, 2005 — 79 — ľ P. Cousot

[DPG-ICALP ’05] M. Dalla Preda and R. Giacobazzi. Semantic-based Code Obfuscation
by Abstract Interpretation. In Proc. 32nd Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP’05 – Track B). LNCS, 2005 Springer-Verlag. July 11-15, 2005, Lisboa, Portugal. To
appear.

[EMSOFT ’01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing,
and R. Wilhelm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS
2211, 469–485.

[RT-ESOP ’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation.
ESOP 2004, Barcelona, Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), LNCS 2986, Springer, 2004,
pp. 18–32.

Minta Martin Lecture, MIT, May 13th, 2005 — 80 — ľ P. Cousot

