
Verification by Abstract Interpretation

Patrick Cousot

École normale supérieure, Département d’informatique
45 rue d’Ulm, 75230 Paris cedex 05, France

cousot@ens.fr, www.di.ens.fr/~cousot

Dedicated to Zohar Manna, for his 26th birthday.

Abstract. Abstract interpretation theory formalizes the idea of abstrac-

tion of mathematical structures, in particular those involved in the spec-
ification of properties and proof methods of computer systems. Verifica-
tion by abstract interpretation is illustrated on the particular cases of
predicate abstraction, which is revisited to handle infinitary abstractions,
and on the new parametric predicate abstraction.

1 Introduction

Abstract interpretation theory [7,8,9,11,13] formalizes the idea of abstraction

of mathematical structures, in particular those involved in the specification of
properties and proof methods of computer systems.

Verification by abstract interpretation is illustrated on the particular cases
of predicate abstraction [4,15,19] (where the finitary program-specific ground
atomic propositional components of inductive invariants have to be provided)
which is revisited (in that it is derived by systematic approximation of the con-
crete semantics of a programming language using an infinitary abstraction) and
on the new parametric predicate abstraction, a program-independent generaliza-
tion (where parameterized infinitary predicates are automatically combined by
reduction and instantiated to particular programs by approximation).

2 Elements of Abstract Interpretation

Let us first recall a few elements of abstract interpretation from [7,9,11].

2.1 Properties and Their Abstraction. Given a set Σ of objects (such
as program states, execution traces, etc.), we represent properties P of objects
s ∈ Σ as sets of objects P ∈ ℘(Σ) (which have the considered property). Conse-
quently, the set of properties of objects in Σ is a complete Boolean lattice 〈℘(Σ),
⊆, ∅, Σ, ∪, ∩, ¬〉. More generally, and up to an encoding, the object properties
are assumed to belong to a complete lattice 〈A, v, ⊥, >, t, u〉.

By “abstraction”, we understand a reasoning or (mechanical) computation on
objects such that only some of the properties of these objects can be used. Let
us call concrete the general properties in A. Let A ⊆ A be the set of abstract

mailto:cousot@ens.fr
www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot
http://theory.stanford.edu/~zm/
http://www.cs.tau.ac.il/~nachumd/zohar/

properties that can be used in the reasoning or computation. So, abstraction
consists in approximating the concrete properties by the abstract ones. There
are two possible directions of approximation. In the approximation from above,
P ∈ A is over-approximated by P ∈ A such that P v P . In the approximation

from below, P ∈ A is under-approximated by P ∈ A such that P v P . Obviously
these notions are dual since an approximation from above/below for v/w is an
inverse approximation from below/above for w/v. Moreover, the complement
dual of an approximation from above/below for P is an approximation from
below/above for ¬P . Therefore, from a purely mathematical point of view, only
approximations from above need to be presented.

We require > ∈ A to avoid that some concrete properties may have no
abstraction (e.g. when A = ∅). Hence any concrete property P ∈ A can always
be approximated from above (by > i.e. Σ, “true” or “I don’t know”). For best
precision we want to use minimal abstractions P ∈ A, if any, such that P v P
and @P ′ ∈ A : P v P ′ Ĺ P . If, for economy, we would like to avoid trying all
possible minimal approximations, we can require that any concrete property P ∈

A has a best abstraction P ∈ A, that is P v P and ∀P
′
∈ A : P v P

′
⇒ P v P

′

(otherwise see alternatives in [13]). By definition of the meet u, this hypothesis
is equivalent to the fact that the meet of abstract properties should be abstract
P =

d
{P ′ ∈ A | P v P ′} ∈ A (since otherwise

d
{P ′ ∈ A | P v P ′} would have

no best abstraction).

2.2 Moore Family-Based Abstraction. The hypothesis that any concrete
property P ∈ A has a best abstraction P ∈ A implies that the set A of abstract
properties is a Moore family [11, Sec. 5.1] that is, by definition, A is closed under
meet i.e. Mc(A) = A where the Moore-closure Mc(X)

∆
= {

d
S | S ⊆ X} is the

⊆-least Moore family containing A and the set image f(X) of a set X ⊆ D by
a map f ∈ D 7→ E is f(X)

∆
= {f(x) | x ∈ X}. In particular

⋂

∅ = > ∈ A so
that any Moore family has a supremum. If the abstract domain A is a Moore
family of a complete lattice 〈A, v, ⊥, >, t, u〉 then it is a complete meet sub-
semilattice 〈A, v, uA, >, λS·u{P ∈ A | tS ⊆ P}, u〉 of A. The complete
lattice of abstractions 〈Mc(℘(A)), ⊇, A, {>}, λS·Mc(∪S), ∩〉 is the set of all
abstractions i.e. of Moore families on the set A of concrete properties.

⋂

i∈I Ai is
the most concrete among the abstract domains of Mc(℘(A)) which are abstrac-
tions of all the abstract domains {Ai | i ∈ I} ⊆ Mc(℘(A)). Mc(

⋃

i∈I Ai) is the
most abstract among the abstract domains of Mc(℘(A)) which are more con-
crete than all the Ai’s and therefore isomorphic to the reduced product [11, Sec.
10.1]. The disjunctive completion of an abstract domain A is the most abstract
domain Dc(A) = Mc({tX | X ⊆ A}) containing all concrete disjunctions of
the abstract properties of A [11, Sec. 9.2]. A is disjunctive if and only if Dc(A)
= A.

2.3 Closure Operator-Based Abstraction. The map ρ
A

mapping a con-
crete property P ∈ A to its best abstraction ρ

A
(P) in the Moore family A is

ρ
A

(P)
∆
=

d
{P ∈ A | P ⊆ P}. It is a closure operator [11, Sec. 5.2] (which is ex-

tensive (∀P ∈ A : P v ρ(P)), idempotent (∀P ∈ A : ρ(ρ(P)) = ρ(P)) and mono-
tone (∀P, P ′ ∈ A : P v P ′ ⇒ ρ(P) v ρ(P ′))) such that P ∈ A ⇔ P = ρ

A
(P)

hence A = ρ
A

(A). ρ
A

is called the closure operator induced by the abstraction

A. Closure operators are isomorphic to their fixpoints hence to the Moore fam-
ilies. Therefore, any closure operator ρ on the set of properties A induces an
abstraction ρ(A). The abstract domain A = ρ(A) defined by a closure operator
ρ on a complete lattice of concrete properties 〈A, v, ⊥, >, t, u〉 is a complete
lattice 〈ρ(A), v, ρ(⊥), >, λS· ρ(tS), u〉. The set uclo(A 7→ A) of all abstrac-
tions, i.e. isomorphically, closure operators ρ on the set A of concrete properties
is the complete lattice of abstractions for pointwise inclusion 〈uclo(A 7→ A), v̇,
λP·P, λP·>, λS· ide(ṫS), u̇〉 where for all ρ, η ∈ uclo(A 7→ A), {ρi | i ∈ I}

⊆ uclo(A 7→ A) and x ∈ A, ρ ⊆̇ η
∆
= ∀x ∈ A : ρ(x) ⊆ η(x) ⇔ η(A) ⊆ ρ(A), the

glb (
ḋ

i∈I ρi)(x)
∆
=

d
i∈I ρi(x) is the reduced product and the lub ide(˙⊔

i∈I ρi)

where ide(ρ) = lfp
⊆̇

ρ
λf· f ◦ f is the ⊆̇-least idempotent operator on A ⊆̇-

greater than ρ satisfies ide(˙⊔
i∈I ρi)(x) = x ⇔ ∀i ∈ I : ρi(x) = x. The dis-

junctive completion of a closure operator ρ ∈ uclo(A 7→ A) is the most abstract
closure Dc(ρ) = ṫ{η ∈ uclo(A 7→ A) ∩ A

t
7−→ A | η v̇ ρ} which is more pre-

cise than ρ and is a complete join morphism (i.e. f ∈ A
t
7−→ A if and only if

∀X ⊆ A : f(tX) = tf(X)) [11, Sec. 9.2].

2.4 Galois Connection-Based Abstraction. For closure operators ρ, we
have ρ(P) v ρ(P ′) ⇔ P v ρ(P ′) stating that ρ(P ′) is an abstraction of a
property P if and only if it v-approximates its best abstraction ρ(P). This can
be written 〈A, v〉 −−→−→←−−−−

ρ

1
〈ρ(A), v〉 where 1 is the identity and 〈A, v〉 −−−→−→←−−−−

α

γ
〈D,

v〉 means that 〈α, γ〉 is a Galois surjection, that is: ∀P ∈ A, P ∈ D : α(P) v
P ⇔ P v γ(P) and α is onto (equivalently α ◦ γ = 1 or γ is one-to-one).
Reciprocally if 〈A, v〉 −−→−→←−−−−

ρ

1
〈ρ(A), v〉 holds then ρ is a closure operator so

that this can be taken as an equivalent definition of closure operators.
We can define an abstract domain as an isomorphic representationD of the set

A ⊆ A = ρ(A) of abstract properties (up to some order-isomorphism ι). Then,

with such an encoding ι, we have the Galois surjection1 〈A, v〉 −−−−→−→←−−−−−
ι◦ρ

ι−1

〈D, v〉

More generally, the correspondence between concrete and abstract properties can
be established by an arbitrary Galois surjection [11, Sec. 5.3] 〈A, v〉 −−−→−→←−−−−

α

γ
〈D,

v〉. This is equivalent to the definition of the abstract domain A ∆
= α ◦ γ(D)

by the closure operator α ◦ γ so the use of a Galois surjection is equivalent to
that of a closure operator or a Moore family, up to the isomorphic representation
α ◦ γ of the abstract domain A ∼= D.

Relaxing the condition that α is onto means that the same abstract property
can have different representations. Then 〈A, v〉 −−−→←−−−α

γ
〈D, v〉 that is to say

1 Also called Galois insertion since γ is injective.

∀P ∈ A, P ∈ D : α(P) v P ⇔ P v γ(P)2 or equivalently α is monotone
(∀x, x′ ∈ L : x v x′ ⇒ α(x) v α(x′), thus α preserves concrete implication v
in the abstract), γ is monotone (∀y, y′ ∈ M : y v y′ ⇒ γ(y) v γ(y′), thus γ
preserves abstract implication v in the concrete), γ ◦ α is extensive (∀x ∈ L :

x v γ(α(x)), so ρ
∆
= γ ◦ α and the approximation is from above) and α ◦ γ is

reductive (∀y ∈ M : α(γ(y)) v y, so concretization can loose no information).
The composition α ◦ γ is the identity if and only if α is onto or equivalently γ
is one-to-one. If α is not onto, then the reduction of the abstract domain [12,
Prop. 10] consists in considering the quotient D/≡γ by the equivalence Q ≡γ Q′

⇔ γ(Q) = γ(Q′), so that 〈A, v〉 −−−−→−→←−−−−−
α≡

γ≡

〈D/≡γ , v≡γ
〉 is a Galois surjection

where α≡(P)
∆
= [α(P)]≡γ

, [Q]≡γ

∆
= {Q′ ∈ D | Q ≡γ Q′}, γ≡([Q]≡γ

)
∆
= γ(Q) and

[P]≡γ
v≡γ

[Q]≡γ
⇔ ∃P ′ ∈ [P]≡γ

: ∃Q′ ∈ [Q]≡γ
: P ′ v Q′.

Observe that the inverse dual of 〈A, v〉 −−−→←−−−α

γ
〈D, v〉 is 〈D, w〉 −−−→←−−−γ

α
〈A, w〉.

The composition of Galois connections 〈A, v〉 −−−→←−−−
α1

γ1

〈D, v〉 and 〈D, v〉 −−−→←−−−
α2

γ2

〈D, v〉 is a Galois connection 〈A, v〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2

〈D, v〉.

2.5 Function Abstraction. Given a complete lattice 〈A, v, ⊥, >, t, u〉 and
an abstraction ρ on A, the best abstraction of a monotone operator f ∈ A

mon

7−→ A
on the complete latticeA is ρ ◦ f ∈ ρ(A)

mon

7−→ ρ(A) [11, Sec. 7.2]. Indeed given any
other f ∈ ρ(A)

mon

7−→ ρ(A) and x ∈ ρ(A) the soundness requirement f(x) w f(x)
implies f(x) v ρ ◦ f(x) since ρ is idempotent whence ρ ◦ f(x) v ρ ◦ f(x) proving
ρ ◦ f v̇ f so that ρ ◦ f is more precise than any other sound abstraction f ∈

ρ(A)
mon

7−→ ρ(A) of f ∈ A
mon

7−→ A. In terms of Galois connections, 〈A, v〉 −−−→←−−−α

γ
〈A,

v〉 implies 〈A mon

7−→ A, v̇〉 −−−−−−−−−→←−−−−−−−−−
λF·α◦F◦γ

λF· γ◦F ◦α
〈A

mon

7−→ A, v̇〉.

2.6 Fixpoint Abstraction. Given a complete lattice 〈A, v, ⊥, >, t, u〉 and
a monotone operator f ∈ A

mon

7−→ A on the complete lattice A, its least fixpoint
lfp

v

a
f greater than a ∈ A is defined, if it exists, as a v lfp

v

a
f = f(lfp

v

a
f) and

∀x ∈ A : a v x = f(x) ⇒ lfp
v

a
f v x. If a v f(a) then lfp

⊆

a
f does exist and is

the limit of the ultimately stationary transfinite sequence fη, η ∈ O defined by
f0 ∆

= a, fη+1 ∆
= f(fη), for successor ordinals η + 1 and fλ ∆

=
⋃

η<λ fη, for limit

ordinals λ [7]. In particular the least fixpoint of f is lfp
v

f
∆
= lfp

v

⊥
f .

Given f ∈ A
mon

7−→ A on the complete lattice A and an abstraction ρ, we would
like to approximate lfp

v

a
f in ρ(A). The best abstraction ρ(lfp

v

a
f) is in general

not computable since neither lfp
v

a
f nor ρ are. However, following [11, Sec. 7.1], a

computable pointwise over approximation f is sufficient to check for an over ap-
proximation of lfp

v

a
f in ρ(A) ∀y ∈ ρ(A) :

(

ρ ◦ f v̇ f ∧ ρ(a) v y ∧ f(y) v y
)

⇒

2 In absence of best approximation, one can use a semi-connection, requiring only
∀P ∈ A, P ∈ D : α(P) v P ⇒ P ⊆ γ(P), see [13].

(

lfp
v

a
f v y

)

. Moreover the v-least such y is lfp
v

ρ(a)
ρ ◦ f (which does exist since

a v f(a) implies ρ(a) v ρ ◦ f(ρ(a))) such that ρ(y) = y. This means that we can
abstract fixpoints by fixpoints. In terms of Galois connections, if 〈A,v〉 −−−→←−−−α

γ
〈A,

v〉, f ∈ A
mon

7−→ A and f ∈ A
mon

7−→ A then f is a sound upper approximation of
f if and only if α ◦ f v̇ f ◦ α or equivalently α ◦ f ◦ γ v̇ f where α ◦ f ◦ γ is

the best sound upper approximation of f . This implies that α(lfp
v

a
f) v lfp

v

α(a)
f .

The approximation is said to be complete if and only if α ◦ f = f ◦ α in which

case α(lfp
v

a
f) = lfp

v

α(a)
f .

An iteration for an operator f ∈ A
mon

7−→ A on the complete lattice A from
a ∈ A with widening

`
is X0 ∆

= a, Xn+1 ∆
= (f(Xn) v Xn ? Xn : Xn

`
f(Xn))

[9] where the conditional notation is (tt ? t : f) = t, (ff ? t : f) = f and
(b1 ? t1 | b2 ? t2 : f) = (b1 ? t1 : (b2 ? t2 : f)). If the widening ensures
that all such iterations are stationary at a finite rank ` < ω and a v X` then
f(X`) v X` and so lfp

v

a
f v X`. Widenings are also useful in absence of lubs

for ascending chains in which case one requires in addition that X v X
`

Y and
Y v X

`
Y .

3 Application to Ground Predicate Abstraction

Predicate abstraction was introduced by [15] for computing invariants by ab-
stract interpretation, following among others [4,10,19] where the general idea is
that the atomic elements of the abstract domain are abstract predicates over
program variables which interpretation is a set of program states (maybe mem-
ory states attached to program points). Predicate abstraction is restricted to a
finitary abstraction [1,3,15,19]. For all such finite abstract domains, the trans-
fer functions can be computed using a theorem prover (α ◦ f ◦ γ(P) is over-
approximated by f(P) = u{Q ∈ A | f ◦ γ(P) v γ(Q)} where the Q ∈ A are
enumerated and the prover is asked for the proof f ◦ γ(P) v γ(Q). Q is skipped
if the prover fails which yields an overapproximation). All such finite abstract
domains can be encoded with booleans so as to reuse existing model-checkers for
fixpoint computations. We revisit predicate abstraction by systematic approxi-
mation of the concrete semantics of a programming language using an infinitary
abstraction to ground (as opposed to parametric) predicates.

3.1 Syntax and Concrete Reachability Semantics of the Program-

ming Language. We consider a simple imperative programming language with
programming variables X ∈ X, arithmetic expressions E ∈ E (? is the random
choice), Boolean expressions B ∈ B and commands C ∈ C:

E ::= 1 | X | ? | E1 − E2,

B ::= E1 < E2 | ¬B1 | B1 ∧B2,

C ::= skip | X := E | C1 ; C2 | ifB thenC1 elseC2 | whileB do C1 .

varJEK (respectively varJBK, varJCK) is the set of programming variables appear-
ing in the (Boolean) expression E ∈ E (B ∈ B) or command C ∈ C. Each
command C ∈ C has unique labels labJCK to denote its execution points. These
labels include an entry label atJCK, an exit label afterJCK and possibly labels of
sub-commands inJCK. We assume that labJCK = {atJCK} ∪ inJCK ∪ {afterJCK},
atJCK 6= afterJCK, {atJCK, afterJCK} ∩ inJCK = ∅ and for C1 ; C2, we have
labJC1K ∩ labJC2K = {afterJC1K} = {atJC2K}.

We let D be the domain of value of the programming variables X. The seman-
tics EJEK ∈ M 7→ ℘(D) of expressions E ∈ E is defined on all memory states
M

∆
= V 7→ D where V is any set of programming variables including all such

variables appearing in E, that is varJEK ⊆ V . We define EJ1Km ∆
= {1}, EJ?Km ∆

=

D, EJXKm ∆
= {m(X)} and EJE1−E2Km ∆

= {v1−v2 | v1 ∈ EJE1Km∧v2 ∈ EJE2Km}.
The semantics BJBK ∈ ℘(M) and BJBK ∈ ℘(M) of Boolean expressions

B ∈ B is defined for memory states in M ∆
= V 7→ D where varJBK ⊆ V . BJBK

defines the set of memory states in which B may be true while BJBK defines
the set of memory states in which B may be false. We have BJBK ∪ BJBK =M
but maybe BJBK∩ BJBK 6= ∅ because of non-determinism as in ? < 1. We define
BJE1 < E2K ∆

= {m ∈ M | ∃x1, x2 ∈ D : x1 ∈ EJE1Km ∧ x2 ∈ EJE2Km ∧ x1 < x2},
BJ¬BK ∆

= BJBK, BJB1∧B2K ∆
= BJB1K∩BJB2K, BJE1<E2K ∆

= {m ∈M | ∃x1, x2 ∈

D : x1 ∈ EJE1Km∧ x2 ∈ EJE2Km∧ x1 ≥ x2} BJ¬B1K ∆
= BJBK and BJB1 ∧B2K ∆

=
BJB1K ∪ BJB2K.

The reachability semantics RJCK of a command C ∈ C is defined on any set
of states Σ = 〈L, M〉 such that L is a set of labels and M ∆

= V 7→ D is a set of
memory states on variables V chosen such that labJCK ⊆ L and varJCK ⊆ V . The
reachability semantics for the command C is then 〈Σ, RJCK〉. For a program C,
we can choose Σ = 〈labJCK, varJCK 7→ D〉.

RJCKP ∆
= match C with

| skip → P ∪ {〈afterJCK, m〉 | 〈atJCK, m〉 ∈ P}

| X := E → P ∪ {〈afterJCK, m[X := v]〉 | 〈atJCK, m〉 ∈ P ∧ v ∈ EJEKm}
| C1 ; C2 → RJC1KP ∪RJC2K{〈atJC2K, m〉 | 〈afterJC1K, m〉 ∈ RJC1KP}
| C = ifB thenC1 elseC2 → P ∪ P1 ∪ P2 ∪ Pe

where P1
∆
= RJC1K{〈atJC1K, m〉 | 〈atJCK, m〉 ∈ P ∧m ∈ BJBK}

and P2
∆
= RJC2K{〈atJC2K, m〉 | 〈atJCK, m〉 ∈ P ∧m ∈ BJBK}

and Pe
∆
= {〈afterJCK, m〉 | 〈afterJC1K, m〉 ∈ P1 ∨ 〈afterJC2K, m〉 ∈ P2}

| C = whileB do C1 → let P1 = lfp
⊆

λX·RJC1K({〈atJC1K, m〉 |
(〈atJCK, m〉 ∈ P ∨ 〈afterJC1K, m〉 ∈ X) ∧m ∈ BJBK}) in

(1)

P ∪ P1 ∪ {〈afterJCK, m〉 | (〈atJCK, m〉 ∈ P ∨ 〈afterJC1K, m〉 ∈ P1) ∧m ∈ BJBK}

3.2 Ground Abstract Predicates. Predicate abstraction is defined by a
set P of syntactic predicates that, for simplicity, we choose to be Boolean ex-

pressions P ⊆ B. We define varJPK ∆
=

⋃

p∈P varJpK. The set P may be infi-

nite as e.g. in the case of Kildall’s constant propagation [16] for which P
∆
=

{tt, ff} ∪
⋃

X∈varJCK
⋃

v∈D
{X = v}.

Predicate abstraction uses a prover to prove theorems t ∈ T with interpreta-
tion I ∈ T 7→ ℘(M) assigning an interpretation IJtK to all syntactic predicates
t ∈ T with syntax (p ∈ P):

t ::= p | tt | ff | X | ¬t1 | t1 ⇒ t2 |
∧

i∈∆

ti | ∀X : t1

with free variables varJtK and semantics IJtK ∈ ℘(M) defined by IJpK ∆
= BJpK,

IJttK ∆
= M, IJffK ∆

= ∅, IJX ∈ EK ∆
= {m ∈ M | m(X) ∈ EJEKm}, IJ¬tK ∆

=

{m ∈ M | m 6∈ IJtK}, IJ
∧

i∈∆ tiK ∆
=

⋂

i∈∆ IJtiK, IJt1 ⇒ t2K ∆
= {m ∈ M | m 6∈

IJt1K ∨ m ∈ IJt2K} and IJ∀X : tK ∆
= {m ∈ M | ∀v ∈ D : m[X := v] ∈ IJtK}.

Variable substitution t[X/X′] is defined as usual with renaming of conflicting
dummy variables such that:

X 6∈ varJtK⇒ t[X/X′] = t,

EJE[X/X′]Km = EJEKm[X := m(X′)], (2)
X 6= Y ∧ Y 6∈ varJtK⇒ IJ∀X : tK = IJ∀Y : (t[X/Y])K,
Z 6∈ varJtK ∪ {X, Y} ⇒ IJ(∀X : t)[Y/X]K = IJ∀Z : (t[X/Z][Y/X)]K,

IJt[X/X′]K = {m | m[X := m(X′)] ∈ IJtK} . (3)

The prover is assumed to be sound in that ∀t ∈ T : proverJtK ⇒ (IJtK =M).
(The inverse is not valid since provers are incomplete.)

3.3 Ground Predicate Abstraction. Given a set of states in A where Σ =
〈L, M〉, we can use an isomorphic representation associating sets of memory
states to labels thank to the following correspondence:

〈℘(L ×M), ⊆〉 −−−→−→←←−−−−
α↓

γ↓

〈L 7→ ℘(M), ⊆̇〉

where α↓(P)
∆
= λ`·{m | 〈`, m〉 ∈ P}, γ↓(Q)

∆
= {〈`, m〉 | ` ∈ L ∧m ∈ Q`} and ⊆̇

is the pointwise ordering Q ⊆̇ Q′ if and only if ∀` ∈ L : Q` ⊆ Q′
`.

A memory state property Q ∈ ℘(M) is approximated by the subset of pred-
icates p of P which holds when Q holds (formally Q ⊆ BJpK). This defines a
Galois connection:

〈℘(M), ⊆〉 −−−−→←−−−−
αP

γP

〈℘(P), ⊇〉

where αP(Q)
∆
= {p ∈ P | Q ⊆ BJpK} and γP(P)

∆
=

⋂

{BJpK | p ∈ P} = IJ∧ P K.
Observe that in general γP is not one-to-one (e.g. γP({X = 1, X ≥ 1}) = γP({X =
1}) so αP is not onto3. By pointwise extension, we have:

3 In a Galois connection 〈L, ≤〉 −−−→←−−−
α

γ

〈M, v〉, α is onto if and only if γ is one-to-one if
and only if γ ◦ α is the identity so, by duality, γ is onto if and only if α is one-to-one
if and only if α ◦ γ is the identity.

〈L 7→ ℘(M), ⊆̇〉 −−−−→←−−−−
α̇P

γ̇P

〈L 7→ ℘(P), ⊇̇〉

where α̇P(Q)
∆
= λ`·αP(Q`), γ̇P(P)

∆
= λ`· γP(P`) and P ⊇̇ P ′ ∆

= ∀` ∈ L : P` ⊇
P ′

` . By composition, we get:

〈℘(L ×M), ⊆〉 −−−→←−−−α

γ
〈L 7→ ℘(P), ⊇̇〉 (4)

where α(P)
∆
= α̇P ◦ α↓(P) = λ`·{p ∈ P | {m | 〈`, m〉 ∈ P} ⊆ IJpK} and γ(Q)

∆
=

γ↓ ◦ γ̇P = {〈`, m〉 | ` ∈ L∧m ∈ γP(Q`)}= {〈`, m〉 | ` ∈ L ∧ ∀p ∈ Q` : m ∈ IJpK}.
If P is assumed to be finite then characteristic functions of subsets of P can

be encoded as Boolean vectors thus later allowing for the reuse of model-checker
to solve fixpoint equations. However, this encoding of sets cannot be used to
encode infinite sets such as Kildall’s constant propagation [16].

3.4 Abstract Reachability Semantics of Commands C ∈ C. Given a set
of abstract predicates P, the abstract reachability semantics RJCK ∈ ℘(P) 7→
(labJCK 7→ ℘(P)) of command C ∈ C is

RJCKP = α(RJCK({atJCK} × γP(P)))

that is the abstraction of the reachable states of C from its entry point atJCK in
initial memory states m ∈ γP(P).

Because of undecidability, whence theorem prover incompleteness, we look
for a ⊇̇-over-approximation RJCKP such that:

α(RJCK({atJCK} × γP(P))) ⊇̇ RJCKP (5)

⇔ RJCK({atJCK} × γP(P)) ⊆ γ(RJCKP) (6)

We proceed by structural induction on the syntax of commands C ∈ C. For
short, we only consider the case of assignment and iteration.

— For the assignment X := E, we have

RJX := EKP
= α(RJX := EK({atJX := EK} × γP(P))) Hdef. RI
= let P = {atJX := EK} × γP(P) in

α(P ∪ {〈afterJCK, m[X := v]〉 | 〈atJCK, m〉 ∈ P ∧ v ∈ EJEKm}) Hdef. RI
= let P = {atJX := EK} × γP(P) in

α(P) ∩̇α({〈afterJCK, m[X := v]〉 | 〈atJCK, m〉 ∈ P ∧ v ∈ EJEKm})
Hby (4), so that α is a complete join morphismI

Let us go on with the first term α(P) of the form P = {locJCK} × γP(P)

with loc ∈ {at, after}.

α({locJCK} × γP(P))

= λ`·{p ∈ P | {m | 〈`, m〉 ∈ {locJCK} × γP(P)} ⊆ IJpK} Hdef. αI
= λ`·(` = locJCK ? {p ∈ P | γP(P) ⊆ IJpK} : {p ∈ P | ∅ ⊆ IJpK) HconditionalI
= λ`·(` = locJCK ? {p ∈ P |

⋂

{BJpK | p ∈ P} ⊆ IJpK} : P) Hdef. γP and ⊆I
= λ`·(` = locJCK ? {p ∈ P | IJ

∧

P ⇒ pK} : P) Hdef. II
⊇̇ λ`·(` = locJCK ? {p ∈ P | proverJ

∧

P ⇒ pK} : P) Hprover soundnessI
⊇̇ λ`·(` = locJCK ? P : P) Hless precise but avoids a call to the proverI (7)

Given P = {atJX := EK} × γP(P), the second term is

α({〈afterJX := EK, m[X := v]〉 | 〈atJX := EK, m〉 ∈ P ∧ v ∈ EJEKm})
= α({〈afterJX := EK, m[X := v]〉 | m ∈ γP(P) ∧ v ∈ EJEKm}) Hdef. P I
= λ`·{p ∈ P | {m′ | 〈`, m′〉 ∈ {〈afterJX := EK, m[X := v]〉 | m ∈ γP(P) ∧ v ∈
EJEKm}} ⊆ IJpK} Hdef. αI

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m ∈ γP(P) ∧ v ∈ EJEKm} ⊆
IJpK} : P) Hdef. conditional and ⊆I

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m ∈
⋂

{BJpK | p ∈ P} ∧ v ∈

EJEKm} ⊆ IJpK} : P) Hdef. γPI
= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m ∈ IJ

∧

P K ∧ v ∈ EJEKm} ⊆
IJpK} : P) Hdef. II

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v′][X := v] | m[X := v′] ∈

IJ
∧

P K ∧ v ∈ EJEKm[X := v′]} ⊆ IJpK} : P) Hby letting v′ = m(X) so that
m = m[X := v′]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | ∃v′ ∈ D : m[X := v′] ∈

IJ
∧

P K ∧ v ∈ EJEKm[X := v′]} ⊆ IJpK} : P) Hsince m[X := v′][X := v] =
m[X := v]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m[X := m(X′)] ∈ IJ
∧

P K ∧ v ∈

EJEKm[X := m(X′)]} ⊆ IJpK} : P) Hby letting v′ = m(X′) where X′ is
a fresh variable such that X′ 6∈ {X}∪ varJEK∪ varJPK so that X′ 6∈ varJP K and
neither IJ

∧

P K, EJEK nor IJpK depend upon the value of X′I
= λ`·(` = afterJX := EK ? {p ∈ P | {m′ | m′[X := m′(X′)] ∈ IJ

∧

P K ∧m′(X) ∈

EJEKm′[X := m′(X′)]} ⊆ IJpK} : P) Hby letting m′ = m[X := v] so that
v = m′(X), m(X′) = m′(X′) and m[X := m(X′)] = m′[X := m′(X′)]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X := m(X′)] ∈

IJ(
∧

P)K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hby letting m = m′ and
v = m′(X′)I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v][X :=

m(X′)] ∈ IJ(
∧

P)K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hsince

X′ 6∈ varJP KI

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v][X := m[X :=

v](X′)] ∈ IJ(
∧

P)K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hsince X 6= X′ so
m(X′) = m[X := v](X′)I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈ {m′ |

m′[X := m′(X′)] ∈ IJ(
∧

P)K} ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hby
def. ∈ while letting m′ = m[X := v]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ(
∧

P)[X/X′]K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hby (3)I
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ(
∧

P)[X/X′]K ∧m[X′ := v](X) ∈ EJEKm[X := m[X′ := v](X′)]} ⊆ IJpK} : P)

Hdef. m[X := v] and X 6= X′I
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ(
∧

P)[X/X′]K ∧ m[X′ := v](X) ∈ EJEKm[X′ := v][X := m[X′ := v](X′)]} ⊆

IJpK} : P) Hsince X′ 6∈ varJEKI
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ(
∧

P)[X/X′]K ∧m[X′ := v] ∈ {m′ ∈ M | m′(X) ∈ EJEKm′[X := m′(X′)]}} ⊆

IJpK} : P) Hdef. ∈ while letting m′ = m[X′ := v]I
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ(
∧

P)[X/X′]K ∩ {m′ ∈ M | m′(X) ∈ EJEKm′[X := m′(X′)]}} ⊆ IJpK} : P)

Hdef. ∩I
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ(
∧

P)[X/X′]K ∩ {m′ ∈M | m′(X) ∈ EJE[X/X′]Km′}} ⊆ IJpK} : P) Hby (2)I
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ(
∧

P)[X/X′]K ∩ IJX ∈ E[X/X′]K} ⊆ IJpK} : P) Hdef. II
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ
∧

(P [X/X′])K ∩ IJX ∈ E[X/X′]K} ⊆ IJpK} : P) Hdef. substitutionI
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈

IJ
∧

P [X/X′] ∧ X ∈ E[X/X′]K} ⊆ IJpK} : P) Hdef. II
= λ`·(` = afterJX := EK ? {p ∈ P | IJ∃X′ :

∧

P [X/X′] ∧ X ∈ E[X/X′]K ⊆ IJpK} :
P) Hdef. II

= λ`·(` = afterJX := EK ? {p ∈ P | IJ(∃X′ :
∧

P [X/X′] ∧ X ∈ E[X/X′]) ⇒ pK} :
P) Hdef. II

⊇̇ λ`·(` = afterJX := EK ? {p ∈ P | proverJ(∃X′ :
∧

P [X/X′] ∧ X ∈ E[X/X′]) ⇒

pK} : P) Hdef. II

Grouping both cases together, we have

RJX := EKP

= λ`·(` = atJX := EK ? {p ∈ P | proverJ
∧

P ⇒ pK} : P) ∩̇λ`·(` = afterJX :=

EK ? {p ∈ P | proverJ(∃X′ :
∧

P [X/X′] ∧ X ∈ E[X/X′])⇒ pK} : P)
= λ`· (` = atJCK ? {p ∈ P | proverJ

∧

P ⇒ pK}
| ` = afterJX := EK ? {p ∈ P | proverJ(∃X′ :

∧

P [X/X′] ∧ X ∈ E[X/X′])⇒ pK}
: P)

Hdef. ∩̇, conditional and atJCK 6= afterJCKI
— For tests B, we have:

γP(P) ∩ BJBK
= IJ

∧

P K ∩ BJBK Hdef. γPI
⊆

⋂

{BJpK | (IJ
∧

P K ∩ BJBK) ⊆ BJpK} Hdef. upper boundsI
=

⋂

{BJpK | IJ(
∧

P ∧B)⇒ pK =M} Hdef. II
⊆

⋂

{BJpK | proverJ(
∧

P ∧B)⇒ pK} Hprover soundnessI
⊆ γP({p | proverJ(

∧

P ∧B)⇒ pK}) Hdef. γPI

Therefore we define:

RJBKP ∆
= {p | proverJ(

∧

P ∧B)⇒ pK}
such that:

γP(RJBKP) ⊇ γP(P) ∩ BJBK ⇔ RJBKP ⊆ αP(γP(P) ∩ BJBK) (8)

— For the iteration C = whileB do C1, given P ∈ L 7→ ℘(P) and X ⊆ Σ =
L ×M, we define:

F (X)
∆
= RJC1K({〈atJC1K, m〉 | (〈atJCK, m〉 ∈ ({atJCK} × γP(P)) ∨

〈afterJC1K, m〉 ∈ X) ∧m ∈ BJBK})

We can now design the abstraction F of F such that α ◦ F ⊇̇ F ◦ α:

α(F (X))

= α(RJC1K({atJC1K} × {m | (〈atJCK, m〉 ∈ ({atJCK} × γP(P)) ∨ 〈afterJC1K,
m〉 ∈ X) ∧m ∈ BJBK})) Hdef. F I

⊇̇ α(RJC1K({atJC1K} × {m | (m ∈ γP(P) ∨ 〈afterJC1K, m〉 ∈ γ ◦ α(X)) ∧m ∈
BJBK})) Hby (4) so that γ ◦ α is extensive and monotony of RJC1K and αI

⊇̇ α(RJC1K({atJC1K} × γP ◦ αP({m | (m ∈ γP(P) ∨ 〈afterJC1K, m〉 ∈ γ ◦

α(X)) ∧m ∈ BJBK}))) HγP ◦ αP is extensive, monotony of RJC1K and (4)
so that α is monotoneI

⊇̇ α(RJC1K({atJC1K} × γP(αP(γP(P) ∩ BJBK) ∩ αP({m | 〈afterJC1K, m〉 ∈ γ ◦

α(X) ∧m ∈ BJBK})))) HαP is a complete join morphismI
⊇̇ α(RJC1K({atJC1K}×γP(αP(γP(P)∩BJBK)∩αP(γP(α(X)afterJC1K)∩BJBK))))

Hdef. of γI
⊇̇ α(RJC1K({atJC1K} × γP(RJBKP ∩RJBK(α(X)afterJC1K)))) Hby (8) and

monotony I
⊇̇ RJC1K(RJBKP ∩RJBK(α(X)afterJC1K)) Hby induction hypothesis (5)I

We have α(∅) = λ`·P so that it follows that:

α(lfp
⊆

λX·RJC1K({〈atJC1K, m〉 | (〈atJCK, m〉 ∈ P ∨ 〈afterJC1K, m〉 ∈ X)
∧m ∈ BJBK}))

⊇̇ lfp
⊇̇

λ`·P
λX·RJC1K(RJBKP ∩RJBK(XafterJC1K))

∆
= P 1 (9)

We will need to evaluate:

α({〈`1, m〉 | 〈`2, m〉 ∈ γ(P) ∧m ∈ BJBK})
= α({〈`1, m〉 | m ∈ γP(P `2) ∧m ∈ BJBK}) Hdef. γI
= α({`1} × (γP(P `2) ∩ BJBK)) Hdef. ∩ and ×I
⊇̇ α({`1} × γP(RJBKP `2)) Hby (8) and (4), so that α monotoneI
= α̇P ◦ α↓({`1} × γP(RJBKP `2)) Hdef. αI
= λ`·αP({m | 〈`, m〉 ∈ {`1} × γP(RJBKP `2)) Hdef. α̇P and def. α↓I
⊇̇ λ`·(` = `1 ? RJBKP `2 : P) HαP ◦ γP is reductiveI (10)

and therefore for C = whileB do C1:

α(RJCK({atJCK} × γP(P)))

= α(({atJCK} × γP(P)) ∪ P1 ∪ {〈afterJCK, m〉 | (m ∈ γP(P) ∨ 〈afterJC1K, m〉 ∈
P1) ∧m ∈ BJBK}) Hby (1)I

⊇̇ α({atJCK} × γP(P)) ∩̇P 1 ∩̇α({〈afterJCK, m〉 | m ∈ γP(P) ∧ m ∈
BJBK}) ∩̇α({〈afterJCK, m〉 | 〈afterJC1K, m〉 ∈ P1 ∧m ∈ BJBK}) Hby (9) and
(4), so that α is a complete join morphismI

⊇̇ λ`·(` = atJCK ? P : P) ∩̇P 1 ∩̇λ`·(` = afterJCK ? RJ¬BKP : P) ∩̇
λ`·(` = afterJCK ? RJ¬BKP afterJC1K : P) Hby (7), BJBK = BJ¬BK and (10)I

= P 1 ∩̇λ`·(` = atJCK ? P | ` = afterJCK ? RJ¬BKP ∩ RJ¬BKP afterJC1K : P)
Hdef ∩̇ and conditionalI

— In conclusion of these calculi, we have proved that:

RJCKP` = (` 6∈ labJCK ? P : match C, ` with

| _, atJCK → {p ∈ P | proverJ
∧

P ⇒ pK}

| skip, afterJCK → {p ∈ P | proverJ
∧

P ⇒ pK}

| X := E, afterJCK → {p ∈ P | proverJ(∃X′ :
∧

P [X/X′] ∧ X ∈ E[X/X′])⇒ pK}
| C1 ; C2, _ → let P 1 = RJC1KP and P 2 = RJC2KP 1(afterJC1K) in

P 1(`) ∩ P 2(`)

| ifB thenC1 elseC2, _ →

let P t = {p ∈ P | proverJ(
∧

P ∧B)⇒ pK} and P 1 = RJC1KP t

and P f = {p ∈ P | proverJ(∧ P ∧ ¬B)⇒ pK} and P 2 = RJC2KP f

in P 1(`) ∩ P 2(`) ∩ (` = afterJCK ? P 1(afterJC1K) ∩ P 2(afterJC2K) : P)

| whileB doC1, _ →

let P 1 = gfp
⊆̇

λ`·P
λX·λ`′·(`′ = atJC1K ? {p ∈ P | proverJ((

∧

P ∨
X(afterJC1K)) ∧B)⇒ pK} : P) ∩̇RJC1KX(atJC1K)`′

in P 1(`) ∩ (` = afterJCK? {p ∈ P | proverJ((∧ P ∨
P 1(afterJC1K) ∧ ¬B)⇒ pK} : P)

)

3.5 Reduced Set of Ground Abstract Predicates. Observe that because
of the normalization {p ∈ P | proverJ∧ P ⇒ pK} of P ∈ ℘(P), the abstract
domain 〈℘(P, ⊇〉 can be reduced [12, Prop. 10] to 〈{{p ∈ P | proverJ

∧

P ⇒
pK} | P ∈ ℘(P}, ⊇〉. The abstract domain 〈℘(P), ⊇〉 may not be Notherian while
this reduced abstract domain is Notherian. For example, in Kildall’s constant
propagation [16] for a command C, the set of abstract predicates is P = {X =
v | X ∈ varJCK ∧ v ∈ D}. The reduction yields the abstract predicates ∅ (“I
don’t know”), P (“false”) and the {X1 = v1, . . . , Xn = vn} (where i 6= j implies
Xi 6= Xj). This reduced set of abstract predicates is still infinite but Notherian.
The abstract semantics RJCK can be computed by induction on the structure
of C with a fixpoint iteration in RJwhileB doC1K which is finite for Notherian
abstract domains (as in [16] which corresponds to a particular chaotic iteration

strategy [10,7]). Otherwise the iterative fixpoint computation may not terminate
whence may require to be over approximated by a widening.

3.6 Local Ground Abstract Predicates. Instead of choosing the set P of
abstract predicates globally, it can be chosen locally, by choosing a particular
set of abstract predicates P` attached to each command label ` ∈ labJCK. Then
terms of the form {p ∈ P | proverJP ⇒ pK} attached to program point ` in the
definition of the abstract predicate transformer RJCK are to be simply replaced
by {p ∈ P` | proverJP ⇒ pK.

3.7 Safety Verification of Commands C ∈ C. The verification that a
command satisfies a safety specification S ∈ labJCK 7→ ℘(P) consists in checking
for each point ` ∈ labJCK that:

proverJ(
∧

RJCK(S(atJCK))`)⇒
∧

S(`)K .

This is sound since:

∀` ∈ labJCK : proverJ(
∧

RJCK(S(atJCK))`)⇒
∧

S(`)K
⇒ ∀` ∈ labJCK : IJ(

∧

RJCK(S(atJCK))`)⇒
∧

S(`)K =M Hprover soundnessI
⇒ ∀` ∈ labJCK : IJ(

∧

RJCK(S(atJCK))`)K ⊆ IJ
∧

S(`)K Hdef. of II
⇒ ∀` ∈ labJCK : γP(RJCK(S(atJCK))`) ⊆ γP(S(`)) Hdef. γPI
⇒ γ̇P(RJCK(S(atJCK))) ⊆̇ γ̇P(S) Hdef. γ̇PI

⇒ γ↓ ◦ γ̇P(RJCK(S(atJCK))) ⊆̇ γ↓ ◦ γ̇P(S) Hby monotonyI
⇒ γ(RJCK(S(atJCK))) ⊆̇ γ(S) Hdef. γI
⇒ RJCK({atJCK} × γP(S(atJCK))) ⊆ γ(S) Hby (6)I
⇒ ∀` ∈ labJCK : RJCK({atJCK} × γP(S(atJCK)))` ⊆ γP(S(`)) Hdef. γI
so that, informally, S(`) holds whenever program point ` is reached during any
execution of command C starting at point atJCK with an initial memory state
satisfying S(atJCK).

4 Application to Parametric Predicate Abstraction

The inconvenience of ground predicate abstractions is that the ground predicates
directly refer to the program states and control by explicitly naming program
constants, variables and maybe control points. Consequently, the abstract do-
main, being program-specific, has to be redesigned for each new or modified
program. This design can be partially automatized by refinement techniques, in-
cluding convergence acceleration by widening [3], but this alternation of analyzes
and refinements would be costly for precise analysis of large programs. An al-
ternative is to provide program-independent predicates by designing parametric

abstract domains. The presentation is made through a sorting example.

4.1 Parametric Abstract Domains. A parametric abstract domain is pa-
rameterized so that a particular abstract domain instantiation for a given pro-
gram is obtained by binding the parameters to the constants, variables, control
points, etc. of this specific program. For a simple example, Kildall’s parametric
abstract domain for constant propagation is K(C, V) =

∏

`∈C

∏

X∈V (`) L where
L is Kildall’s complete lattice ⊥ v v v > for all v ∈ D. Given a command C,
it is instantiated to K(labJCK, varJCK) where labJCK is the set of labels of com-
mand C and varJCK(`) is the set of program variables X which are visible at this
program point ` of command C.

4.2 Parametric Comparison Abstract Domain. We let Dr(X) be a para-
metric relational integer abstract domain parameterized by a set X of program
and auxiliary variables. This abstract domain is assumed to have abstract op-
erations on r, r1, r2 ∈ Dr(X) such as the projection or variable elimination
∃x ∈ X : r, disjunction r1 ∨ r2, conjunction r1 ∧ r2, abstract predicate trans-
formers for assignments and tests, etc (see e.g. [18]).

Then we define the parametric comparison abstract domain:

Dlt(X) = {〈lt(t, a, b, c, d), r〉 | t ∈ X ∧ a, b, c, d 6∈ X ∧
r ∈ Dr(X ∪ {a, b, c, d})} .

(11)

The meaning γ(〈lt(t, a, b, c, d), r〉) of an abstract predicate 〈lt(t, a, b, c, d), r〉
is informally that all elements of t between indices a and b are less than any
element of t between indices c and d and moreover r holds:

t.�

t

a b c d t.h

�

More formally, there should be a declaration t : array[`, h] of int so that
γ(〈lt(t, a, b, c, d), r〉) defines a set of environments ρ mapping program and auxil-
iary variables X to their value ρ(X) for which the above concrete predicate holds:

γ(〈lt(t, a, b, c, d), r〉) = {ρ | ∃a, b, c, d : ρ(t).` ≤ a ≤ b ≤ ρ(t).h
∧ ρ(t).` ≤ c ≤ d ≤ ρ(t).h
∧ ∀i ∈ [a, b] : ∀j ∈ [c, d] : ρ(t)[i] ≤ ρ(t)[j] ∧ ρ ∈ γ(r)}

where the domain of the ρ is X ∪{a, b, c, d} and γ(r) is the concretization of the
abstract predicate r ∈ Dr(X ∪ {a, b, c, d}) specifying the possible values of the
variables in X and the auxiliary variables a, b, c, d.

4.3 Abstract Logical Operations of the Parametric Comparison Ab-

stract Domain. Then the abstract domain must be equipped with abstract
operations such as the implication ⇒, conjunction ∧, disjunction ∨, etc. We
simply provided a few examples.

Abstract Implication. We have 〈lt(t, a, b, c, d), r〉 ⇒ r. If r ⇒ r′ and a ≤ b ≤
c ≤ d and e ≤ f ≤ g ≤ h then;

〈lt(t, a, d, e, h), r〉 ⇒ 〈lt(t, b, c, f, g), r′〉 (12)

as shown below:

t.�

t

a b c d e f g h t.h

�

�

Abstract Conjunction. If t, i, j, k, ` 6∈ varJrK, then:

r ∧ 〈lt(t, a, c, f, h), r′〉 = 〈lt(t, a, c, f, h), r ∧ r′〉 (13)

If a ≤ b ≤ c ≤ d and e ≤ f ≤ g ≤ h then we have:

〈lt(t, a, c, f, h), r〉 ∧ 〈lt(t, b, d, e, g), r′〉, = 〈lt(t, b, c, f, g), ∃a, d, e, h : r ∧ r′〉

as shown below:

t.�

t

a b c d e f g h t.h

�

�

�

The same way, we have:

〈lt(t, a, b, c, e), r〉 ∧ 〈lt(t, d, f, g, h), r′〉 = 〈lt(t, a, b, g, h), ∃c, e, d, f : r ∧ r′〉 (14)

when (r ∧ r′)⇒ (c ≤ d ≤ e ≤ f):

t.�

t

a b c d e f g h t.h

�

�

�

Abstract Disjunction. We have:

〈lt(t, a, b, c, d), r〉 ∨ 〈lt(t, e, f, g, h), r′〉 = 〈lt(t, i, j, k, `), (∃a, b, c, d : i = a (15)
∧ j = b ∧ k = c ∧ ` = d ∧ r) ∨ (∃e, f, g, h : i = e ∧ j = f ∧ k = g ∧ ` = h ∧ r′)〉

In case one of the terms does not refer to the array (t 6∈ varJrK), a criterion must
be used to force the introduction of an identically true array term lt(t, i, i, i, i).
For example if the auxiliary variables d, f, g, h in r′ depend upon one selectively
chosen variable I, then we have:

r ∨ 〈lt(t, d, f, g, h), r′〉 = 〈lt(t, i, j, k, `), (i = j = k = ` = I ∧ r) ∨ (16)
(∃d, f, g, h : i = d ∧ j = f ∧ k = g ∧ ` = h ∧ r′)〉

This case appears typically in loops, which can also be handled by unrolling, see
Sec. 4.5.

4.4 Abstract Predicate Transformers for the Parametric Compari-

son Abstract Domain. Then the abstract domain must be equipped with
abstract predicate transformers for tests, assignments, etc. We consider forward
strongest postconditions (although weakest preconditions, which avoid an exis-
tential quantifier in assignments, may sometimes be simpler).

We depart from traditional predicate abstraction which uses a simplifier
(or a theorem prover) to formally evaluate the abstract predicate transformer
α ◦ F ◦ γ approximating the concrete predicate transformer F . The alternative
proposed below is standard in abstract interpretation-based static program anal-
ysis and directly provides an over-approximation of the best abstract predicate
transformer α ◦ F ◦ γ in the form of an algorithm (which correctness must
be established formally). The simplifier/prover can be used to reduce the post-
condition in the normal form (11) that is required for the abstract predicates
and otherwise easily handled e.g. by pattern-matching.

Abstract Strongest Postconditions for Tests.

{ P1 }

if (t[I] > t[I + 1])

then { P1 ∧ 〈lt(t, i, j, k, `), i = I ∧ j = I + 1 ∧ k = I ∧ ` = I〉 } . . . { P2 } (17)
else { P1 ∧ 〈lt(t, i, j, k, `), i = I ∧ j = k = ` = I + 1〉 } . . . { P3 } (18)
{ P2 ∨ P3 } (19)

Abstract Strongest Postconditions for Assignments. For assignment, we
have {t[a..I] ≤ t[I] ∧ t[I] > t[I+ 1]} t[I] :=: t[I + 1] {t[a..I+ 1] ≤ t[I + 1]},
so that in the parametric abstract domain, assuming t 6∈ varJrK ∪ varJr′K, r ⇒
(i ≤ j = k = ` = I) and r′ ⇒ (m = p = q = I ∧ n = I + 1), we have:

{ 〈lt(t, i, j, k, `), r〉 ∧ 〈lt(t, m, n, p, q), r′〉}

t[I] :=: t[I + 1] (20)
{ 〈lt(t, a, b, c, d), ∃i, j, k, `, m, n, p, q : r ∧ r′ ∧ a = i ∧ b = c = d = I + 1〉 } .

Similarly, if t 6∈ varJrK and r ⇒ (I ∈ [i, j] ∧ J ∈ [i, j]) ∨ (J ∈ [k, `] ∧ I ∈ [k, `])
then:

{ 〈lt(t, i, j, k, `), r〉} t[I] :=: t[J] { 〈lt(t, i, j, k, `), r〉} (21)

since the swap of the array elements does not interfere with the assertions.

4.5 Widening for the Parametric Comparison Abstract Domain. Fi-
nally the abstract domain must be equipped with a widening to generate induc-
tion hypotheses (and optionally a narrowing to improve precision) to speed up
the convergence of iterative fixpoint computations [9]. We choose to define the
widening

`
as:

〈lt(t, i, j, k, `), r〉
`
〈lt(t, m, n, p, q), r′〉

= let 〈lt(t, r, s, t, u), r′′〉 = 〈lt(t, i, j, k, `), r〉 ∨ 〈lt(t, m, n, p, q), r′〉 in

〈lt(t, r, s, t, u), r
`

r′′〉 . (22)

Typically, when handling loops entry condition r, one encounters widenings of
the form r

`
〈lt(t, m, n, p, q), r′〉 where 〈lt(t, m, n, p, q), r′〉 appears during the

analysis of the loop body. There are several ways to handle this situation:
1. incorporate the term lt(t, i, j, k, `) in the form of a tautology, as already de-

scribed in (16) for the abstract disjunction;
2. use disjunctive completion to preserve the disjunction within the loop (which

may ultimately lead to infinite disjunctions) or, for a less precise but cheaper
solution, allow only abstract predicates of a more restricted form, such as r ∨
〈lt(t, m, n, p, q), r′〉 (which definitively avoids the previous potential explosion
and can be requested e.g. at widening points only);

3. unroll loops semantically (as in [5, Sec. 7.1.1]) so that the loop:

while B do C od

is handled in the abstract semantics as if written in the form:

if B then C; while B do C od fi

which is equivalent in the concrete semantics. More generally, if several ab-
stract terms of different kinds are considered (like lt(t, i, j, k, `) and s(t, m, n)
in the forthcoming Sec. 4.10), a further semantic unrolling can be performed
each time a term of a new kind does appear, while all terms of the same kind
are merged by the widening.

4.6 Refined Parametric Comparison Abstract Domains. The paramet-
ric comparison abstract domain Dlt(X) of Sec. 4.2 may be imprecise since it
allows only for one term 〈lt(t, a, b, c, d), r〉. First we could consider several ar-
rays, with one such term per array. Second, we could consider the conjunction
of such terms for a given array, which is more precise but may potentially lead
to infinite conjunctions within loops (e.g. for which termination cannot be es-
tablished). So we will consider this alternative within tests only, then applying
the above abstract domain operators term by term4.

The same way we could consider the disjunctive completion of this domain,
that is terms of the form

∨

i

∧

j〈lt(t, aij , bij , cij , dij), rij〉. This would introduce
an exponential complexity factor, which we prefer to avoid. If necessary, we will
use local trace partitioning [5, Sec. 7.1.5] instead.

4.7 Parametric Comparison Static Program Analysis.
Let us consider the opposite program
(where a ≤ b) which is similar to the in-
ner loop of bubble sort [17]. We let P i

p be
the value of the local predicate attached
to the program point p = 1, ..., 8 at the
ith iteration. Initially, P 0

1 = (a ≤ b)
while P 0

p = false for p = 2, ..., 8. We
choose the octagonal abstract domain

var t : array [a, b] of int;
1 :

I := a;
2 :

while (I < b) do
3 :

if (t[I] > t[I + 1]) then
4 :

t[I] :=: t[I + 1]
5 :

fi;
6 :

I := I + 1
7 :

od
8 :

[18] as the parametric relational integer abstract domain Dr(X) parameterized

by the set X of program variables I, J,. . . and auxiliary variables i, j, etc. The

fixpoint iterates are as follows:

P 1
1 = (a ≤ b) Hinitialization to P 0

1 I
P 1

2 = (I = a ≤ b) Hassignment (I := a)I
P 1

3 = (I = a < b) Hloop condition I < bI
P 1

4 = 〈lt(t, m, n, p, q), m = p = q = I = a < b ∧ n = I + 1〉 Hby (17) for test
condition (t[I] > t[I + 1])I

4 For short we avoid to unroll loops semantically which is better adapted to autom-
atization but would yield to lengthy handmade calculations in this section. This
technique will be illustrated anyway in the forthcoming Sec. 4.10.

P 1
5 = 〈lt(t, a, b, c, d), ∃i, j, k, `, m, n, p, q : i = j = k = ` = I∧m = p = q = I =

a < b ∧ n = I + 1 ∧ a = i ∧ b = c = d = I + 1〉
Hby assignment (20) (with tautology lt(t, I, I, I, I)) which, by octag-
onal projection, simplifies into:I

= 〈lt(t, a, b, c, d), a = I = a < b ∧ b = c = d = I + 1〉

P 1
6 = (P 1

3 ∧ 〈lt(t, i, j, k, `), i = I = a < b ∧ j = k = ` = I + 1〉) ∨ P 1
5

Hby (18) for test condition (t[I] > t[I + 1]) and join (19)I
= (〈lt(t, i, j, k, `), i = I = a < b ∧ j = k = ` = I + 1〉) ∨ (〈lt(t, m, n, p, q),

m = I = a < b ∧ n = p = q = I + 1〉)
Hdef. P 1

3 and (13) as well as by def. of P 1
5 I

= 〈lt(t, a, b, c, d), (∃i, j, k, ` : a = i ∧ b = j ∧ c = k ∧ d = ` ∧
i = I = a < b ∧ j = k = ` = I + 1) ∨ (∃m, n, p, q : a = m ∧ b = n ∧ c =
p ∧ d = q ∧m = I = a < b ∧ n = p = q = I + 1)〉 Hdef. (15) of the
abstract union ∨I

= 〈lt(t, a, b, c, d), (a = I = a < b ∧ b = c = d = I + 1)∨(a = I = a < b∧b =
c = d = I + 1〉) Hby octagonal projectionI

= 〈lt(t, a, b, c, d), a = I = a < b ∧ b = c = d = I + 1〉 Hby octagonal
disjunctionI

P 1
7 = 〈lt(t, a, b, c, d), a = I− 1 = a < b ∧ b = c = d = I〉 Hby invertible

assignment I := I + 1I
= 〈lt(t, a, b, c, d), I = a + 1 = a + 1 ≤ b ∧ b = c = d = I〉 Hoctagonal

simplificationI
P 2

3 = (P 1
2 ∨ P 1

7) ∧ (I < b) Hloop condition I < b and absence of widening on
first iterateI

= ((I = a ≤ b) ∨ (〈lt(t, a, b, c, d), I = a + 1 = a + 1 ≤ b ∧ b = c = d =
I〉)) ∧ (I < b) Hdef. P 1

2 and P 1
7 I

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (∃a, b, c, d : i = a ∧ b =
j ∧ c = k ∧ d = ` ∧ I = a + 1 = a + 1 ≤ b ∧ b = c = d = I)〉) ∧ (I < b)

Hdef. (16) of abstract disjunction, the octagonal predicate de-
pending only on I, a and b which leads to the selection of I,
the only of these variables which is modified within the loop
bodyI

(23)

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (I = i + 1 = a + 1 ≤
b ∧ j = k = ` = I)〉) ∧ (I < b) Hby octagonal projectionI

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a < b) ∨ (I = i + 1 = a + 1 <
b ∧ j = k = ` = I)〉) Hby octagonal conjunctionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ a + 1 ≤ b〉 Hby octagonal
disjunctionI

P 3
3 = P 2

3

`
〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ a + 2 ≤ b〉 Hin

absence of stabilization of the iterates, by a similar computation at the
next iterationI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 Hdef. (22) of the widening
`I

P 3
4 = P 3

3 ∧ 〈lt(t, m, n, p, q), m = p = q = I ∧ n = I + 1〉 Hby (17) for test
condition (t[I] > t[I + 1])I

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 ∧ 〈lt(t, m, n, p, q), m = p =
q = I ∧ n = I + 1〉 Hdef. P 3

3 , the conjunction being left symbolic since it
cannot be simplified, see Sec. 4.6I

P 3
5 = 〈lt(t, a, b, c, d), ∃i, j, k, `, m, n, p, q : i = a ≤ j = k = ` = I < b∧m = p =

q = I ∧ n = I + 1 ∧ a = i ∧ b = c = d = I + 1〉 Hby
(20) where t 6∈ varJrK ∪ varJr′K and r = (i = a ≤ j = k = ` = I < b)
⇒ (i ≤ j = k = ` = I) and r′ = (m = p = q = I ∧ n = I + 1) ⇒
(m = p = q = I ∧ n = I + 1)I

= 〈lt(t, a, b, c, d), a = a ≤ b = c = d = I + 1 ≤ b〉 Hby octagonal
projectionI

P 3
6 = (〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 ∧ 〈lt(t, i′, j′, k′, `′), i′ =

I ∧ j′ = k′ = `′ = I + 1〉) ∨ 〈lt(t, i′′, j′′, k′′, `′′), i′′ = a ≤ j′′ = k′′ = `′′ =
I + 1 ≤ b〉 Hby P 3

6 = (P 3
3 ∧ (t[I] ≤ t[I + 1])) ∨ P 3

5 and (18)I
= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I + 1 ≤ b〉 ∨ 〈lt(t, i′′, j′′, k′′, `′′),

i′′ = a ≤ j′′ = k′′ = `′′ = I + 1 ≤ b〉 Hdef. (14), of conjunction and
octagonal projectionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I + 1 ≤ b〉 Hby P ∨ P = P I
P 3

7 = 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b〉 Hby assignment I := I + 1I

Now the iterates have stabilized since:

(P 3
2 ∨ P 3

7) ∧ (I < b) = (P 1
2 ∨ P 3

7) ∧ (I < b) Hsince P 3
2 = P 1

2 is stableI
= ((I = a ≤ b)∨ 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b〉)∧ (I < b) Hdef.

P 1
2 and P 3

7 I
= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (∃a, b, c, d : i = a ∧ b =

j ∧ c = k ∧ d = ` ∧ I = a + 1 = a + 1 ≤ b ∧ b = c = d = I)〉) ∧ (I < b)
Hdef. (16) of abstract disjunction with selection of I as in (23)I

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (j = k = ` = I = i + 1 =
a + 1 ≤ b)〉) ∧ (I < b) Hby octagonal projectionI

= (〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b ∧ a ≤ b〉) ∧ (I < b) Hby
octagonal disjunctionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 Hby abstract conjunction
(13)I

⇒ P 3
3 Hdef. (12) of abstract implicationI

It remains to compute the loop exit invariant:

(P 3
2 ∨ P 3

7) ∧ (I ≥ b)

= (〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b ∧ a ≤ b〉) ∧ (I ≥ b) Hby
octagonal disjunctionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I = b〉 Hby abstract conjunction
(13)I

The static analysis has therefore discovered the following invariants:

var t : array [a, b] of int;

1 : {a ≤ b}
I := a;

2 : {I = a ≤ b}
while (I < b) do

3 : {lt(t, a, I, I, I) ∧ I < b}
if (t[I] > t[I+ 1]) then

4 : {lt(t, a, I, I, I) ∧ I < b ∧ lt(t, I, I+ 1, I, I)}
t[I] :=: t[I+ 1]

5 : {lt(t, a, I + 1, I+ 1, I+ 1) ∧ I + 1 ≤ b}
fi;

6 : {lt(t, a, I + 1, I+ 1, I+ 1) ∧ I + 1 ≤ b}
I := I + 1

7 : {lt(t, a, I, I, I) ∧ I ≤ b}
od

8 : {lt(t, a, I, I, I) ∧ I = b}

4.8 Parametric Sorting Abstract Domain. Then we define the parametric
sorting abstract domain:

Ds(X) = {〈s(t, a, b), r〉 | t ∈ X ∧ a, b 6∈ X ∧ r ∈ Dr(X ∪ {a, b})} .

The meaning γ(〈s(t, a, b), r〉) of an abstract predicate 〈s(t, a, b), r〉 is, informally
that the elements of t between indices a and b are sorted:

γ(〈s(t, a, b), r〉) = ∃a, b : t.` ≤ a ≤ b ≤ t.h ∧
∀i, j ∈ [a, b] : (i ≤ j)⇒ (t[i] ≤ t[j]) ∧ r .

4.9 Parametric Reduced Product of the Comparison and Sorting

Abstract Domain. The analysis of sorting algorithms involves the reduced
product [11] of the parametric comparison abstract domain of Sec. 4.2 and sort-
ing abstract domain of Sec. 4.8, that is triples of the form:

〈lt(t, a, b, c, d), s(t, e, f), r〉 .

The reduction involves interactions between terms such as, e.g.:

lt(t, a, b− 1, b− 1, b− 1) ∧ lt(t, a, b, b, b) (24)
⇒ s(t, b− 1, b) ∧ lt(t, a, b− 1, b− 1, b)

s(t, b + 1, c) ∧ lt(t, a, b + 1, b + 1, c) ∧ lt(t, a, b, b, b) (25)
⇒ s(t, b, c) ∧ lt(t, a, b, b, c)

lt(t, a, a + 1, a + 1, b) ∧ s(t, a + 1, b)⇒ s(t, a, b) (26)

The reduction [11] also involves the refinement of abstract predicate transformers
that would be performed automatically e.g. if the abstract predicate transformers
are obtained by automatic simplification of the formula α ◦ F ◦ γ (where F is
the concrete semantics) by the simplifier of a theorem prover.

4.10 Parametric Comparison and Sorting Static Program Analysis.

Let us consider the opposite bub-
ble sort [17]. The fixpoint approx-
imation below starts form:
P 0

1 = (a ≤ b) HinitializationI
P 0

i = false, i = 2, . . . , 8

P i,k
p denotes the local assertion

attached to program point p at
the ith iteration and kth loop un-
rolling, P i

p = P i,0
p where k = 0

means that the decision to seman-
tically unroll the loop is not yet
taken.

var t : array [a, b] of int;
1 :

J := b;
2 :

while (a < J) do
3 :

I := a;
4 :

while (I < J) do
5 :

if (t[I] > t[I + 1]) then
6 :

t[I] :=: t[I + 1]
7 :

fi;
8 :

I := I + 1
9 :

od;
10 :

J := J− 1
11 :

od
12 :

P 1
1 = P 0

1 = (a ≤ b) Hdef. P 0
1 I

P 1
2 = (a ≤ b = J) Hassignment J := bI

P 1,0
3 = (a < b = J) Htest (a < J)I

. . .

P 1,0
10 = lt(t, a, I, I, I) ∧ a < b = I = J5 Has in Sec. 4.7 since the inner loop

does not modify a, b or II
⇒ lt(t, a, J, J, b) ∧ a < b = J Hby elimination (octagonal projection) of

program variable I which is no longer live at program point 10I
P 1,0

11 = lt(t, a, J + 1, J + 1, b) ∧ a < b ∧ J = b− 1 Hpostcondition for
assignment J := J− 1I

P 1,1
3 = lt(t, a, J + 1, J + 1, b) ∧ a < J = b− 1 Hby semantical loop

unrolling (since a new symbolic “lt” term has appeared, see Sec. 4.5,)
and test (a < J)I

. . .

P 1,1
10 = lt(t, a, J + 1, J + 1, J + 1) ∧ a < J = b− 1 ∧ lt(t, a, I, I, I)∧ I = J

Has in Sec. 4.7 since the inner loop does not modify a, b or
I and the swap t[I] :=: t[I + 1] does not interfere with
lt(t, a, J+ 1, J + 1, J + 1) according to a ≤ I < I + 1 ≤
J < J + 1 so I, I + 1 ∈ [a, J+ 1] and (21)I

(27)

⇒ lt(t, a, J + 1, J + 1, J + 1) ∧ lt(t, a, J, J, J) ∧ a < J = b− 1 Hby
elimination of I is dead at program point 10I

⇒ s(t, J, b) ∧ lt(t, a, J, J, b) ∧ a < J = b− 1 Hby reduction (24)I
P 1,1

11 = s(t, J+ 1, b) ∧ lt(t, a, J + 1, J+ 1, b) ∧ a ≤ J = b− 2 Hby assignment
J := J− 1I

P 1,2
3 = s(t, J+1, b)∧ lt(t, a, J+1, J+1, b)∧a < J = b−2 Hby semantical loop

unrolling (since a new symbolic “s” term has appeared, see Sec. 4.5,)
and test (a < J)I

. . .

P 1,2
10 = s(t, J+1, b)∧lt(t, a, J+1, J+1, b)∧a < J = b−2∧lt(t, a, I, I, I)∧I = J

Hby Sec. 4.7 and non interference, see (27)I
⇒ s(t, J + 1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ a < J = b − 2 ∧ lt(t, a, J, J, J)

Hsince I is deadI
⇒ s(t, J, b) ∧ lt(t, a, J, J, b) ∧ a < J = b− 2 Hby reduction (25)I

P 1,2
11 = s(t, J+ 1, b) ∧ lt(t, a, J + 1, J+ 1, b) ∧ a ≤ J = b− 3 Hby assignment

J := J− 1I
P 2,2

3 = (P 1,2
3

`
(P 1,2

11 ∧ (a < J))) ∧ (a < J) Hloop unrolling stops in absence of
new abstract term and widening speeds-up convergenceI

= ((s(t, J+1, b)∧ lt(t, a, J+1, J+1, b)∧a< J = b− 2)
`

(s(t, J+1, b)∧
lt(t, a, J + 1, J+ 1, b) ∧ a ≤ J = b− 3 ∧ (a < J))) ∧ (a < J) Hdef. P 1,2

3

and P 1,2
11 I

= s(t, J + 1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ ((a < J = b − 2)
`

(a < J =
b− 3)) ∧ (a < J) Hdef. wideningI

= s(t, J+ 1, b) ∧ lt(t, a, J + 1, J+ 1, b) ∧ a < J ≤ b− 2 Hdef. octagonal
widening and conjunctionI

. . .

P 2,2
10 = s(t, J+1, b)∧lt(t, a, J+1, J+1, b)∧a < J ≤ b−2∧lt(t, a, I, I, I)∧I = J

Hby Sec. 4.7 and non interference, see (27)I
= s(t, J + 1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ a < J ≤ b − 2 ∧ lt(t, a, J, J, J)

Hby elimination of the dead variable II
⇒ s(t, J, b) ∧ lt(t, a, J, J, b) ∧ a < J ≤ b− 2 Hby reduction (25)I

P 2,2
11 = s(t, J+ 1, b) ∧ lt(t, a, J + 1, J+ 1, b) ∧ a ≤ J ≤ b− 3 Hby assignment

J := J− 1I

Now (P 2,2
11 ∧ a < J) ⇒ P 1,2

3 so that the loop iterates stabilize to a post-

fixpoint. On loop exit, we must collect all cases following from semantic unrolling:

P 2
12 = (P 1

2 ∧ a ≥ J) Hno entry in the loopI
∨ (P 1,0

11 ∧ a ≥ J) Hloop exit after one iterationI
∨ (P 1,1

11 ∧ a ≥ J) Hloop exit after two iterationsI
∨ (P 2,2

11 ∧ a ≥ J) Hloop exit after three iterations or moreI
= (a = J = b) ∨ (s(t, J + 1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ a = J ≤ b − 1)

Hdef. abstract disjunctionI
= (a = J = b)∨(s(t, a+1, b)∧ lt(t, a, a+1, a+1, b)∧a < b) Helimination

of dead variable JI
= (a = b) ∨ (s(t, a, b) ∧ a < b) Hby reduction (26)I
= s(t, a, b) ∧ a ≤ b Hdefinition of abstract disjunction similar to (16)I

5 Notice that this notation is a shorthand for the more explicit notation ∃i, j, k, ` :
lt(t, i, j, k, `) ∧ i = a ∧ j = I ∧ k = I ∧ ` = I) ∧ a < b ∧ b = J ∧ I = J as used
in Sec. 4.7, so that, in particular, we freely replace i, j, k and ` in lt(t, i, j, k, `) by
equivalent expressions.

The sorting proof would proceed in the same way by proving that the final
array is a permutation of the original one.

Observe that parametric predicate abstraction is defined for a programming
language as opposed to ground predicate abstraction which is specific to a pro-
gram, a usual distinction between abstract interpretation-based static program
analysis (a parametric abstraction for an infinite set of programs) and abstract
model checking (an abstract model for a given program). Notice that the poly-

morphic predicate abstraction of [2] is an instance of symbolic relational separate
procedural analysis [14, Sec. 7] for ground predicate abstraction. The general-
ization to parametric predicate abstraction is immediate since it only depends
on the way concrete predicate transformers are defined (see [14, Sec. 7]).

5 Conclusion

In safety proofs by ground predicate abstraction, one has to provide (or compute
by refinement) the ground atomic components of the inductive invariant which
is to be discovered for the proof. Then the routine work of assembling the atomic
components into a valid inductive invariant is mechanized which simplifies the
proof. If the set of atomic components is finite then a Boolean encoding allows
for the reuse of model-checkers for fixpoint computation. Otherwise a specific
fixpoint engine has to be used, which is mandatory even in cases as simple as
constant propagation if the constants are to be discovered automatically and not
explicitly provided in the list of ground atomic predicates.

Parametric predicate abstraction provides a further abstraction step in that
hints for the proof are provided in the form of parameterized atomic predicates
(which will be instantiated automatically to program-specific ground predicates)
and reduction rules (which are hints for inductive reasoning on these parametric
predicates). This parametricity immediately leads to infinite abstract domains
which means that fixpoint iterations need more sophisticated inferences, which
we can provide in the simple form of widenings. Moreover, the presentation in
the form of structured abstract domains, which can be systematically composed,
reduces the need to appeal to theorem provers by reduction of the widening to
well-studied and powerful basic relational abstract domains which can be viewed
as undecidable theories with finitary extrapolation through widenings. Paramet-
ric predicate abstractions can handle large families of algorithms and data struc-
tures (as considered in [5]) and so is of much wider scope than ground predicate
abstraction restricted to a single program and requiring a costly refinement pro-
cess when ground predicates are missing.

Acknowledgements. I thank the participants to the informal meeting on
predicate abstraction at New York University on Thursday Jan. 30th 2003 (Rad-
hia Cousot, Dennis Dams, Kedar Namjoshi, Amir Pnueli, Lenore Zuck), in par-
ticular Amir Pnueli who proposed the bubble sort as a challenge that is handled
in Sec. 4. I thank Pavol Černý for providing a prototype implementation [6] and
further examples (such as array initialization and Quicksort).

References

1. T. Ball, R. Majumdar, T.D. Millstein and S.K. Rajamani. Automatic Predicate
Abstraction of C Programs. In Proc. ACM SIGPLAN ’2001 Conf. PLDI, pp. 203–
213, 2001. ACM Press.

2. T. Ball, T. Millstein, and S. Rajamani. Polymorphic predicate abstraction. Tech.
rep. MSR-TR-2001-10, Microsoft Research, Redmond, 17 June 2002. 21 p.

3. T. Ball, A. Podelski, and S. Rajamani. Relative completeness of abstraction re-
finement for software model checking. In J.-P. Katoen and P. Stevens, eds., Proc.

8th Int. Conf. TACAS ’2002, LNCS 2280, pp. 158–172. Springer, 2002.
4. N. Bjørner, I.A. Browne and Z. Manna. Automatic Generation of Invariants and

Intermediate Assertions. Theor. Comp. Sci., 173(1):49–87, 1997.
5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In Proc. ACM

SIGPLAN ’2003 Conf. PLDI, pp. 196–207, 2003. ACM Press.
6. P. Černý. Vérification par intérprétation abstraite de prédicats paramétriques.

D.E.A. report, Univ. Paris VII & École normale supérieure, Paris, 20 Sep. 2003.
7. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes

d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble,
Grenoble, 21 Mar. 1978.

8. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, 1981.

9. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pp. 238–252, 1977. ACM Press.

10. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundations. In ACM Symp. on Artificial Intelligence & Program-

ming Languages, ACM SIGPLAN Not. 12(8):1–12, 1977.
11. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

6th POPL, pp. 269–282, 1979. ACM Press.
12. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-

grams. J. Logic Programming6, 13(2–3):103–179, 1992.
13. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp.,

2(4):511–547, Aug. 1992.
14. P. Cousot and R. Cousot. Modular static program analysis, invited paper. In

R. Horspool, ed., Proc. 11th Int. Conf. CC ’2002, pp. 159–178, 2002. LNCS 2304,
Springer.

15. S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In O. Grum-
berg, ed., Proc. 9th Int. Conf. CAV ’97, LNCS 1254, pp. 72–83. Springer, 1997.

16. G. Kildall. A unified approach to global program optimization. In 1st POPL, pp.
194–206, 1973. ACMpress.

17. Z. Manna. Mathematical theory of computation. McGraw Hill, 1972.
18. A. Miné. A few graph-based relational numerical abstract domains. In

M. Hermenegildo and G. Puebla, eds., SAS’02, LNCS 2477, pp. 117–132. Springer,
2002.

19. A. Mycroft. Completeness and predicate-based abstract interpretation. In Proc.

PEPM ’93, 1993, pp. 80–87. ACM Press, 1993.

6 The editor of J. Logic Programming has mistakenly published the unreadable galley
proof. For a correct version of this paper, see http://www.di.ens.fr/~cousot.

http://www.di.ens.fr/~cousot

	Verification by Abstract Interpretation
	Patrick Cousot

