Abstracting Induction by Extrapolation and Interpolation

Patrick CousoTt

Courant Institute of Mathematical Sciences, New York University
pcousot@cims.nyu.edu, cims.nyu.edu/"pcousot

Abstract. We introduce a unified view of induction performed by automatic verifi-
cation tools to prove a given program specification This unification is done in the
abstract interpretation framework using extrapolation (widening/dual-widening) and
interpolation (narrowing, dual-narrowing, which are equivalent up to the exchange of
the parameters). Dual-narrowing generalizes Craig interpolation in First Order Logic
pre-ordered by implication to arbitrary abstract domains. An increasing iterative static
analysis using extrapolation of successive iterates by widening followed by a decreas-
ing iterative static analysis using interpolation of successive iterates by narrowing
(both bounded by the specification) can be further improved by a increasing iterative
static analysis using interpolation of iterates with the specification by dual-narrowing
until reaching a fixpoint and checking whether it is inductive for the specification.

Keywords: Abstract induction, Abstract interpretation, Dual-narrowing, Dual-widening, Ex-
trapolation, Interpolation, Narrowing, Static analysis, Static checking, Static verification, Widen-

ing.

1. Introduction

Program analysis, checking, and verification require some form of induction on program steps
[41,62], fixpoints [64], program syntactic structure [47,65], program data [6], or more generally
segmentation hierarchies [26]. Whichever form of induction is chosen, the difficulties boil down
to the basic case of a proof that Ifp F C S where S € 9 is a specification in a concrete poset
(D, C, L, U)and F € D +— D is a transformer given by the program semantics, or dually’ 2.
Hypotheses on F like monotony, [co-]continuity, contraction, etc. ensure the existence of the least
fixpoint Ifp© F for partial order C.

Since the concrete domain & is in general not machine-representable, the problem is ab-
stracted in an abstract domain @ which is a pre-order® (%, C, T, 1) with increasing concretiza-
tiony € D — D. An example is the pre-order (FOL, = , ff, V) of first-order formule FOL
preordered by implication = . The concretization is the interpretation of formulae in a given
set-theoretic structure. This is an abstraction since not all set-theoretic properties are expressible
in first order logic, a problem which is at the origin of the incompleteness of Hoare logic [47,17].

The concrete transformer F is abstracted by an abstract transformer F € DD satisfying
the pointwise semi-commutation property F o y C y o F (or dually). Abstract iterates X 02 1,
v X' F()_(n), ..., are designed to converge to a limit I € @, which is an inductive abstract
property, that is F(T) C T (e.g. I is an inductive invariant [41,62]).

For abstract specifications S € @, the program verification consists in checking that I C S.
By semi-commutation and fixpoint induction [66], this implies IfpS F C y(S). The abstraction is
always meant to be sound (a proof in the abstract is valid in the concrete, I T 5 = IfpSF C

! Ifp; F is the C-least fixpoint of F C-greater than or equal D, if any. The least fixpoint of F, if
any, is Ifp€ F £ Ifp{ F where L is the infimum of . gfpy F = Ifp; F is dual.

? A variant, as found in strictness analysis [61] is Ifp= F C S where the computational order C is
different from the approximation order/logical implication C can be handled in a way similar
to that proposed in this paper, see [23].

® The pre-order C is reflexive and transitive. Additionally, a partial order is antisymmetric.

v(8)) and sometimes complete (a valid concrete property y(S) can be proved in the abstract i.e.
IfpSF C y(S) = 1LC S). A very simple example of a complete abstraction is the FIrRsT of a
context-free grammar [25].

When using finite domains |®| € N (which was shown in [18] to be strictly equivalent to pred-
icate abstraction [43]) or Noetherian domains (i.e., with no infinite ascending and/or descending
chain), the induction is done implicitly by repeated joins (or dually meets) in the abstract domain.
By the finiteness hypothesis, the abstract iterates always converge in finitely many steps to a
fixpoint limit.

This is more difficult for static analysis using infinitary abstract domains not satisfying as-
cending/descending chain conditions. Successive joins/meets for successive fixpoint iterations
may diverge. It is therefore necessary to make an induction on the iterates and to pass to the limit.
Under appropriate conditions like [co-]continuity this limit does exist and is unique. Abstract in-
terpretation theory has introduced increasing iterations with widening extrapolation followed by
a decreasing iteration with narrowing interpolation (and there duals) to over/under-approximate
the limit in finitely many steps [13,20]. When the specification cannot be verified after these two
phases, we propose to use a further increasing iteration phase by interpolation with respect to this
specification by dual-narrowing. The whole process can be repeated if necessary. In the particular
case where the abstract domain @ is the set (FOL, =, ff, V) of first-order logical sentences
over the program variables and symbols, often quantifier-free, pre-ordered by implication, the
additional phase is comparable to program verification using Craig interpolants [56].

We recall and show the following results.

— In Sect. 2., we recall known facts on iteration and fixpoints.

— In Sect. 3., we briefly recall basic static analysis methods in infinite abstract domains by ex-
trapolation with widening/dual-widening and interpolation with narrowing/dual-narrowing.

- In Sect. 4., we explain why a terminating [dual-]widening (enforcing the convergence of it-
erations by extrapolation with [dual-]widening) cannot be increasing in its first parameter.
It follows that static analyzers (like Astrée [28]) which proceed by induction on the program
syntax cannot assume that the abstract transformers F[C] of commands C are increasing since
loop components of C may involve non-increasing [dual-]widenings.

— After expressing soundness conditions on widening and its dual with respect to the concrete
in Sect. 5., we show in Sect. 6. that iteration with widening extrapolation is sound for non-
increasing abstract transformers F by referring to the concrete fixpoint iterations for an in-
creasing transformer F. Similarly, soundness conditions on narrowing and its dual are ex-
pressed in the concrete in Sect. 7. In Sect. 8., iterations with narrowing interpolation for non-
increasing abstract transformers are shown to be sound with respect to the concrete iterations
for a increasing concrete transformer F.

- In Sect. 9., we study dual-narrowing, which is shown to be a narrowing with inverted argu-
ments, and inversely. Graig interpolation [37] in the abstract domain (FOL, = , ff, V) of
first-order formulee pre-ordered by logical implication is an example of dual-narrowing. Static
analysis based on Graig interpolation and SMT solvers [55] has limitations [1], including to be
only applicable to (FOL, = , ff, V), that can be circumvented by appropriate generalization
to dual-narrowing in arbitrary abstract domains.

— In Sect. 10., we discuss terminating extrapolators and interpolators.

— In Sect. 11., we show that after an increasing abstract iteration using extrapolation of suc-
cessive iterates by widening which converges to a post-fixpoint followed by a decreasing ab-
stract iteration using interpolation of successive iterates by narrowing to an abstract fixpoint,
it is no longer possible to improve this imprecise abstract fixpoint by repeated applications of
the abstract transformer. Nevertheless, it is still possible to improve the over-approximation
of the concrete fixpoint by an increasing abstract iteration using interpolation of iterates by
dual-narrowing with respect to this imprecise abstract fixpoint. This can be repeated until an
inductive argument is found implying the specification or no further improvement is possible.

— In Sect. 12., we compare static verification, checking, and analysis. In Sect. 13., we discuss
different utilizations of extrapolation and interpolation. We conclude in Sect. 14.

2. Iteration and fixpoints

We recall results on the iteration of transformers on posets. We let O be the class of all ordinals.
We have [14]:

Lemma 1 (Increasing sequences in posets are ultimately stationary). Any <-increasing* trans-
finite sequence (X%, 5 € 0) of elements of a poset (P, <) is ultimately stationary (i.e. Je¢ € O :
V8 > e : X% = X€. The smallest such e is the rank of the sequence.). O

Definition 2 (Upper-bounded iterates). Let F € D +— D be an transformer on a poset (D, C) and
D € 9. By upper-bounded iterates of F from D we mean a transfinite sequence (X°, § € O) of
elements of D such that X° £ D, X%+1 2 F(X9%), and for limit ordinals 1,¥8 < 1 : X° € X*. O

Definition 3 (Least-upper-bounded iterates). Least-upper-bounded iterates (or lub-iterates) are
upper-bounded iterates in Def. 2 such that for limit ordinals A, X* is the least element such that
V8 <A: X0 cxtieVY: V8 <A:XPcY = X' cCvY. O

Lemma 4 (Increasing fixpoint iterates). Let (X%, § € O) be the iterates of a transformer F € D

D on a poset (D, C) from D € D.

(@) IfF is extensive (i.e. VX € D : X C F(X)) and the iterates are upper-bounded then they are
increasing and F has a fixpoint C-greater than of equal to D.

(b) IfF isincreasing, D a prefix-point of F (i.e. D C F(D)), and the iterates are upper-bounded (resp.
least-upper-bounded) then they are increasing and F has a fixpoint C-greater than of equal to
D (resp. least fixpoint Ilfp, F).

(c) In case (b) of lub-iterates, VY € @ : (DS YAF(Y) CY) = (Ifp FCY).]

Lem. 4.(b)—(c) is often used with the extra assumption that D = 1 is the infimum of a cpo (9,
C, 1), but the least upper bound (lub) needs only to exist for the iterates, not for all increasing
chains (increasing w-chains when F is assumed to be continuous) of the cpo. For example, (FOL,
=, ff, V) has no infinite lubs in general, but specific iterates may or may not have a lub.

Even when X* is chosen to be a minimal upper bound of the previous iterates for limit ordi-
nals 2 (ie. V6 < 1: X0 C XA AVY € D : (V8 < A: X% CY) = Y ¢ X*), F may have no
minimal fixpoint, as shown by the following counter-example

X)\ X/\+1

. ¢
X°=p Xx' Xx? X

3. Iterative static analysis by extrapolation and interpolation
3.1 Mathematical iteration with induction

To calculate a solution I to a system of constraints F(X) C X on a poset (3, C), a mathematician
. . s . .70 = . = /s

(i) will start from an initial approximation I = D for some initial guess D, (ii) calculate the first
. 1 =0, =2 =1 = -0 = =

iteratesT = F(I),I_ = F(I), etc. to help her guess a recurrence hypothesis I = .5(I ,F,S,C

=n

,n), (iii) prove that the recurrence hypothesis is inductive = F(I') =F(¥ (TO,F,E, C.,n)) =

*Amap f € P — Q of pre-order (P, C) into pre-order (Q, <) is increasing if and only if
Vx,ye P:xCy = f(x) < f(y). In particular, a sequence (X?, § € O), considered as
amap X € 0 — D where X% £ X(§), is increasing when f < § = XP < X9 1t is then
called an increasing chain.

J(TO,I?,E, C,n + 1) so that, by recurrence, ¥n € N : = 3(70,1_7,5, E,n)), and (iv) pass to the
limit I = lim,, o F (TO,F,E, C,n). Static analysis must do a similar induction in the abstract.

3.2 Abstract iteration in Noetherian domains

In abstract interpretation with finite abstract domains (which has been shown to be strictly equiv-
alent to predicate abstraction [18]) and, more generally, with Noetherian domains, the induction,
which consists in joining/(dually intersecting) the successive abstract properties ¥ (fo,l?, S,C,

n+1) = ngn(J(fo,l?,g,E,k)), is pre-encoded in the join/(dually meet) operations of the
abstract domain. They are ensured to converge in finitely many steps to a fixpoint limit.

3.3 Abstract iteration in non-Noetherian domains with convergence acceleration

In abstract interpretation with infinitary non-Noetherian abstract domains extra machinery is
needed to discover inductive hypotheses and pass to the limit. For example extrapolators like
terminating widening [12] and dual-widening [20] can enforce convergence of increasing itera-
tions after finitely many steps as illustrated in Fig. 1. Instead of applying the function as in Def. 2

/.

F ___F

lifp F ifp F

Fig. 1. Convergence acceleration by extrapolation with widening

or 3, its derivative is used to accelerate convergence and ultimately reach a post-fixpoint which
over-approximates the least fixpoint [66]. A similar widening is implicitly used in [36].

3.4 Extrapolators (widening, dual-widening) and interpolators (narrowing,
dual-narrowing)

The convergence acceleration operators used in abstract interpretation are of two distinct kinds.
The widening [12] and dual-widening [20] are extrapolators. They are used to find abstract proper-
ties outside the range of known abstract properties. The narrowing [13] and dual-narrowing [20]
are interpolators. They are used to find abstract properties within the range of known abstract
properties. The objective is to over-approximate or under-approximate the limit of increasing or
decreasing fixpoint iterations, so that the various possibilities of using the convergence accelera-
tion operators of Table 1 are illustrated in Fig. 2. Notice that their are four distinct notions since
widening and narrowing (as well as dual-widening and dual-narrowing) are definitely not order-
dual concepts. Of course widening and dual-widening (as well as narrowing and dual-narrowing)
are order-dual concepts. In [11], the approximation properties of extrapolators are considered

Convergence above the limit | Convergence below the limit

Increasing iteration Widening V Dual-narrowing A

Decreasing iteration Narrowing A Dual-widening v

Table 1. Extrapolators (V, V) and interpolators (A, A)

separately from their convergence properties. For example, their approximation properties are
useful to approximate missing or costly lattice join/meet operations. Independently, their con-
vergence properties are useful to ensure termination of iterations for fixpoint approximation.

co-in-
duction

induct-
ion

Fig. 2. Fixpoint iteration approximation

4. Terminating (dual) widenings are not increasing
An iteration sequence with widening in a poset (D, C) has the form X 02 D, whereD € &
—k+1 A Y VF (—k
<k
extensive on the iterates’. It follows that the iterates (X, k € N) form a C-increasing chain®.
The widening V € & X P — D should have the following properties.

(Va) ¥X,YeD:YCXVY.

is some initial approximation, and X), k € N where F can be assumed to be

Requiring the widening to be extensive in its second parameter, that is an extrapolator, en-

sures that ﬁ()_(k) c)_(k+1, which guarantees convergence to an over-approximation of the limit
lim F k(D) of the exact iterates F (X) =X and i (X) =F(F" (X))

O VKT (TLX) — RVT=X)

Thls condition (V.b) guarantees that the iterations with widening do stop as soon as a solutlon

X" to the constraint problem of finding X such that F() € X has been found. FF(X") C X",

then (V.b) ensures that the next iterate is X" AX"VF FX") =X".

—k =
(V.c) Vs terminating that is for any increasing chain (X~ € @, k € N) and arbitrary sequence
(T* € B,k € NysuchthatVk € N : X T Y, the sequence (X" VY™, k € N) is ultimately
— —k —
stationary (i.e. In € N : Vk > n: X vyt = x™.

—k
This condition (V.c) guarantees the convergence of the iterates with widening where (Y, k € N)

stands for (F()_(k), k € N) so that Yk € N : x* c Y* since F € @ > D is extensive but is

otherwise unknown. Because X c 1_3()_(k) C x* VF()_(k) =)_(k+1, ()_(k, k € N)is a C-increasing

chain.

>ie,Vk € N : X~ C F(X) This is also the case when D C F(D) and F is increasing, i.e.,
VX,YeD: (XCY) = F(X)C IKY) It is always possible to use A X - X LI F(X) when the
join Ul exists in the abstract domain 9.

¢ If F is not extensive, one can assume that VX,? €D : X T X VY in which case Vi € N : X C

)—(i +1

7 Be51des extrapolation, widenings are also as an over-approximation/upper-bound in posets
missing least upper bounds. In that case, in addition to (V.a),itis also required VX,Y € & : X C
XVY.Such widenings can be generalized to sets of infinitely many parameters V € p(@)) -2

such that VX € p(D) : VP e L : PC VL.

Example 5 (Interval widenings). The basic widening on the abstract domain of integer intervals
12 {0yuU{[ab] | o <a<b< +ooAa# +oAb# —co} was defined in [19] as O V X =
XV02X [abV]ed = [(c <a? -ozsa)(d>b7? +oos b)]® This basic widening
may yield static analyzes which are less precise than the sign analysis. For example [2, +c0] V [1,
+oo] = [—00,+o0] whereas the sign is [0,+oo]. This is why the interval widening was refined in
[16] into [a,b] V [c,d] 2 [(0<c<a?0]c<a? -o3a),(d>b>0%20]d>b7? +oosbh]).
This can be further improved by using static thresholds in addition to zero [28] or even dynamic
thresholds chosen during the static analysis [52]. In all cases, these widenings are not increasing
in their first parameter [0,1] £ [0,2] but [0,1] V [2,2] = [0,4+00] Z [0,2] = [0,2] V [2,2].]

Counter-example 6 (Top widening). The top widening X V1 Y £ T is terminating, increasing
in its first parameter, but does not satisfy (V.b). A solution f()_(k) C X" is degraded to X L

x* Vf()_(k) = T. This imprecision can be avoided by choosing XVY £ (Y C X ? X s T), which
is more accurate but not increasing. f X1 CYC Xo C Tthen X1 VY =TEZ Xo VY =Xo. O

Theorem 7 (Non-monotonicity of terminating [dual] widening). Let (D, C) be a poset and V €
D X D +— D be a widening satisfying (V.a), (V.b), and (V.c). Then V cannot be increasing in its

first parameter. The dual holds for the dual-widening v satisfying the order-dual (V .a), (ﬁ.b), and
(V.c) of conditions (V.a), (V.b) and possibly (V.c).

Proof. By reflexivity, Y C Y so (V.b) implies Y V'Y

b) imp! Y = Y. By reductio ad absurdum, if V is
increasing in its first parameter then X C Y implies X VY C

YVY=YCXVY by (V.a) which
implies that X V'Y = Y by antisymmetry. By (V.c), Yk > n, XXt vyt =% =%
By hypothesis)_(k c ?k so Yk \Y ?k = ?k which implies Yk > n : ?k = X", in contradiction
with the fact that (?k, k € N) is an arbitrary sequence of elements of &, hence in general not
ultimately stationary. O

When D C F(D) and F is continuous, hence increasing and such that limg _, | o, P (D) = 1fp}, F,
the intuition for Th. 7 is that applications of F and V from below this fixpoint would remain below
the fixpoint, making any over-approximation impossible. The jump over the least fixpoint must
be extensive but cannot be increasing (dually decreasing hence monotone in general).

Many non-Noetherian static analyzes of infinite-state systems proceed by successive analyzes
in different abstract domains (@i, Ci), i = 1,...,n, eg. by refinement. A comparison of the
successive iterative analyzes performed in these domains is possible by concretizing to the most
precise one (or their reduced product). Then Th. 7 shows that there is no guarantee of precision
improvement. This problem is soundly taken into account by [54, Sect. 7] and [59, Sect. 5.1], but
is otherwise too often completely ignored.

When transformers F[C] are defined by structural induction on the syntax of the command

C as in Astrée [28], this command C may involve loops, which abstract semantics is defined by
fixpoint iterations with terminating widenings, hence may be non-increasing. In the worst case,
1fp= F[C] may simply not exist.
Example 8 (Non-increasing transformer). Consider the program while (TRUE) {if (x == @) {x
= 1} else {x = 2}}. To ensure termination of the static analysis, the forward transformer for
this program is Fyhite(I) = fp= AX - X V (I U F1¢(X)) where V is the basic widening of Ex. 5
and Fi¢(X) = (0 € X 2 [1,1] s 0) U (Ix € X : x # 0 2 [2,2] ¢ 0) is the transformer for the
conditional.

The iterates for Fynite([0,0]) are X' = 0, X' =x"v fif()_(o) = [0,0], and X =XV
?if()_(l) = [0,0] V ([0,0] u ([1,1] U @)) = [0,4c0] such that l?if()_(z) C X°. The iterates for

® The conditional expressionis (tt ? asb) £ aand (ff 2 asb) 2 b.

7

Funite([0,2]) are ' = 0.7 =Y VFi(Y)) = [0.2 and Y = Y V Fs¢(Y") = [0.2] V ([0,
0] U ([1,1] U [2.2])) = [0,2] such that F;¢(Y") C Y.

So the transformer Funite is not increasing since [0,0] C [0,2] but ﬁwhﬂe([0,0]) v ﬁwhﬂe([o,
2]). It follows that the transformer of any program containing this while command will be a
composition of transformers involving Funite and so will not, in general, be increasing. m|

5. Hypotheses on widening, dual-widening, and correspondence
Widening and dual-widening are extrapolators in that their result is outside the range of their
parameters.

5.1 Widening

Soundness conditions on widenings are usually expressed in the abstract domain (such as (V.a))
but can be weakened into conditions expressed in the concrete domain, as follows:
Hypotheses 9 (Sound widening for concretization y).

(a) oforVedxD->D, VP,0eD:y(P)Cy(PVQ)Ay(Q)Cy(PVQ)

(a’) VP,0eD:PC(PVQ)AQL (PVQ)

(b) eforVep(@) D, VYXep(D):VPeX :y(P)Cy(VX)]
Widenings have to be defined for each specific abstract domains like intervals [19], polyhedra
[30,2], etc. or combinations of abstract domains like reduced product, powerset domains [3], cofi-
bred domains [68], etc. It follows that the Galois calculus to define abstract interpretations [27]
can be extended to widening and more generally to all interpolators and extrapolators.

5.2 Dual-widening

The dual-widening V satisfies the order dual of Hyp. 9 hence the dual of the following theorem
Th. 10 reformulating [11, Ch. 4, Th. 4.1.1.0.3 & Th. 4.1.1.0.9]. This is useful to under-approximate
greatest fixpoints e.g. [7].

6. Over-approximating increasing abstract iterates by extrapolation
with widening

We reformulate the abstract static analysis by iteration with widening of Sect. 4. for non-increasing

transformers. Soundness proofs can no longer be done in the abstract. They can be done instead

with respect to an increasing concrete semantics (Th. 10).

6.1 Increasing iteration with widening

We have the following reformulation of [11, Ch. 4, Th. 4.1.1.0.2 & Th. 4.1.1.0.6].

Theorem 10 (Over-approximation of increasing abstract iterates by widening). Let (X 5.5 €0)
be the least upper bound iterates of the increasing transformer F € @ +— D on a concrete poset (D,
C) from D € D such that D C F(D). By Lem. 4 (b), (X%, 8 € O)is therefore increasing and
ultimately stationary at X¢ = Ifp; F.

Let D be the a&straﬂdomﬂn, Y € P > D be the concretization, F € P @ie the t&struct
transformer, V. € @D X D — D be a widening satisfying Hyp. 9 (a) and V € 9(D) — D be a
widening satisfying Hyp. 9 (b) forallX = {)_(6 | 8§ < AAA € O is a limit ordinal} where the abstract
iterates are the transfinite sequence ()_(5 € B, § € 0) defined such thar X° Tt 2 X° \% 1?()—(5) and
X2 \Y X7 for limit ordinals A. Then

B<A

(a) The concretization (y()_(a), & € O) of the abstract iterates ()_(5, 8 € O) is increasing and

ultimately stationary with limit y(X').

Moreover, if D C y()_(o) and the semi-commutation conditionV§ € O : F o y()_(5) Cyo f()_(é)
holds, then

-5 —
(b) V6 € 0: X% c y(X°) (so, in particular X€ C y(X9)).
Moreover if the abstract domain (2, C) is a pre-order (C is reflexive and transitive, but not necessarily
antisymmetric) and the concretizationy € D — D is increasing X T Y = y(X) C y(Y)), then

(© V6 €0 : F(y(X) < y(X°) = Ifp FCy(X°).
(d) Moreover, if V is terminating i.e. the iterates are ultimately stationary at some rankn € N then
FR") VX" =X" 50y (F(X") € y(X"), F(y(X")) € y(X"), and IfpS F < y(X").
(e) Moreover, if the terminating widening satisfies V satisfies Hyp. 9 (a’) then An € N : F(Y”) c
X" so lfp}iFQy()_(n). O
Condition Th. 10.(c) is a sufficient condition for stopping the abstract iteration, always applica-
ble by Th. 10.(d) for terminating widenings, and in case Hyp. 9 (a’) checkable with the abstract
pre-order C by Th. 10.(e). Note that in Th. 10.(d), the abstract domain is a pre-order, maybe not
antisymmetric, so that the widening must avoid the problem of iterating within an equivalence
class under equivalence (X = Y) = (X C Y A X 3 Y). Interesting examples are given in [42].
Remark 11. Notice that in Th. 10, F is assumed to be increasing but F is not assumed to be either
C-extensive or increasing because, in case F is defined by structural induction, it might depend
upon widenings that are not increasing, see Ex. 8§ and Th. 7. Nevertheless, the limit of the abstract
iterates over-approximate that of the concrete iterates. This may not be the case with the hy-
potheses of Lem. 4.(a). In the following counter-example, F is extensive but not increasing. Both
concrete and abstract iterates have limits but X¢ ¢ y(X9).

X' =X

X0=D X]
Remark 12. If in Th. 10 (d) the widening V satisfies Hyp. 9 (b) but not Hyp. 9 (a”) then there may
exist no § € O such that 1?()_(5) c)_(6. Here is a counter-example where V is the lub.

)—(£+2
—e+1
X! — xe 7)_(1 =X
F
F
0 —0
XY=D X O

6.2 Parameterized widening

The abstract iterates with widening in Th. 10 can be generalized to widenings including additional
parameters such the iteration rank 8, a list of thresholds T, possibly depending on the rank T(5),

the abstract transformer F, all previous iterates ()_(ﬁ, B < §) and their transformation (1_:()_('6),

B < 8, ete, so that X° - 2 V(8,T(8).F.(xX", p < 8).(F(X’), B < 5)). The idea applies to all
other extrapolators and interpolators.

Example 13 (Parameterized [dual-]widenings). Delayed widening [28] is an example of parameter-
ized widening V(§) where a join or a standard widening is performed depending on the iteration
rank parameter § (often counted as the number of iterations in a loop).

n-bounded abstract model checking [4] for universal properties implicitly uses an iteration

—k —k — —k — — — _
Xttax V (k) F(X") with an parameterized widening X V z) Y 2 (k<n?Y:T) where

T is the abstract supremum: ¥X € 9 : P C y(T). For existential properties, n-bounded abstract

model checking implicitly uses a dual-widening X 6(k) Y 2 (k < n? Y s I). Unreachability
after n steps is a correct under-approximation of the executions that do go on. It follows in both
cases that everything is known exactly before n steps and completely unknown beyond n steps.
This is an abstract interpretation of the concrete trace semantics, even when P=PandF=F ,
since in both cases concrete traces are abstracted by the identity for the first n steps and by T
(resp. L) for the remaining steps.

ESC/Java™ [39] implicitly uses a dual-widening which unrolls loops twice (and outs assume
false, i.e. 1). This under-approximates the loop semantics which is unsound for checking invari-
ance properties.

An extreme example avoiding any iteration is the so called abstract acceleration for specific
abstract domains and programs where V(C,D,F) = X © 50 that the abstract solution can be com-
puted exactly from the program text abstraction F [50], may be including a few iterations for
iterative constraint solving methods.

Between these extreme examples, parameterized widenings can smoothly be made less and
less precise over successive iterations (e.g. by widening to less and less given or program-dependent
thresholds [28]). O

7. Hypotheses on narrowing, dual-narrowing, and correspondence
Narrowing and dual-narrowing are interpolators in that their result is within the range of their

parameters.

7.1 Narrowing
A narrowing A € @ X @ + P is an interpolation of its parameters, YVP,Q € @ : QC P —
QCPAQCL P.We can also define A € p(2) — D such that VX € p(D) : VP e D : (YQ € X :
PC @) — P C AX. Otherwise stated, the narrowing AX over-approximate any lower bound
of X (hence its greatest lower bound if it exists).

These conditions expressed in the abstract domain can be weakened into conditions expressed
in the concrete domain, as follows:

Hypotheses 14 (Sound narrowing for concretization y).
efor ANED XD > D,
(a) VP.0eD: (y(Q) cy(P) =
@) VP.QeD: (y(Q) cy(P) =
@) VP,0eD:(QCP) = (QC (PAQ)CP)
o for A€ p(D) - D,
(b) VPeD: VL € p(D): (VO e XL :PCy(Q)) = (P Cy(AX) Cy(Q)) O
Example 15 (Interval narrowing). The narrowing of [13,20] for integer intervals | was @ A X £
X A O = 0 for the infimum L = 0. Otherwise, [a,b] A [c,d] £ [(a = —c0 ? ¢ s min(a,c)],
(b = 4o ? d ¢ max(b,d))] improves infinite bounds only.]
7.2 Dual-narrowing

The dual-narrowing A satisfies the order dual of Hyp. 14 hence the dual of Th. 22 reformulating
[11, Ch. 4, Th. 4.1.1.0.12].

Example 16 (Interval dual-narrowing). If [a,b] C [c.d] then ¢ < a < b < d so we can define
[a,b] Alc,d] 2 [([c = —0 2 as [(a+c)/2]),(d = 0o ? b s [(b+ d)/2]]] where |x] is the
largest integer not greater than real x and [x] is the smallest integer not less than real x since

c<l(a+¢)/2] <a<b<[(b+d)/2] < dand therefore [a,b] C ([a.b] A [c.d]) C [c.d]. O
Example 17 (Bounded interval dual-narrowing). If [a,b] C [c,d] C [(,h] (eg. £ = min_int, h =
max_int for machine integers) then [a,b] A [¢,d] £ [[(a + ¢)/2L,[(b +d)/2]] C [£,A].]

10

Example 18 (Craig interpolation). Craig’s interpolation theorem [31] implies that for all first-order
formulee ¢,y € FOL such that (¢ A) there exist a first-order formula p, called an interpolant,
suchthaty = p,=(pAy),and Vars[p] C (Vars[p]NVars[y]). Letting iy’ = -/ this means that
if ¢ = ¢’ then there exists an interpolant p such that ¢ = p = ¢’. So a dual-narrowing
can be defined as ¢ A ' £ p on the abstract domain (FOL, ==) of first-order formulee pre-
ordered by implication = , the concretization of a formula being its interpretation in a given
domain of discourse. The interpolant is in general not unique, may contain exponentially more
logical connectives than ¢, and successive interpolations may not terminate. So arbitrary choices
have to be done, for example, to compute quantifier-free interpolants with a minimal number of
components and symbols [48].

[35, Sect. 5.2, page 145] recognized that Craig interpolation is a narrowing (in fact a dual-
narrowing, see Lem. 19 just below) without the syntactic constraints of Craig interpolation be-
cause the lattice is not necessarily constructed from formulae. In Boolean lattices, this coincide
with McMillan’s use of Craig interpolation [56], which is called separation, mapping a pair satis-
fying AMMBC Ltolsuchthat ACIAIMBE L [44, p. 447]

Interpolants in the style of [57] require that abstract domains are or can be complemented
[10]. When the interpolation cannot be directly applied to the representation of abstract proper-
ties A, B in the abstract domain 9, it can be applied to their concretization into a pair of formulee
(y(A), y(B))in (FOL, =) and the interpolant y (A) V y (B) constructed from a refutation proof
e.g. by an SMT solver [49] can be abstracted back to the abstract domain a(y (A) V y(B)), a tech-
nique is used e.g. to generate abstract transformers [67], which can also be used during the static
analysis. O

7.3 Correspondence between narrowing and dual-narrowing

The Hyp. 14 are not self dual. Nevertheless, the narrowing and dual-narrowing are essentially
the same notion up to the inversion of their parameters: X A Y = X Z_l Y £ YA X and
XAY=XATYLYAX

Lemma 19 (dual-narrowing as inverse narrowing and dually). If A is a narrowing satisfying
Hyp. 14 (a) then Alisa dual-narrowing satisfying the order-dual of Hyp. 14 (a). Reciprocally, the
inverse E_l of a dual-narrowing Aisa narrowing. O
The interpretation of Lem. 19 in the context of Table 1 is that if a narrowing is used for decreasing
iterates in Th. 22 then its inverse can be used for increasing iterates in the dual of Th. 22.
Example 20 (Interval narrowing). The inverse of the dual-narrowing of Ex. 16 is the narrowing |[c,
d]Afa,b) 2 [([c = -0 2 as|(atc)/2]),(d = oo ? bs[(b+d)/2])] which is more precise than
the narrowing of [13,20] in Ex. 15. Convergence in Th. 22 is guaranteed but much slower. O
Example 21 (Polyhedral narrowing). By Ex. 18, Craig interpolation is a dual-narrowing, hence by
Lem. 19 and parameter inversion, a narrowing. For example, Craig interpolation for linear arith-

metic over the rationals [8] should yield a narrowing P A Q for polyhedral static analysis [30]
when there is a difference in the variables appearing in both systems of constraints Pand Q*°. O

8. Over-approximating decreasing abstract iterates by interpolation
with narrowing

A static analysis by increasing iteration with widening can be improved by any iterate of a de-
creasing iteration with narrowing. The narrowing cannot make downwards extrapolations which

°® We use ~! to denote the exchange of parameters as in the inverse of relations r~1(x,y) =
r(y,x), not as the inverse image of a function f~1(x,y) = {z | f(z) = (x, y)}.

1% Thanks to reviewer 7 for pointing out that the semantic notions of amalgamation might be
more adequate than the purely syntactic notion of Craig interpolation in this context. This
(together with the related Robinson joint consistency property) remains to be explored [60].

11

might jump over the least fixpoint. So the narrowing can only do interpolations which prevent
jumping below any fixpoint (hence the least one which cannot be simply distinguished from the
other fixpoints). We have the following reformulation of [11, Ch. 4, Th. 4.1.1.0.16].

Theorem 22 (Over-approximation of decreasing iterates with narrowing). By the dual of Def. 3,
let (Y%, 5 € O) be the greatest lower bound iterates of the increasing transformer F € @ +— % on a
concrete poset (D, C) from D € D such that F(D) C D. By the dual of Lem. 4 (b), (Y8, 5 €0)is
therefore decreasing and ultimately stationary at Y€ = gfpy F.

Let the abstract domain (E’b, C) be a pre-order, the concretization y € @ — D be increasing,
the abstract transformer be F € D> DANEDXD - 9) be a narrowing satisfying Hyp. 14 (a)
and A € 50() > D satisfies Hyp. 14 (b) for X = {Y | 6§ < AAA € 0 isalimit ordinal},
where the abstract iterates are the transfinite sequence (?6 € B, 5 € O) such that D C y(?o),
?54-1 IN A a

2 y° A ﬁ(?(s) Y ﬁA)L? for limit ordinals A, and do satisfy the semi-commutation
<

condition¥5 € O : F o y(?‘s) Cyo f(?a).

If the abstract transformer F € D +— D is reductive on the abstract iterates (1_/5, 6 € 0)
(i.e.¥6 € O : y(_(?a)) c y(?é)“) then their concretization (y(_s) 6 € O) is decreasing and
ultimately stationary with limit y (Y) such thatVé € O : gfp F = Y€ C y(Y) S y(?(s). O
Lemma 23 (Traditional soundness requirement for narrowing). The more traditional hypotheses
that (P C Q) = (PEPAQ CQ),VieA:(PCQ;) = (PC A QJ C Qi), the initial

iterate is F(Y) c Y and F is increasing imply that F is reductive on the zterates O

9. Over-approximating bounded increasing abstract iterates by
interpolation with dual-narrowing

When the upper bound y(_n) of the concrete least fixpoint can no longer be improved in the

1 —

decreasmg abstract iterates with narrowmg interpolation of Sect. 8., i.e. F (Y) E cY"t =7"A

F(Y) =Y", the upper bound Y" can still be further improved by computing lncreasmg abstract

iterates with dual-narrowing interpolation bounded by the bound specification S £

9.1 Bounded increasing iteration with dual-narrowing

Let us now consider increasing iterates bounded by a given specification.

Theorem 24 (Over-approximation of bounded increasing iterates with dual-narrowing). Let

(Z%, 5 €) be the least upper bound iterates of the increasing transformer F € & + @ on a

concrete poset (B, C) from D € D such that D C F(D). By Lem. 4 (b), (Z%, § € O) is therefore
increasing and ultimately stationary at Z¢ = Ifp_ F

Let @_be th abstmct domain, y € D > D be thf concretization, §_€ P be the bound spec-
ification, F € D + D be the abstract transformer, A € D X D — D be the dual-narrowing
satisfying the order dual of Hyp. 14 (a), and A € 9(D) — D be the dual-narrowing satisfy-

ing the order dual of Hyp. 14 (b) for X 2 {2/1 | 6 < AAA € O isalimit ordinal} where the

abstract iterates are the transfinite sequence (26 € @, 6 € 0) such that D C y(?o) c y(S),

ARG ([y(l?(fg)) cy©S)? 1?(25) ASsS), AR Zﬂ<;\ i for limit ordinals A, which are

assumed to satisfy the semi-commutation conditionV§ € O : F o y(_(s) CyoF(Z) Then

(a) The concretization (y(ia), & € O) of the abstract iterates (Z(S, § € O) is such thatV¥é € O :
(2° cy() = (2 <v(@) cyO)):

! Since y is increasing this is implied by V8 € O : ﬁ(?(s) c Y.

12

(b) Moreover, if (9, C) is a pre-order and the concretizationy € D +— D is increasing, then V6 € O,

ify(F(Z°)) € y(Z°) then IfpS F = 78 y(Z°) < y(S). o

Note 25. In case (b), the definition 25+ = ([y(_(_é)) c y(g) 1?(2) A'S 5 5) of the next
iterate can be over-approximated by AR ([1_:(_5) CS?F(Z) ASs3).

T . -0 -0 .
Note 26. In case (b), if F is extensive or Z L F(Z) and F is increasing then the abstract iterates

=0 L. . .
(Z", 5 € 0) in Th. 24 form an increasing chain, but this is not necessarily the case in general. O

-5 —
Note z7. In the definition of the abstract iterates (2, § € O) in Th. 24, the dual-narrowing A in

27 2 (y(FZ) < y() 2 F@

would be more informative to use a ternary dual-narrowing with ARRE ([y(ﬁ(za)) cy(S)?
5(26,?(25),5) 8 S) such that P C Q C S implies Q C A(P,Q,S) C S.

Example 28. A variant of Ex. 17 where [a,b] C [c,d] C [(,h] = S would be A([a,b],[c,d],S)
[(L(3c—2a+6)2]> €72 [(3c—2a+¢) 2] €).([(3d=2b+h)/2] < h ? [(3d—2b+h)/2] & h]]
which doubles the growth of [a,b] to [c,d]. Another example is the widening “up-to” of [46] for
polyhedra. O

) A'S ¢ S) does not use the information provided by 7 1

>0

9.2 Bounded widening versus dual-narrowing
A widening Vg is bounded by S € @ if and only if it satisfies Hyp. 9 (a’) and VP,Q : P Vg@ CS.
An example is the interval widening on machine integers bounded by [min_int,max_int] which
can be generalized to any inter_va_l bound [(,h]. o

Then, continuing Note z7, A(P,Q,S) £ PV5Q is adual-narrowing since if P € Q C S then by

Hyp.9(a’),Q C PV Q and PV¢ Q C S since the w1den1ng is bounded so that 0 C A(P,Q, S) CS.
Reciprocally, if A is a dual-narrowing then P V< 3 0 2 A(P,0,S) may not satisfy Hyp. 9 (a)
in case P Z P Vg @ However, in case Fis increasing or extensive in Th. 10, the widening is used

only when P C Q in which case Hyp. 9 (a”) holds.

In conclusion, although widenings and dual-narrowing are different concepts, they are equiv-
alent in the specific contexts considered in this Sect. 9.2.
Example 29. Observe that A([a,b],[c,d],S) in Ex. 28is a bounded widening.]

10. Terminating extrapolators and interpolators

Extrapolators/interpolators X € {V, V.A, Ay over/under-approximate the limit of increasing/de-

creasing chains by abstract induction. Terminating operators also enforce termination.

Enforcing termination by extrapolators/lnterpolators For terminating extrapolators/in-
1 —i

terpolator, the abstract iterates X . X Xt AX'RF x) ... must be ultimately stationary at

some rank n € N. Let us say that the Wldening V and dual-narrowing A are increasing (since they

operate on increasing chains {y (X l), i € N)) and, dually that the dual-widening V and narrowing

A are decreasing (since they operate on decreasing chains (X l), i € N)). Since we don’t want
to make hypotheses on the abstract transformer F, we can consider abstract iterates of the form
)_(0, xXtax'm Y', ... where (y()_(i) i € N) is a chain and (?i i € N) is arbitrary.

Definition 30 (Terminating extrapolator/interpolator). An increasing (resp. decreasing) extrapo-
lator/mterpolator B e {V.V,A, A} such that B € B x D + B is terminating wheneverfor any
chain (X €D, ieN) lncreasmg (resp. decreasmg) in the concrete and arbitrary sequence (Y €,

1 —1i
i € N), the sequenceX XH_ AX'BY, .. is ultimately stationary at some rankn € N. O

The interval w1den1ngs of Ex. 5 and narrowing of Ex. 15 are all terminating.

Definition 31 (Terminating bounded interpolation operator). An increasing (resp. decreasing)
interpolator ® € {A,A} such that ® € D x D x D + D is terminating whenever for any chain

13

(l_/l € B, i € N) increasing (resp. decreasing) in the concrete and bound S € B, the sequence
=0 =0 i+1 —i —i =
X =Y,.., P XX(X’,Yl,S)IZ, ... is ultimately stationary at some rank n € \N. O

Example 32. The dual-narrowing of Ex. 16 bounded by [—co, h] or [£, 4] is not terminating. The
bounded interval dual-narrowing of Ex. 17 is terminating but convergence may be slow. O

11. Fixpoint over-approximation strategy

Given a concrete fixpoint Ifp$ F of a concrete increasing operator F € & + 9 on a partially
ordered concrete domain (2, C, L, U) such that fp> F = Usco FO(L) does exist, the static
analysis problem is to effectively compute an over approximation of this fixpoint. The abstraction
method consists in designing a pre-ordered abstract domain (@, C, L, LI), an abstract transformer
F € @ + D, and an increasing concretization function y € & + D satisfying the semi-
commutation condition F o y C y o F, pointwise. We obtain the fixpoint over-approximation by
the following successive over-approximations, the first two ones (A) and (B) being classical, as
illustrated in Fig. 3.

Fig. 3. Successive extrapolations and interpolations

Algorithm 33 (Fixpoint over-approximation by successive extrapolations and interpolations).

Input F € % + D and D € D on a pre-order (&, C). Define X =Y £ X CYAX 2 7.

(A) Using a terminating widening V € DXD - D, compute the iterates X 02 D, ..,)—<k+1 =
x‘ v ﬁ()_(k) until convergence X" =X" at some rank n*> **

(B) IfF(X") # X" then compute the iterates 7’2 X", .. yrtay AF(?k) with terminating

narrowing A € @ x @ + B, until convergence Y™ =™ at some rank m.
Otherwise F(X") = X so skip this step (B) with Y £ X".
(C) Using a terminating dual-narrowing A € & x & — P, compute the iterates A D, ..,
AR F(Ek) VY™ until reaching ZP*! = ZP at some rank p-
Optionally, if F(y(Z")) € y(Z”) and Z¥ # Y™, repeat the interpolation steps (B) and (C) from
x"azh oy (where A\’ is a terminating narrowing satisfying Hyp. 14 (a)) until convergence
toZ! ANY" =Y" 1 F(y(Z")) € y(Z”) then return Z” else Z¥ £ Y™ (no improvement). O

X _ YRS for binary interpolators & € & x D > .

13 As shown by Fig. 3, checking that F(F(X")) C F(X") might sometimes avoid a last useless
widening but Alg. 33 (A) follows the classical iteration method [20].

!* The traditional termination condition of reaching a post-fixpoint ﬁ()_(n) C X" is obtained by
XV V2(YCX?XsXVY).

5 In case of static checking (Sect. 12.) of a specification S, one can stop as soon as =
Otherwise, one can also restart at (A) with the new specification S2 Zp , see Th. 36.

14

Theorem 34 (Soundness and termination of Alg. 33). Let (D, C, U) be a poset, F € D — D be
increasing, D € & be such that D C F(), and the concrete iterates X° 2 D, X011 2 F(X%) for
successor ordinals, and X* £ Up< 1 XP for limit ordinals A, be well defined in the poset (B, C, U)
(i.e. the lubs | J do exist).

Let the abstract domain (D, C) be a pre-order, the concretization y € P - D be increasing,
the abstract transformer be F € @ — D satisfying the pointwise semi-commutation condition
FoyCyo F.

LetD € D be such that D C y(Yand¥X € @ : (y(D) € y(X) Ay(FX)) € y(X)) =
(y(D) € y(F(X))),V € D XD +— D be a terminating widening satisfying Hyp. 9 (a), A €

D X D > D be a terminating narrowing satisfying Hyp. 14 (a) such that VX € D : (y(F(X)) €
yX) = FFX AFX))) € y(X AF(X))), and A € D xD +— D be a terminating
dual-narrowing satisfying the order dual of Hyp. 14 (a).

Then static analysis Alg. 33 always terminates with a sound fixpoint over-approximation zr
such that Ifp; F C y(fp) c y(_m) C y()_(")

Given an abstract specification S € B, tfy(Zp) C y(S) (which is implied by 7P £°3) then
Ifp; F v(S) else it is unknown whether the specification holds. O

Note 35 (Skipping phases). As suggested by Fig. 2, , phase (A) of Alg. 33 can be skipped by starting
directly with (B) from the supremum X" =T ofD (or a given specification, see Sect. 12.). Phase
(B) will then over-approximate gfp?F (which is imprecise in general). Phase (A) of Alg. 33 is

useful to provide an initial over-approximation of gprn F, which, in general, is below gfpE F.

The narrowing iteration (B) of Alg. 33 can also be skipped by choosing Y A X £ X. Both th phases
(A) and (B) of Alg. 33 can be skipped by starting (C) with an abstract specification S € %. O

12. Static verification, checking, and analysis

The static inductive proof 31 € @ : F(I) T 1 A1 C S can be done in various forms. B

(a) In static verification by deductive verification methods, the induction hypothesis I is provided
by the end-user so that the problem is to generate and check the verification condition F(I) C
INICS.

(b) In static checking, the induction hypothesis I must be automatically inferred from the trans-
former F and the specification S (and also checked to satisfy the verification condition F(I) C
INICS).

(¢) In static analysis, the induction hypothesis T must be e automatically inferred from the trans-
former F (independently of a particular specification S) and checked to satisfy the verification
F(T) C 1. Then later, when a specification S is given, it remains to check that T C S.

Of course static verification (a) such as Boogie [5], ESC/Java [39,40], Dafny [53], etc is a sub-

problem of static checking/analysis since it consists in proving an implication only.

There is no essential difference between static analysis (c) and static checking (b).

— Static analysis (c) is static checking (b) where the specification S = T is the always true i.e.
VvI:ICT.

— Static checking (b) is static analysis (c) in the abstract domain [T {PeP|PcC S} The
idea is therefore to assume that the specification S does hold and to calculate by Alg. 33 a more
precise inductive fixpoint over-approximation Z’in%’. Upon termination it remains to check
that the fixpoint over-approximation Z” is inductive and stronger than the specification S in
D.

The following Th. 36 shows that static checking can be reduced to a static analysis by Alg. 33 using

a widening and transformers bounded by the specification (so that the specification is assumed to

hold), to infer a conditionally sound invariant, and then checking that the invariant is inductive.

Theorem 36 (Static checking). Assume the hypotheses of Th. 34. LetS € B be a (non-inductive)
abstract specification, define 2 L2 PeT| y(P) € y(S)}, and let D € D" such that D C

15

v(S) and y(F) ¢ y(8)*. Let Z'" be the result of Alg. 33 applied to the restriction
(y(FX)) c y(S) F(X) sS) of F to D', with bounded widening X V' Y £ (XVycC

Y ¢ S) restricting widening V satisfying Hyp. 9 (a) to D', and same narrowing satisfying

(nl | =

’ (Y_)
?X

Hyp. 14 (a) and same dual-narrowing satisfying the dual of Hyp. 14 (a). IfF(y(z/p)) c y(?lp)
(which is implied by F(?,p) C 7") then Ifp; F C v (S). |

13. Discussion
The proposal of [45] is to iterate the widening (A) and narrowing (B) phases of Alg 33 to get
a sequence of results Y ,i=1,...k and to return their intersection |_| . After each

widening/narrowing phase, the result Yl- is heuristically perturbated (after observmg the origin
of the imprecision of the widening) to get a C-smaller value D used to restart with the next
widening/ narrowing phase. One such heuristic perturbation can be done by considering the dual-
; 11 J
not be one of the already explored iterates Yj mi ,j = 1,...,i. However, by Th. 7, the widening
is not increasing, so that, in contrast to the dual-narrowing phase (C) of Alg. 33, there is no
guarantee of improvement after a perturbation, whichever perturbation method is chosen.

If V is a widening and A is a dual-narrowing on an abstract pre-ordered domain (2, C), and
the widening overshoots the specification, then PV’ Q £ Q A (P V Q) is a more precise widening
(although termination might be lost). This is the essence of [44] where the dual-narrowing is by
interpolation.

Following [58], let us compare widening (extrapolation) versus interpolation (narrowing/dual-
narrowing), more precisely, Alg. 33 (A) and (B) on any abstract domain P versus Alg. 33 (C) alone
on the abstract domain (FOL, =) of first-order predicates pre-ordered FOL by implication =
with Craig interpolation as dual-narrowing.

— It can be argued that Alg. 33 (A) and (B) uses a weak/inexpressive abstract domain with effi-
cient representations and small search space while Alg. 33 (c) uses a strong/expressive abstract
domain (FOL, =) with generic representations and large search space. In fact both approaches
rely on an abstract domain, with loss of information, and this choice is independent of the cho-
sen iteration method. For example [29] shows that combinations of theories in SMT solvers are
reduced products of abstract domains (just lacking extrapolation and interpolation operators).
Some theories in SMT solvers rely on specific internal representations for efficiency (like affine
inequalities).

— The transformers F (and F) can be weakest pre- or strongest post-conditions (and their ab-
straction). The fact that the equivalence formalized in the concrete by the Galois connection (9,

pre[z]

% (D, C) is preserved in the abstract depends on the abstract domain not on the
post(7

convergence acceleration method (widening, narrowing, and duals).

— The decision to abstract to (relational) invariants or sets of computation histories is part of the
choice of the abstract domain. For example trace-based abstraction [21,9] and trace partitioning
[63] can lift any abstraction to reason by case analysis on computation histories.

— Incompleteness comes from the choice of the abstract domain and the extrapolation/interpolation
operators. The abstraction is fundamentally incomplete by undecidability. Extrapolation itself
is not necessarily non-terminating and incomplete. A counter-example is abstract acceleration
where the abstract fixpoint can be computed exactly [50].

— Ockham’s razor (lex parsimoniae) can be made part of the definition of the abstract trans-
former and the extrapolation/interpolation operators. As pointed out in [24], it is always possi-
ble to introduce simplification heuristics e.g. by using A X - X V F(X) or it’s n-unrolling version

narrowing () A Ym‘ with the intersection of the previous iterates, which in general will

Y If D ¢ y(S) the problem has no solution and if y (F(S)) C y(S) so F(y(S)) C y(S) by semi-
commutativity, it is solved, two cases without any interest.

16

AX-(...(XVF(X)) VF (X))...VE"(X)) where the local widening V performs heuristic sim-
plifications or to approximate the transformer based on interpolation e.g. by using A X - F(X) AS
as proposed in [56]. Notice that the main contribution to get a simplified transformer F € DD
is through the careful design of the abstract domain & (and, up to the machine representation of
abstract properties in @, one can always perform exactly the same static analysis in the concrete
domain 9 using a widening on @ [22]).

14. Conclusion

The unifying of apparently diverging points of view on extrapolation and interpolation in the
abstract interpretation theory leaves opened the question of which part of the fixpoint over-
approximation strategy of Sect. 11. should be used. Obviously. using only one phase is imprecise
while iterating three successive phases in Alg. 33 will be costly. In our opinion this depends on
how close the specification S is from the inductive argument I to be calculated to do the proof
ﬁ(f) C I C S in the abstract. In [51, Sect. 2.5], James H. Morris and Ben Wegbreit observed that
subgoal induction (which is a relational backward deductive positive induction method as shown
in [15]) “can often be used to prove a loop’s correctness directly from its input-output specifica-
tion without the use of an invariant.” or “ with weaker-than-normal inductive assertions inside
the loops.”. Looking at their examples, one sees that the induction hypothesis I (is or is a very
simple variant of) the specification S itself. This was also exploited by Dijsktra for calculational
program design [32,33], and more recently in program checking by interpolation [56] and abduc-
tive inference [34]. Of course this favorable situation is more frequent for tiny programs than
very large ones, in particular when the specification is very far from the inductive invariant.

Such a challenging example is the automatic inference of an interval in the following filter
program, intervals being usually considered to be a very simple property.
typedef enum {FALSE = @, TRUE = 1} BOOLEAN; BOOLEAN INIT; float P, X;
void filter () { static float E[2], S[2];

if (INIT) {s[e] = X; P = X; E[0] = X;}

else { P = (((((0.5%X)-(E[0]%0.7))+(E[1]1%0.4))+(S[0]%1.5))-(S[1]1%0.7));}

E[1] = E[0]; E[0] = X; S[1] = s[e]; S[e] = P;

/* Slel, S[1] in [1, hl %/ }
void main () { X = 0.2«X+5; INIT = TRUE; /% simulated filter input */

while (1) { X = 0.9%X+35; filter (); INIT = FALSE; } }
The problem is to infer automatically maximal 1 and minimal h bounds such that S[e], S[1] €
[1, h]isinvariant in the program. Because 1 and h are unknown in the invariant S[0], S[1] €
[1, hl, neither static verification nor static checking methods can be helpful. The full burden of
finding the bounds, which is not easy, is entirely put by these methods on the end-users. But static
analyzers, like ASTREE [28,38], automatically infer that [1, h] C [-1418.3753, 1418.3753], with
no user hint or interaction. This is challenging in purely syntactic domains such as (FOL, =).

Acknowledgements. Work supported by NSF Expeditions in Computing CMACS, award 0926166.

References

[1] Albarghouthi, A, Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework for abstraction- and inter-
polation-based software verification. CAV. LNCS 7358, 672-678, Spr.inger (2012)

[2] Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for convex polyhedra.
Sci. Comput. Program. 58(1-2), 28-56 (2005)

[3] Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains. STTT 9(3-4),
413-414 (2007)

[4] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. TACAS.
LNCS 1579, 193-207. Springer (1999)

[5] Bohme, S., Leino, KR.M., Wolff, B.: HOL-Boogie - an interactive prover for the Boogie program-
verifier. TPHOLs. LNCS 5170, 150-166. Springer (2008)

[6] Burstall, R.M.: Program proving as hand simulation with a little induction. IFIP Congress. 308-312
(1974)

http://cmacs.cs.cmu.edu/

17

Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic program loops as
fixed points. SAS, LNCS 8723, 85-100. Springer (2014)

Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability
modulo theories. ACM Trans. Comput. Log. 12(1), 7 (2010)

Colby, C., Lee, P.: Trace-based program analysis. POPL. 195-207. ACM (1996)

Cortesi, A, Filé, G., Giacobazzi, R., Palamidessi, C., Ranzato, F.: Complementation in abstract in-
terpretation. ACM TOPLAS 19(1), 7-47 (1997)

Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thése d’Etat és sciences mathé-
matiques, Université Joseph Fourier, Grenoble, France (21 Mar. 1978)

Cousot, P., Cousot, R.: Static verification of dynamic type properties of variables. Research Report
R.R. 25, Laboratoire IMAG, Université Joseph Fourier, Grenoble, France (Nov. 1975)

Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. Proc. Secont Int.
Symp. on Programming. 106—130. Dunod, Paris, (1976)

Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pacific J. of Math.
82(1), 43-57 (1979)

Cousot, P., Cousot, R.: Induction principles for proving invariance properties of programs. In Tools
& Notions for Program Construction: an Advanced Course. 75-119. Cambridge University Press,
(Aug 1982)

Cousot, P.: Semantic foundations of program analysis. In Program Flow Analysis: Theory and
Applications, chap. 10, pp. 303-342. Prentice-Hall, (1981)

Cousot, P.: Methods and logics for proving programs. In Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Sematics (B), pp. 841-994. Elsevier (North-Holland) (1990)
Cousot, P.: Verification by abstract interpretation. In Verification: Theory and Practice. LNCS 2772,
243-268. Springer (2003)

Cousot, P., Cousot, R.: Vérification statique de la cohérence dynamique des programmes. Rap-
port du contrat IRTA SESORI No 75-035, Laboratoire IMAG, Université Joseph Fourier, Grenoble,
France (23 Sep 1975), 125 p.

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. POPL. 238-252. ACM (1977)

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. POPL. 269-282. ACM
(1979)

Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to
abstract interpretation. PLILP. LNCS 631, pp. 269—295. Springer (1992)

Cousot, P., Cousot, R.: Galois connection based abstract interpretations for strictness analysis. In
Formal Methods in Programming and Their Applications. LNCS 735, 98—127. Springer (1993)
Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based program analysis by
abstract interpretation. FPCA. 170-181. ACM (1995)

Cousot, P., Cousot, R.: Grammar semantics, analysis and parsing by abstract interpretation. TCS
412(44), 6135-6192 (2011)

Cousot, P., Cousot, R.: An abstract interpretation framework for termination. POPL. 245-258.
ACM (2012)

Cousot, P., Cousot, R.: A Galois connection calculus for abstract interpretation. POPL. pp. 3—4.
ACM (2014)

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does Astrée scale up?
Formal Methods in System Design 35(3), 229—264 (2009)

Cousot, P., Cousot, R., Mauborgne, L.: Theories, solvers and static analysis by abstract interpre-
tation. J. ACM 59(6), 31 (2012)

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program.
POPL. 84-96. ACM (1978)

Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
Journal of Symbolic Logic 22(3), 269-285 (1957)

Dijkstra, EW.: Heuristics for a calculational proof. Inf. Process. Lett. 53(3), 141-143 (1995)
Dijkstra, EW., Scholten, C.S.: Predicate calculus and program semantics. Texts and monographs
in computer science, Springer (1990)

Dillig, I, Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive inference.
OOPSLA. 443-456. ACM (2013)

D’Silva, V., Haller, L., Kroening, D.: Abstract satisfaction. POPL. 139-150. ACM (2014)

Esparza,]., Kiefer, S., Luttenberger, M.: Newtonian program analysis. J. ACM 57(6), 33 (2010)
Feferman, S.: Harmonious logic: Craig’s interpolation theorem and its descendants. Synthese
164(3), 341-357 (2008)

Feret, J.: Static analysis of digital filters. ESOP. LNCS 2986, 33—48. Springer (2004)

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static check-
ing for Java. PLDI. 234-245. ACM (2002)

Flanagan, C., Leino, KR.M,, Lillibridge, M., Nelson, G., Saxe,].B., Stata, R.: PLDI 2002: Extended

static checking for Java. SIGPLAN Notices 48(4S), 22-33 (2013)

Floyd, R.: Assigning meaning to programs. Proc. Symposium in Applied Mathematics, vol. 19,
19—32. Amer. Math. Soc. (1967)

Gange, G., Navas, J.A., Schachte, P., Sendergaard, H., Stuckey, P.J.: Abstract interpretation over

non-lattice abstract domains. SAS, LNCS 7935, 6-24. Springer (2013)

Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. CAV. LNCS 1254, pp. 72-83.

Springer (1997)

Gulavani, B.S., Chakraborty, S., Nori, A.V,, Rajamani, S.K.: Automatically refining abstract inter-

pretations. TACAS. LNCS 4963, 443-458. Springer (2008)

Halbwachs, N., Henry, J.: When the decreasing sequence fails. SAS. LNCS 7460, 198-213. Springer
(2012)

Halbwachs, N., Proy, Y., Roumanoff, P.: Verification of real-time systems using linear relation

analysis. FMSD 11(2), 157-185 (1997)

Hoare, C.A.R.: An axiomatic basis for computer programming. C. ACM 12(10), 576-580 (1969)

Hoder, K., Kovacs, L., Voronkov, A.: Playing in the grey area of proofs. POPL. 259—-272, ACM (2012)

%—Iuan)g, G.: Constructing Craig interpolation formulas. COCOON. LNCS 959, 181-190. Springer
1995

Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear loops.

POPL. 529-540. ACM (2014)

Morris Jr., J.H., Wegbreit, B.: Subgoal induction. C. ACM 20(4), 209-222 (1977)

Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with thresholds for programs with com-
plex control graphs. ATVA. LNCS 6996, 492—502. Springer (2011)

Leino, KR.M., Wiistholz, V.: The Dafny integrated development environment. F-IDE. EPTCS, vol.
149, 3-15 (2014)

Logozzo, F., Lahiri, S K., Fahndrich, M., Blackshear, S.: Verification modulo versions: towards us-
able verification. PLDI, p. 32. ACM (2014)

McMillan, K.L.: Interpolation and SAT-based model checking. CAV. LNCS 2725, 1-13. Springer
(2003)

McMillan, K.L.: Applications of Craig interpolants in model checking. TACAS. LNCS 3440, 1-12.
Springer (2005)

McMillan, K.L.: An interpolating theorem prover. TCS 345(1), 101-121 (2005)

McMillan, K.L.: Widening and interpolation. SAS. LNCS 6887, p. 1. Springer (2011)

Meshman, Y., Dan, A.M., Vechev, M.T., Yahav, E.: Synthesis of memory fences via refinement
propagation. SAS, LNCS 8723, 237-252. Springer (2014)

Metcalfe, G., Montagna, F., Tsinakis, C.: Amalgamation and interpolation in ordered algebras. J.
of Algebra 402, 21-82 (2014)

Mycroft, A.: The theory and practice of transforming call-by-need into call-by-value. In Symp. on
Programming. LNCS 83, 269—281. Springer (1980)

Naur, P.: Proofs of algorithms by general snapshots. BIT 6, 310-316 (1966)

Rival, X., Mauborgne, L.: The trace partitioning abstract domain. TOPLAS 29(5) (2007)

Scott, D.S.: Continuous lattices. Toposes, Algebraic Geometry and Logic. LNM 274. Springer (1972)
Scott, D., Strachey, C.: Towards a mathematical semantics for computer languages. Technical Re-
port PRG-6, Oxford University Computer Laboratory (Aug 1971)

Tarski, A.: A lattice theoretical fixpoint theorem and its applications. Pacific J. of Math. 5, 285-310
(1955)

Thakur, A V., Elder, M., Reps, TW.: Bilateral algorithms for symbolic abstraction. SAS. LNCS 7460,
111-128. Springer (2012)

Venet, A.: Abstract cofibered domains: Application to the alias analysis of untyped programs.
SAS. LNCS 1145, 366—382. Springer (1996)

	toAbstracting Induction by Extrapolation and Interpolatotion-5mm

