9. PROOF CHARTS
The idea of presenting program
Lamportl77] and later developed by

Manna & Pnuelil82]. However because
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proofs by diagrams was introduced by
Owicki & Lamport[82] and

of a number of restrictions {such as

impossibility of making infinite inductions) the method was not

semantically complete.

This: motivates -odr generalization which can be introduced by the

self-explanatory

Example 9-1 :

The "a

at paragraph 5.2 can be presented as follows (we write

for [ec=L] )

Proposition 1

at Start A.EZDA n=n

la Burstall” total correctness proof of program 2-1 considered

at L as a shorthand

}

| at Loop A n0 A n=nA p=1

Lemma 0

at Loop A n=0A |:y~'—'2ﬂ

at Finish A p=2ﬂ

Lemma O

at Loop A n>0 A n=nA p=p

P
at Loop A n>0A n=nA p=p

l

at Loop o n>0 A n=n-1A p=2xp

lemma 0, 0<n<n

T

--_.__“—-—-___._‘__:___‘____‘>
at Loop A n=0A n=nAp=p

. . :

at Loop A n=0 A p=£)_x2ﬂ
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A proof chart for a transition system (S,t) will be formalized using
a finite set of finite well-structured single-entry single-exit labelled
graphs. We write I€~whmb 1° to denote such a graph with a unhigue entry

vertex labelled I€ and a unigue exit vertex labelled IG.

The set of admissible graphs will be defined by a graph grammar.
Elementary graphs are of the form I ——J where I is the entry vertex, J
is the exit vertex and there is a single edge from vertex I to vertex J.
There are different types of edges (drawn by different arrows) some of
which can be labelled (the label is then written on the corresponding arrow) .
Composite graphs are obtained using the following graph composition

operations

. If I~w~>]J and K~~~>| are two graphs such that J=K then
I ~~~~> J ~~~> | denotes the graph such that the entry vertex K is identified
with the exit vertex 3, there are no other mixtures of the vertices of the
original graphs and the entry (respectively exit) vertex of the composite

graph is the vertex labelled I (respectively L.

. If I ~~~~>J and K ~~~~>L are two graphs such that I=K and J=L then

~~~rre 3 denotes the composite graph where the entry (respectively exit)

T o

vertices of the original graphs have been identified.

. If IT~~~~>J and K ~~~~>L are two graphs such that I=K then the loop

T rogorn” J
Reromaran

(W 1

exit vertex J and with a new arc from vertex L to entry vertex I.

is the composite graph with entry vertex I identified with K, with

We write I(so,g,g,s) {respectively I(SO{E,E.E,SJ and I(sg,s,s8)) to
mean that the label I attached to a graph vertex belongs to
(SxSxSMxS + {tt,#}) where m=n (respectively m=n+1, m=0} is the
enclosing loops. Informally s, is the value of the state on program entry,
g.(respectively gi] is the value of the state corresponding to the entry of
the graph (respectively to the entry of the i-th enclosing loop in the

graph) and s is the value of the current state.
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DEFINITION 9-2  (Proof charts)

A proof chart for (S,t) is a pair (A, ), {(GJL’HIL’WJL’_<JL N: LeA])
such that (A, ) is a finite well-founded set (of graph names) and for
all feA, er(Sz-*wl], Wf(wl,-<2] and G, is a well-formed chart

2
Izﬁ(so,i,s] e I%Z[so,g,s] generated by the following graph grammar :

J(so,s,8,8) ~~~>Kl(so,s,8,5) u=

J(s0,5,8,8) —K(sp,5,8,8)
when Vso,i,ses,gesn.[J[so,E,g,s]=>(35'68.t{5,s'] A

¥e'eS. (t(s,g)=>K(sy,s,3,8' W]

'
| J(sq,s,8,s) Nv\——z———%K'ESo;g,g;s)
when 22 A \/so,E,seS,EeSn.[J{SO,_si,'s*,s)=>(I;,2"(so,s,s) A

Ve eS. [Iz,w(so,s,s')=_> K(so,i,g,s' mi1

[ J(SOJEJEJS] M QI:[‘FSLJWZJ*Q] N K(So,i,g,s)

when Vso,_e_,,ses,gesn.[.](so,E,g,s]=>[+‘2(so,s] < thso,g] A
Ii“(so,s,s] A ¥s'eS. (Iz“so,s,s']=> K{so,_s,_,'s’,s' m1

| J[SOJEJEJS] >K(50:_S_;—S>JS]

when ‘v‘so,g,seS,EeSn.[J(so,i,g,s] => K(sn,g,g,s]]

L (sg,5,8,8)
- s

P
s 2

//' =7 _[5015:315J\’\:§V\;
& =
] JESD,E,E,SJ< j7K[50,5,§,5}
i 2
-~
5 o
LDESO:E;gjng

when Vso,_e_._,seS,EeS”.[J[so,E,g,s] = Litso,g,g,s]]

-+ - >
| J(s¢,s,8,8) ~r~~>L(50,5,5,8) ~~~~>K(sp,8,8,s)

=7 K(So ,3,3,5]

| J(sg,s,8,s) Q/

.H\‘.k - =S o
L(sg,s,8.8,8) ~w~~>M(sg,5,5.8,8)

|
|
] (F,W, <)
when fe(S®+W) AWF(W, <) AVsg,s,5,5¢5,8eSM.(
[J(so,5,8,8)=>(K(sq,5,8,8) VL(sg,s,8.5,8)]
[M(so,s,8.8,8)=>([F(s0,5,8)<F(sg,5,8) AL(s0,5,8.5,8)]

VK(SO:E:E:S]] ]]
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{Observe that proof-charts are reducible graphs whence could also be

formalized using a well-structured logical language).
We can prove the inevitability of ¢ for (S,t,¢) by showing that :

(14) There exists a proof chart [I;ztsoﬂg,sl-->Iz£[so{§,s), (F g Woo<p B
2 (A, ) and mef such that

Vsohg,ses.(liﬂtso,s,sl =[sg=sA¢(s)] A Iz"(so{g,s) =[sg=s AY(s,s)])

"A la Floyd"” inevitability proofs can also be presented using proof

charts as shown by the following :

Example 9-3 :

An "& la Floyd” total correctness proof of program 2-1 can also be

presented as follows :

p— = = - |

at Start 7//,\,__{120 A Nn=

}

—_

///—ro\\\\

it ]

n n- =&
at Loop A nzpn>0 A p=2— A n=n |

y

0<n<n

L at Loop A n>n20 A p=22" " A p=p-1 |

at Loop A n2n=0 A p=2‘ﬂ

¥

at FinishA p=2"

THEOREM 9-4  (Soundness of* proof charts)

‘ [14) = ((2), with ne(A~>0rd)
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Proof :

Let (A, }F ),{(GQ,(FR,W2,<£)J,SL€A}] be a proof chart. Since Wf'(wﬁ,—<2] we
can assume without loss of generality that WJLeOr’d and <y =< (otherwise we
can use rank-functions). Since A is finite we can also assume that Aew and

F =<. Since each graph G, is finite we can suppose that its vertices are

L
named by elements of some finite set NQ, the vertex named j being labelled

by J‘ie[SxSxSe[JJxS-*{’d:,FF}] where e(j) is the number of loops enclosing

vertex j. We let €, and o, be the respective names of the unigue entry and
L &

exit vertices of Gz.

For each 2¢A we consider the set T% of tuples <j,50{§,§,5> such that
jeN ' e(j)

S0,5,8€S, ZeS and J%[SO,E,E,SJ holds. The binary relation <«

2)
on T, is defined by <J,s9.8.%,8'> «3<j,s0,8,8,8> if and only if

either Ji—*JfL A s =50AE’=EA§’=§At(s,S’]

or ng¢+\]g A gg =59 /\_'=§/\7§'=_5>/\ Jz,z'[so,s,s’]

or Jz,]; M TN A0 Tt DN J“}Z A g'g=3¢ AE=§A?=EA le[so,s,s')

or [[J% >Jg]V(Jio=$> Jg}v[J‘;>—-——-—>O»==—“$ J%']]A s'9=5Sp /\_S_"=_E‘_»/\-g';'~_8>/\5'=8
or Jio=> J;J: A glg=sy Ai=EA_S)'=§.S A g'=g

or else J‘?L >—-——>o=>>Ji’ A so=sg A S'=5 A §>=—s+,'.s A g =g

Assume that <<jK’50k{Ek'gk’5k>‘ k20> 1s an infinite decreasing seguence
for «p. It follows that <jk:k20> is an infinite path in the finite graph
Gy, hence a cycle. Therefore there is some vertex j of Gy {of type

J——0 <<3,804. 284,84 D1 .81 ,s81 > k20>
J,Q ) such that the sequence J’Solk’ilk’slk’s i +81y 281y k>0
of elements of <<jk:50k{§K:gk’5k>’KZO> such that jyx=j is infinite. This is
. . . ~ 3
in contradiction with szU.-F(soik,_s_ik,siK) =< f(soik,gik,sikl, fe(S®>W) and

Wf(W,=<1J. By reductio ad absurdum, we have Wf(T,,<,.

We choose My=A, 622(50,8]=J29’f80,3,5], 622(80,3,8)=JZ’Q’[80,_5_;S];

A2=Sup+{rk(w2,=<£]:JLeA}, 1?22(50,s,)=1f’7<(\/\ll,—<jl ][Fi[so,sﬂ, n£=z’k(Tl,<<l]*'-’l,

To =T, Izi[so,_el,s] = [JjeN ,geSe(J).[Ji[so,_s_,é*,s) A i=r'k[T2,<<2 )[<j,so,g,§,s>ﬂﬂ

£
when i<n_ and Izzz(so,g,s]ﬂzz(so,g,s).

2
B
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THEOREM 39-5  (Semantic completeness of proof charts)

(2)=> (14)

Proof :

A proof by (2) can be presented by the proof chart [GZ,['FQ,OrdK]], fel

where each Gz, feA is the following chart :

€glsg,8) As=s

I

nz v
IQ (s0,8,8)

e

Hienz.Ile(so,_s_,s] AVYken,. [I;(so,g,s]%kﬂ]

A0,(s0,5,8) A s=8)

<_T Kk S e
[—]ienl.Iz[so,_sl,s) AVkenk.[szso,E,s)%Kﬁi] e

A s5=5 Adg'eS.t(s,8 ) AV eS.[t(s,s )=
3j<i.Ii(so,_s_,s' 313

W

{dien I;(SO,E,S) /\Vkenz.[I;[so,i,s]%KSi]

.
A s=3 A 3R <£.Eez,[so,sl/\ Vs‘eS.(GJL, (sg,s8,9 )=
| 33<1.T; (80,8, N 1)

5

W

A 5=§A+"RE50,S]<¥£

¥e'eS. [0 (50,8,5') = 3j<i.1itso,_s_,s'131

(50,58) A 52[50.5] A

%, f,ls0,8)<f [s9,5)

Y

[31,Jen2.

A j o A ILe .
Tmln{Jeﬂz:Ii(So,i,S)} <m1n{1en2:12[so,§,s]}

: i k :
Hlenz.li(sn,g.&‘-] AVKenﬁ. FIQ(SQ.S.SI%KEIJ

j<ia Ij;(so,_s_,sl A I;"[sg,_s_,g] A Vkeng.[Iz[sn,i,?j]%Kéi])

62[50,_5_,5]
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10. PROVING INEVITABILITY PROPERTIES OF PARALLEL PROGRAMS

Since parallel programs can be represented by non-deterministic
transitions systems, proof charts can also be applied te inevitability

proofs of parallel programs.

Example 9-6 : (Total correctness of a parallel program)

We consider an asynchronous parallel version of program 2-1 to

compute 2R when n=0 :

T8 N1i=0; N2i=N;
2:
I 11: 2. =
. P1:=1
45 =
Ef N1+1 < N2 then
(L T11=N1+1;5 P1:=2xP1;
14 :
N1:=T1;
15:
1 goto 12;
16
Il
218 poieq,
22% 4f N1+1<N2 then
9t T2:=N2-1; P2:=2xP2;
& NZ:=T2;
25:
£i; goto 22;
26:
1;
P := 1if N1+1=N2 then 2XP1xP2 else P1xP2 fi;
4«

We write at j (respectively at ij} to stand for c=j (c;=j) where c

(c;) is the program location counter (of processi when control is in the
parallel command). We write inE for v{at 2: %E}, (P=Q|R) is the
abbreviation of (PA Q)VEIPA R)) whereas if P holds then (P-+alb) denotes
value a else value b. In particular min(a,b) = (asb +alb}.

B P

| !

VR will be shortened to Q“/f R

QN
N\

Q =R
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In the toetal correctness proof chart P:(at1A|1020"wwwv>at4lﬂp=2n°]

we distinguish two cases :

. The case ng<1 is handled by lemma ZD:fat1A 0<n < e at4/\p=2n°]. This
lemma can be proved by hand-simulation and the corresponding chart is left

to the reader.

. The main case ng>1 is handled by lemma L:(Atloop A n1=n1A n2=n2 A n1+1<n2

A Tny~~~> at16 A at26 A n1<ni<n2<min(ni+d,n2) A p1=2"" A p2=2"0 ")

Atloop stands for ([at12Ain{21,..,25}v[in{11, ..,15} A at22]) and Inv is the

where

following invariant
Inv = [(at11=>n1=0p1=2""x(at14+2]|1)A(at14=> t1=n1+1)
Alat21=> n2=ng |p2=2" "M%y (at24 + 2] 1A (at24=> t2=n2-1)]

The proof chart P is the following :

P
at1 A ng=0
/"'-\\
=
/
== \'* =X
at1 A 0<ng<t at1 A ng>1

§ |

at2 A n1=0 A n2=ng>1

|

at11 A at21 A n1=0 A n2=ny>1

at12 A at21 A ni1=0 at11A at22 A ni=0
A n2=ng>1 A n2=ng>1
Z0
| L L

| at16 A at26 A 0<n1<n2<min(n1+1,ng) A p1=2"" A p2=2"0 "2

| l |

‘ at3 A 0<n1<n2<min(n1+1,ne) A p1=2" " A p2=2

- l

‘ at4 A p=2"°

ng-n2
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The proof of lemma L is by induction on n2-n1 which is strictly
decreased after one iteration in the loop of one of the two processes. This
iteration is described by lemma I:(Atloop A ni1=n1An2=n2An1+1<n2 A Iny ~~ee>
Atloop A 0<n2-n1<n2-n1 A n1<n1 A n2<n2 A n1+1<n2 A Inv A (n1=n2 => at15v at25)).
When execution is about to leave the loops we have n1<n2<n1+1. The case
n1=n2 is handled by lemma E:(in{12,15,16} A in{22,25,26} A n1=n1 A p1=p1 A n2=n2
A p2=p2 A n1+12n2 ~~~~> at16 A atZ26 A n1=n1 A p1=p1 A n2=n2 A p2=p2). The proof is
trivial by hand-simulation and the corresponding chart is left to the

reader. The case n2=n1+1 is handled by lemma B:{Atloop A n1=n1 A n1+1=n2=n2

A Iny ~ee> at18/\at28\(21§n1Sn2Smin(n1+1,ﬂgJA|31=2n1A p2=2n°—n2]. the
proof chart L is the folleowing
[
i o _— s
Atloop A n1=n1 An2=n2 A n1+1<n2 A Inv
| RS e s Tinne
I
Atloop A 0<n2-n1<n2-n1 A n1<n1 A n2<n2
A (n1=n2 => at15 Vv at25) A Inv
__;:___—ﬂ
e \ -
= \““\
[(at22 A at25)v(ati15 A at12) ] AtloopA n1<n1 A =>0<n2-n1<n2-n1 A n1<n1
A n1<n1=n2<n2 A Inv nl+1= n2£_rl2_/\ Inv A N2sn2 A Atloop A
n1+1<n2 A Inv
E B L,0<n2-n1<n2-n1

at16 A at26 A n1<n1<n2<min(ni+1,n2) A p1=2"" A p2=2"0 M2

L 5 —= - 000000 |

There is no difficulty about the proofs of lemmas I and B which can

entirely be done by hand simulation.

We let Inv' be InvAni+i<n2 in the proof chart T :
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Atloop A n1=n1A n2=n2 A Inv’

at12 A at254A Inv'é = p o at15 A at22 A Inv'
A n1=n1 A n2=n2 = - s S e A n1=n1 A n2=n2
at12 Aat21 AInv’

A n1=n1 A n2=n2

=
at11 A at22 AInv’
A n’l=DlAn2=£

at12 A at22 A Inv’
]
at15 A at23 A Inv'’

—> A nl=nlA nZ2=n2 H\“\
A n1=n1 A n2=n2

at13 A at21 AInv’' at11 A at23 A Inv’ /
A nl=n1 A n2=n2 A n1=n1 A n2=n2

at13 A at25 A Inv’
A nl=nl A n2=n2

at14 A at25A Inv'

]
\\“‘“«E_ v v MH 215 A at24 A Inv’
A ni=n A n2=n2 ¥at13 A at22 A Inv’ at12 A at23 AInv'e—— | A ni=niAn2=n2

L L L ATnfsd A s at11 Aat24 A Inyv’
A n1=n1 A n2=n2 { A nt=nlAn2=nZ
at15 A at25 A Inv’ i at15 A at25 A Inv’
A pl=n1+1 A n2=n2 A nl1=n1 A n2=n2-1
A pull= BN —
| | x .
at15 A at21 Alnv’ } | at11 A at25 A lnv
A n1=n1+1 A n2=n2 I | A n1=n1 A n2=n2-1
wt - | | =
at12 A at25 A Inv | I at15 A at22 A Inv'
A n1=n1+1A n2=n2 +xv v A n1=n1 A n2=n2-1
" at14 A at22 A Inv' at13 A at23 A Inv’ at12 A at24 A Inv'
at12 A at21 A Invt \ | A N170lA n2=n2 TR ARDAEgL S at11 A at22 A Inv’
A nl=n1+1 A n2=n2 /\ /\ /\ A n1=n1 A n2=n2-1 |
f/ at15 A at22 A Inv’ at14 A at23 A Inv at13Aat24AIn\7‘ at12 A at25 A Inv'
A n1=n1+1 A n2=n2 A n1=n1 A n2=n2 A n1=n1 A n2=n2 A n1=n1 A n2an2-1 }
at15 A at23 A Inv' at14 A at24 A Inv' at13 A at25A Inv'
A n1=n1+1 A n2=n2 A n1=n1 A n2=n2 A n1=n1A n2=n2-1
at12 A at23 A Inv' at15 A at24 A Inv' at14 s at25 A Inv' at13 s atzZ2 A Inv'
A n1=n1+1A n2=n2 A n1=n1+1 A n2=n2 A n1=n1 A n2=n2-1 A n1=n1 A n2=n2-1
at12 A at24 A Inv' at15 A at25A Inv' at14 A at22 A Inv'
A n1=n14+1 A n2=n2 A n1=n1+1 A n2=n2-1 A n1=n1 A n2=n2-1
] /\ !
at12 A at25 A Inv' at15 A at22 A Inv’
A nl1=n1+1 A n2=n2-1 A n1=n1+1 A n2=n2+1
AL ﬂ N ARHL AR
u'd A" h¥4 W' \£ L4 "4 LY

Atloop A 0<n2-n1<n2-n1A n1<n1 A n2sn2 A (A1=n2=> (at15 Vv at25)) A Inv’
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Atloop A n1=n1 A n1+1=n2=n2 A Inv

[ 4
at11 A at22 A InvA
n1=n1<n1+1=n2=n2

at13Aat2Z2 AInva |
n1=n1<n1+1=n2=n2 ! at11 A at26 AInv A
\‘k n1=n1<n1+1=n2=n2

B

at14 A at22 A Inv A

n”l-'ri<n’l+‘=n2=n_2
n1=n1<n1+1=n2=n2

P\ Y

at15 A at22 A Inv A [
|_1_15m=n2=n_2 |
|

at12 A at26 AInvA

L
at13 A atiEAInva
n1=n1<ni+1=n2=n2

at14 A at26 A Inv A
n’lnn_‘l.<r$1+1=n‘2=n_2

AN

E

at15 A at26 A Inv A
n1<n1=n2=n2

2

E

at12 A at22 Alnv A
n1=n1<n1+i=n2=n2

?E

at16 A at21 A Inv

wa

at16 A at22 A Inv A /
n1=n1<n1+1=n2=n2

E ¢

n1<n1=n2=n2

n1=n1<n1+1=n2=nZ |

_} at1Z2 A at24 A Inv A

at12 A at25 A Tnv A

at12 A at23 AInv A
A n1n£\l<.—|1+ =n2=n_2

nl =_r‘i<n‘|+‘l=n2=ni?

o+ at16 A at23 A Inva
n1=nl<nl+1=n2=n2
at16 A at24 AInvAa
mtn'ifn'1+1 A n2=p_2

e

at15 A at25 A Tnv A
ﬂ=n1=n2<pz

TE

1 no-n2

at16 A at26 A n1=ni<n2<min(ni+1,n2) A p1=2"" A p2=2




