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Abstract

Method extraction is a common refactoring feature provided
by most modern IDEs. It replaces a user-selected piece of
code with a call to an automatically generated method. We
address the problem of automatically inferring contracts (pre-
condition, postcondition) for the extracted method. We re-
quire the inferred contract: (a) to be valid for the extracted
method (validity); (b) to guard the language and program-
mer assertions in the body of the extracted method by an
opportune precondition (safety); (c) to preserve the proof
of correctness of the original code when analyzing the new
method separately (completeness); and (d) to be the most
general possible (generality). These requirements rule out
trivial solutions (e.g., inlining, projection, etc.)

We propose two theoretical solutions to the problem. The
first one is simple and optimal. It is valid, safe, complete and
general but unfortunately not effectively computable (except
for unrealistic finiteness/decidability hypotheses). The second
one is based on an iterative forward/backward method. We
show it to be valid, safe, and, under reasonable assumptions,
complete and general. We prove that the second solution
subsumes the first. All justifications are provided with respect
to a new, set-theoretic version of Hoare logic (hence without
logic), and abstractions of Hoare logic, revisited to avoid
surprisingly unsound inference rules.

We have implemented the new algorithms on the top of
two industrial-strength tools (CCCheck and the Microsoft
Roslyn CTP). Our experience shows that the analysis is both
fast enough to be used in an interactive environment and
precise enough to generate good annotations.

Categories and Subject Descriptors D. Software [D.1
Programming Techniques]: D.1.0 General, D.2.1 Require-
ments/Specifications, D.2.2 Design Tools and Technique,
D.2.4 Software/Program Verification, D.2.5 Testing and De-

bugging

General Terms Design, Documentation, Experimentation,
Human Factors, Languages, Reliability, Verification.
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1. Introduction

In their everyday activity, professional programmers heavily
rely on the use of refactoring tools to improve, simplify,
clean up, document, and modularize their code. Modern
Integrated Development Environments (IDE) such as Eclipse,
IntelliJ IDEA, or Visual Studio offer simple user interfaces
to automate very tedious and error-prones activities. Method
extraction is used at design time to avoid code-bloat, to
improve code readability, to emphasize reuse, and to simplify
methods. Method extraction consists in selecting a piece of
code and asking the IDE refactoring engine to produce a
new version of the program where: (i) the selected code is
replaced by a call to a newly generated method (the extracted
method); and (ii) the extracted method’s parameters are the
variables used (read/written) in the selected code and its
body is the selected code. The engine must guarantee that
the new program is a syntactically legal program, i.e., if
the original program compiled with no errors, then the new
one compiles successfully, too. Furthermore, the concrete
semantics of the original program (up to the additional
method call) should be preserved in the new version. The
problem of generating a syntactically correct refactored
program (e.g., [21, 24, 31]) is now considered a solved
problem. However, the interaction between refactoring and
static program analysis and verification has received minimal,
if any, attention.

We are interested in the interaction between method ex-
traction and static analysis and verification in a Design by
Contract context (DbC) [35]. We focus our attention on the
inference of good contracts (preconditions and postcondi-
tions) for the extracted method. Contracts are useful for the
automatic generation of documentation and for the separate
modular analysis and verification.In DbC, contracts are used
to reason across method boundaries. Our static analysis is
based on an assume/guarantee reasoning where the correct-
ness proof is split between the callee and the caller. During
the analysis of a method body, its precondition is assumed
and the postcondition should be proved. Dually, when the
caller is analyzed, the precondition of the callee should be
proven and its postcondition can be assumed.
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Currently, refactoring tools bind the programmer to manu-
ally add the contracts in order to prove the modified method
with its call to the extracted method (e.g., by adding post-
conditions to the extracted method). Our goal is not only
to infer the contracts automatically, but also to have good
contracts. Intuitively, a good inferred contract should: (a)
be valid for the extracted method (validity); (b) guard the
language and programmer assertions in the body of the ex-
tracted method by an opportune precondition (safety); (c)
preserve the proof of correctness of the original code when
analyzing the new method separately (completeness); and (d)
be the most general possible (generality). In particular, the
generality requirement allows the new method to be called
in contexts other than the original refactoring context, and it
rules out trivial solutions such as, e.g., projecting the abstract
states at the beginning and the end of the selected text.

2. Informal introduction of the problem

Imprecision induced by refactoring We illustrate the prob-
lem with some C# examples. We use the CodeContracts
API [4] to specifiy contracts'.

Example 1. Let us consider the simple code snippet below.
We assume the C# compiler is invoked with the ~checked+
switch, to generate overflow/underflow checks.
public int Decrement(int x) {
Requires(x >= 5);
Ensures(Result<int>() >= 0);

while (x !'= 0) x-—;

return x;
}
Assuming the precondition holds, CCCheck proves that: (i)
no arithmetic overflow/underflow happens; and (ii) that the
method exit is reached with x = 0, validating the (weaker
user-provided) postcondition.
Let us now select the loop and apply the extract method
refactoring provided by Visual Studio. The new program
public int Decrement(int x) {
Requires(x >= 5);
Ensures (Result<int>() >= 0);

x = NewMethod(x) ;

return X;

}

private int NewMethod(int x) {
while (x != 0) x--;

return x;
}

can no longer be proved correct by CCCheck:

i) 1 CodeContracts: Suggested requires: Contract.Requires((x == 0 || Int32.MinValue <= (x - 1)));

& 2 CodeContracts: ensures unproven: Contract.Result<int>() »= 0
& 3+ location related to previous warning
4 4 CodeContracts: Possible underflow in the arithmetic operation

i) 5 CodeContracts: Checked 3 assertions: 1 correct 2 unknown

The analyzer suggests a necessary precondition for NewMethod
(message #1), i.e., a precondition that should hold other-
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wise the execution will definitely fail later. The precondi-
tion is not sufficient to ensure that NewMethod is correct,
though. It reports that it cannot prove that the postcondition
of Decrement holds on exit (messages #2,#3) and that
the decrement of x does not underflow (message #4). The
imprecision is caused by the modular reasoning perfomed by
CCCheck: it analyzes each method in isolation, using method
contracts as summaries for all called methods. So when
analyzing Decrement, since NewMethod has no contracts,
it assumes the worst case: the return value of NewMethod
can be any integer. And when analyzing NewMethod, since
it has no contracts, x is unconstrained: the decrement may
underflow (e.g., for an initial negative value of x). O

Our work is motivated by the weaknesses of the following
state-of-the-art strawman solutions.

First solution: Method Inlining One way to solve the prob-
lem is to perform the inverse operation of method extraction:
method inlining. In general, inlining makes the analysis more
precise. Nevertheless, we reject this solution. We want the
analysis to be modular, and to use only boundary annota-
tions to reason on method calls. Boundary annotations have
many advantages. First, they provide documentation for the
method. Accurate documentation and early error-checking
(e.g., by means of defensive programming) are crucial aspects
of robust programming. Second, they make the analysis more
scalable: a method can be analyzed once and its results/spec-
ification can be used many times. Conversely, inlining may
cause code bloat, with the same piece of code analyzed again
and again. Third, boundary annotations provide check gates,
which help in quickly understanding regressions and make
the analysis results easier to understand for the end-user. For
example, let us suppose that a method m returns a positive
value, and that this fact is used by the callers to infer some
complex property ¢ which eventually is used to discharge
the assertion a. Now, let us suppose in the next version of
the program the implementation of m is changed so to return
a non-negative value. The value is propagated to the callers
(i.e., by inlining m), ¢ is no more inferred, and a cannot be
proven anymore, so the analyzer issues a warning for a. For
the user, it is in general very hard to trace back the cause of
the problem to the change in m, in particular if she does not
own m. However, with explicit postconditions, m would have
the postcondition that it returns a positive value, so the static
verifier can immediately spot the problem where it occurs,
and provide better error messages to the user. Fourth, the
extracted method may be later moved to another module, so
that, e.g., its body will no longer be available for inlining.

Second solution: Isolated analysis Analyzing only the
extracteded method in isolation does not take into account
the context of the refactored code. It would result in the
trivial method precondition true, which is in general too

! In CodeContracts, contracts are specified as opportune method calls of
static members of the .NET type Contract. In the examples, for the sake of
readibility, we omit the explicit reference to the type Contract.
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t.Requires(x >= 5);
ct.Ensures(Contract.Result<int>() »>= 8);

Contra

while (x != 8) x--;

[e2-]

Extract Method public int Decrement(int x)

{

Requires(x >= 5);
Ensures(Contract.Result<int>() >= @);
whethod () ;

Extract method with Contracts

X =
return x;

int MewMethod(int x)

{

Requires(® <= x);

while (x != @) x--;
return x;

Ensures(Contract.Result<System.Int32>() == 8);

Figure 1. A screenshot of the extract method with contracts.

The suggested contract for the extracted method is valid, safe,
complete and the most general one.

imprecise. In particular, some information present in the
original code (programmer assertions, runtime errors, etc) is

lost when the refactored code is statically analyzed separately.

This can be avoided by using the method safety contract
suggested by CCCheck. When the safety precondition is
violated, the execution of the extracted method will either
not terminate or definitely yield a run-time error [18]. So
the safety precondition is necessary for avoiding runtime
errors. As shown by our example, the safety precondition is
in general not sufficient to guarantee the absence of runtime
errors: when the safety precondition is satisfied, the execution
of the extracted method may or may not fail/terminate>. Once
the necessary safety precondition is inferred [18], it can be
used to get a safety post-condition by isolated reachability
analysis of the method body [11, 13].

In general, an independent separate safety static analysis
of the extracted method which does not take into account
the pre-invariant and post-invariant of the selected code is
too weak. It might not be strong enough to guarantee that the
refactored code invariant is still provable separately. Our main
motivation for this work was that the isolated analysis raised
numerous (and self-evident) complaints from end-users of
CCCheck.

Third solution: User assistance Another way of solving
the problem is to require the user to provide the precondition
and the postcondition for the extracted method. This is
the actual state of the art: programmers using any form
of DbC (CodeContracts, Spec#, JML, FEiffel, Separation
Logic, etc.) need to manually insert the contracts for the
extracted methods. We think that this is overkill and that
this represents another barrier for a wider adoption of DbC
methods. We think that method extraction should come with

2 The safety precondition is not a weakest liberal precondition that would
be sufficient but maybe not necessary to guarantee the absence of runtime
errors. The difference is that this sufficient precondition might exclude valid
executions while the necessary safety precondition only excludes executions
which are guaranteed to be definitely invalid or will not terminate.
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automatic contract refactoring, which automatically infers
good contracts for the extracted method.

Forth solution: Abstract states projection An immediate
idea to solve the problem consists in projecting the relevant
variables from the original abstract proof so as to get the
required modular proof. Such a solution is unsatisfactory for
three main reasons. First, it does not work when refactoring
unreachable code: the abstract state is empty, so the generated
precondition is false. Second, too much information may
be lost (e.g., for relational analyzes) or too much information
may be preserved (e.g., not related to the method correctness).
For instance, in Ex. 1, the projection of the abstract state
produces the too strong precondition 5 < x for the extracted
method. Ideally we’d love to infer the precondition 0 < x.
Third, programs evolve over time so a refactoring might
work when performed but no longer work with later program
modifications.

Example 2. Suppose that we want to extract a method
MakeRoom from (%) ... (**) in the code below.

Insert(string[] list,
ref int count, string newElement) {
Requires(list != null &&
// in bounds
0 <= count && count <= list.Length &&
// no overflows on resize
list.Length < 33554432);

if (list.Length == count)
{
(%) var tmp = new string[count*2 + 1];
CopyArray(list, tmp);
list = tmp; (**)
}
list[count++] = newElement;
return list;

}

If we simply project the abstract states, the contract for the
new method is

Requires(list!=null && list.Length==count (1)
&& count <= 33554432);
Ensures(Result<string[]>() != null);

The precondition is too strong for the callers. The refactored
method MakeRoom can only be invoked when count is ex-
actly the length of the array and the array is not too large
(less than 22° elements). Furthermore, in the postcondition,
because of the imprecision of the projection, we lost the rela-
tion between the length of the result array and count. With
our technique, we instead infer the more general contract:

Requires(list != null && O <= count * 2 + 1);
Ensures(Result<string[]>() !'= null
&& 2 * count - Result<string[]>().Length == -1);

The precondition ensures that the internal allocation is safe
(even with possible arithmetic overflows) and that we copy a
valid list. The postcondition guarantees that the array returned
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by MakeRoom is large enough. Overall, many more callers
are enabled and no (new) warning is raised in Insert. [J

Our solution We want to suggest good contracts for ex-
tracted methods. The suggested contracts should enjoy some
theoretical properties, to rule out the problems illustrated by
the strawman solutions above.

(a) —validity First, the inferred contract should be
valid for the extracted method. For instance, in Ex. 1, the
following contract for NewMethod

Requires(5 <= x);

Ensures (Result<int>() == 12345);
would allow the proof of Decrement go through, but clearly
is not satisfied by NewMethod’s implementation.

(b) —safety Second, the extracted method precondi-
tion should check the language and programmer assertions
in the body of the extracted method [18]. For instance, the
empty precondition for NewMethod in Ex. 1 does not meet
this criterion (a negative input value causes an underflow).
Without the safety precondition, the language and program-
mer assertions within the selected code would be hidden in
the extracted method call. So the inference of a safety con-
tract for the method enclosing the selected code, if any, would
become impossible. The semantics is preserved, up to the fact
that definite errors will be signaled earlier, at the method call,
whereas in the original call they would have been signaled
later, during execution of the selected code.

(c) — completeness Third, the verification of the orig-
inal code should remain unchanged when analyzing the new
method separately. For instance, the following contract for
NewMethod in Ex. 1:

Requires(5 <= x);

Ensures(Result<int>() <= 0l1ldValue(x));
satisfies the (a) —validity and (b) —safety criteria, but it
fails (c) — completeness.

(d) — generality Fourth, the automatically inferred
contract should be the most general possible with the above
properties. The generality criterion is important for reusabil-
ity of the extracted method as well as to guarantee that other
program modifications/transformations/refactorings are not
influenced at all by this method refactoring.

For instance, the following contract for NewMethod

Requires(5 <= x);
Ensures (Result<int>() == 0);

satisfies the three requirements (a—c) above, but it is not the
most general one. The most general one is the one shown
in Fig. 1. As also illustrated in Ex. 2, the generality criterion
rules are important to rule out the trivial solution of using the
(projection of the) abstract states at the beginning and at the
end of the selected code as the new contract.

When the four conditions (a—d) above are satisfied, the
refactored code is verifiable with the same precision as the
original code, so that method extraction is guaranteed not
to perturb the verification process. In general, the problem
is undecidable, hence requires approximate solutions as dis-
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cussed in this paper or specific additional hypotheses to en-
sure decidability (such as unrealistic finite state/decidability
hypotheses).

3. Informal introduction of the solution

An example of the user experience with the algorithms in this
paper using CCCheck and Roslyn is shown in Fig. 1. Given
the selected portion of code, the IDE provides the option
of the standard refactoring or our new refactoring. When
selecting the new option, the preview shows the extracted
method with the suggested contracts.

We informally describe the main steps of our solution.
When the user selects a piece of code S and asks for the
“extract method with contracts”, we first invoke the “usual”
extract method service of the IDE. If the selection cannot
be made into a new method, then the refactoring fails and
we stop here. Otherwise we obtain a snapshot of the source
program as it appears after the refactoring. Our goal is to
annotate the NewMethod with good contracts, i.e., contracts
satisfying the four requirement (a—d) exposed in the previous
section.

After a static analysis of the original program, the first
step of our solution is to detect the pre-state and post-state of
the selected code S on the variables of interest. We identify
the variables of interest from the invocation of NewMethod
in the refactored code. In Ex. 1, x is a variable of interest for
both the pre-state and the post-state: for the former since x
is the actual parameter in the invocation of NewMethod and
for the latter since it is where the return value of NewMethod
is stored. To get the pre-state (resp. post-state), we query the
underlying static analysis for the abstract value of x at the
beginning (resp. end) of the selection. In the example the pre-
stateis Ps £ 5 < x. Intuitively, Ps is a lower bound for the
desidered precondition: in general we seek a more general
(weaker) precondition for NewMethod. Similarly, the post-
state is the (abstract) value of x at the end of the selection,
ie., Qs = x = 0. Intuitively, Qs is an upper bound for the
desidered postcondtion: in general we seek a more specific
(stronger) postcondition for NewMethod.

The next step of our solution is to infer the safety (or nec-
essary) precondition for NewMethod (and the corresponding
postcondition). The idea is that of pushing inevitable safety
checks (e.g., runtime errors) back to the entry of the method
so to expose them to the callers. Suppose for a second that we
have an effective algorithm: (i) to infer the best safety precon-
ditions; and (ii) to compute the strongest postconditions. Then
we have a solution to our problem: the precondition is the
best safety precondition and the postcondition is the strongest
postcondition starting from that precondition (Th. 10). In
Ex. 1 the best safety precondition is 0 < x: an initial negative
value for x definitely causes an arithmetic underflow. Unfor-
tunately, in practice and in the general case, such a precise
and terminating algorithm does not exist — the problem is
undecidable. As a consequence we must perform some ap-
proximations to make the problem tractable. The next steps of
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our solution are designed to cope with that issue. Intuitively
we use a combination of over- and under-approximations, and
of forward and backward analyses to compensate for the loss
of precision inherent in the abstraction (Th. 11 and Th. 22).

We first compute an under-approximation of the best
safety precondition [18]. In the example, our analysis infers
a safety precondition P, £ x # MinValue. If this fails
to hold, execution certainly results in an error. However,
it does not guarantee the absence of errors. Starting with
the abstract state F,, we use an over-approximating forward
analysis to compute the corresponding postcondition @Q,. The
postcondition captures the final states of executions that do
not result in an error. In the example Q, £ x = 0 — if the
loop terminates at all, it terminates in that state. The contract
(Pn, Qu) is more general than (Ps, QQs) — the precondition
enables more calling contexts and @), = (QJs. However, the
contract is not safe, e.g., an error still occurs when x = —1.
Therefore we need to further refine it. We use an over-
approximating backwards analysis starting from @), to infer
a better precondition. In our example this precondition is
Pr £ 0 < x — note that P implies P,. The corresponding
postcondition, obtained by the forward analysis remains
Qr = x = 0. The contract (Pg, Qg) is more general than
(Ps, Qs). While in general continuing the iterations may
improve the contract, in our example we already found a
fixpoint. Our analysis proves that the contract is safe — no
runtime error will occur in NewMethod body. Therefore, we
annotate NewMethod with the contract (Pgr, Qg). Overall,
we inferred a contract satisfying (a—d). In particular, it is a
better contract than (Ps, Qs), i.e., we improved over the
simple abstract states projection.

The example above did not really exploit F,: the back-
wards analysis compensated for any imprecision in the safety
precondition inference. The refactoring of Insert shows an
example where a precise P, and forward analysis are relevant.
We already reported the projected contract (Ps, Qs) in (1).
The inferred safety precondition is P, £ list # null A
0 < 2. count + 1. It manifests the fact that CopyArray will
fail if given a null reference and that the allocation will fail
if count is negative or so large that doubling it causes over-
flow. The corresponding postcondition is Q, £ result #
null A result.Length = 2 - count + 1. (P, Qy) is a
better contract than (Ps, Qs), as P, is more general than Ps
and @, is more specific than (Js. In this case, the backwards
analysis does not improve to the contract. (B, (n) is the
fixpoint, and it satisfies (a—d).

These are the two extremes. In general, the combination of
the safety precondition inference with the forward/backwards
iterations improve each other, and provide a very powerful
algorithm to infer good contracts (Alg. 5).

4. Main Results

In order to rigorously define the Extract Method with Con-
tracts (EMC) problem and the refactoring with contracts
in general, we need an opportune mathematical formalism,
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for instance to reason about method calls. Intuitively, Hoare
Logic provides such a formalism. We seek generality so that
our results can be applied in many different contexts, with
different abstract domains and specification logics. There-
fore, we do not want to be specific to a particular assertion
language, e.g., first order logic [7, 22], separation logic [39],
or region logic [2]. To the best of our knowledge there is no
such general theory to reason about contracts, and so we had
to build it.

Our first contribution is the development of a new set-
theoretic version of Hoare logic (Algebraic Hoare Logic,
Sec. 5), with the idea that the particular logics used by the
analysis/verification tools are just an abstraction of those sets.
A surprising result is that common inference rules in Hoare
Logic, like the conjuction and disjunction rules are false in
general (Ex. 5).

We use algebraic Hoare logic to define the elements of the
domain C[m] of the contracts for a method m and two orders
over such domain, a covariant order == and a contravariant
order ==- (Sec. 6). The first order captures the intuition that a
==--stronger contract is better for the callee: assuming more
on the precondition let it guarantee more on the postcondition.
The second order captures the intuition that a ==--stronger
contract is better for the callers: it is more general and it can
be used in more contexts. The set C[m] of contracts for m
ordered either by = or by == is a complete lattice.

The algebraic Hoare logic, the set of contracts and the
two orders provide a basic framework for the definition of
contract-based refactorings. We instantiate it to state the
new problem of the extract method with contracts (EMC,
Sec. 8). We formally define the four requirements (a—d) of
the previous section in terms of algebraic Hoare logic and the
two orders == and ==

A main theoretical result of the paper is that in the concrete
the EMC problem has always a solution, and this solution
is unique (Th. 10). Roughly, the suggested precondition is
the strongest safety precondition P, (to make sure the caller
encounters no runtime error when m is executed) and the
suggested postcondition is the strongest postcondition from
P,. The result is of great theoretical interest, but of little
practical application: the strongest safety precondition and the
strongest postcondition are not computable in general. The
direct abstraction is likely to produce a very imprecise result,
as over-approximation may lose completeness. Therefore, we
provide an equivalent characterization for the solution of the
EMC problem, in terms of the iteration of a forwards analysis
and of a backwards analysis (Th. 11) allowing for a more
precise algorithm in the abstract.

To provide an effective solution to the EMC problem we
should perform some abstraction. We define the notion of
abstract contracts, essentially contracts where the assertion
language is some abstraction of sets of states (Sec. 10).
Surprisingly enough, we found that in general the property
of being a more precise abstract contract is not preserved in
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the concrete (Ex. 12). We restate the EMC problem in terms
of the primitives of the underlying abstract domain (EMC,
Sec. 12). We prove soundness, i.e., a solution to EMC is
a solution for EMC (Th. 15). We present some examples
proving that, in general, a complete EMC is impossible.

We abstract the iterated formulation of the EMC solu-
tion to provide an effective static analysis to compute EMC
(Sec. 13). Let us assume to have an abstract transformer
(roughly, the two-directional static analysis for the method
body) safely approximating the concrete semantics of the
method and a projection of the abstract states in the origi-
nal method (before the extraction of the method) (Pg ) Qg)
Then the iterations of the abstract transformer starting from
(B, Q¥) provide a correct solution (Th. 20). When the
abstract transformer is the best approximation of the con-
crete transformer, the abstract forwards/backwards iterations
provide the most precise solution for EMC (Th. 21). When
the underlying abstract domain does not satisfy the Ascend-
ing/Descending chain conditions, a fixpoint acceleration op-
erator (narrowing [11]) should be used to enforce the con-
vergence of the iterations (Algorithm EMC in Alg. 5). The
resulting contract is still a correct solution (Th. 22), but we
may not get the most general solution — just one more gen-
eral than the simple projection.

We implemented the new algorithms by integrating the
Code Contracts for .NET static analyzer (CCCheck) [20]
with the Microsoft Roslyn CTP (Roslyn) [37]. We use
Roslyn, a new implementation of .NET languages to support
the compiler-as-service paradigm, as our refactoring engine.
We use CCCheck as the underlying static analyzer. Unlike
similar tools (e.g., [22, 23]), CCCheck is based on abstract
interpretation, and it automatically infers and propagates loop
invariants intra-procedurarly, so that annotations are needed
only for the method boundaries. The inferred invariants are
used to validate both the user-provided contracts as well
as the absence of runtime errors (e.g., null dereference,
underflow/overflow, buffer overruns, etc.). Our experience
shows that the proposed method extraction with contracts is
quite effective (Sec. 14).

5. Algebraic Hoare Logic

We use Hoare logic [29] to formalize Contracts [4, 35].
The concrete Hoare rules are used to specify the program
axiomatic semantics, i.e., all possible program executions.

We use an abstract version of Hoare logic to formalize
contract-based separate static analyses. The abstract Hoare
rules are used to specify how the static analyzer should work
for a given abstraction. In this abstract Hoare logic, predi-
cates are replaced by abstract properties chosen in computer-
representable abstract domains with computable transformers
and fixpoint approximation [12] such as intervals [10], oc-
tagons [36], subpolyhedra [30], or polyhedra [16].

The general correctness argument is that static analyzers
are correct because they implement an abstract Hoare logic
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which is itself sound because it correctly abstracts a concrete
Hoare logic describing precisely the language semantics.

Both concrete and abstract Hoare logics can be formalized
in a single unified framework using algebraic Hoare triples
and abstract interpretation to relate algebraic Hoare logics
operating at different levels of abstraction.

In this context the conjunction rule is potentially problem-
atic in the abstract (as illustrated in the forthcoming Ex. 5).
We cannot get rid of this conjunction rule because it for-
malizes the use of reduced products [13] in static analyzers.
Therefore we study sufficient conditions on the abstraction
for this conjunction rule to be sound (Th. 6) which is useful
beyond the specific problem of method refactoring (Ex. 7).

We first introduce some definitions and notations used in
the rest of the paper.

Galois Connections We recall from [11] that a Galois
connection (C, <) % (A, C) is such that (C, <) and
(A, C) are partial orders, « € C — Aandy € C — A
satisfy Ve € C :Vy € A: a(z) Cy < = < v(y). We
write (C, <) ot (A, C) to denote that the abstraction
function « is surj%ctive, and hence that there are no multiple
representations for the same concrete property in the abstract.
If the C and A are complete lattices, and « is join-preserving,
then it exists a unique ~ such that (C, <) % (A, C).

Abstract domains We let S € $[[V] be a statement with
visible variables ¥ and P[] be the set of unary predicates on
variables V. Predicates can be isomorphically represented as
Boolean functions P € P[¥] £ V[¢] — B mapping values
7 € V[¥] of vector values of variables 7 to Booleans: P(7) €
B £ {true,false}. Predicates are ordered according to
=, i.e., the pointwise lifting of logical implication to
functions:

P==P' 2 VieV[¥]:P{F = P'(¥).
For example Az sz = 0 = Az *x > 0. Predicates with
partial order == form a complete Boolean lattice:

(P[¥], ==, false, true, V, A, =)

where false is the infimum, true is the supremum, V is the
least upper bound (lub), A is the greatest lower bound (glb),
and - is the unique complement for the partial order == on
the set P[¥].

The precondition abstract domain (A[v], ) is an abstract
domain expressing properties of the variables ¥ where the
partial order [ abstracts logical implication. The meaning
of an abstract property P € A[¥] is a concrete property
v1(P) € P[¥] where the concretization

m e (AlV], &) — (P[F], =)
is increasing (i.e., P P implies 1 (P) == v, (FI)).

Example 3. Assume that ¥ £ x is reduced to a single
variable x. Let A[¥] be the lattice with the ordering [C defined
by the following Hasse diagram:
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- 1(T) & true
1m(L) & Azez <0
< > w(#) L Azea£0
(=) & Azez >0
< > 1<) & Azex<0
d (=) & Azez=0
1n(>) & Azex>0

(A[z], ) y(L) & false.

According to the definition of 71, A[x] is interpreted in the
concrete as specifying the sign of values « € V[x] of variable
x [13]. O

The postcondition abstract domain (B[v,v], E) is an

abstraction of the complete lattice

(P[¥,V], =, false, true, V, A, =)
of binary predicates, e.g., postconditions relating the initial
and final values of variables. The meaning ¥2(Q) of an
abstract relation Q € B[¥,V] is given by a finite-meet-
preserving concretization

Y2 € <B[[‘77\7]]a E) - <P[[\7,\7]], :>>7

satifying 72(Q 1 Q") = 72(Q) A2(Q").

The finite-meet hypothesis is needed to avoid the problems
exposed in the forthcoming Ex. 5. The finite-meet hypoth-
esis implies that s is increasing. The function ~y, is meet-
preserving if and only if it preserves infinite meets hence

is the upper-adjoint of a Galois connection [13]. A meet-
preserving function is trivially finite-meet preserving.

Example 4. Assume that ¥ £ x is reduced to a single
variable x. Let B[¥, V] be the lattice with the ordering &
defined by the following Hasse diagram:

T ~Y2(T) true

Ax,x ex <%
Ax,x ox #£ %

Ax,x ex > %

IA
v
A IV I IA A

Ax, x ox < ¥

d Ax,x ex=%

)
)
)
)
)
)

7a(
7a(
7a(
< > V2(
7a(
7a(

Ax,x ox > %
false.

(> 1> 1> 1> 1> e > >

=V

(Blxx], E) 72(L)

According to the definition of 2, B[x, x] is interpreted in
the concrete as specifying a relation between the values x
and 2’ of variable x (e.g., before and after executing a piece
of code to be refactored). O]

Concrete Hoare triples A concrete Hoare triple {P} S {Q}
denotes the partial correctness of a program statement
S € 3[¥]. It denotes the fact that if the precondition
P € P[] holds of the values of the variables before ex-
ecuting statement S, and the execution of the statement S
does terminate, then the postcondition/before-after relation
Q € P[v¥, ¥] holds and relates the initial and final values of
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the variables v before and after the execution of S. Concrete
Hoare triples can be understood as Boolean functions: 3

{e}e{e} € P[7] x$[7] x P[7.7] - B.

Concrete Hoare logic rules The classical axiomatization
of Hoare logic remains valid in set-theoretical form as shown
in Fig. 2. The disjunction rule (V) and conjunction rule (A)
in Fig. 2 are usually not shown in Hoare logic axiomatization
since they derive from the other rules, by induction on the
structure of programs.

Predicate transformers We use a generalization of the
usual Dijkstra’s strongest postconditions predicate tran-
former [19] to sets (instead of logical formulas). The set-
theoretic forward predicate transformer post € $[v] —
(P[v] — PI[¥v,¥]) of [9] provides such a generalization. The
transformer post verifies the two properties:
{P}s{post[s]P}, o)
VQ € P[#,¥]: { P}sS{Q} = (post[S][P = Q) .
The forward predicate transformer post [S] is join-preserving.
Therefore, it has a unique adjoint pre[[S] such that
o pre[s] oo
(Pl¥], =) —— (P[¥,¥], =) 3)
post[S]

is a Galois connection, i.e., VP € P[V] : VQ € P[] :
(post[S]P = Q) < (P = pre[S]Q). Intuitively,
pre[S] is a generalization to sets of Dijkstra’s weakest liberal
preconditions predicate transformer.

Abstract Hoare triples An abstract Hoare triple is similar
to a concrete Hoare triple except that the precondition and
postcondition are chosen in abstract domains as used, e.g., by
a static analyzer or a SMT-solver [17]:

{e}e{e} € A[F] x$[7] x B[7,7] — B
The concrete Hoare triples are a particular case of abstract
Hoare triples by choosing A[v] = P[v], B[¥, V] = P[¥, V],
~1 and 9 to be the identity. We say that an abstract Hoare
triple is sound if and only if

{(P}s{Q} = {n@)}s{n@} @&

Abstract Hoare Logic Rules In the abstract, program state-
ments are handled by abstraction [11]. The corresponding ab-
stract rules are in Fig. 3. Surprisingly, the following counter-
example shows that the abstract rules of Fig. 3 may be un-
sound in the sense of (4). This is because the classical version
of Hoare logic makes implicit assumptions upon the accept-
able interpretations of logical predicates/assertions which
may not be preserved by the abstraction since, e.g., for (A),
([ P:) = A 71(P;) but not inversely when ~; is in-
creallgiﬁg but not jlgi%-preserving.

Example 5 (Unsound abstract interpretation). Consider the
following abstractions where A is the pre-condition abstract
domain

3 This point of view consists in considering a particular interpretation of
Hoare logic, the one corresponding to the programming language semantics.
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{false}s{Q}
{P}s{true}
{P}skip{AG, 0 - PO)ANT' =7}

{ P} assert(E) { AU,0" « P(0) A[EJGAT =7}
{P}x = E{A0,0"P(@@) AT =[x~ [E]7]}

{P}Si{Q} {)\v VU

P(¥) = Q(0,7") }S2 { R}

{P}S:L’SQ{A_’ v e 3077
{)\v «P(¥

Q(-* -*/) /\R(_'/ —*//)}
YAE]T} 81 { Q1 }, { AT+ P(¥

)N [-E]T} 82 { Q2 }

1) Yo : P(V) = I(¥, V),

T) {AT' VT : I(7,0") } assert(E); S { J },
Vo, v’ ﬁ"'](ﬁﬁ)AJ(ﬂ' ﬁ”):>I(1717)
Vo, v’ I(0,07) A [-E]T = Q(T,¥)

{P}whlle S{Q}
P= P A{P}s{Q }"NQ =Q

() {Pys{Q}

VieA:{P}s{Q;}

(1) {(JieA:P}s{FieA:Q}

{P}le S; else SQ{Ql\/QQ}

VieA:{P}s{Q;}
(VieA:P}sS{VieA:Q;}

Figure 2. Concrete Hoare triples axiomatization.

If A[¥] has an infimum L 4 such that y; (1L 4) = false then forall Q € B, { La }
If B[, ) has a supremum T g such that vo(T g) = true then for all P € A, { P }

{71(F)}S{72(7)} -
(P)s(Q) )
PePA{P)s{Q)ATER
{P}s{Q}

Figure 3. Abstract Hoare triple axiomatization. Without additional hypotheses, the rules (V) and (A) are unsound.

true

z >0

false

and the post-condition abstract domain B preserves neither
joins nor meets. We have

{xZO}x = —x{xﬁO}and{xﬁO}x = - { 20}
but definitely not the conjunction in A x B
{IZOW%SO}X = —x{xSOEleO}
whichis ~ ~
{sz}x = —x{false}
Similarly,
{x>0}x=x*x{z>0}and{z<O}x=x*x{x>0}.
The disjunction in B x A is
{:17<O|_z|:17>0}x = x * x{x>0|_||:17>0}

thatistheunsound{true}x = x * x{x>0}. ]
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The Ex. 5 shows the necessity for 2 to preserve finite
conjunction for the abstract conjunction rule (A) to be sound
for finite abstract conjunctions. Similarly, (V) is not sound
when 7, is not join-preserving. More generally:

Theorem 6 (Sound abstract interpretation). The abstract
Hoare triple axiomatization of Fig. 3, without (A) and (V) is
sound in the sense of (4).

Moreover if 7 is increasing, the glbs do exist, - is finite-
meet-preserving and A is finite then the abstract conjunction
(A) is also sound. If 7y is increasing, the lub exists, and 7; is
finite-join-preserving and A is finite or ; is join preserving
then the abstract disjunction rule (V) is also sound. O

The notion of Algebraic Hoare Logic developped in this
Sec. 5 and the issues with the unsoundness of the (A) and
(V) rules of the abstract Hoare logic of Fig. 3 as well as the
discussion for when they are sound in Th. 6 are applicable
beyond the specific problem of method re-factoring.

Example 7. Concurrent separation logic [38] is an example
of algebraic Hoare logic where abstract domains are predi-
cates over a separation algebra [27]. Because of the conjunc-
tion rule, the logic is unsound unless resource invariants are
precise, i.e., unambiguously carve out an area of the heap. For
example, the separation logic assertion = — 0, denoting a cell
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at the address x storing 0, is precise; however, the assertion
z +— 0V emp, denoting either the cell or the empty heap, is
not. In particular, imprecise resource invariants allow the two
premisses of the conjunction rule to make conflicting choices
about how to partition the heap. For imprecise predicates, the
concretization may not preserve intersection [27, Def. (14)].

As stated in Th. 6, one solution is to restrict the abstract
domain (i.e., the predicates over a separation algebra) to be
finite-meet-preserving, which is the case for precise resource
invariants, as in [6]. The second solution is to exclude the
conjunction rule, as in [27]. O

Abstract Hoare Logic Rules for Static Analysis In the
following we will use a sound version of the abstract Hoare
logic with the conjunction rule (A) but not with disjunction
rule (V).

Abstract conjunction rule The conjunction rule (A) is of
interest for static analyzers using reduced products [13]. Re-
duced products allow the automatic combination of separately
designed analyzes so as to express conjunctions of different
abstract properties.

Classical abstract domains such as intervals [10], octagons
[36], subpolyhedra [30], or polyhedra [16] do satisfy the hy-
potheses of Th. 6 ensuring the soundness of the conjunction
rule (A) since in those cases 75 is finite-meet-preserving (al-
though not infinite meet-preserving since e.g., for polyhedra
[16] the concretization is not the upper-adjoint of a Galois
connection).

Abstract disjunction rule  For the disjunction rule, enforcing
~1 to preserve (infinite) joins for (V) is a very restrictive
hypothesis essentially forbidding the approximation of joins
which is the basis for static analysis.

However, the disjunction rule (V) is not needed in static
analyzers since disjunctions are usually handled specifically
in each abstract domain.

6. Formalization of Contracts

We define the two notions of valid and safe method contracts
in terms of Algebraic Hoare triples. We also introduce two
partial orders needed for the formalization of the extract
method with contracts.

Valid contract We write S|§\g to mean that all variables
used or modified by a program statement S belong either to
p or g The variables in p are (potentially) read or written
whereas those in g are definitely unmodified by any execution
of statement S. This is formalized as:

{X(@.9)true}s| AXE.). .9 F=7"} )

When refactoring S|s\g into a new method m (p) { Sla\g +
the variables p are passed as parameters while the variables g
are global. It is always sound to C-over-approximate the set
p and C-under-approximate the set g.

We assume that the extracted method and the contracts are

specified as follows:

Paper

private void m(p) { (6)
Requires( Pr(p));
Ensures( Qr(01dValue(p),P) );
Ensures(Vx ¢ p : 01dValue(x) ==x);

Sls\e

where 01dValue(p) denotes the values of the actual parame-
ters when calling method m.

The precondition Pr(p) is checked when the method
is called on the values p’ of the actual parameters p. The
postcondition Q g (7, p’) relates the initial values ' (denoted
01ldValue(p) in (6)) of the parameters p on method entry
to their final values p’ (denoted p in (6)) on method exit.
The postcondition is checked at runtime on exit. In the case
of a contract failure, the execution halts. The fact that none
of the variables other than p can be modified by a method
call is either specified explicitly, if allowed by contract
specifications, or recorded together with the method contract,
or else assumed implicitly. This assumption will be needed
to guarantee the soundness of the separate method call proof
rules of Sec. 7 and Sec. 11.

We let the set of all the contracts for the method m to be

Clm] = P[5] x P[5, 5] -
Definition 8. A contract (P, Q) € C[m] is a valid m contract
ifandonlyif{P}S|ﬁ§{Q}. O

In absence of valid contracts, we can always use the trivial
< A . .
true = (true, true) .

Safety pre-condition A property B, € P[p] is a safety
precondition for a method “void m { Sls\g }” if and only if

{ - Py } S|§\g { false } .
Intuitively, if P, does not hold then the execution of the
method body S‘fj\g’ is doomed to fail either because of non-
termination or because of a runtime error causes the program
to stop.

By (2), we have post [[S‘ﬁ\g]] - Py, = false, which, by
(3), is equivalent to = pAré[[S|§\§]]f alse == P,. In practice
the strongest precondition P £ %ﬁrve[[S|ﬁ\g]]fé1se is not
computable and so will have to be over-approximated by a
weaker precondition P, such that Py = F,. Any one of the
backward static analyses in [18] can be used to effectively
compute an abstract version of F. It follows that - P, under-
approximates — P in that - B, == - P and so, by (=),
- P, satisfies { - Py } S|s\g {false}.

Safety post-condition Once a safety pre-condition P, €
P[p] has been inferred, a safety post-condition Q, € P[p, Bl

relating the initial values p of the parameters p and their final
values p’ must be inferred satisfying

()} sl {Qn)
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or equivalently, B, == §rVe[[S\§\§]] Q. Again the strongest
@y is not computable and so will have to be over-approximated
in the abstract by a relational reachability analysis [11].

Safety contract The pair of a method safety pre-condition
and post-condition yields a safety contract.

Definition 9. A method safety contract for the method
“voidm ( p ) { S5\ g }” is a pair (P, Qu) € C[m] such
that

{ <Py } S|§\g { false } and { B, } S|§\§ { @n } . g

The intuition is that either the safety pre-condition P,
does not hold and the method call is doomed to fail, so on
exit of S (which never happens) @), does hold. Otherwise
the safety pre-condition F, does hold in which case the
post-condition @, describes the effect of the call, if it ever
terminates. In the abstract, over-approximations are inferred
by the static analysis. By Def. 9, this abstract safety contract
will always be valid but it may not be precise enough to
ensure completeness or generality. For example, in absence
of precise method safety contract, we can always choose (P,
Qn) £ true.

Safety versus validity For contracts, validity and safety
are two different concepts. Any safety contract is valid
but some valid contracts may not be safe. For example
{z = 1}x=1/x{x = 1} is valid but not safe since
{x # 1} x=1/x{ false } does not hold. However { z #
0} x=1/x { & # 0 } is safe hence valid.

Callee/covariant partial order on contracts We define the
callee/covariant partial order on concrete contracts

(P,Q)== (P,Q) 2 P=PAQ=Q.
The intuition is that stronger is better for the callee (assuming
more on the precondition to guarantee more on the postcon-
dition). The order == will be used in Sec. 8 to define the

safety of the extracted method contract. The set of concrete
contracts for method m is the complete lattice

(Clm], =, L, T, V, A)
x x :
wher_e L is the infimum, T is the supremum, \X/ is the lub,

and A is the glb for the partial order == on the set C[m].

Caller/contravariant partial order on contracts We define
the contract caller/contravariant partial order == on C[n]
as
(P, Q) == (P, Q) £ (P"==P)A
(Ap",peP(p") NQ(p", D) = Q') -
The intuition behind this order is that a ==--stronger contract
is more general and a ==--weaker contract is more specific,
since if (P, Q) == (P’, Q') and { P } ${Q } hold then
{P"}s{Q } does hold. Concretely it means that from
the caller point of view all proofs done with the contract
(P', Q') can also be done with (P, Q). This intuition is
therefore that stronger is better for the caller (assuming less

(7
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on precondition to get more on postcondition). The order ==
will be used in Sec. 8 to define the most general extracted
method contracts.

The set (C[m], ==, T, 9, A) of all contracts for a
method m is a complete lattice for partial order == where
T £ (true, false) is the infimum, T £ (false, true) is
the supremum, the (infinitary) joinis \/ (P, Q:) 2 ( A P,

ieA i€A
\/ Q). The definition of /\ is dual.
i€eA

7. Separate method verification

In order to formalize the problem of extract method with
contracts, we need to reason about method calls. We now
formalize what we mean by separate verification of the
correctness of the callee and the method caller. We assume the
simplifying hypotheses of Sec. 6 for the variables modified
by a method call. In general, e.g., to handle the heap or
concurrency, more complex rules are needed to express the
frame conditions. The problem is orthogonal to this paper, and
so we assume sequential programs with only scalar variables.

Letm(p){ S } be a method definition with contract (P, Q)
and let m(g) be a method call where the actual parameters
are variables such that V[§] = V[g].

We define the separate method call proof rule. First, the
contract (P, Q) of m should be valid, i.e., { P } S|\ {Q}.
Second, the call precondition P’ should imply the method
precondition P when projecting away the unmodified global
variables: ég’ : P/ == P. If the two conditions hold then the
caller can assume the postcondition Q:

{P}s|, {Q}), 3&:P =P
{P @ {X (79,3 QEd)}

As the global values g are unaffected by the call, the
information available on them before the call is still valid

after the call:
{P)sl @) ©)

®)

{P}s{X@9, (.3 PHIHNU®H P, (B",§))NG =7}
The two rules (8) and (9) can be combined via the con-
junction rule (A) to provide the concrete separate method call
proof rule.

8. Extract Method with Contracts

We devise a two-step algorithm for the extract method with
contracts. The classical syntactic extract method is first ap-
plied to the user selection. If it succeeds (e.g., a syntactically
correct program is generated), we apply our algorithm EMC
in Alg. 5 to infer good contracts for the new method. In order
to formalize (and solve!) the problem both in the concrete and
in the abstract, we need first to make explicit the assumptions
on the underlying syntactic refactoring engine and on the
analysis. These assumptions are formulated in the concrete
but should also hold in the abstract, up to concretization, as
considered in Sec. 12.
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Assumptions When the end-user selects a piece of code
S, the refactoring engine produces a new program with the
refactored code only if this is a syntactically valid program.
Otherwise stated, we rule out syntactically ill-formed pro-
grams. We only consider in-out parameters and procedures
for simplicity, but we handle the general case in our imple-
mentation.

The new method appears in the same class of the selected
code. The method is marked as private — so there is no
need to ensure that the class invariant is preserved*. We
assume the extracted method to be in the form of:

private void m(p) {
Contract.Ensures(Vx ¢ p : Contract.0ldValue(x) == x));

8|
+.
We explicitly record in the contract which variables are nei-
ther read nor written by the method (otherwise the assumption
remains implicit, or guaranteed by the semantics of the lan-
guage, e.g., for parameters of struct type).

At the call site, the selected code S|§\g is refactored into a
method call m(P), where p is the vector of actual parameters.

We assume that a pre-invariant Ps € P[(p, €)] and a post-
invariant Qs € P[(P, &), (B, g)] are available for the selected
code S such that { Ps } 8 { Qs }. The pre-(post-)invariants
can be derived by projecting the abstract state of the analyzer
in the program point just before (after) S (formally followed
by a concretization when reasoning in the concrete). Other-
wise, it is always possible to use true. These assumptions
can be summarized as

{PS}S|ﬁ\g{QS}'

The projection of (Ps, Qs) for S on the read/written variables
gis (P, Q¥). It satisfies the following conditions:

Pi(p') & 3geVIgl: P9 and
QL. p) = 35" eV[gl: Qs((",3").B,g")) . (10)

From what said above and (10), it immediately follows that
the following triples are valid, stating that the extracted
method does not modify the globals and that the projected
pre- and post-invariants are still valid contracts:

{A(5,9)true n(E) { A (7.5, (.9)* §= ¢} and
Y Y
{ P }8l5{Qs -

We assume that a safety contract (P, Qy) (cf. Def. 9) for
the extracted method m can be inferred by running an isolated
analysis for m (formally followed by a concretization when
reasoning in the concrete). At worst, true is always a safe
choice.

The problem of method extraction with contract (EMC)

We want to generate a contract (Pr, Qr) € C[m] for the
(new) extracted method m. The extracted method will then be

P\&

L
L

4 The situation is slightly different for public methods, and orthogonal to
our problem.
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analyzed separately (to prove its contract (Pgr, Qg) correct)
and the contract {Pr, Qg) will be used to derive the post-
invariant (Js from the pre-invariant Ps in a forward analysis
of the method call (and/or the pre-invariant Ps from the post-
invariant (Js in case of backward analysis). The contract
(Pgr, Qr) for extracted method m must guarantee that the
proof/analysis that succeeded before the refactoring still
succeeds after the refactoring.

Differently stated, the problem is to find an appropriate
refactored contract (Pg, QQr) with pre-condition Pg and
post-condition QQr of the form (6). We put the following
requirements on this refactored contract (Pr, QR):

(s) —validity Assuming the refactored contract pre-
condition, the post-condition must hold. Formally:

{PR}S|§\g{QR} :
(b) —safety The refactored contract (Pr, Qg) is
stronger than the method safety contract (P, Qn):

<PRa QR> % <Pm7 Qm> .
The refactored contract requires more (so that Pr implies P,
which ensures the absence of runtime errors when executing
the extracted method) and ensures more (so () g implies @y
and so takes at least into account on method exit what can
be learned from the method precondition P, followed by the
execution of the method body).

(c) —completeness The refactored code is still prov-
able with the same precision as the original code. The triple
{Ps} m(®) {Qs} is provable by the separate method call
proof rule (8) using the extracted method contract (Pr, Qr).

(d) — generality The refactored contract (Pr, Q) is
the most general possible: the pre-condition of the refactored
contract (Pr, Qr) is the weakest possible (so that the
extracted method applicability is as general as possible) and
its post-condition is the strongest possible (so that calls to the
extracted method get as much information as possible on its
effect). However we do not consider type generalization [42],
which is a separate problem.

Independent requirements The validity, safety, complete-
ness and generality requirements are all mutually independent.
For example, { false } S { true } is always safe, invalid for
reachable code, validity for unreachable code but (in general)
incomplete and not general.

Consequences We report some consequences of our re-
quirements and definitions.

From the requirement (a) — validity and (8) it follows that
the (opportunely instantiated) refactored contract is valid at
the call site:

{A(d,7)+ Pr(T) Im(D (an
{X(7.9).(0.9)*Qr(@,DNG=7}
After refactoring, { Ps }m(q') { Qs } can be proved using
(11) if and only if
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VP, g : Ps(p', §) = Pr(p') (12)

vp', 0, G Qr(p',p) = Qs((7',9), (1.9)) -
The conditions in (12) can be strengthened to take run-time
errors into account. Although mathematically useless, this
is useful to minimize the loss of information in abstract in-
terpretation. Therefore, after refactoring, { Ps }m( q) { Qs }
can be proved if and only if

vﬁ/a§: (Ps(ﬁ/ag)APm(ﬁ/)) :>PR(ﬁl)

Ve, p,G: (Ps(p',9) A Pa(P') AQr(P', D)) = (14)
QS((ﬁag)a (ﬁ)g)) .

Please note that if the method pre-condition P, does not hold,
then the selected code S would have definitely failed on some
language or programmer assertion while the refactored code
will also definitely fail, but earlier, when calling method m.
So it is possible that Ps(p, §) does hold and the execution
goes on (until definitely failing later somewhere within S)
whereas P, does not hold on method call so that execution
just fails right on call. However, this changes nothing as far
as the post-condition Qs is concerned.

Finally, the most general contract refactoring requirement
(d) — generality can be equivalently restated as

“if  (Pp, QF) satisfies (a)- validity,
(b) —safety, and (c)-completeness, then
<PR7 QR> = <P}/%7 QIR>”’

9. Exact method refactoring

13)

15)

We show that the EMC problem has a unique solution, and we
give two equivalent formulations of the solution. The first one
is nicer from a mathematical point of view, but less suitable
for abstraction. The second one involves a combination of
backwards and forwards iterations, and it will be the base for
our static analysis.

Concrete solution of EMC We devise a solution to EMC
as follows. The precondition Pg for the method is the safety
precondition P, — all the internal safety checks are made
explicit to the caller. The postcondition is the strongest
postcondition from F,.

Theorem 10 (Exact contract refactoring). The unique con-

tract satisfying (a) — validity, (b) —safety, (¢) — completeness,

and (d) — generality is:
<PR7 QR> £ <P1m post [[S‘ﬁ\gﬂpm>

In an ideal world (e.g., finite and small enough) where
everything is exactly computable, EMC is very simple: com-
pute the safety precondition and then propagate it forwards
to get the postcondition (as in model checking).

In practice post [[S|}_),\§ﬂ P, is not effectively computable
— the set of states is infinite or extremely large. Therefore
an approximation is needed — all the fully automatic static
analysis methods for infinite state systems are necessarily ap-
proximate. An abstract version of Th. 10 is essentially useless:

(16) O
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static analyses compute an over-approximation of post and
this over-approximation may easily cause the requirement
(c) — completeness not to be satisfied. We propose a solution
to EMC nicer to abstract than (16). First we need to recall
some facts on greatest fixpoints.

Greatest fixpoints We write gfp% f for the C-greatest fix-
point of f € L — L C-less than or equal to a € L, if any
(e.g., (L, C) is a dual cpo, f is increasing and a € L is a
post-fixpoint of f, i.e., f(a) C a). Otherwise, gfpg f is the
limit, if any, of the iterates of Az ¢ x M f(x) from a (which
yield the same definition with the previous hypotheses), see
[14].

Iterated solution of EMC We propose a solution to EMC
based on the combination of a forward and a backward analy-
sis, inspired by [8]. The idea is to compensate for the loss of
information in the abstract by an iterated forward/backward
analysis. Starting with the projection of the pre- and post-
conditions (P, Q¥) at the original call site on the relevant
variables, the contract is iteratively generalized by succes-
sive forward fixpoint propagations strengthening the postcon-
dition and backwards fixpoint propagations weakening the
precondition. The iteration of these fixpoint computations
ultimately stabilize, in general after infinitely many decreas-
ing iterations in the concrete, which we express as a greatest
fixpoint (which is therefore a fixpoint of fixpoints).

The method contract transformer Fr[S] € C[m] — C[n]
refines the safety contract (P, Q) with the precondition and
postcondition transformers: (16)

FRS]((X. Y)) 2 (P A pie[S|, Y. Qa A postIS]_ ] X).

Observe that 1%[[S|ﬁ\g]]Y and post[[S|§\gﬂX both involve
fixpoint computations [11, 13].

The fixpoint of the descending iterations of F'g from <PSY ,
QY) is the solution to EMC:

Theorem 11 (Iterated contract refactoring). Under the as-
sumptions of this paper,

(P, post [[S\ﬁ\g]]P,,J Fgrls] 17)

£ =
EPpY
and, by Th. 10, is the unique solution to (a)— validity,
(b) —safety, (c) — completeness, and (d) — generality. [
The fixpoint formulation of the solution to EMC, (17), is
the concrete solution to our problem. As stated earlier, in
the general case, the computation is unfeasible and we need
to perform some approximation. Next we provide abstract
counterparts to the separate method analysis rules of Sec. 7
and the formulation in the abstract of EMC.

10. Abstract Contracts

Abstract domain primitives In addition to the requirements
of Sec. 5, we assume the precondition abstract domain A
and the postcondition abstract domain B to define: (i) a
predicate for the unchanged variables; (ii) an embedding
from A to B; (iii) a variable projection; and, (iv) a variable

Q)
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anti-projection. Please note that those assumptions are in no
measure restrictive, we just make them explicit — all static
analyzers implement those primitives, e.g., the projection to
remove variables when they go out of scope.

The predicate =[] denotes the unmodified variables.
Given a set of variables g C ¥, then =[g] € B[v,7] is
the abstract statement that none of the values of the variables
¢ has changed, that is

2 (=[gl) = A7’ 7'(x) = (x).

The embedding 17 € A[¥] — B[¥,¥] embeds unary
predicates into binary predicates. It respects the soundness
condition:

VP € A[¥] : V&'

,UeVx € g

7669[[‘?]}:72T

We assume that the embeddmg is increasing, i.e.,if P T P

then 13(P) & 13(P).

The abstract projection | g projects onto the parameters
and global variables. It satisfies the following soundness

criteria: (P € A[p, g] and Q € B[(5, &), (5, &)])
C Ipg(P)
(Elg 71(P) 7§) = 71(lp\g(ﬁ))
(FE: Q) = Y2(l52(Q))
15\g Is increasing

!

Global variables can be reintroduced by the abstract an-
tiprojection 15z € B[p,p] — B[(P, &), (P, &)]. It satisfies
the soundness requirement: (Q € B[q, q])

M@ (@9) @@ DA T =7 =% (155@) -

In the following, we leave variable renaming implicit,
identifying A[p] and A[q] whenever V[q] = V[p].

Abstract contracts In analogy to what was done in Sec. 6
for the concrete contracts, we define abstract contracts and
a covariant and contravariant order on those. An abstract
contract is an element of A[p] x B][p, p].

The callee/covariant partial order on abstract contracts is
defined as

(P,QEP. Q) £

The meaning is given by the concretization function vy €
(A[p] x B[p,B], E) — (C[m], =) defined as

w(P.Q) = (m(P),%(Q)).

The caller/contravariant partial order on abstract contracts
is defined as

(P,Q)E(P,Q) 2 "IREQ .

The meaning is given by the concretization function 7.. €
(A[8] x B[,8], L) — (C[m], =) defined as

Y (P, Q) 2 (n(P), 12(Q)) - (18)

PP AQEQ .

P CPAP
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It is easy to observe that .. is increasing. However, if 5
is increasing but not meet-preserving then the property that
an abstract contract is more precise than another one may
not be preserved in the concrete, as shown by the following
counter-example.

Example 12. Let us consider the two abstract domains and
the concrete domain below:

2,0 Y2

AP y(0)

2(13(P")) Ay2(Q)
¥2(Q")

=

P mQ

We have P/ © P A1} P)RQ E Q and so (P,

Q) € (P, @) but not .. (P, Q) == .. (P', Q"))
since 12(13(P")) A 12(Q) =~ 72(Q’). So even if in the
abstract the contract (P, Q) is more precise that the contract
(P', @), this is not true in the concrete. So in this case,
improving the precision of a contract in the abstract does not
guarantee that the concretization also improves. O

We now have two reasons for assuming - to be finite-
meet-preserving. One is to ensure the soundness of the
abstract conjunction rule (A), i.e., the reduced product (Th. 6)
and the other to preserve the precision relation between
abstract contracts in the concrete.

11. Abstract separate method analysis

We are now ready to formalize the rule in the abstract Hoare
logic to handle the method call. We abstract the corresponding
rules for method call of Sec. 7.

We obtain the abstract separate method call analysis
rule by replacing the concrete Hoare triples, implications,
projection etc. of (8) w1th their abstract counterparts defined
above: (P € A[p, &), P e A[p], and Q € B[p,8]):

{P}s;,{@),  lpe@EP
{P}n@ {15¢@}

The abstract version of (9) propagates the properties of the
unmodified variables g through the call.

{?}%%{@}
{Pls {1iP)mQm=[g}
Theorem 13 (Soundness of the abstract separate method call

analysis rule). Abstract rules (19) and (20) are sound in the
sense of (4). O]

12. Extract Method with Abstract Contracts

We define the problem of the Approximate Extract Method
with Contracts EMC, by providing the abstract counterparts
for the definitions and requirements of Sec. 8. We prove that
the EMC implies EMC, but that the converse does not hold.

19)

(20)

2013/10/25



Assumptions The assumptions on code and invariant selec-
tion are similar to the concrete ones in Sec. 8, but now relative
to abstract predicates.

~ We assume the variable decomposition is ¥ = p, g and
{ Pg } S|§\g { Qs } so that the analysis of the selected code

is sound. Those hypotheses essentially ensure the correctness
of the code to be extracted. The next two hypotheses are
completeness hypotheses requiring the abstraction to be
expressive enough.

We assume that the post-condition of the selected code
is strong enough in that Qs & (13(Ps) M =[g]). This
implies that the information known on the initial values of
the parameters and the fact that variables g are unchanged is
not lost, that is for all p’, ¢, 7, ,

72(?5)((277.@4)7 (ﬁ7§)) = 71<ﬁs)(ﬁa§/)
72(Q:)((7,9), (7,9) = (7 =9)-

Furthermore, we assume that the analysis of the selected
code is independent of the unread/unwritten variables, viz.

(Tae(lag(13(Ps) M Qs 1 =[aD) 7 =[&]) E Qs (22)
The following contrived example shows why we need this
hypothesis. Even if the selected code S does not depend upon
the variables g the analysis of this code might nevertheless
depend upon these neither used nor modified variables g.

2

Example 14. Let us consider the following syntactic refac-
toring:

{gin [11, 111 } ~» {gin [11, 11] }

p = 0; NewMethod (p) ;
while (p < 10) {p in [10, 111 }
p=p+1; Ce
{ p in [10, 11] } private static void NewMethod (int p)
{
{ Pr(p’) = true }

p=0;
while (p < 10) p = p + 1;
N { Qr(p’, p) = p in [10, +o0o0] }

We assume that the static analysis is an interval analysis with
a widening using thresholds. The thresholds are assumed
to be obtained by looking at all visible variables with a
constant interval. So the analysis of the selected code uses
the threshold 11 from the value of g while the analysis of
the extracted method has no threshold at all so widen to
+00. Then the method post-condition is too weak to prove
the selected code post-invariant. Of course the constants of
the program (e.g., 10) could also be used as thresholds or a
narrowing could improve the result but we assume that this is
not the case in this contrived example. O

Finally, we assume that the abstract safety contract for the
extracted method:

(Pm|ﬁ, @m|ﬁ’§> is such that {?m } S {@m }

The safety precondition P, is first obtained by a backward
analysis of the method body S [18] and then (), is derived
form P, by a forward reachability analysis of S [11].
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Method extraction with abstract contracts, EMC We pro-
vide abstract counterparts for the requirements of EMC of
Sec. 8. We call the problem EMC.

(a) — validity The abstract refactored contract (Pg,
Qp) is valid: assuming the refactored abstract contract pre-
condition, the post-condition must hold:

{PR}S|§\g{QR} :

(b) —safety The abstract refactored contract (Pg,
Qp) is stronger than the abstract method safety contract
(P, Q,): Py is a necessary but possibly not sufficient con-
dition for the absence of run-time error when the method is
called [18]. @, over-approximates the post-condition result-
ing from the execution of the method body assuming P, on
entry. The abstract refactored contract requires more, so that
Ppr, implies P, which is necessary (but possibly not suffi-
cient) for the absence of runtime errors when executing the
extracted method. The abstract refactored contracts ensures
more, so @ implies @,. It takes at least into account on
method exit what can be learned in the abstract from the
method pre-condition P, followed by the execution of the
method body, which can be summarized by:

<ﬁR> QR) & <ﬁma @m> :

(€) — completeness The refactored code is still prov-
able in the abstract with the same precision as the original
code: { Ps } m(p) { Qg } is provable by the abstract sepa-
rate method call analysis rule of Th. 13 using the extracted
method abstract contract (Pr, Q).

(23)

(d) — generality Optionally, the abstract refactored
contract (Pgr, Qp) is the most general: The pre-condition
of the refactored contract (Pr, Q) is the weakest possi-
ble (so that the extracted method applicability is as general
as possible) and its post-condition is the strongest possible
(so that calls to the extracted method get as much informa-
tion as possible on its effect) for the considered abstract
domains. Tt can be shown that if (P, Q) satisfies require-

ments (a) — validity, (b) —safety, and (¢) — completeness
then (Pr, Qg) & (P, Q).

Theorem 15 (Correctness of the abstract requirements).
The abstract requirements (a) — validity, (b) —safety, and
(€) — completeness respectively imply the concrete require-
ments (a) — validity, (b) — safety, and (c) — completeness for
the concretization of the abstract predicates. Therefore, by Th.
13, method extraction with abstract contracts is sound. [

Notice that Th. 15 does not state that abstract complete-
ness implies concrete completeness for any concrete contract.
It states that abstract completeness implies concrete com-
pleteness for the concretization of abstract contracts. So it
should be understood as meaning that properties of abstract
contracts hold in the concrete up to their concretization. The
intuition is that the separate method call analysis rule is more
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powerful in the concrete than in the abstract. Of course, some
concrete contracts are not the concretization of any abstract
contract and Th. 15 states nothing on these contracts. Th. 10
and 11 are stronger than Th. 15 since Th. 15 is only valid in
the concrete for concrete contracts expressible in the abstract
without any loss of information while Th. 10 and 11 hold for
any concrete contract.

Impossibility of complete abstract refactoring Approxi-
mations introduce new difficulties. In practice, the abstract
requirement (¢) — completeness can only be optional — the
concretization of the best abstract refactored contract, if any,
might not be the best concrete refactored contract considered
in (c) — completeness. The following counter-example proves
that abstract refactoring is necessarily incomplete.

Example 16 (Impossibility of complete abstract refactoring,
I). Consider the following refactoring

{Psp, @ = (g=0)
while (1) p = 0;
{Qs(p, g, p’» g") = (g==¢g” ==7) }

{ Ps(p, g = (g==0) }
NewMethod (p) ;
{Qsp, g, p’, g’) = (g7 ==g+t1 ==7) }

private static void NewMethod (int p)
{

{ Pr(p) = true }

while (1) p = 0;

{ Qr(p, p’) = (p’ == p-2 == 17) }

The loop does not terminate so the exit invariant is false
which is over-approximated by Qs(p, g,p’,¢') £ (9 =¢' =
7) in the original code and by Qr(p,p’) 2 () =p —2 =
17) in the extracted method. Qs and Qg are a perfectly
correct partial-correctness invariants/post-conditions since
false = (g and false = (. However, assuming
Py(p.g) £ (9 = 0) and Qr(p,p) 2 (o = p— 2 = 17),
and ignoring the method body, it is impossible to prove that
Qs(p,g,0',9") = (g = g’ = T7) does hold. This proves
that abstract refactoring is necessarily incomplete (since
termination is undecidable). Please note that this is not in
contradiction with the fact that there is no problem (except
incomputability) with exact refactoring, since the method
body exact post-condition ()i shall be false. O

Example 17 (Impossibility of complete abstract refactoring,
II). Consider the following situation where the selected code
S does not read or modify g.

{ Ps(p, g = (g ==10) }

while (1) do { p =p };

{Qs(p, g, p’, g") = (g==¢g ==1)}
~> .

{ Ps(p, g = (g ==10) }

NewMethod (p) ;

{Qs(p, g, p’, g") = (g==¢g ==1) 1}

private static void NewMethod (int p)
{

{ Pr(p) = true }

while (1) do { p =p };

{ Qr(p, p’) = true }

Paper

The separate analysis of the extracted method cannot prove
the post-condition Qs despite the fact that Qr(p’,p) =
39,9" - Qs((p,9), (¥, 9')) (choose g = ¢g' = 1). The prob-
lem comes from the fact that false, which is the strongest
post-condition for the selected code, was over-approximated
by Qs(p,9,9',9') = (9 = ¢ = 1) and by Qr(p,p) =
true after the body of the refactored procedure. Since g’ is
not available in the procedure body, it is impossible to make
the same over-approximation of false in the method body
as it was done in the selected code.

The counter-example is based on the fact that, in case of
non-termination, since (Jg can state properties of g which
are completely different form those stated by Ps although g
is not modified by the loop body. This situation can hardly
happen in practice since abstract transformers and widening/-
narrowing will leave g abstract properties unchanged since
the selected code neither reads nor writes g. O

Examples 16 and 17 are based on non-termination, in
which case false can be approximated differently in the
selected and refactored code.

13. Approximate iterated method refactoring

We want a static analysis to effectively solve EMC. The main
idea is to abstract the iterated exact refactoring of Th. 11. We
see under which hypotheses the computed solution is the best
one and how we can derive an approximated solution.

Initial state 'When the user selects a piece of code S, the
underlying static analyzer extracts a pair (Ps, Qg) containing
the pre-state and the post-state for S. The pre-state (resp. the
post-state) is the semantic information known to the analyzer
at the program point just before (resp. after) the selected
code:

Ps 274 (Ps) and Qs 2 v(Qs). (24)

The pre-state and the post-state are projected onto the
parameters of the extracted method:

The initial abstract state for the (greatest) fixpoint compu-
tation soundly approximates the initial concrete state:
Lemma 18. Equations (25) and (24) imply that (P, QY)

cc HY AHY
- Vee (<PS ) QS >)

The underlying static analyzer may infer an approximated
safety condition Py, in which case we let P, = ~;(Py).
Otherwise we assume P, to be the strongest safety precondi-

tion. In both cases @, = post [S [ﬁ]} P, is the corresponding
strongest relational post-condition.

Abstract transformer An abstract contract transformer
Fr[8] has to be designed that soundly overapproximates
@e concrete contract transformer (16). The specification of
F r[S] is therefore:

Fr[s]e 7. == 7. o Fg[S] (26)

In practice this means that we have, for a program statement
S, either a forward static analysis, or a backwards static
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analysis, or, preferably, both of them. Knowing the concrete
transformer Fz[[S] defined by structural induction on S,
the design of an abstract transformer F'[S] is classical in
abstract interpretation [11].

Best iterated solution The iterations of F g[S] provide a
sound appoximation of the concrete fixpoint:

Theorem 19. Equations (25) and (26) imply that

f = F S é f E F S .
D

In general Fr[[S] may be any over-approximation of

FR[S]. Therefore it may not ensure that
e _ -
gfp(ﬁs 7§Sy> FR[[S]] g <T’ Qm)a
i.e., it does not satisfy the abstract requirement (b) — safety.
In order to guarantee that the limit of the iterations of the
abstract transformer is a correct solution to EMC we need the
additional requirement:
VX, V) FrIS[((X, V) E(T, @) @27

This requirement can always be met by refining a given
abstract transformer F'r such that the postcondition is no
weaker than Q)y:

XX Y)FR[SI(X, V) 0 (T, Q). (28
With the extra requirement (27), the iterative application

of Fp from <F§, @Sy> provides a correct solution to EMC:

Theorem 20. Let Fr be an abstract transformer satisfy-
ing (25), (26) and (27). Then

(Pr, Qg) 2 gfp%?y 7Y Frls] (29)

satisfies the abstract requirements (&) — validity, (b) — safety,
and (C) — completeness. O

Equation (29) ensures that (Pg, Q) £ <ﬁsy, @g% ie.,
the result of the fixpoint computation is a more precise
contract than the trivial solution consisting of projecting the
pre-state and post-state of the selected code.

Most general abstract contract refactoring In general the

abstract refactoring (Pr, Q) in Th. 20 is not the most pre-
cise abstract contract refactoring — the abstract requirement
(d) — generality does not hold in general. There are three
possible reasons for that.

First, there is no most precise abstraction of the concrete
solution of Th. 10 or 11 for i in Def. (18) of v.. a case
illustrated in Fig. 4. This can be remedied, e.g., by requiring:
(1) 7.. to be the upper-adjoint of a Galois connection —
equivalently .. is a complete meet morphism; and (ii) the
« is to be surjective — equivalently ~,. is injective — to
avoid a redundant representation in the abstract of the same

concrete property:
(P[], =) == (4[], ©)
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Cc[v]

A[¥] x B[v.¥]

Figure 4. Absence of most precise abstraction of the con-
crete contract.

Second, the abstract transformer Fz[S] satisfying (26)
might not be the most precise one. This situation can be
avoided by requiring the abstract transformer Fz[S] to be
the most precise abstract transformer, in which case (26) must
be strengthened into:

Fr[S] ° 7. Yee © FR[S] (30)

Third, the abstract projection <P§, @g} (cf. (25)) might
be too approximated. This can be excluded by requiring the
abstract projection |z g to be the most precise possible.
Theorem 21 (Most precise abstract contract refactoring). Un-
der the hypotheses of Th. 20 and of this subsection (includ-
ing (30)), (PR, Qp) also satisfies the abstract requirement
(d) — generality. O

The best abstract transformer condition of (30) is rarely
met in practice. A consequence is that the abstract require-
ment (d) — generality is mostly of theoretical interest. How-
ever, experience in Sec. 14 shows that abstract completeness

is achieved in many cases.

Iterated Solution with Convergence Accelerators The un-
derlying abstract domains A, B may not satisfy the Ascend-
ing/Descending chain conditions. As a consequence a narrow-
ing operator [11] should be used to enforce the convergence
of the greatest fixpoint computation of (29) to an (over-) ap-
proximate solution (Pg, Q). The greatest fixpoint iteration
with narrowing ensures that

(Pr. Q) £ Pr. Q) E @5, Q5). 6D

We need to prove that (Pg, Q) is effectively a solution

of EMC, and therefore it can be used in practice. This is
guaranteed by the following theorem:

Theorem 22 (Correctness of the approximate abstract con-
tract refactoring). In addition to the hypotheses of Th. 20,
let (PR, Qp) be satisfying (31) and Q = Q,,. Then (Pg,
Qp) satisfies the abstract requirements (@) — validity and

(b) —safety. O
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/* Pg: pre-state, S:refactored code, p: variables potentially
used in S, g: variables definitely unmodified by S, (Q)g:post-
state such that { Ps } Sls\g { Qs } holds. */

RefactorContract(Ps, S, B, & Qs) {

use (A[p], M, A1) // precondition abstract domain
(B[p,p], ™, Ag) // postcondition abstract domain
post // forward analyser with widening/narrowing

ﬁ // backward analyser with widening/narrowing

// abstract projection on potentially used variables p
(Ps, Qs) = (Ipg(Ps): 15z(Qs)):
// infer a correct safety abstract contract

Let P, be the abstract safety pre-condition for S
computed by the static analysis [18];

@m = post[[S [ﬁ]]ﬁm; // forward abstract static analysis
// { P} S|s\g {Qyu } holds

5 5y B Y
(PR, Q) = (Ps, Qs);
do o o
// compute (X, Y) = Fr[S[((Pr, @r))
X =P, 0 Pyl pre[S 1s]Qr; // backward analysis
Y = Q, M Qg F1post[S| ] Pr; // forward analysis
(Pr, Qr) = (PrA1 X, Qg A2Y); // narrowing
while (Pgr, Qp) # (X, Y);

/180y v, Fls) £ (Pr, Qr) £ (P5, Qs) holds

S

return (Pr, Qg); // (&) —validity & (b) — safety hold

Algorithm 5. Algorithm EMC (Extract Methods with Ab-
stract Contracts) computing an approximation of a greatest
fixpoint with convergence acceleration.

Th. 22 states that all the abstract contracts included between
the best solution (29) and the abstract projections of the
abstract states are a solution of our problem. A natural way to
compute (Pr, Qp) is to perform the downwards iterates of
Fr[S] from <?Sy, Q\s{> with narrowing. The algorithm EMC
is given in Alg. 5. An optimization using chaotic iterations
with memory [8] would have

Y =Q, M Qg Mpost[S|]X; // forward analysis
This is the solution we implemented, with more details given
in the next section.
14. Experience

The underlying tools We implemented the algorithms of
the previous section on top of two industrial-strength tools,
Roslyn and CCCheck.
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Roslyn exposes the (C# and VB) compiler internals
(syntax trees, object model, data-flow analyses, refactoring,
etc.) to external developers, so that they can develp new
plugins (code analyses, refactorings) on top of it.

CCCheck is a static contract verifier for CodeContracts. It
analyzes each method in isolation, assuming the precondi-
tion and asserting the postcondition. CCCheck can also do
backward analyses to infer a precondition from the postcon-
dition. CCCheck is based on abstract interpretation and hence
has more advanced inference capabilities than similar tools.
For instance, it infers loop invariants and it suggests method
preconditions and postconditions (the (P, @,) in this pa-
per). CCCheck contains several abstract domains for the heap,
non-nullness, numerical properties, array contents, enums,
but also to track (simple) existential and quantified proper-
ties [20]. Most of these abstract domains use widenings so
completeness cannot be guaranteed in the theoretical sense
for tortuous counter-examples and the contracts cannot tech-
nically be the most general. The benchmarks ran with the
default settings show that the inferred contracts can hardly
be improved manually for the abstraction used by the static
analyzer.

The implementation We preferred not to implement our-
selves the syntactic extract method from scratch. We used
Roslyn, which takes care of both the user interface (e.g.,
code selection, right click, previews, etc.) and the basic refac-
torings. Furthermore, we did not wanted to try our examples
on toy implementations or abstract domains, hence we (mod-
ified and) used CCCheck to implement the EMC algorithm.
CCCheck runs as a background service in Roslyn. While
Roslyn provides syntactic, source-level, ASTs, CCCheck an-
alyzes bytecode. Therefore there is some (non-trivial) glue
code connecting the two.

The extract method with contracts is implemented as a
Visual Studio extension for C#. When the user selects a piece
of code S, Roslyn in the background (and concurrently),
invokes the extension asking it to provide a refactoring, if any.
Our extension first forwards the call to the refactoring engine
of Roslyn. If no method is extracted from the selection
(e.g., not all the branches of S are terminated by a return
statement), the extraction fails, and we stop there. If the
extraction succeeds, then we generate a contract for the new
method.

The first step of the algorithm EMC is to deduce (P;[, @g),
the starting point for the greatest fixpoint computation. In the-
ory, this information can be obtained by fetching the program
points corresponding to the user selection, and then asking
CCCheck for the corresponding invariants and Roslyn for
S‘ﬁ\g' Unfortunately there are some practical issues that com-

plicate the theoretical schema. First, CCCheck does not keep
an explicit map from source locations to bytecode offsets, but
only the inverse map, used to report warnings and sugges-
tions. Second, for memory consumption reasons, CCCheck
throws away the inferred invariants once it is done with the
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analysis of a method. So at the time the refactoring is invoked,
that information is already gone. Third, because of the heap
analysis, the mapping between source level variables and
internal variables used by the abstract domains in CCCheck
is pretty complex (e.g., the same syntactic variable may have
different internal names at different program points). Luckily,
the refactoring engine of Roslyn indirectly provides the par-
tition (P, &) and the information on modified variables via the
parameters. Roughly, the actual parameters are the variables
read/written in S, and the actual parameters passed by ref are
those that may be modified in S and whose value may be used
in the callers. Our solution is then to use two dummy method
calls as markers for the precondition and the postcondition,
inserted, respectively, at the beginning and at the end of the
selection. The first marker, the precondition marker, is a fresh
method call whose actual parameters are the variables in p
that can be modified inside S. For the other variables in p,
we have the guarantee that their value either does not change
or does not affect the method on return (i.e., they are dead
variables). The second marker, the postcondition marker, is a
fresh method call whose actual parameters are as above plus
an extra one denoting the return value.

Example 23 (Markers). For the initial example in Sec. 2, the
annotated code is:

__PreconditionMarker();

while (x != 0)

__PostconditionMarker (x, true);
The Boolean flag indicates whether or not the next-to-last
parameter is the variable the return value is assigned to
(refactoring may generate void methods, in which case the
flag is false). When the Boolean flag is set, then all the

x==;

occurrences of the next-to-last variable in @;j are replaced
by Contract.Result, i.e., the return value of the method is
made explicit in the postcondition. O

We then analyze the annotated method with a switch to

trigger the generation of (?Sy, @b CCCheck analyzes the
method, collects at the marked points (Pg, @Qg), and then
uses the actual parameters to project them onto the variables
of interest to emit (F;[, @;6

The second step of the algorithm, inserts (Pg, Q) for the
extracted method, and then runs CCCheck to infer (P, Q,).

In the third step, we add (P, Q,) (to enforce (27)) to
the extracted method and we iterate the forward/backwards
schema until we reach a fixpoint, or we run out of stamina, in
which case we return the current approximation — this never
happened in our experience, though.

Finally, we instrument the extracted method with (?R,
Qy), and we propose it as a refactoring to the user, e.g., Fig. 1.

Benchmarks 1t is very hard, if not impossible, to evaluate
automatically the effect of the extract method, as it depends
on user interaction. A random selection of S is not very
meaningful either. It is very likely to generate ill-formed
programs, and it may not be representative of the effective
use. Furthermore, in order to evaluate our analysis, we
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should first fix what we evaluate. Our goal is to have the
extract method with contracts integrated in a continuous
verification (or semantic) IDE. As such, two metrics are
relevant: (i) performance (the analysis should happen in real
time); and (ii) precision and generality of the results (no
new warning should be introduced, and the result should be
as general as possible). We evaluated those two aspects on
some benchmarks (randomly) extracted from the CCCheck
regression suite. The CCCheck regression test suite contains
many corner cases and small, yet tricky, bug repros reported
by users in order to stress the analyzer.

We report the experimental results in Fig. 6. The first
column is the name of the test. The second column contains
the time required for Ros1lyn to extract the method. The third

column is the cost of step one (inference of (Fsy, @sy» and
the fourth column is the combined cost of steps 2 and 3
(inference of (Py, Q,) and (Pr, Q)). The last column is
the total time taken by the extract with contracts refactoring.
Note that the total is slightly larger than the sum of the other
three columns because it also includes the cost of annotating
the syntax trees, context switching, etc., due to multithreading.
The tests are not very long per se, but rather complex, as can
be noticed by the raw time spent by the optimized refactoring
engine to perform the syntactic method extraction. In general,
the cost of our analysis is comparable with that of the extract
method alone. In most of the cases, the total time remains
well below one second, meeting the first requirement (real
time). The only real slow-down is in the Loop-2 test, which
is caused by the overhead of using exceptions as control
flow in the analysis for certain corner cases. This idiom
causes an extreme slowdown while running with the debugger
attached, which was the easiest way for us to record the
timings. Without the debugger attached, the wall-clock time
improved dramatically.

In all of the tests we succeeded in extracting a contract
which was both precise enough to not break the verification of
the caller and general enough to be used elsewhere. We were
positively impressed by the inferred invariants. For instance,
for BeyerEtAl (Fig. 1 of [5]), we selected the body of the
loop. The extract method with contracts was able to infer the
right pre- and post-conditions (3*i = a + b), generalizing
it for non-negative values of i, a, and b but also restraining i
to be less than 23! — 1 (otherwise an overflow may occurr).

In the PeronHalbwachs example — computing the max of
an array (Fig. 1(a) of [28]):

int Max(int[] a) {
Requires(a != null &% a.Length > 0);
Ensures(ForAl11(0, a.Length, j => Result<int>() <= a[jl));
Ensures(Exists(0, a.Length, j => Result<int>() == al[jl));
var max = a[0];
for(var i = 1; i < a.Length; i++)
if(ali] > max) max = al[il;
return max; }

CCCheck infers the loop invariant Vj € [0, 1).a[j] < max and
Jj € [0,1).a[j] = max, and uses it to prove the postcondition.

2013/10/25



Test Extraction Step1 Steps 2/3 | Total
Decrement 0.18 0.10 0.12 | 042
Generalize 0.20 0.09 0.14 | 0.45
BinarySearch 0.23 0.14 0.32 | 0.70
Abs 0.23 0.07 0.12 | 043
Arithmetic 0.20 0.07 0.28 | 0.56
Rem 0.20 0.09 0.20 | 0.49
Guard 0.17 0.07 0.14 | 0.40
Loop 0.18 0.07 0.10 | 0.37
Exp 0.34 0.18 0.24 | 0.79
Main 0.20 0.14 0.20 | 0.56
Karr 0.35 0.09 0.14 | 0.71
Loop-2 0.28 0.18 1.99 | 243
Loop-3 0.21 0.10 0.14 | 0.46
SankaFEtAl [40] 0.24 0.09 0.00 | 0.35
McMillan [33] 0.24 0.18 043 | 093
BeyerEtAl [5] 0.34 0.18 0.28 | 0.82
PeronHalbwachs [28] 0.47 0.33 0.31 1.13

Figure 6. The experimental results (in seconds). The additional
cost is of the same order of magnitude as the syntactic method
extraction. The precision was good enough in all tests to preserve
the verification of the caller and generalize the precondition of the
extracted method.

In the benchmark, we selected the body of the loop, and got
the following contract:

Requires(a != null && 0 <= i &% i < a.Length);

Requires(Exists(0, a.Length, j => max == al[jl));

Ensures(Exists(0, a.Length, j => Result<int>() == a[jl));

Ensures(al[i] <= Result<int>());

Ensures(max <= Result<int>());
This is the most general contract possible for CCCheck ab-
stract domains, which are not disjunctive. On entry, the array
a should be non-null, the index i should be in its bounds
and max should be equal to some element in a. On exit, the
returned value is an array element, larger than both max and
al[i]. The precondition of the extracted method is proven
in the refactored Max. The postcondition is used to infer the
same loop invariant as in the original Max. Note that the
correctness proof of Max does not need a stronger contract
with universally quantified invariants. The analysis is smart
enough to automatically deduce it. Otherwise, the postcon-
dition ForAl1(0, i, j => a[j] <= Result<int>())
would have generated the precondition ForA11(0, i-1, j
=> a[j] <= max), arequirement that would be too strong
on the caller, dramatically reducing the admissible calling
contexts.

15. Related work

Program source to source transformation and supporting
tools were very popular in the late 70’s and early 80’s
([32, 41], to cite a few). The research subject went out of
fashion probably because program transformation systems
needed too large catalogues of transformation rules that were
hard to master in batch mode by programmers and transfor-
mation enabling conditions ensuring the correctness/incor-
rectness of program behavior preservation/refinement were
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hard to prove (either manually or automatically) [1]. The sub-
ject rose from the ashes through code refactoring [24, 34, 43],
a computer-aided reorganization of the code preserving its be-
havior (and hopefully improving its readability, modifiability
and maintainability). Program transformation and refactor-
ing look very similar in particular since they share similar
catalogues of transformations. However, the correctness of
refactoring transformations (so-called “semantic preserva-
tion”) is ultimately left over the shoulders of programmers,
not on the refactoring tools, which is therefore never falling
short nor faulty.

Various formalizations of refactoring have been proposed
in the concrete such as [3, 25, 31]. Refactoring can also be for-
malized as a special case of semantic program transformation
[15]. [26] consider the problem of merging similar classes
(but not method extraction). To the best of our knowledge, we
are the first to address the refactoring problem in the general
context of abstract semantics and abstract proof preserva-
tion, not only types [42]. The problem of unsoundness of the
conjunction rule in Hoare logic was already shown by John
Reynolds in the context of concurrent Separation Logic [38].
However, the proposed solution was tied to the particular
logic (enforcing the resources to be precise). We give a more
general characterization, in terms of abstract Hoare Logic,
and a general solution (Th. 6) to the problem.

16. Further Work

Static analysis might be used to help the end-user select the
code to be extracted. She might be proposed to extend the
code to include initializations, or exclude code irrelevant to
the computed result.

Static analysis would also be useful to automatically
check whether the extracted method preserves the class
invariant, in which case the end-user may be offered the wider
choice of declaring the extracted method either as public or
private. Alternatively, the class invariant may be weakened
automatically for public methods. A extracted method can
also be placed outside the class of the refactored code if and
only if it does not depend on the state of the objects of that
class.

Static analysis could also help in generalizing the parame-
ter types to the most general types that preserve the extracted
method semantics. Of course semantic smelling and cloning
would then be useful to help identify clones of the method
body in the code that could be replaced by procedure calls.

17. Conclusions

Method refactoring is very useful in everyday practice. In
the design by contract programming methodology, this must
be accompanied by providing a contract for the new method.
We have given conditions on this contract to ensure that the
verification of the original program is not broken when refac-
toring the code. We have provided an exact solution to the
undecidable problem which is not computable. This led to an
iterated forward-backward abstract interpretation to automat-
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ically compute an approximate solution. The implementation
using Roslyn and CCCheck shows that the proposed algo-
rithm is fast and precise enough in practice to entirely support
the verification task of the programmer during design time.
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