2. Transition systems

Programs are often formalized as graphs or transition systems $\tau = \Sigma, \Sigma_i, t$ where Σ is a set of states, $\Sigma_i \subseteq \Sigma$ is the set of initial states and $t \subseteq \Sigma \times \Sigma$ is a transition relation between a state and its possible successors [Cousot, 1978; Cousot, 1981]. For example the program $x := 0; \text{while } x < 100 \text{ do } x := x + 1$ can be formalized as $\mathbb{Z}, \{0\}, \{x, x' \mid x < 100 \land x' = x + 1\}$ where \mathbb{Z} is the set of integers.

3. Partial trace semantics

A finite partial execution trace $s_0s_1 \ldots s_n$ starts from any state $s_0 \in \Sigma$ and then moves on through transitions from one state s_i, $i < n$, to a possible successor s_{i+1} such that $s_i, s_{i+1} \in t$. The set of all such finite partial execution traces will be called the collecting semantics Σ^*_τ of the transition system in that it is the strongest program property of interest (in this paper).

There is no partial trace of length 0 so the set Σ^1_τ of partial traces of length 0 is simply the empty set \varnothing. A partial trace of length 1 is s where $s \in \Sigma$ is any state. So the set Σ^1_τ of partial traces of length 1 is simply $\{s \mid s \in \Sigma\}$. By recurrence, a trace of length $n + 1$ is the concatenation $\sigma s s'$ of a trace σs of length n with a partial trace s' of length 1 such that the pair $s, s' \in t$ is a possible state transition. So if Σ^0_τ is the set of partial traces of length n then $\Sigma^{n+1}_\tau = \{\sigma s s' \mid \sigma s \in \Sigma^n \land s, s' \in t\}$. Then the collecting semantics of τ is the set $\Sigma^*_\tau = \bigcup_{n \geq 0} \Sigma^n_\tau$ of all partial traces of all finite lengths.

4. Partial trace semantics in fixpoint form

Observe that $\Sigma^1_\tau \cup \Sigma^{n+1}_\tau = F_{\tau}(\Sigma^n_\tau)$ where:

$$ F_{\tau}(X) = \{s \mid s \in \Sigma\} \cup \{\sigma s s' \mid \sigma s \in X \land s, s' \in t\} $$

so that Σ^*_τ is a fixpoint of F_{τ} in that $F_{\tau}(\Sigma^*_\tau) = \Sigma^*_\tau$ [Cousot and Cousot, 1979].

The proof is as follows:

$$ F_{\tau}(\Sigma^*_\tau) = F_{\tau}(\bigcup_{n \geq 0} \Sigma^n_\tau) \quad \text{[by def. Σ^*_τ]}$$

$$ = \{s \mid s \in \Sigma\} \cup \{\sigma s s' \mid \sigma s \in \bigcup_{n \geq 0} \Sigma^n_\tau \land s, s' \in t\} \quad \text{[def. F_{τ}]}$$

$$ = \{s \mid s \in \Sigma\} \cup \bigcup_{n \geq 0} \{\sigma s s' \mid \sigma s \in \Sigma^n_\tau \land s, s' \in t\} \quad \text{[set theory]}$$

$$ = \Sigma^1_\tau \cup \bigcup_{n \geq 0} \Sigma^{n+1}_\tau \quad \text{[by def. Σ^1_τ and Σ^{n+1}_τ]}$$

$$ = \bigcup_{n' \geq 1} \Sigma^{n'}_\tau = \bigcup_{n \geq 0} \Sigma^n_\tau \quad \text{[by letting $n' = n + 1$ and since $\Sigma^n_\tau = \varnothing$]}$$
Now assume that $F^\infty_\tau(X) = X$ is another fixpoint of F^∞_τ. We prove by recurrence that $\forall n \geq 0 : \Sigma^n_\tau \subseteq X$. Obviously $\Sigma^0_\tau = \emptyset \subseteq X$. $\Sigma^1_\tau = \{ s \mid s \in \Sigma \} \subseteq F^\infty_\tau(X) = X$. Assume by recurrence hypothesis that $\Sigma^n_\tau \subseteq X$. Then $\sigma s \in \Sigma^n_\tau$ implies $\sigma s \in X$ so $\{ \sigma s s' \mid \sigma s \in \Sigma^n_\tau \land s, s' \in t \} \subseteq \{ \sigma s s' \mid \sigma s \in X \land s, s' \in t \}$ whence $\Sigma^{n+1}_\tau \subseteq F^\infty_\tau(\Sigma^n_\tau) \subseteq F^\infty_\tau(X) = X$. By recurrence $\forall n \geq 0 : \Sigma^n_\tau \subseteq X$ whence Σ^∞_τ is the least fixpoint of F^∞_τ, written:

$$
\Sigma^\infty_\tau = \text{lfp}_\subseteq F^\infty_\tau = \bigcup_{n \geq 0} F^\infty_\tau^n(\emptyset)
$$

where $f^0(x) = x$ and $f^{n+1}(x) = f(f^n(x))$ are the iterates of f.

5. The reflexive transitive closure as an abstraction of the partial trace semantics

Partial execution traces are too precise to express program properties that do not relate to intermediate computation steps. Considering initial and final states only is an abstraction:

$$
\alpha^*(X) = \{ \vec{\alpha}(\sigma) \mid \sigma \in X \} \quad \text{where} \quad \vec{\alpha}(s_0 s_1 \ldots s_n) = s_0, s_n.
$$

Observe that $\alpha^*(\Sigma^\infty_\tau)$ is the reflexive transitive closure t^* of the transition relation t viz. the set of pair s, s' such that there is a finite path in the graph $\tau = \Sigma, \Sigma_1, t$ from vertex s to vertex s' through arcs of t: $x, y \in t^*$ if and only if $\exists s_0, \ldots, s_n \in \Sigma: x = s_0 \land \ldots \land s_i, s_{i+1} \in t \land \ldots \land s_n = y$.

Now if Y is a set of pairs of initial and final states, it describes a set of partial traces where the intermediate states are unknown:

$$
\gamma^*(Y) = \{ \sigma \mid \vec{\alpha}(\sigma) \in Y \} = \{ s_0 s_1 \ldots s_n \mid s_0, s_n \in Y \}
$$

So if X is a set of partial traces, it is approximated from above by $\alpha^*(X)$ in the sense that $X \subseteq \gamma^*(\alpha^*(X))$.

6. Answering concrete questions in the abstract

To answer concrete questions about X one may sometimes answer it using a simpler abstract question on $\alpha^*(X)$. For example the concrete question “Is there a partial trace in X which has s, s' and s'' as initial, intermediate and final states?” can be replaced by the abstract question “Is there a pair s, s' in $\alpha^*(X)$?”. If there is no such a pair in $\alpha^*(X)$ then there is no such a partial trace in $\gamma^*(\alpha^*(X))$ whence none in X since $X \subseteq \gamma^*(\alpha^*(X))$. However if there is such a pair in $\alpha^*(X)$ then we cannot conclude that there is such a trace in X since this trace might be in $\gamma^*(\alpha^*(X))$ but not in X. The abstract answer must always be sound but may sometimes be incomplete. However if the concrete question is “Is there a partial trace in X which has respectively s and s' as initial and final states?” then the abstract answer is sound and complete.
7. Galois connections

Given any set X of partial traces and Y of pair of states, we have:

$$\alpha^*(X) \subseteq Y \iff \{ \alpha(\sigma) \mid \sigma \in X \} \subseteq Y$$

(by def. α^*)

$$\iff \forall \sigma \in X : \alpha(\sigma) \in Y \iff X \subseteq \{ \sigma \mid \alpha(\sigma) \in Y \}$$

(by def. \subseteq)

$$\iff X \subseteq \gamma^*(Y)$$

(by def. γ^*)

So $\alpha^*(X) \subseteq Y$ if and only if $X \subseteq \gamma^*(Y)$, which is a characteristic property of Galois connections. Galois connections preserve joins in that $\alpha^* \left(\bigcup_{i \in I} X_i \right) = \{ \alpha(\sigma) \mid \sigma \in \bigcup_{i \in I} X_i \} = \bigcup_{i \in I} \{ \alpha(\sigma) \mid \sigma \in X_i \}$ = $\alpha^*(X_i)$. Equivalent formalizations involve Moore families, closure operators, etc [Cousot, 1978; Cousot and Cousot, 1979].

8. The reflexive transitive closure semantics in fixpoint form

Since the concrete (partial trace) semantics can be expressed in fixpoint form and the abstract (reflexive transitive closure) semantics is an abstraction of the concrete semantics by a Galois connection, we can also express the abstract semantics in fixpoint form. This is a general principle in Abstract Interpretation [Cousot and Cousot, 1979].

We have $\emptyset \subseteq \gamma^*(\emptyset)$ whence $\alpha^*(\emptyset) \subseteq \emptyset$ proving $\alpha^*(\emptyset) = \emptyset$ by antisymmetry.

For all sets X of partial traces, we have the commutation property:

$$\alpha^*(F^*(\bar{\tau}(X))) = \alpha^*(\{ s \mid s \in \Sigma \} \cup \{ ss' \mid \sigma s \in X \land s, s' \in t \})$$

(def. F^*)

$$= \{ \alpha(s) \mid s \in \Sigma \} \cup \{ \alpha(ss') \mid \sigma s \in X \land s, s' \in t \}$$

(def. α^*)

$$= \{ s, s' \mid s \in \Sigma \} \cup \{ \sigma_0, s' \mid \exists s : \sigma s \in X \land s, s' \in t \}$$

(def. α^*)

$$= I_S \cup \{ \sigma_0, s' \mid \exists s : \sigma_0, s \in \alpha^*(X) \land s, s' \in t \}$$

(def. $I_S = \{ x, x \mid x \in S \}$ and α^*)

$$= I_S \cup \alpha^*(X) \circ t$$

(def. composition \circ of relations)

$$= F^*_\alpha(\alpha^*(X))$$

(by defining $F^*_\alpha(Y) = I_S \cup \gamma^*(Y \circ t)$)

If follows, by recurrence, that the iterates $F^*_\alpha^n(\emptyset)$ of F^*_α and those $F^*_\tau^n(\emptyset)$ of F^*_τ are related by α^*. For the basis, $\alpha^*(F^*_\tau^0(\emptyset)) = \emptyset = F^*_\tau^0(\emptyset)$. For the inducton step, if $\alpha^*(F^*_\tau^n(\emptyset)) = F^*_\tau^n(\emptyset)$ then $\alpha^*(F^*_\tau^n+1(\emptyset)) = \alpha^*(F^*_\tau(F^*_\tau^n(\emptyset))) = F^*_\tau(\alpha^*(F^*_\tau^n(\emptyset))) = F^*_\tau(F^*_\tau^n(\emptyset)) = F^*_\tau^n+1(\emptyset)$. It follows that $\alpha^*(\Sigma^*_\tau) = \alpha^*(\bigcup_{n \geq 0} F^*_\tau^n(\emptyset)) = \bigcup_{n \geq 0} \alpha^*(F^*_\tau^n(\emptyset)) = \bigcup_{n \geq 0} F^*_\tau^n(\emptyset) = \emptyset$. For the basis, $\alpha^*(F^*_\tau^0(\emptyset)) = \emptyset = F^*_\tau^0(\emptyset)$. For the inducton step, if $\alpha^*(F^*_\tau^n(\emptyset)) = F^*_\tau^n(\emptyset)$ then $\alpha^*(F^*_\tau^n+1(\emptyset)) = \alpha^*(F^*_\tau(F^*_\tau^n(\emptyset))) = F^*_\tau(\alpha^*(F^*_\tau^n(\emptyset))) = F^*_\tau(F^*_\tau^n(\emptyset)) = F^*_\tau^n+1(\emptyset)$. It follows that $\alpha^*(\Sigma^*_\tau) = \alpha^*(\bigcup_{n \geq 0} F^*_\tau^n(\emptyset)) = \bigcup_{n \geq 0} \alpha^*(F^*_\tau^n(\emptyset)) = \bigcup_{n \geq 0} F^*_\tau^n(\emptyset) = \emptyset$.
\(\text{lfp}_0^\subseteq F^*_\tau \). This can be easily generalized to order theory [Cousot, 1978; Cousot and Cousot, 1979] and is known as the **fixpoint transfer theorem**.

Observe that if \(\Sigma \) is finite then the fixpoint definition provides an iterative algorithm for computing the reflexive transitive closure of a relation as \(X^0 = \emptyset, \ldots, X^{i+1} = F^*_\tau(X^i), \ldots \), until \(X^{n+1} = X^n = \text{lfp}_0^\subseteq F^*_\tau = t^* \).

9. The reachability semantics as an abstraction of the reflexive transitive closure semantics

The reachability semantics of the transition system \(\tau = (\Sigma, \Sigma_i, t) \) is the set \(\{ s' | \exists s \in \Sigma_i : s, s' \in t \} \) of states which are reachable from the initial states \(\Sigma_i \). This is an abstraction \(\alpha^*(t^*) \) of the reflexive transitive closure semantics \(t^\ast \) by defining the right-image \(\text{post}[r]Z = \{ s' | \exists s \in Z : s, s' \in r \} \) of the set \(Z \) by the relation \(r \) and

\[
\alpha^*(Y) = \text{post}[Y|\Sigma_i] = \{ s' | \exists s \in \Sigma_i : s, s' \in Y \}.
\]

Let \(\gamma^*(Z) = \{ s, s' | s \in \Sigma_i \Rightarrow s' \in Z \} \). We have the Galois connection:

\[
\alpha^*(Y) \subseteq Z \iff \{ s' | \exists s \in \Sigma_i : s, s' \in Y \} \subseteq Z \quad \text{(def. } \alpha^* \text{)}
\]

\[
\iff \forall Z' : \forall s \in \Sigma_i : s, s' \in Y \implies s' \in Z \quad \text{(def. inclusion } \subseteq \text{)}
\]

\[
\iff \forall s, s' \in Y : s \in \Sigma_i \implies s' \in Z \quad \text{(def. implication } \implies \text{)}
\]

\[
\iff Y \subseteq \{ s, s' | s \in \Sigma_i \Rightarrow s' \in Z \} \iff Y \subseteq \gamma^*(Z) \quad \text{(def. } \subseteq, \gamma^* \text{)}
\]

10. The reachability semantics in fixpoint form

To establish the commutation property, we prove that

\[
\alpha^*(F^*_\tau(Y)) = \{ s' | \exists s \in \Sigma_i : s, s' \in (Y \circ \tau \cup \gamma^*) \} \quad \text{(by def. } \alpha^* \text{ & } F^*_\tau) \]

\[
= \{ s' | \exists s \in \Sigma_i : s' = s \} \cup \{ s' | \exists s \in \Sigma_i : \exists s'' : s, s'' \in Y \land s'' = s \} \quad \text{(by def. } 1_{\Sigma_i} \text{ & function composition } \circ \text{)}
\]

\[
= \Sigma_i \cup \{ s' | \exists s'' \in \alpha^*(Y) \land s'' = s \} \quad \text{(by def. } \alpha^* \text{)}
\]

\[
= F^*_\tau(\alpha^*(Y)) \quad \text{(by defining } F^*_\tau(Z) = \Sigma_i \cup \text{post}[Z] \text{)}
\]

By the fixpoint transfer theorem, it follows that \(\alpha^*(t^*) = \alpha^*(\text{lfp}_0^\subseteq F^*_\tau) = \text{lfp}_0^\subseteq F^*_\tau \).

Observe that if \(\Sigma \) is finite, we have a forward reachability iterative algorithm (since \(\text{lfp}_0^\subseteq F^*_\tau = \bigcup_{n \geq 0} F^*_\tau^n(\emptyset) \)) which can be used to check e.g. that all reachable states satisfy a given safety specification \(S \): \(\alpha^*(t^*) \subseteq S \iff \forall t : F^*_\tau^n(\emptyset) \subseteq S \).
11. The interval semantics as an abstraction of the reachability semantics

In case the set of states of a transition system $\tau = \Sigma, \Sigma_i, \ell$ is totally ordered Σ, \prec with extrema $-\infty$ and $+\infty$, the interval semantics $\alpha^n(\alpha^* (t^*))$ of τ provides bounds on its reachable states $\alpha^* (t^*)$:

$$\alpha^n(Z) = [\min Z, \max Z]$$

where $\min Z$ (max Z) is the infimum (resp. supremum) of the set Z and $\min \emptyset = +\infty$ (resp. $\max \emptyset = -\infty$). All empty intervals $[\ell, h]$ with $h < \ell$ are identified to $[+\infty, -\infty]$. By defining the concretization $\gamma^n([\ell, h]) = \{ s \in \Sigma \mid \ell \leq s \leq h \}$, we can define the abstract implication $[\ell, h] \subseteq [\ell', h']$ as $\gamma^n([\ell, h]) \subseteq \gamma^n([\ell', h'])$ or equivalently $(\ell \leq \ell' \land h \leq h')$. We have a Galois connection:

$$\alpha^n(Z) \quad [\ell, h] \iff [\min Z, \max Z] \quad [\ell, h] \quad \text{def. } \alpha^n \gamma^n \quad \text{def. } \gamma^n \alpha^n$$

$$\iff Z \subseteq \{ s \in \Sigma \mid \ell \leq s \leq h \} \quad \text{def. min & max } \gamma^n \quad \text{def. } \gamma^n \quad \text{def. } \gamma^n$$

By defining $\bigcup_{i \in \Delta} [\ell_i, h_i] = [\min_{i \in \Delta} \ell_i, \max_{i \in \Delta} h_i]$, the characteristic property that Galois connections preserves least upper bounds is now $\alpha^n(\bigcup_{i \in \Delta} Z_i) = \bigcup_{i \in \Delta} \alpha^n(Z_i)$.

12. The interval semantics in fixpoint form

Obviously, $\alpha^n(\emptyset) = [+\infty, -\infty]$. Moreover:

$$\alpha^n(F^\bullet_r(Z)) = \alpha^n(\Sigma_i \cup \text{post}[t]Z) \quad \text{def. } F^\bullet_r$$

$$= \alpha^n(\Sigma_i) \quad \alpha^n(\text{post}[t]Z) \quad \text{Galois connection} \quad \text{def. } F^\bullet_r$$

$$\quad \text{[min } \Sigma_i, \text{ max } \Sigma_i \text{] } \alpha^n(\text{post}[t](\gamma^n(\alpha^n(Z)))) \quad \text{def.}$$

$$\alpha^n \text{ and since } Z \subseteq \gamma^n(\alpha^n(Z)) \text{ so } \text{post}[t]Z \subseteq \text{post}[t](\gamma^n(\alpha^n(Z))) \text{ whence}$$

$$\alpha^n(\text{post}[t]Z) \quad \alpha^n(\text{post}[t](\gamma^n(\alpha^n(Z)))) \quad \text{def. } \gamma^n \alpha^n$$

$$\quad \text{by defining } F^\bullet_r \text{ such that}$$

$$\left[\begin{array}{c} \text{[min } \Sigma_i, \text{ max } \Sigma_i \text{]} \quad \alpha^n \circ \text{post}[t] \circ \gamma^n(I) \quad F^\bullet_r(I) \quad \text{[def. } F^\bullet_r \text{]} \end{array} \right]$$

We only have semi-commutation $\alpha^n(F^\bullet_r(Z)) \quad F^\gamma_r(\alpha^n(Z))$ hence a fixpoint approximation [Cousot and Cousot, 1979]: $\alpha^n(\alpha^*(t^*)) = \alpha^n(\text{lfp}^\mathbb{F}_\gamma F^\bullet_r)$

$lfp^\mathbb{F}_\gamma F^\bullet_r$. So questions $\alpha^*(t^*) \subseteq \gamma^n(S)$ have sound answers $lfp^\mathbb{F}_\gamma F^\bullet_r$ in the abstract.

1or, more generally, form a complete lattice.
13. Convergence acceleration

In general, the iterates \(\operatorname{lfp}_{(\omega, -\infty)}^{\tau} F^{n} \) diverge.

For example for the transition system \(\mathbb{Z}, \{0\}, \{x, x' \mid x' = x + 1\} \) of program \(x := 0 \); while true do \(x := x + 1 \), we get \(F^{\tau}(0, h) = [0, 0] \cup [\ell + 1, h + 1] \) with diverging iterates \([\omega, -\infty], [0, 0], [0, 1], \ldots, [0, n], \ldots\) which least upper bound is \([0, +\infty]\).

14. Widening

Therefore, to accelerate convergence, we introduce a \textit{widening} \(\triangledown \) [Cousot and Cousot, 1977] such that \(I \triangledown J \) and \(J \triangledown I \) and the iterates with widening defined as \(I^0 = [\omega, -\infty], I^{n+1} = I^n \) if \(F_{\tau}^{\downarrow}(I^n) = I^n \) while \(I^{n+1} = I^n \triangledown F_{\tau}(I^n) \) otherwise do converge. Then their limit \(I^\lambda \) is finite (\(\lambda \in \mathbb{N} \)) and is a \textit{fixpoint overapproximation} \(\operatorname{lfp}_{(\omega, -\infty)}^{\tau} F^{\tau} \uparrow I^\lambda \).

An example of interval widening consists in choosing a finite ramp \(-\infty = r_0 < r_1 < \ldots < r_k = +\infty, k \geq 1 \) and \([\omega, -\infty] \triangledown [\ell', h'] = [\ell, h] \) while, otherwise, \([\ell, h] \triangledown [\ell', h'] = [\ell, \min\{\ell, r_i\} \leq \ell' \} else \ell, h' \{h' > h \) then \(\min\{r_i \mid h' \leq r_i\} \) else \(h \).

For the transition system \(\mathbb{Z}, \{0\}, \{x, x' \mid x < 100 \land x' = x + 1\} \) of program \(x := 0 \); while \(x < 100 \) do \(x := x + 1 \) and ramp \(-\infty < -1 < 0 < 1 < +\infty \), we have \(F^{\tau}(0, h) = [0, 0] \cup [\ell + 1, \min\{99, h\} + 1] \) and the iterates with widening \(I^0 = [\omega, -\infty], I^1 = I^0 \triangledown F^{\tau}(I^0) = F^{\tau}(I^0) = [0, 0] \cup [1, 1] = [0, 1], I^2 = I^1 \triangledown F^{\tau}(I^1) = [0, 1] \triangledown [0, 2] = [0, +\infty] \). This is the limit of these iterates with widening since \(F^{\tau}([0, +\infty]) = [0, 100] \cup [0, +\infty] \).

15. Narrowing

The limit of an iteration with widening can be improved by a \textit{narrowing} \(\Delta \) [Cousot and Cousot, 1977] such that \(J \preceq I \) implies \(J \preceq \Delta J \preceq I \). All terms in the \textit{iterates with narrowing} \(J^0 = I^\lambda, \ldots, J^{n+1} = J^n \Delta F^{\tau}(J^n) \) improve the result obtained by widening since \(\operatorname{lfp}_{(\omega, -\infty)}^{\tau} F^{\tau} \downarrow J^\lambda \).

An example of interval narrowing is \([\ell, h] \Delta [\ell', h'] = [\ell', h'] \) i.e. \(F^{\tau}(0, h) = [0, +\infty], J^1 = [0, +\infty] \Delta F^{\tau}([0, +\infty]) = [0, +\infty] \Delta [0, 100] = [0, 100] \) and so \(J^n = [0, 100] \) for \(n \geq 1 \) since \(F^{\tau}([0, 100]) = [0, 100] \).

16. Composition of abstractions

We have defined three abstractions of the partial trace semantics \(\Sigma^{\tau}_\alpha \) of a transition system \(\tau \). The design was compositional in that the composition
The four semantics of a transition system \(\tau = \Sigma, \Sigma, t \) that we have considered form a hierarchy from the partial traces \(\Sigma_\ast \), to the reflexive transitive closure \(\alpha \circ \alpha^* \), reachability \(\alpha \circ \alpha^* (\Sigma_\ast) \) and interval semantics \(\alpha^\ast \circ \alpha^* \circ \alpha^\ast (\Sigma_\ast) \), in abstraction order. The complete range of other possible abstract semantics include all classical ones for programming languages [Cousot, 2002]. By undecidability, none is computable, but effective widening/narrowing iterations can be used to compute approximations (which are more precise than resorting to finite abstractions, as in abstract model checking [Cousot and Cousot, 1992b]). More abstract semantics can answer less questions precisely than more concrete semantics but are cheaper to compute or approximate. This covers all static analysis, including dataflow analysis [Cousot and Cousot, 1979], abstract model checking [Cousot, 2000b], typing [Cousot, 1997], etc. In practice the right balance between precision and cost can lead to precise and efficient abstractions, as for example in Astrée [Blanchet et al., 2003].

References

