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Abstract. The classical nrogramming languages such as PASCAL or ALGOL 68 do not provide full data
type security. Run-time errors are not precluded on basic onmerations. Tyne safety necessitates a
refinement of the data type notion which allows subtypnes. The comniler must also be able to ensure
that basic operations are applicable. This verification consists in determining a local subtyoe of
globally declared variables or constants. This may be achieved by imnroved comniler capabilities
to analyze the program properties or by language constructs which permit the expression of these
properties. Both approaches are discussed and illustrated by the oroblems of access to records via
pointers, access to variants of record structures, determination of disjoint collections of linked
records, and determination of integer subrange. Both approaches are complementary and a balance
must be found between what must be specified by the orogrammer and what must be discovered by the

compiler.

Key words and phrases : Type safety, type unions, subtype, data type, system of equations, type
verification/discovery, error detection canmabilities, abstract interoretation of orograms, secure
use of pointers/variants of record:structures, domains/collections, integer subrange typme, ALGOL

68, EUCLID, PASCAL.

CR categories : 4.12, 4.13, 4.2, 5.4.

1. Introduction reference ignores the fact that a reference may be

relates to other objects and which actions may be
applied to it. Unfortunately the classical tyne
systems of ALGOL 50[1973], PASCAL[1974], ALGOL 68
[1975] ... do not convey enough information to de-
termine staticly whether a given action applied

to a value will be meaningful. For example, in AL-
GOL B0 the type procedure does not include the ty-
pe of acceptable parameters, in ALGOL B8 the Lype

dummy, in PASCAL type unions (variants of record
The type of an object defines how that object structures) are unsafe because of the possibility
of erring on the current alternative of the union.
In all these languages the problem of subscript ran-
ge is not safely treated by the type concept. Like-
wise, the classical type systems define only loose
relationshins between objects. For example, in PAS-
CAL, a nointer to a record must be considered as
potentially designating any record of a given type.

One cannot express the fact that two linked linear

*
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ced by the compilers, so that run-time checks are
the widely used remedy. However these expensive run-
time checks are usually turned off before the "last”

programming error has been discovered.

In the interest of increased reliability of soft-

ware products, the language designer may reply upon

- The design of a refined and safe type system, which
necessitates linguistic constructs which propaga-
te strong type properties. The rules of the lan-
guage must then be checkable by a mere textual
scan of programs (e.g. ALGOL 68[1975] and EUCLID
[1976] provide a secure use of type unions)}. This
language design approach may degenerate to large

and barogue programming languages.

- The design of a refined compiler which performs
a static treatment of programs and provides im-
proved error-detection capabilities. The language
then remains simple and flexible, but security is
offered by compiler verifications (e.g. EUCLID
legality assertions which the compiler generates
for the verifier). This compiler design approach
may degenerate into futurustic and mysterious au-

tomatic program verifiers.

We illustrate the two approaches by means of examples;
The compiler technigues we pronose for the static ana-
lysis of programshave a degree of sophistication
comparable to program optimization techniques.ra-
ther than program verification techniques, Cousot
[1976]. It is shown that the language design ap-
proach and the compiler design approach are strong-
ly related since both need a refimement of the ty-
pe notion. They differ by the fact that one needs

a type checker whereas the other uses a type dis-
coverer, but we show the close connexion between

type checking and discovery.

We show that strong type enforcement or dis-
covery may be equivalent (e.g. nil references, type
unions, collections of non intermixing pointers).
This is not the case for infinite type systems (e.g.
integer ranges), which are not compile time checkable.
In such a case type discovery is really needed and
can be facilitated by appropriate syntactic cons-
tructs. Finally we propose a means by which langua-

ge designers can establish a balance between the
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security offered by full typing (within a suitable
linguistic framework to properly propagate strong
type properties), and the simplicity offered by the

flexible (but incomplete) classical type systems.

2. Nil and Nom-nil Pointers

Among the objections against the use of poin-
ters are the factsthat they can lead to serious ty-
pe vielations (PL/1) and that they may be left dang-
ling. Orne can take care of these objections, by gua-
ranteeing the type of the object pointed at (PASCAL
[19747 except for.variant of records), and ensuring
that pointers point only to explicitly allocated
heap cells {disjoint from variable cells) which re-
main allocated until they are no longer accessible
(PASCAL[1974] when "dispose” is not used). However
a pointer may always have the nil value which points
to no element at all ; this 1s a source of freguent

errors.

The type of a value may be viewed as a static
summary of the meaningful operations on that value.
However the operations prescribed by a syntactically
valid construct are not always dynamically meaning-
ful. This is the case when dereferencing a pointer
value which happens to be nil.

The pointer type notion must then be refined so

that one can distinguish

- the type of pointers to a record type

- the subtype of non-nil pointers to that re-
cord type

- the subtype of nil pointers to that record

type {(which happens to have only one value)

The rule is that dereferencing can be applied
only to pointers of non-nil subtype. Since this
rule must be enforceable by the programming system

the language designer has three soclutions

- Run-time checks {(these checks are usually ve-
ry cheap for pointers when using the hard-
ware memory protection facilities. However
for system implementeation languages genera-
ting code in master-mode this hardware detec-
tion is not always utilizable. Moreover, for
more complicated examples such as array sub-

scripting these run-time checks are very



expensive.

- Safe language design, with strong typing i.e.
a type system which ensures that any opera-
tion prescribed by a syntactically valid cons-
truct will always be dynamically meaningful.
This type scheme must distinguish between nil
and non-nil pointer types, disallow type vio-
lations (i.e. forbid the type of an object
to be changed from the type”nil or non-nil
pointer”, to the type”non-nil pointer) and
syntactically check the correct use of ope-
rations (i.e. authorize dereferencing for non-

nil pointers only).

- Compile time checks, to recognize the safe
use of a type scheme which is tooc tolerant.

We illustrate now this last strategy.
2.1 Static Correctness Check of Access to Records
via Pointers

Consider the simple problem of searching for a

record with value "n” in a linked linear list L

value next
-~ ——
L
— B — - )

The PASCAL solution is given by PASCALT1974] (p. 64)

as follows :

1) pt :=L; b := true;

{2) {rP1}

(3)  while (pt <> nil) and b do
(4) ({p2}

(53 if ptt.value = n then
(6) b := false

7) {P3}

(83 else

(9) {Pa}

(10) pt := ptt.next;

(11) {P5});

the above piece of program is correct with re-
gard to atcesses to records via pointers, since
pt ic not nil whon dorcferonced ot lineo (5) ond

(10). This fact is established by the programmer

using a simple propagation algorithm from the test

of line (3). This reasoning is easily mechanized as
follows associate invariantsP1, P2, P3, P4 and P5
to points (2),(4),(7), (9) and (11) respectively.

According to the semantics of the programming
language PASCAL (Hoare and Wirth[19737), these in-
variants are related as defined by the subsequent

system of equations

(1) P1 = (pt = L) and (b = true)

(2) P2 = (P1 or P5) and ((pt <> nil) and b)

(3) P3 = (P2 and (ptt.value = n)) and (b = false)
(4) P4 = P2 and (ptt.value <> n}

(5) P5=P3or (3 pt'| sgt (P4) and pt = pt’4.next)

t

(Equation (5} has been deliberately oversimplified,

see Dembinski and Schwartz[1976]).

Since in general it is undecidable to find a
solution to systems such as the one above, we must
consider simplifications (to the prejudice of the
precision of our results). For that purpose we will
ignore the existence of the boolean variable b, of~
the fields "value" in records of the linear list,
and thus focusing on pointers. Moreover, we will
consider only the pointer variable pt, and the fol-

lowing predicates on pt
pt = nil, pt <> nil, (pt = nil) or (pt<>nil)

respectively denoted by nil, non-nil, T . These pre-
dicates form a complete lattice whose HASSE's dia-

gram is

T

L ow
N

i

non-nil

Where 1 is used to dencte the fact that nothing is

known about the variable pt.

Since we are only considering an oversimplified
subset 6f the set of predicates, our system of equa-

tions can be simplified accordingly

(1) P11 =7
(2') P2 = (P1 or P5) and non-nil
(3') P3 = P2

(4') P4 = P2
(5') P5 = Plgor T

(In equation (1) we consider (pt = L) since L may



be an empty or non-empty linear list, we get (pt =
nil) or (pt <> nil) denocted T, in equation (5) we
only consider the fact that the functien 'next’

(nil or non-nil) pointer

{when defined) delivers a

value which is assigned to pt]l.

Our system of eguations is of the form

<P1, P2, P3, P4, P5>=F(<P1, P2, P3, P4, P5>)

where F is an order preserving application from the
complete lattice L® in itself. Therefore, the Knas-
ter-Tarski thecrem states that the application F

has a least fixpoint (Tarski[1955]). Moreover, since
F is a complete order-preserving morphism from the
complete lattice LS initself, thisleast fixpoint can
be defined as the limit of Kleene's sequence, Kleene

[1952]

Ay = <L, L , 1 , 1 , 1 >
Ay = FEA,)
= <T,(Lor 1) and non-nil, 1 , 1 ,(Lor 7)>
=<T, 4 ’ 1 » L y T >
>\2 =F(A))
=<T,(Tor 7) and non-nil, L B 1 ,(Lor T)>
=<7, non-nil R 1 ) 1 ) T >
Ag =F(A,)
=<T,(Tor 7) and non-nil,non-nil,non-nil, (L gr 7)>
=<7, non-nil ,non-nil,non-nil, T >
A, = F[Aal
=<T,(tor 7) and non-nil,non-nil,non-nil,{(non-nil
or T)>
=<T, non-nil ,non-nil,non-nil, T >
= A

Thus, Kleene's sequence converges in a finite num-
ber of steps, which is obvious since L% is a finite
lattice. The solution to our system of equations tells
us that P2 = P3 = P4 = non-nil, which according to

our interpretation means that pt is not nil at lines
(4), (7]

the accesses of records through pt at lines (5) and

and (9) of our program, which implies that
(10) are staticly shown to be correct. With regard

to the value of P1 and P5, its interpretation is
that pt may be nil at program points (2) and (11]},
the

in particular, test on pt at line (3) may not

be identically true.

The simple programmer's idea of generalizing

constant propagation may be derived from the above
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Kleene's seguence when eliminating useless computa-
tions. A symbolic execution of the program (where

elementary actions are interpreted according to the
simplified equations previously established) gives

the following computation sequence

P1 =
P2 =

T, (Pi =1, ie[2, 51)

(P1 or P5) and non-nil

= (7t or 1) and non-nil
= ngn-nil

P3 = P2
= non-nil

P4 = P2
= ngn-nil

P5 = P3 or T
= non-nil or T
=T

P2 = (P1 or P5)

and non-nil

= (T or 1) and non-nil

= non-nil, same as above, stop.

Kildall[1973] and Wegbreit[1975] algorithms have
been recognized, they are "efficient"” versions of
the Kleene's sequence. Following Sintzoff[1872] we
call this technique the abstract interpretation of
programs. Abstract since some details about the data
of the program are forgotten, and interpretation
since both a new meaning is given to the program
text and the information is gathered about the pro-
gram by means of an interpretor which executes the
program according to this new meaning. We then get
a static summary of some facets of the possible exe-
cutions of the program. A theoretic framework of

abstract interpretation of programs together with

various examples are given in Cousot[1976].

2.2 A Safe Linguistic Framework to Handle Nil Poin-

ters

A complete and satisfactory solution of the
problem of dereferencing or assigning to a nil name
:= 3.14) is proposed by Meer-
of ALGOL 68. The

(as in ref real (nil)
tens[1876] within the framework
pointer types are restricted to non-nil values by

exclusion of nil-names (this is achieved by not pro-

viding a representation for the nil symbol)}, so that
any name refers to a value. The type void is used
to represent nil-names. Finally the type of nil and

non-nil pointers is the union of the previous ones.



For example we can write a construction like

mode list = union {(ref cell, void)

mode cell struct (integer velue, list next)

to represent linked linear lists. An empty list is
represented by the value empty, the only void value.

Our routine would have to be rewritten

list pt := L;
while case pt in

(ref cell pt’)

(pt := next of nt'; true)
fi,
out —> false
esac
do skip od;
This program is safe, since in ALGOL 68 the

non-safe coercion of pt from mode union (ref cell,
void]) to mode ref cell has to be made explicit by
a conformity case construct. The idea is therefore
to force the programmer to explicitly perform the
run-time tests, which in this example is dictated

anyway by the logic of the problem (the rewritten

version admittedly looks a bit cumbersome, but more

convenient ways of expressing such a flow of con-

trol may be exhibited (Dijkstral19751)).

2.3 Remarks

It is remarkable that both aoproaches necessi-
tate the same secure type system, yet they differ
in the choices of making it available or not to the

programmer.

The refined type system considers the pointer
type as the union of two sybtypes pure {non-nil)
pointers and dummy (nil) pointers. Type safety is
guaranteed by requiring strong typing the tyne
of a value determines which operations may be mea-

ningfully applied to it.

In both cases the type correctness has to be
verified or established by the compiler. For that
purpose an (often implicit) system of equations is
used. In one case the solution to that system of
equations has to be found by the compiler, in the
other case the compiler simply verifies that the

solution supplied by the programmer {by means of

=> if value of pt'=n then false
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adequate syntactic constructs) is correct. Since in
this example the type system is finite, both ap-
proaches are equivalent as far as type verifications

are concerned.

3. Variants of Record Structures

3.1 Unsafe Type Unions im PASCAL

In ALGOL 68[1975] a variable may assume values
of different typnes. The tyoe of this variable is
then said tc be the union of the types of these va-
lues. In PASCAL[1974] the concept of type unions
is embodied in the form of variants of record struc-
tures a record type may be specified as consis-
ting of several variants, optionally discriminated

by a tag field.

Example
type mode = (int, char);
type charint =
record
case tag mode of
int (i integer);
char : (c character)
end;

var digit, letter, alphanum charint;

In a program containing these declarations, the
occurrence of a variable designator alphanum.c is
only valid, if at this point that variable is of

type character. It is so, (if and) only if alpha-

num.tag = char. However this is not staticly veri-
fied by the PASCAL compilers for the following rea-

sons

- The tag field of a variant record definition
is optional, and may exist only in the pro-

grammer'’s mind.

- When present, the tag field may be assigned,
thus allowing to realize implicit type trans-
a variable of

fer functions. For instance,

type character :

alphanum.tag := char;

alphanum.c := 'H’;

may be interpreted as being of type integer

for the purpose of printing the internal



representation
alphanum.tag := int;

writeln(alphanum.i);
{(Note that the tag is appropriately set, but without
care about its value one can write as well
alphanum.c := 'H';

writeln(alphanum.i);)

3.2 Safe Type Unions in ALGOL 68/EUCLID

Suggestions have been made to provide syntactic
structures which ensure that type-unions are safe,
i.e. compile-time checkable. Such features forbid
assignments to the tag fields and let the compiler
determine the current tag value from context using

a statement similar to the "inspect when” of SIMULA

[19741.

In ALGOL 68 19751 we would write

mode charint = union (integer, character);

integer digit ; character letter ;

charint alphanum;

The tag field is hidden from the programmer, and

may be checked using conformity clauses.

The antagonism with PASCAL is more obvious in

EUCLID[19761] which handles variant records in a
type-safe, ALGOL B68-like manner. Since EUCLID al-
lows parameterized-types, the tag will usually be

a formal parameter of the type declaration

type mode = (int, char)
type charint (tag : mode) =
record
case tag of
int =>var i : integer ; end int
char => var c¢ : character ; end char
end case

end charint

When a variable of the record type "charint” is
declared, the actual tag parameter may be a cons-
tant

var digit : charint (int)}

var letter : charint (char)

or any, which allows type unions

var alphanum : charint (any])

ALGOL 68 or EUCLID are type-safe when dealing with

type unions since :
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No assignments to the tag fields are authorized

once they have been initialized.

Uniting is allowed and safe
alphanum := letter;
is legal, because the type of the right hand side
value charint(char) may be coerced to the type
of the left hand side variable charint(any) (the

type charint(any} permits alphanum to hold either a

value of type charint(char) or a value of type charint
{(int)).

There is no de-uniting coercion, since 1if
letter := alphanum

were allowed, the principle of type-checking

would be violated. The only way to retrieve an

object which has been united and to retrieve it

in its original type is by a discriminating case

statement. This ensures that the type transfer

is safe since the tag is explicitly tested

case discriminating x = alphanum on tag of

int => digit := x ; end int
char ==> letter := x ; end char

end case

This discrimating case statement ensures a com-

plete run-time check of which variant of a record
is in use, corresponding to the checks which can
be carried out by the comniler for all non-union

types.

3.3 Static Treatment of Type Unions

PASCAL has been deliberately designed to pro-
vide flexible type unions at the expense of secu-
rity (Wirth{1975]) : however, a wise compiler should
be able to discern the secure programs by using the

following abstract interpretation of these programs :

Record values will be abstractly represented
by their tag fields. We will consider a program with
a single record type with variants identified by a
single tag, (the generalization to nested variants
and numerous record tyoes is straightforward). The
tag is of enumerated type T which is a finite set
of discrete values. This set is eaugmented by a null
value which represents the non-initialized value.
Since at the same program point, but at two diffe-
rent moments of program execution, two different

values may be assumed by a tag field of a record



variable, a static summary of the potential pro-
gram executions must consider a set of values for
tag fields. (More generally, this is the case for
variables of enumerated type). Thus the abstract
values of the tag will be chosen in 2T. the power-
set of T, which is a finite complete lattice. More-
over, if the program contains simple variables of
enumerated type T, it is convenient to take ac-
count of them in the program abstract interpreta-
tion process. Finally, if the program contains

m simple variables of type T or record variables
with tag of type T, our abstract data space is
[2T X e, X 2T] m times. Since this space is a com-
plete finite lattice, the abstract execution of

programs can be performed at compile time.

Example :

type person =

record
case sex (male, female) of
end;
var paul, mary, senior : person;
(13
paul.sex := male;
(2]
paul.age = ...;
(3)
mary.sex := female;
(4)
mary.age := ...;
(5)
if paul.age 2 mary.age then
(6)
senior := paul;
(73
else
(8)
senior r= mary;
(9]
(10)

The symbolic execution of that piece of

program would be

83

1ine| paul mary senior

(1) | {nu11} {null} {null}

(2) | {male} {null} {null}

(3) the assignment to paul.age is ignored

(4) | {male} {female} {null}

(5) the assignment to mary.age is ignored.
Since the value of the test is staticly un-
known, this gives rise to two execution paths
(6) and (8)

(6] | {mele} {female} {null}

(7) | {male} {female} {male}

(8) ] {male} {female} {null}

(9) | {male} {female} {female}

{10)] The two execution paths are joined together:
{malel}u{male}H female}u{female}|{male} u { female}
= {male} = {female} = {male, female}

Note that at line (10} it is clear that "senior”
may have tag values "male” or "female”. However, we
don't appreciate the fact that

senior.sex = if paul.age > mary.age then male
else female fi
but neither do ALGOL 68 nor EUCLID. With these lan-
guages it is evident that in some cases the program-
mer knows perfectly well which alternative of a
union type 1s used, but is unable to exploit this
knowledge, since he must use a discriminating case
statement. This same limitation arises with our
static treatment of programs, more powerful schemes

exist (Sintzoff[1875]).

Finally, in the static treatment of programs
useful information will be gathered from case sta-
tements, and if statements, used as ALGOL 68 confor-

mity tests.

Example
; Mary = {Female} ; Senior = {Male,
Female}}

{Paul = {male}

if Senior.Sex =

1) ...

Paul.sex then

else



The abstract interpretation of a test (A = B) in a
context where A and B are variables which may as-
sume set of values SA and SB delivers a context
where A and B may assume the set of values SAnSB
on the true path. (Thus in (1) we get Paul = Senior
= {Male} n {Male, Female} = {Male}).The context de-

livered for the false path is

A = if (|sAnS = 1) and not (S, cSg) then S, -8

BI A B

alse SAfi
(Thus in (2) we get Paul : {male} and Senior = {Fe-

malel}).

When this abstract interpretation of programs
is terminated we can recognize secure programs by

the following facts

- There are no assignments to tag fields, other
than for initialization(which is recognized
by the fact that the tag value is changed from
null to some value). We can also authorize use-
less tag assignments, i.e. those which assign

to a tag without changing its value.

- The unsafe de-uniting coercions must be checked.
This cannot occur when a record variable is as-
signed to another, since all record variables
are considered to be of union types. (Note that
such an assignment may indirectly modify a
tag value, but this is safel). De-uniting coer-
cions only occur when accessing a field in a
record. This is safe only if the tag has been
staticly established to be of correct value.
Otherwise, a warning is reported to the user,

and a run-time check inserted in the program.

3.4 Flexibility Versus Security

This compiler approach has the advantage of fle-
xibility over the secure language approach. It
is clear that all EUCLID programs translated in-
to PASCAL will be recognized to be safe by this

technique.

Following Wirth[{1975] there appear to be three
different motivations behind the desire for variants

of record structures

1. The need for heterogeneous structures, in two

main cases
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1.1 Static variants to describe classes of data

which are different but yet closely related.
For example, Men and Women may be described
as Persons depending on their sex, thus
EUCLID authorizes

type Person (Sex = (Male, Female]) = ...

type Man = Persan(Male)

type Woman = Person(Female)

In PASCAL however, variables of abstract
type Man and Woman may be staticly recogni-

zed when their tag values never change.

1.2 Dynamic variants, to describe objects whose
components depend on a possibly changing
state. For example a car may be moving or

stopped, thus EUCLID authorizes :

type Car (State : (moving, stopped, des-
troyed)) = ...

var mycar : Carlany)

Since the actual parameter supolied for the
tag is any, the variable can be changed from
one variant to another during execution, by
assigning values of different variants to
the variable. However, no refinement is al-
lowed, and no proper subset of the possible
tag values can be used

var mycar : Car({moving, stopped})

This fact may be discovered by a static ana-
lysis of the program, and might be useful

in memory allocation.

2. Storage Sharing (Overlays). This implies the use
of the same storage area (expressed in the lan-
guage as "the same actual variable”) for diffe-
rent purposes i.e. for representing different
abstract variables whose lifetimes are disjoint
(block structure is riot incorporated in PASCALJ.
This is a typical case of free union, where no
tag will be carried along to indicate the cur-
rently valid variant. This tag may be staticly
simulated, provided that one ensures an appro-
priate setting of the tag upon assignment to
fielde of the variant. Unsafe assignments will
be identified and therefore the mutation from
one abstract variable to another may be reported

to the user.



3. Realization of implicit type transfer functions.
EUCLID in recognition of the fact that control-
led breaches of the type system are sometimes
necessary, provides unchecked type conversions,

by means of type converters

unsigned-int <<= character('H')
assigns to i the intermal code of the character
'H'. We have seen how a PASCAL comniler might

i=

renort this fact to the user.

Finally, it is clear that PASCAL provides fle-
xibility at the expense of security. We have shown
that a compiler may report to the user which cons-
tructs have been used in either secure or insecure
ways. The results of this static treatment of pro-
grams might also be useful in code generation. Thus
we get a sophisticated compiler for a simple lan-

It is obvious then,

guage. that the programs will

not be very readable, since the programmer has no

preestablished constructs for expressing his inten-
tions.
mer which can be simply caught by compilers may ne-
cessitate rich and not necessarily easy to understand

language constructs. This is the case in our next

example concerning dynamic allocation of records.

4. Disjoint Collections of Linked Records
4.1 Collections in EUCLID

Suppose in PASCAL we have to represent two sets

of records (of type R}, we can use two arrays

var 81, 52 = arrayl1..n] of R;

With such a declaration, the PASCAL compiler knows

that the sets S1 and S2 are disjoint, that is to

say any modification of S1 has no side effect on S2
and vice-versa. Suppose that n, the maximal cardina-

lity of the two sets is not known, we will use dy-

namically linked linear lists
type list = 4 elem;
elem = record
next list;
val R;
end;
var $1, 32 list;

This time, the readers of the program (e.g. PASCAL

compilers) have to suppose that the sets S1 and S2

However some simple intentions of the program-

85

may share elements and it is now necessary to scan

all the nrogram to state the contrary.

In LIS[197471 one can specify that two pointers

never refer to the same record ; the declarations

DS
bS2

: domain of elem;

: domain of elem;

snecify that DSt and DS2 will be sets of disjoint

dynamic variables. Now, if S1 and S2 are pointers

into different domains

S1
52

+ DS1;
4+ DS2;

they noint to different records of the same type.
Unfortunately the confusion between a pointer to
the first element of the linked structure, and the
1ist 1s valid only in the programmer's intellect.
S1 and S2 point to different records of type elem,
which themselves may point to the same record. Thus
the idea of domains has to be recursively applied
in order to snecify that elements of domain D31

point only to elements of D31

D31 : domain of eleml:
tyne elemt = record
next + DS1;
val R;
end;

and that elements of 0S2 can noint only to elements

of DS2
DS2 domain of elem2 ;
type elem2 = record
next + DS2;
val R;
end;

Since we want to guarantee that two pointers into
different domains can never refer to the same va-
riable we have to consider that +DS%1 and 4D0S2 are
different types of pointers. The trouble is now that
elem1 and elem2 are different types, so that we have

to write twice the algorithms (insertion, search,

deletion ...J) which handle the two similar lists S1%

and S2.

EUCLID[1976] is more flexible and authorizes
tyoes to be parameterized. Thus we will describe
the types of lists S1 and S2 once, as depending on

the domain {(called collection in EUCLID) to which



they belong.

The tyne elem is parameterized by the name C of the
collection to which elements of type elem noint.
This collection C is a collection of records (of

tyne elem} pointing to C

type elem(C : collection of elem(C)) =
record
var next : +C

var val : R

end record

var DS1 : collection of elem(DS1}
var S1 : '+ DS1
var DS2 : collection of elem(DS2)
var S2 + BS2

Now the operations on lists S1 and S2 can be des-
cribed once, it just suffices to pass the name of
the collection DS1 or DS2 to which they refer as

a parameter

insert(DS1, S1, r)

will insert the record r in list S$S1 which belongs
to collection DS1. Now we have to declare the type
of the formal parameter DS corresponding to the

possible actual parameters DS1 and DS2

orocedure insert(DS : collection of elem(DS),

var S DS, val : R}

It is clear that DS, 0S1, DS2 are just formal (or

actual but different) collections of the same type.
To make conspicuous that different collections will
have the same type, we now want to give the name
"listsupport” to the type of the collections sup-

porting linked linear lists

type listsupport = collection of elem(?)

Since the type of a collection such as DS1 de-
pends on its name 0S1, the type of the collec-

tion must be parameterized by that name

type listsupport(DS : ?} = collection of

elem(DS)

A declaration such as

var DS1 = listsupport(DS1)

means that DS1 is a collection of elements pointing
to DS1. However the above declaration of listsup-
port is incomplete since BS is a collection of type

"listsupport”

type listsupport(DS listsupport(?}) =
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collection of elem(DS)

Since we have entered a recursive question (each use
of listsupport in the definition of listsupport must
be provided by an actual parameter) we have to sol-

ve it by some language convention

tyne listsupport(DS : listsupport{parameter)) =

collection of elem(DS)

The keyword narameter indicates that a shorthand
has been used, the actual parameter will be pro-

vided later.

Since we succeeded in defining what is the type of
collection supporting lists we now want to replace
the definitions of this type by the name of that

type, in particular in the definition of type elem,
to indicate that records of type elem point to col-

lections of type listsupport. We get

type listsupport (DS: listsupport(parameter))
= forward
tyoe elem (C: listsupport(parameter)) =
record
var next : 4C
var val : R
end record

tyne listsupport = collection of elem(DS)

var 031 listsupport(DS1); S1 + DSt
var DS2 listsupport(DS2); S2 + 0S2
which is precise but somewhat overcomplicated when

compared with the PASCAL declarations
type list = telem;
elem = record
next list;
val : R
end;
var St, S2 list ;
{s1 and S2 are disjoint linked linear lists}.

Apart fraom the difficulty of copeing with a new lin-
guistic notion, the EUCLID approach has the advan-

tage of the orecision. Since the compniler knows that
S1 and S2 are disjoint lists, it can produce better

code especially for register allocation.

Moreover the combination of collections and
restricted variants in records may yield efficient
memory allocation strategies. Suppose we have a re-

cord type R with two variants Ra, Rb of different



memory sizes say 1 and 3 words

Type Rtype = (Ra, Rb)
Type R (tag Rtype) = record
case tag in
Ra = ... end Ra
Rb == . Eﬂg Rb

end case; end record

We have the following alternatives for memory allo-

cation of collections of R

var C1 : collection of R(Ra] LHLE LD
var C2 : collection of R(Rb)} [ | |
var C3 : collection of R{unknown) | | 1 |

{the type of records of collection C3 is unknown
(it may be R(Ra} or R(Rb}).The type of a record

will not change once allocated).

0 S RN B B

(The records of collection C4 can change from one

var C4 : collection 9i»R(any]

variant to another during execution, by assigning

values of different variants to the records).

The main defect of collections is that the num-
ber of collections is determined at compile time.
Thus we cannot declare an array of disjoint linear

lists

113
Tr2]

Tn1]

It has not been recognized that a globally declared
collection is in fact the union of smaller collec-
tions which are valid at various program points

(which would be useful to the compiler}. A similar
criticism is that the concept of collection cannot
be used recursively, that is to say one cannot par-

tition a collection into disjoint sub-collections.
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Although of guite limited expressive power the no-
tion of collection in EUCLID may appear somewhat
difficult to understand. However its usefulness to
compilers seems undeniable and we may in PASCAL let

the compiler discover the collections.

4.2 Compiler Discovery of Disjoint Collections

We will represent a collection by the set of

pointer variables which point within that collec-

tion.
Example
Vv W X Y z
J—
c1 c2

Collection C1 will be denoted (V,W), collection C2
will be denoted (X, Y, Z). We will try to partition
the pointer variables of a pregram into disjoint
collections. However in opposition to EUCLID, we
will not try to find global collections but local
onegs. Thus the local invariants we will try to com-
pute at each program noint will be restricted to

be of the form

(V, W are pointers to the same collection)

and

(X, Y, Z are pointers to the same collection)

which we will denote
{v, W/ x.v,7}

We now have to define the conjunction U of such pre-
dicates (i.e. the union of sets of collections) for
example

{a,B,C / D,E} U {F,A,6 / H} = {A,B,C,F,6 / D,E / H}

If on one hand A may point to a record referenced
by B and C, or, on the other hand A may point to a
record referenced by F and G, it is clear that A, B,

C, F and G may point on the same record.

The instructions of the program provide useful in-

formation. After the instructions



X = nil;

>
1t

Y; {where Y is known to be nill}
if X = nil then ...

new (XJ);

it is known that X will point to no record at all,
or will be the only pointer to the newly allocated

record. Thus we have isolated a collection {(empty

or consisting

predicate

PUo= {Xps Xpu vees X v X0/ Yy wens YUY
the above instructions lead to an output predicate:

P2 = extract(X, P1)

={x/xp..”xn/“,.“,m}

More generally, with an input predicate P11, a poin-
ter assignement such as :

X4.next ... Anext = Y4.next +.next

N J \ . J

v v
optional optional

may cause X and Y to indirectly point to a common

record. Hence they are put in the same collection.

The output predicate will be P2 = P1 u {X,Y}.

A sensible remark is that the value delivered by
the right-hand side of the assignment

in which case this may cause a collection to be

broken into two disjoint sub-collections. For sim-

plicity, we ignore this fact, other than in the

obvious case

{rP1} X = Yt.next +.next {P2}
N J

s

optional

which will cause X to be disconnected from its
collection and be connected to a.record of the
collection of Y. When X and Y are not the same
variable, the output assertion P2 will be rela-

ted to the input assertion P1 by

P2 = extract(X, P1} U {X, v}

of a single record). With an input

may be nil,

Now, we will give an example. We have cho-

sen the copying of a linked linear list :

next

ey

R N

ERE NN

C2

—{] N

N
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The following PASCAL procedure is supposed to do
the job

procedure copy (S1 : list; var S2 :

var C1, C2, L :

list);
list;

begin

C1 :=

{ro}
S1; S2 :=
{P1}

while C1 <> nil do

{P2}

new(C2); C2t.val :=
{P3}

if L = nil-then

(P4}

52 :=C2

{Ps}
else

{Ps}

L4 .next :=
{r8}
L o:=
{Pa}

end

{rP10}

C14+ .val; C2¢.next := nil;

c2 {P7}:

C2; C1 := C1.next;

end;

According to our abstract interpretation of

the basic constructs of the language we can now

(1)

establish the following system of equations :
P1 = extract(L,extract(S2,extract(C1,P0)
v {c1,s1n
P2 = P11y Pg

(2}

(3]

(4}

(8)

(7)

(8)

(Since the test (C1 <> nil) gives us no infor-

mation on collections when true)

P3 = extract(C2,P2)
(The assignment of non-pointer values and a
deep modification in the structure pointed to

by C2 are ignored)

P4 = extract(L,P3)

P5 = extract(S2, P4) u {s2, c2}

P6 = P3

(since we ignore the fact that L <> nil)
P7 = Ps v {L.c2}

P8 = P5  P7



(9) P38 = extract(L,P8) y {L,C2}
(The statement C1 := Ci.next leaves C1 in the

same collection)

(10} P10 = extract(C1,P1 U P9)

Since the theoretical conditions which ensure

that the above system of equations has a soclution

are verified (Cousot[1978]) we can compute the least

fixpoint using a finite Kleene's seguence.

We start with the most disadvantageous initial ore-
dicate PO, where on the one hand the parameters

($1,S2) and on the other hand the local variables

(C1,C2,L) are supposed to be in the same collection:

* PO = {S1,52 / €1,C2,L} Pi = 1, ¥i ¢ [1,10]
(1) => P1 = extract(L,extract(S2,extract(C1,P0)
U {C1.81}))
= extract(L,extract(52,{%1,52/C1/C2,L}
U {C1,81}))
= extract(L,extract(S2,{s$1,52,C1/C2,L}))
= extract(l,{S1,C1/52/C2,L})
* P1 = {S1,C1/S2/C2/L}
(2) =>P2 =P1 UPI =PI y L =PI
(3) => P3 = extract(C2,P2) = {S1,C1/S2/C2/L}
(4) => P4 = extract(L,P3) = {S1,C1/S2/C2/L}
{5) => P5 = extract(S2,P4) y {52,C2}
= {s1,c1/82/C2/L} | {s2,C2}
* P5s = {s1.,C1/52,C2/L}
(6) => P6 = P3 = {S1,C1/52/C2/L}
(7) =>P7 =P8 yu {L,C2}
= {s1,c1/s82/c2/L} U {L.,c2}
= {s1,c1/52/C2,L}
(8) => P8 = P5 U P7
= {s1,c1/52,C2/L} u {s1.c1/52/Cc2,L}
= {s1,c1/52,02,L.}
(9) => P9 = extract(L,P8) yu {L,C2}
* Pg = {s1,c1/52,C2,L})

We go on cycling in the while-loop until the in-

variant PO, ..., P10 have stabilized

{2} => P2 = P1 U P9

{s1,c1/s2/c2/L) U {s1,c1/52,02,L}
* P2 = {s1,C1/52,C2,L}

*(3) => P3 = extract(C2,P2) = {s1,C1/S2,L/C2}
*(4) => P4 = extract(L,P3) = {s1,C1/52/L/C2}

"

I

We come back for P4 with the value of the previous

pass, so we stop on that path.

%x(B) => P6 = P3 = {$1,C1/52,L/C2}
(7) => P7 = P§ U {L,C2}

* P7 = {s1,C1/52,L,C2}
(8) => P8 = P5 y P7
= {s1,c1/52,c2/L} U {s1,c1/52,L,C2)
* P8 = {S1,C1/52,L,C2}

Same value as above, stop on that path. It remains

only the path out of the loop

(10)=> P10 = extract(C1, P1 u P9)
= extract(C1, {81,C1/52/C2/L}
u {s1,c1/s2,c2,Lh)
= extract{C1, {S$1,C1/52,C2,L})
* P10 = {C1/S1/52,C2,L}

The final results are marked by a star (*). The
main result is that although $S1 and $S2 may share

records on entry of the procedure "copy”
PO = {s1,s2/c1,C2,L}

it is guaranteed that this is not the case on exit

of the procedure

P10 = {C1/81/52,C2,L}.

4.3 Remarks

a. This abstract interpretation of programs may be
refined as in EUCLID when records have variants

one can associate with each collection the set

of tags of all records in the collection. This

in fact will be the main application of our de-

velopments of paragraph 3. We will be more fle-

xible than the "one of” or "any” of EUCLID, and

authorize collections with say two variants

{A,B} among three possibilities {A,B,C}. Other-

wise stated we reason on the following type hie-

rarchy

{A,B,C} = 7

I

{a,B} {A,c} {B.C}

>

{a} {8} {ch.

N

{}=.




whereas EUCLID uses a simplified type inclusion

scheme

{A,B,C} = 7

N

{a} {8} {c}

N

{}=1

b. Besides and in opposition with EUCLID the collec-

tions are defined as local invariants. Very pre-=
cise and detailed information can be gathered
whereas the EUCLID programmer would have to
globally specify the union of such information.
This localization of collections may have impor-
tant conseqguences
- An optimizing compiler will be able to limit
the number of objects which are supposed to
have been modified by side-effects when assi-
gning to objects designated by pointers, {use-

ful in register allocation]),

- Run-time tests may be inserted before a sta-
tement
dispose(X):
to verify that no variable in the collection

of X may access the record which X points to,

- The garbage collector may be called when all
variables in a collection are "dead” (i.e.

are not used before being assigned tol,
- etc...

The simple abstract interpretation of programs
we illustrated here may be further investigated
to recognize that data structures are used in

stylized ways. Boom{1974], Karr{1975].

It is fair however to say that EUCLID compilers
may use the same techniques to locally refine

the collections provided by the programmer. The
advantage of EUCLID is then that when the programmer
has declared his intentions (or better part of
intentions since the expressive power of col-
lections is limited), he is forced to conform

to his declarations. For example he will not

be able to use the same pointer variable to
traverse two lists which are built in diffe-

rent collections. On the contrary this may con-
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fuse the automatic discovery of collections. The
advantage however must be counterbalanced by the
fact that parameterized collections (which are
necessary with recursive data structures) may

become inflexible and difficult to use.

We now come to an example where a cooperation
between the programmer and the compiler is absolu-
tely necessary for secure and cheap use of type
unions, that is to say a case when the compiler

has definite disadvantages over the programmer.

5. Integer Subrange Type

A subrange type such as
type index = 0..8

is used to specify that variables of type index
will possess the properties of variables of the
base integer type, under the restriction that its
value remains within the specified range. {Wirth
[19751). In Cousot(1975], we developed a techni-
gue to have the compiler discover the subrange of

integer variables. Let us take an obvious example :

i:=1;
{P1}
while i < 1000 do
{P2}
i := 1i+1 {P3};
{P4}

Let us denote by {a,b] the predicate a < i < b.

The system of equations corresponding to our exam-

ple is
1) P1 = [1,1]
(2) P2 = (P1 uP3) n [-», 1000]

(3) P3 =pP2+[1, 1]
(4) P4 = (P1 v P3) n [1001, +w]

where + is defined by [a, bl + [c, d] = [a+c,b+d],
and U and n are union and intersection of inter~-
vals. Suppose we know the solution to that system,

i.e.

P1
P4

4,11, P2 ={1,1000] , P3 = [2, 10011,
[1001, 1001]

It is obwious to let the compiler verify that

this solution is a fixpoint of the system :



(1) =>P1 =[1, 1]
(2) => P2 = (P1 v P3) n [-«, 1000]
= ([1, 1] v [2, 1001]) n [-», 1000]
= ([1, 10017 n [-», 1000])
= [1, 10007
(3) => P3 = P2 + [1, 1]
= [1, 10007 + [1, 13
= [1+1, 1000+ 11
= [2, 1001]
(4} ==> P4 = (P1 u P3) n [1001, +=]
= ([1, 1] v [2, 10011) n [1001, +]
= [1, 10011 n [1001, +x]
= [1001, 1001]

If on the contrary we want the compiler to dis-
cover this fixpoint, we may try to solve the equa-
tions by algebraic manipulations (Cheatham and
Townley[1976]) which may be quite inextricable. The
other way is to use Kleene's sequence, but the trou-
ble is that our abstract data space is an infinite
lattice, and we may have infinite seguences. Since
compilers must work even for programs which may
turn out to loop, the only way to cope with the
undecidable problem is to accept approximative ans-

wers. For example in the program :

for i 1= 1 to 100 do

n o= 1ij;

while n <> 1 do
n:=n/2

if even(n]) then

else 3 xn+1;
write (i)

end ;

Cousot[1975] will discover an approximate range

for n which will be [1, +~].However, if the actual
range of n were known by the programmer and if the
programmer could tell this to the compiler, then

a verification would be simpler (in most cases but

not on this difficult example].

We can now state our main objection against sub-

range types in PASCAL the fact that range asser-
tions must be given globally in the declaration pre-
vent the programmer from giving the solution of the
system of equations to the comniler.

The programmer can only give an approximation of

the solution, which is usually insufficient for the
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compiler to discover local subranges. To make it
clear, instead of P1, P2, P3, P4 the programmer is
only able to declare var i 1..1001 that is to
say that P1 u P2 u P3 U P4 © [1, 1001] which adds
an inequation to the system of equations but does
not provide its solution. We then consider integer
subrange types as union tyoes since the global de-
claration must be the union of all local subranges.

Thus, if we declare

var i : 0..2;

we really want to say that the type of i at each

program point is one of the following alternatives:

We then understand a criticism by Habermann[18731
that subranges are not types, since a global sub-
range type definition does not determine the set
of operators that are applicable to variablesof

that type.

For example, let f be a function with one formal
parameter of type 2..10 and i a variable globally
declared of type U..5. The variable i may be used
at program point p in the expression f{i) provided
that i may be united to the subrange 2..10. Dyna-

mically the local type of i at program point p is

i..1, wnich is simply derived from the value 1 of

the variable i. In the expression f(i), i must be

coerced from the type i..1 to the type 2..10. This

is safe when 2 < 1 and 1 < 10. Staticly this signi-
fies that the subrange of i at program point p must
be a subrange of 2..5. This subrange of 2..5 cannot
be locally specified in PASCAL.

This understanding of subranges leads us to the con-
clusion that integer subranges should be specified

locally. Moreover, and in opposition with our pre-

vious examples we cannot expect the compiler to be



able to discover these local subrange properties.
It is then essential that programmers provide them,
by means of assertions or as previously by means of
conformity clauses so that we would write in the

spirit of ALGOL B8 (Meertensl19751)

i :=1;
while case 1 in
(1..1000)0:(1i := p+1; true),

out

esac

do skip od;
These constructs give the solution of the system of
eguations which the compiler has to solve for
strong type checking. The redundancies (equations
identically verified) can be eliminated. Moreover
the PASCAL restriction that the bounds of ranges
must be manifest constants'is a definite advantage
since this verification will involve no symbolic
formula manipulations. Run-time tests will remain
necessary in difficult cases, but their number will

be decreased.

6. Conelusion

We illustrated the fact that unsecure data
types (which do not guarantee all operations on
values of that type to be meaningful) can be con-
sidered as the union of secure (sub) types. Exam-
ples of these were pointers, variants in records,

records in collections, integer subranges.

A type-safe programming system must staticly de-
termine which safe subtype of theunion is used when
checking correct use of operations on union typed
objects. The language designer may achieve this

goal by one of the following alternatives:

- Incorporate rules and constructs in the
language so that any operation of the langua-
ge can be staticly shown to be operating on

correctly typed arguments.

- Design a compiler in order to verify that
the security rules have not been transgres-

sed, although not enforced by the language.

It was argued that in both cases, the same

compiling techniques must be used, and comparable

92

results will be obtained by type checking or type
discovery as long as finite type systems are consi-
dered. The main difference between these approaches
is the one between security (at the expense of fle-
xibility} or simplicity (at the expense of preci-
sion, and of the possibility that compiler warnings
be ignored).

However when the type union system is infinite (in-
teger subrange type)}, it has been shown that static
type checking necessitates language constructs which

allow subtypes to be locally derived.

The argument was based upon the observation
that type verification consists in establishing
a solution to a system of type equations. Global
type declarations give an approximation of the so-
lutions to that system. The discovery of a particu-
lar solution from that approximation may involve
infinite computations. On the contrary, if the lan-
guage 1s designed to directly provide a solution
to the compiler, type checking consists in a

straightforward verification.

This reasoning might turn out to be useful
to language designers who until now could not lo-
gically prove the validity of their design of lan-
guage constructs. Moreover this reasoning may ser-
ve as a basis to define type satety in languages

and prove particular languages to be type reliable.
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