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Let F be a monotone operator on the complete lattice
Z into itself. Tarski's lattice theoretical fixed point theorern
states that the set of fixed points of l' is a nonempty cornplete
lattice for the ordering of Z. We give a constructive proof
of this theorern showing that the set of fixed points of .F is
the image of L by a lower and an upper preclosure operator.
These preclosure operators are the composition of lower and
upper closure operators which are defined by means of limits
of stationary transfinite iteration sequences for ,F. In the
same wey we give a constructive characterization of the set
of common fixed points of a family of commuting operators.
Finally we examine some consequences of additional semi-
continuity hypotheses.

1 .  I n t roduc t i on .  Le tL (s : ,  L ,T ,U ,  | - l )  beanonempty  comp le te
Lutt'ice with parti,al ordering g, least upper bound, u , greatest
lower bound, ft. The i,nf,munL I of tr is f-l L, the supremum T of
L is UL. (Birkhoff 's standard referenee book I3l provides the
necessary background materiai.) Set inclusion, union and intersection
are respectively denoted by e , U and f-l .

Let tr be a monotone operator on L(e, L, T, U, f l) into itself
( i .e. ,  YX, Y e L, {X =Y) -  {F(X) e l r(y)}) .

The fundamental theorem of Tarski [19] states that the set fp(F)
o f  f , red"po i ,n ts  o f  f ' ( i .e . ,  fp (F) :  {Xe L :X:  f ' (X) } )  i s  a  nonempty
complete iattice with ordering e . The proof of this theorem is
based on the definition of the least fixed point tfp(F) of lI by Lfp(F) :
n{Xe L:F(X) g X}.  The least upper bouncl of  S c fe@) in fp(F)
is the least fixed point of the restriction of f'to the complete lattice
{X e L: ( u S1 q 11. An application of the duality principte completes
the proof.

This deflnition is not constructive and many appiications of
Tarski's theorem (specially in computer science (Cousot [5]) and
numerical analysis (Amann Iz])) use the alternative characterization
of lfp(F) as U {tr"( -r ): i e N}. This iteration scheme which originates
from Kleene [tO]'s first recursion theorem and which was used by
Tarski [fl] for complete morphisms, has the drawback to require
the additional assumption that F is semi-conti,nuous (F(US) : U,F'(S)
for every 'increas'ing nonempty ch,ai,tt, S, see e.g., Kolodner [ff]).
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The purpose of this paper is to give a constructive proof of

Tarski's theorem without using the continuity hypothesis. The set

of fixed points of ,F is shown to be the image of. L by preclosure

operations defined by means of limits of stationary transfinite itera-

tion sequences. Then the set of common fixed points of a family

of commuting monotone operators on a complete lattice into itself

is characterized in the same way. The advantage of characterizing

fixed points by iterative schemes is that they lead to practical com-
putation or approximation procedures. Also the definition of fixed
points as limits of stationary iteration sequences allows the use of

transfinite induction for proving properties of these flxed points.

Finally some consequences of the additional and less general

continuity hypothesis are examined.

2. Definitions.

DsrNtrIoN 2.1. (Upper i terat i ,on sequence.) Let L(e,I ,  T, U ,  n )
be a complete lattice, 1t the smallest ordinal such that the class

{D: D e p} has a cardinality greater than the cardinality Card (Z) of

Land I'a monotone operator on L into itself. The p-termed upper
'itercLtiotl, sequence for F starting with' D e -L is the p-termed sequence
(Xu, D e pr) of elements of -L defined by transfinite recursion in the

following way:
( a )  x o : D

F(X'-'S for every successor ordinal D e p

U*. X" for every limit ordinal 6 e pt
( b )  x o :

(the dual Lower i.terati,on sequence is defined by:
( c') Xu : flo., X" for every limit ordinal D e pl).

DpprNrtIoN 2.2. (Li,mi,t of a stati'onclr'll tt"ansf,ni,te sequence.)
We say that the sequence (X', D e pr) is stationary if and only if

{ :oep:  \YPe l t ,  { ,SZ e}  -1X ' :  Xp} } }  in  wh ich  case the  l i 'm i t  o f  Lhe

sequence is X". We denote by Iuis(F)(D) the limit of a stationary

upper iteration sequence for F starting with D (dually ILi's(F)(D)).

In the following the class of ordinals, the ordinal addition, the

ordinal multiplieation and the first infinite limit ordinal are respec-
tively denoted by Ord,, *, . and ar (the deflnition of + and shall

be used in the form stated by Birkhotr [3]).
The set of prefi,red, poi,nts of F is prefp(F): {Xe L: X = F(X)\.

Dually postfp(F) : lX e L: F(X) = X\. Therefore fe@) : prefp(F)D

postfp(F).
We use Church [4]'s lambda notation (so that ,F is r,X. l '(X)).

( c )  x u :
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3. Behavior of an upper iteration sequence.

Lnuul 3.1. Let (Xu,6 eOrd) be th,e Ord-termed upper iterati,on

sequence for th,e monotone operator F on th,e complete latti 'ce

L(e,  r ,  T,  U,  ) )  in to i , tse l f  s tar t i ,ng wi t l t ,  DeL,
(  1) YP e L, { ID e Pl and, { .F(P) e P}I  -  \vd eOrd, Xu e P\,
(2) {D e postfp(-F')}  -  {YA eOrd, Xa e D\.

Proof. Let P e Z be such that De P and .F(P) qP, then by
Defini t ion 2.1(a) D :  Xo e P. Assume that YaeOrd, {a 4 D}=-

{X" e PI. If d is a successor ordinal, then we have Xu-'e P so
that by rnonotony FlXu-'1e FQ)e P proving by Definition 2.1(b)
that Xa e P. If D is a limit ordinal then by induction hypothesis
and definition of least upper bounds Uo. X" e P proving by Defini-
tion 2.1(c) that Xu e P. By transfinite induction YD eOrd,, Xu e P.
In part icular when Depostfp(F) we have De D and F(D)e D
which imply YdeOrcl ,  Xa e D.

Tnnonnu 3.2. Let (Xu, D e Ord') be the Ord-termed upper i,tera'
tion sequence for the monotone operatoq' F on the complete lattice
L ( 9 ,  L , T ,  U ,  ) ) ' i ' t l ' t o  i , t s e l f  s t a r t i n g  w i t h  D e L ,

( 1) YDeOrd,, Iet p 3 D and, n { o be respecti,aela the quotient

and, rema'tnd,er of tlt 'e ord,inal di'aisi'on of D bu ar (i.e., D : € 'a + n),
Y8' :  F'  )> F, Yl ' .  p ' .  a < "t  < P'  .  @ I n,  Xa e Xr.

(2) The subseqlrence (X" ' ' ,ae7t) is a stat ionarA inct 'easi ,ng
c'ltai,,n, i,ts ti,mit Xr"'is th,e least postrtred, point of F greater th,an
ot' equal to D.

( 3 ) There en'ists a smallest limit ord,inal ( such thut $ ! T'to
and, Xe e prefp(F)Upostfp(F).

(4) I f  X'eprefp(F) then t l te subsequence (Xu, € = A < € + p>
(as welt as (Xu, € < D)) 'is a stati,onary 'i,ncreasi,ng chain of elemen'ts
of prefp(F), i,ts licni,t Lui,s(F)(X') is equal to Xn'' which 'is th'e Least

of the f,red poi,nts of F greater than or equal to D.
( 5 ) If X' e postfp(F) th'en (X€+*, n e a) 'is a decreasi'ng clt'ain

of elements of postfp(F) and, YdeOrd",  X€+6 - f , t tn *7ur"e m' i ,s the
remainder of tlte ordinal d,i,ai,sion of 6 ba ut.

Proof.
(  1) YA eord, there exist  unique p and m such that D :  B'a + n

a n d  €  ! 6 ,  n < a .  I f  D  i s  a  l i m i t  o r d i n a l  t h e n  n : 0  a n d  Y l 3 ' > .  8 ,
P ' . a > g . a : D  a n d  P ' . o  i s  a n  i n f i n i t e  l i m i t  o r d i n a l  s o  t h a t  b y
Defini t ion 2.1(c) X'  I1J".p,. ,  X" -  Xp' ' ' ,  I f .  n# 0 then D is a suc-
c e s s o r  o r d i n a l  a n d  ( D - 1 ) : 8 . o + ( n - ] - ) .  A s s u m e  t h a t  V B ' s u c h
t h a t ,  B '  ) €  a n d  V v  s u c h  t h a L  1 3 ' . a 3 t < - P ' ' a + ( n  - 1 )  w e  h a v e
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X6-1 e Xr. According to Definition 2.1(b) and by rlorotony X':
FlXu-'\ 4 F(Xr; : K+'. Also Xu I Xp'' ' therefore with y' : 7 -F 1
we get  Y8 ' :  8 '  )  B ,  Y" l ' :  B ' .a  3 . t '  <  13 ' .@ + n ,  Xa e :  X t ' .  By  t rans-
finite induction on D Theorem 3.2(1) is proved.

(2 )  BV 3 .2(1)  the  subsequence (X" ' , c tep)  i s  an  inc reas ing
chain. Assume that {vq eOrd, {n e p and (n + L) e ft\ - {Xrt'@ *
Xtr-t,)'al|. This implies that (X" "', qe p> is a strictly increasing
chain so that the class lX"'': a e p) is equipotent with the class
{a. a: a e pt}. Since Xa.(a . ro) is a one-one function mapping {a: a e p\
on to  {a .a :dep}  the  c lass  {X" ' ' :aep}  i s  equ ipo ten t  w i th  the  c lass
{a: a e p}. Therefore by definition of p we have Card ({X" ": a e p}) >
Card (-L) and also by {va e p, X*' e Z} we obtain the contradiction
Card ({X" ": a e p}) < Card (l). By reductio ad absurdum {:7: (n e p)
and ((7 * 1) e p) and X',  '  -  X(,+t) '@y.

Since (7'ro) + t  < (T + 1) ' rr ;  and (q * 1) . ro is an inf ini te l imit
ordinal Definitions 2.1(b) and 2.1(c) imply that F(X't'@) - X(t o)+L c

Lja<(r+r).o Xd - Xt, t+r)  o -  X') 'o.  Also D: Xo G [J^..r . .  X" :  yt ' .  so that
X,' is a postfixed point of F greater ithan or equal to D. Let
PeL be such that Fe)eP and De P. Then Lemma 3.1-(1) impl ies
lhal Xt'"' e P proving that Xt "' is the least postfixed point of F
greater than or equal to D.

Y a e O r d ,  c t > ,  i m p l i e s  ( v " o > q . a  a n d  t h e r e f o r e  b y  D e f i n i t i o n
Z.L(c) X*' : [Jp.o., f, 's : Nn'a U (1J,.,=B.".," Xp). B'j-t Xr'. e postfp (F)
so  tha t  accord ing  to  Lemma 3 .1(2) ,  YP>T.@ we have X i  ax ' t '
proving that X" ' ' :  f , to and that (X" ' , (rep> and (.X" '" , ,aeOrd)
are stationary.

(The following Theorem 4.1 wili show that X','" can be constructed
more directly as luis Q.,X.X U f'(X))(r) : luis (),X.D U ,F'(X)XD)).

( 3 ) Since Xr'' epostfp (F) and Ord, is well-ordered there exists
a smallest limit ordinal € < 7.ro such that Xi and f'(Xs) are com-
parable.

(4 )  I f  X ;epre fp( ,F)  then by  monotony  o f  -F ,  Def in i t ion  2 .L
and transfinite induction, it is easy to prove that {VA,,B eOrd,
{C < a { €}- IDe Xa e Xp e tr'(Xe)}}. By definitionof pt the increas-
ing subchain (X', €<D<€+p) of elements of L eannot be strictly in-
c r e a s i n g  s o  t h a t  { l e e O r d , : ( f  < e ( e * 1 < € + p )  a n d ( X ' : X ' u ' ) } .  T h e n
by transfinite induction using Definition 2.I it is immediate that
(X' , ;  < A < i  + pr) and (Xu,6 < A) are stat ionary of l imit  X' .  Since
D e X' : Xe+' : F(X'), X' is a fixed (and postfixed) point of. F
greater than or equal to D. Let P e L be such that D e P and
Fe) e P. By Lemma 3.1(1) we have X' e P proving that X' is
the least fixed (and postfixed) point of F greater than or equal to
D. Moreover XE - Xt'@ by 3.2(2).

( 5 ) When F(Xt) e Xt it is easy, using the monotony of F, to
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proye by finite induction that the subsequence (Xt**,nea) is a
d e c r e a s i n g c h a i n .  I f  D : 0 t h e n D : 0 . ( d + 0  a n d  o b v i o u s l y  { e + a -
Xt : XE+o. Assume that yaeOrd, {a < D} -{Xu*" - XE+tu\ where m
is the remainder of the ordinal division of. a by a. If D is a suc-
cessor  o rd ina l  then lpeOrd , ,  lne@ such tha t  D: ,B .a tn  w i t ]n
%+0.  HenceD -  1 :  8 .a  +  (n  - I )  so  tha t  by  induc t ion  hypothes is
X(€+d)-1 : X€+(,t- l)  :  f ,Ei-r,n-t1 :  X(€+n)-I .  By Definit iOn 2.1(b), X€+6 _

-F(xi ;+at* ' ;  -  F(yre+"t- \) : f ,€+".  I f  D is a l imit  ordinal then f  *Dis a
limit ordinal because f is a limit ordinal. Hence by Definition 2.L(c)
Xi+' - [Jr.,*, X' : (Ur.u Xt) U (LJr=r.r*u X') : X{ U (Ur., Xe+r) : X€
since X' e postfp (F) implies according to Lemma 3.1(2) that
Y'/, Xt+r e X€. By transfinite induction, YD e Ord,, X€+o - X€+" where
ra is the remainder of the ordinal division of D by ar.

The following corollary is immediate from 3.2(4):

Conor,r,Rny 3.3. (Beh,auior of an upper 'iterati,on sequence stat"t-
i,ng from a prefi,red, point of F.) A p-termed upper iteration se-
quelxce (Xu, A e [t) for F starti,ng with D e prefp (F) i,s a stat,i,onarg
increas,ing cha,in, i,ts limit lui,s (F)(D) 'is th,e least of the fi,red, poi,nts
of F greater tha,n or equal to D.

An upper closut"e opet'ator p on L into L is monotone, ertensiae
(vxe L, xe p(x)) and i,d,empotent (yx e L, p(p(x)) : p(x)). Dually,
a lowet' closure operator p on L into Z is monotone, red,ucti,ae
(VX€ L, p(X) e X) and idempotent.

Conor,r,lnv 3.4. The rest,t icti,on of luis (F) to prefp (F) i,s an
upper closure operator.

Proof . Y D e preftrt (.F ), we have luis (f'Xr) e fp (P) e prefp (F).
By 3.3, D e Luis (f'XD). By transfinite induction it is easy to show
that the upper iteration sequence (X', D e p) for -F starting with a
fixed point P of. F is such that {VD e p, P : Xu} so that in particular
for P : lui,s (F)(D) we have Luis (F)(luzs (.F'XD)) : Luis (F)(D).
Finally by transfinite induction it is easy to show that the upper
iteration sequences (X', D e p) and ( y', D e p) starting respectively
by prefixed points D and E of. L satisfying D e E are such that
{VA € p, Xu e Yu\. Therefore by Theorem 3.3, le e p, 1e'e p such that
Lui,s (F)(D) :  Xu :  Xnax( ' '€ ' )  C 1-*a"(e'€ ')  :  Y' '  :  Iu ' is (F)(E).

Applying the duality principle, we get:

Conorr,Eny 3.5. Tlte restricti,on of ll is(F) to postfp(F) i,s a
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Iower closut'e opet'ator.

4. Constructive characterization of the sets of pre, and post-
fixed points of -F.

Tnnonnu 4.1. Tlte pt-term,ed, upper i,tet'ati,on sequences (Xu,6 e p)
and,  ( f ,Aep)  fo r  ) "X .X U,F ' (X)  and > , ,X .DUF(X)  respec t i ,ae ly ,
start'ing wi,th an arbitrat"y element D of tlte complete latti,ce L are
stationary increas'ing ch,ains suclt, that YD e p, Xu : Yu. Thei,r Limi,ts
Luis (\.X . X U F(X))(D) and, lui,s (\,X . D U F(X))(D) are equal to the
Ieast of the postfi,red points of F greater than or equal to D.

Proof . 4.1.1. YDe L, D is a prefixed point of ),X.XUf'(X) and
)"X. D U F(X) which are monotone operators on the complete lattice
Z into itself. Hence Theorem 3.3 implies that (X', D e p) and
()f, A e p> are stationary increasing chains.

4 . L , 2 .  Y A e p ,  X u :  Y u .
By Definitions 2.1(a) and 2.1(b) the lemma is true for D : 0 and
d : 1 .  A s s u m e  i t  i s  t r u e  f o r  e v e r y  7  s u c h  t h a t 2  < T <  D  < p .  I f
D is the successor of a successor ordinal then X' : f,a-t U -F (X'-') :
Yu-' l) F(Y'-'I : D l) F(Yu-"5 u l'(y'-') : D a F(Y'') : Y' by Defini-
tion 2.1(b), induction hypothesis, 4.L.L and monotony of tr'. if A
is the successor of a limit ordinal then Definition 2.1(b), induction
hypothesis , A.L.I, Definition 2.1(c) and deflnition of least upper bounds
imply xd -  xd-1u f ' (x. ' - ' )  -  Yu- 'u -F(yd- ' )  :  (LJo.,_, Y") u F(Y'- ' )  -

LJ..u-,  (Y"n'  u tr ' ( ts ' - ' ) )  :  Ljo<a-r @ u F(r")ur(F- ' ))  :  D u F(Yu')  :

Yu. If 6 is a limit ordinal then Definition 2.1(c) and induction hy-
pothesis imply Xa : Uo<a X" : Uo,.uY" : Yu. By transfinite induc-
tion the lemma is true for every D e p.

4.L.3. By 4.1.1 and 4.L.2 the l imits luis O,X. X U F(X))(D) and
Luis ( \ ,X. D U F(X))(D) exist  and are equal.  By 3.3 luis ( tX. X u
F(X))(D) is the least of the fixed points of lX . X U F(X) greater
t h a n  o r  e q u a l  t o  D  s o  t h a t  { v P e L , l P : P U  F ( P ) } - I F ( P )  g P } }
implies that lui,s (r'X.X U ,F'(X)XD) and luis ()"X . D U F(X)XD) are
equal to the least of the postfixed points of .F greater than or equal
to D.

Conor,r,lny 4.2. Tlte set of postrt,red poi,nts of F i,s a nonemptg
complete lattice:

pos t fp  ( .F 'XE,  L fp (F) ,  r ,  rS .Lu is (x ,Z .ZU F(Z) ) (US) ,  n )
wh,ere the Least f,red poi,nt of F i,s lfp(F) : Lu'is (f')(r) : n{XeL:
F@) e X| for eaers DeL suclt  that D E l fp(F).



CONSTRUCTIVE VERSIONS OF TARSKI'S FIXED POINT THEOREMS 49

Proof. By 4.1 and 3.4 the image of the nonempty complete
lattice L l:y the upper closure operator P : luis (>"2 . Z U F(Z)) is
included in postfp(F). Reciprocally, vPepostfp (.F ) we know that
P efp Q,Z . Z a F(Z)) so that the upper iteration sequence (Xu,3 e p)
for ),,2 . Z lJ F(Z) starting with P is such that {VD e /r, P : XuI.
Hence P@): P tbat is postfp(F)= p( l)  and by ant isymmetry we
have postfp (F) : p(L).

By Ward [21]'s theorem p(Z) is a nonempty complete lattice
( 9 ,  B ( r ) ,  T ,  x S .  D ( U S ) ,  n ) .

Also by 4.L Lui,s ()"2 .  Z U F(Z))(L) :  Lui ,s ()"2. L U F(Z))( t)  :
Luis(F)(_L) : I postfp(F) by definition of the infimum of a complete
lattice. By 3.3 luis (F)(r ) is the least of the fixed points of ,F
greater than or equal to I, therefore it is the least fixed point of
F.

Finally let D e L, be such that D q lfp (F) and (Xu, 6 e p'5,
( f ,Ae pc),  (Zu,Dep) be the upper i terat ion sequences f .or F respec-
tively starting with I, D, and lfp (F), By transflnite induction it
is immediate that {vD e p, Xa e Ya e Za : lfp (F)\. According to
3.3, (X' ,  Ae p) is stat ionary and i ts l imit  lu is ( I 'Xr) is Lfp(F).
Therefore (y', e e p) is stationary of limit Lfp (F).

Applying the duality principle, we obtain:

Conolt,ll,,q.ny 4.3. The set af prertned, points of F is a nonempty
complete latti,ce;

p r e f p  ( F X E ,  L ,  s f p  ( F ) ,  u ,  r S . l l i s  ( > , 2 . Z  n . F ( Z ) X n S ) )
ul tere th,e sreatest r t , red, point of  F is Sfp@) :  l l is(F)(D) :  l ) {XeL:
X e Fq)\ for eaery D e L such, that gfp @) e D.

Let {Fr: i e I} be a family of monotone maps fuom L into L.
The unarA polynomi,als of the algebra (L; tL,  ) , {Fr: iel})  are
mappings on "[, into tr defined as follows:

( i ) The identity mapping \X. X is a unary polynomial.
( i i )  For every iel ,  i f .  P is an unary polynomial then so is

)"x.F,(P(X)).
(ii i) If. lP,:l e J\ is a family of unary polynomials then so are

\X.tJ, . , ,  P,(X) and l ,X. f l r ."  Pr(X).
(iv) Unary polynomials are those and only those which we get

from ( i) ,  ( i i ) ,  and ( i i i ) .

Since polynomials are functions of .L into L they are ordered by
the pointwise orderinc {f'g G\ * {YX e L, F(X) e G(X)}.

Conolr,lny 4.4. Eaery llna,rA polynomial of (L; U, fl, \F,: i,e Ij)
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i.s less than or equal to \,X . Luis O"Z . Z U (Uu., F,(Z)))(X) ancl
greater th,un or equal to ^,X . ll is (^.2 , Z 1.) (fl,., F'(Z)))(X).

Proof. Let F be ),2 . (Z U (U,., F,(Z))) and E be ),2 . e n
(f}',t Fr(Z))), tr' and F are monotone maps on L into L. The proof
is by induction on the structure of unary polynomials:

(  i  )  luds(F) is extensive and t t is(F) is reduct ive so that for
every X of. L we have Llis (E)6) e J( G luis (F!(X).

( ii ) Let P be a unary polynomial such that for every X of L
we have LLis ({)(X) . P(X) e luis (FXX). Then for every mono-
tone -Fu, rve have F,(ll i,s (EXX)) e Fr@(X))e Fo(Iuis (F)(X)). But
L! s (l) (X) : ilIIi;(E ) (X )) e F,(Ili,s (E ) (X ) ) and dually F,(Lui s (F ) (X ) ) E
F(lui 's (F)(X)) : lu, l ,s@)6) so that by transi t iv i ty t | is(E)(X)s
F,(P(X)) e Luis (FXX).

(ii i) Let {P,: i e Jl be a family of unary polynomials such that
for every X e L, ll is (F)(X) e Pr(X) e Luis @ )(X) then by definition
of least upper bounds we have tlis (F)(X) g lJ,." p,(X) e |uis (F)(X)
and by definition of greatest lower bounds we have lti,s (E)G) E
n;.r  Pr(x)  c:  tu is (FXx).

The generalization of 4.4 to n-ary polynomials is immediate.

5. Constructive characterization of the set of fixed points of
F.

Tssonult 5.1. (Constructiue aersion oJ' Tarshi,'s latti,ce theot.eti-
cal Jined poi,nt theorem.) The set of f,red, points of F i,s a nonempty
complete lattice wi,th, ot"det"i,ng e , ,tnf,murn luis(F)(L), supremum
LLi,s (F)(r) ,  Least upper bound, \S. l rui .s ( . i l ) (U S) and, greatest Lower
boutr.cl )"S . Ilzs (.F')( n S).

Proof. By Theorems 3.3 and 3.4, fp (F) is the image of
pref'p (f') bv the upper closure operator luis(F) and by Theorem
4.3 prefp (F) is a nonempty complete lattice so that by Ward [21]'s
theorem fp(F) is a nonempty complete lattice with ordering S,
in f imum Lu is (F) ( -L )  and leas t  upper  bound \S . lz is (F 'XUS) .  By
duality, fp(F) is the image of the nonempty complete lattice postfp(F)
by the lower closure operator LIi,s (F) so that the supremum of F is
lli,s (F)(T ) and the greatest lower bound xS . ll is (,F'X n S).

The construction of extremal fixed points of monotone operators
as limits of stationary transfinite iteration sequences may be found
in Devid6 [7] (where lfp (t Z . D U F(Z)) is the limit of the sequence
Xo : D, Xa - Xd-t IJ F(Xu-') for successor ordinals and X' - lrJ"., X"
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f or limit ordinais) in Hitchcock and Park [8] (where lfp (F) is the
limit of Xo : I , Xu : U".u F(X") for every nonzero ordinal) and in
Pasini [rS] (where transfinite sequences are defined as in Definition
t - 1  \

Conolr,,q.ny 5.2. .Let D be an at.bi,tt.at'y elem,ent af L. lui,s (F).
LLis ( \ ,2.  Z a F(Z))(D) and, LLi,s (F) ' lu i ,s ( \ ,2.  Z u F(Z))(D) are f"red
points of F greater th,an or equal to any fi,red point of F less th,an
or equal to D and, Less than or equal to any f,red, point af F greater
than or equal to D. Moreoaet' Iuis (F) " LLis (xZ . Z a F(Z))(D) e
LI is (F).  Luis ( \ ,2 .  Z U F(Z))(D).

Proof. Assume that A is a fixed point of -fl less than or equal
to D and B a fixed point of F greater than or equal to D, that is
F(A) : A.: D = B : F(B). Then by monotony (3.4, 3.5) and fixed
po in t  p roper ty  A :  Lu is (F) " I l i s (xZ .  Z  )  F (Z) ) (A)  e  lu , i , s (F) "
t l i s ( . ) " 2 . 2  )  F ( z ) ) ( r ) .  l u i , s ( F ) . L l i . s ( ) , , 2 . 2  )  F ( z ) ) ( B )  :  B .  T h e
same way,  A  e  l l i s ( .F ) . lu is ( ) "2 .2  t )  I ' (Z ) ) (D)  =  B .

Let P be Lli,s ()"2 . Z n FQ))@) and I be Luis O"Z. Z a F(Z))(D).
Le t  S  be  {XeL:P qXES} .  S  is  a  comple te  sub la t t i ce  o f  -L  w i th
infimum P and suprernum Q. By 4.1 and its dual P q f'(P) and
f'(8) E I so that ,F (S) e S. Then by 5.1- the least fixed point of ,F
restricted to S is Luis (F)(P) and the greatest fixed point of. F
restricted to S is ll is (tr'XO) proving that Lu,is (F)"lli,s (^,2 . Z A
F(Z))(D) ]  LLis (F)" luis Q"Z .  Z \-)  F(z), \ (D).

A iower preclosure operutorp on tr is monotone, idempotent and
sat isf ies the lower connect ' io i tu aniom {vXe L, p(X np(X)) :p(X)}.

An upper preclosut'e operator p on L is monotone, idempotent and
satisfles the upper connectiaity ar,ionz {VXe L,p(X U p(X)) : p(X)\.

Conoll,t,.q.ny 5.3. The set fe @) of fi,reil poi,nts of F i,s the 'i,mage

of L ba t l te lower preclosure operato+'  I ,uis (F)" l l is (xZ .  Z n FQ))
and, th,e i,mage of I' bU the upper preclosure operator ll is (F) "
Luis Q,Z . Z 1.) F(Z)).

Proof.  Lui ,s(F)"LL' ts(>,,Z.ZaF(Z)) is a iower preclosure opera-
tor since it is ihe composition of the upper closure operator Luis (F)
and the lower closure operator ll i,s Q,Z . Z ) F(Z)) (3.4, 4.t and 3.5,
Ladegaillerie [r2]). By duality ll i.s (F)"luis(>"Z . Z lJ F(Z)) is an
upper preclosure operator.

Cousot and Cousot [5] already used the idea of constructing (or
approximating) the fixed points of monotone operators by means of
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an upper iteration sequence followed by a lower iteration sequence.
This idea was also used by Manna and Shamir [13] and our results
3.3, 4.1, 5.2, and 5.3 improve their results obtained on the more
restricted model of continuous functional equations on functions of
flat lower semi-lattices.

6" Consttuctive characterization of the set of fixed points of a
farnily of cornrnuting operators.

Lpmul 6.1. Let { and F be ntonotone operator"s on the non'
empta complete lat t i ,ce L(=, L,  T, U ,  ))  into i tsel f  such that F " t  =
E " F and E; F 1i.e., vX e L, F.E(X)) c 4'(F(x )) and EtX) F(x)).
The set of common fi,red points of F and, [ 'is a nonem'pta cornplete
Latti,ce:

fp (F l ,  F r ( [ ,  l f p (F ) ,  s fp \E ) ,  rS . / i c f s  (F , t t  uS) ,  lS .1 / i s  ( f ' ) ( nSr )
whic l r ,  is  the image of  L  ba lu is(F)" l l is ( \ ,2 .2 )  F(Z))  and t l rc
'i,mage of L ba lli,s (E) " luds (\,2 . Z tt FQ Sl.

Proof.
6.1.1. YD e prefp (E), E(uis @)(D)) : l ,uis (F)(D).
Since D eprefp (.F) and Ee F we have D g, E@) e F@) so

that the upper iteration sequence <X',6ep) for F starting with D
is stationary, its limit Luis (f.t1D) is a fixed point of F (g.g). Again
since {4 c- F we have l(tuis tF)(a)) :  F(tuis (FXD) t :  luis @)@).

Let us show that \vD e p, Xa e E'(X')\. For D : 0 we have Xo :
D = F(X') since D e prefp (E). Assume that the lemma is true for
all a ( D I p. If D is a successor ordinal then in particular X*'q
4(X' ).  Since F is monotone and p.E-.{.F we have by Defini-
t i o n  2 . 1 ( b ) ,  X u : F ( X o - ) .  F ( 8 6 ' ' ) ) g  E ( F ( X ' L ) )  : t r ( X ' ) .  I f  D  i s
a limit ordinal then X" e 8..X") for every a 1- D. By 2.1(c) and
monotony, X' : L1"., X"! {J".u 4(X")94(U *.,^ X") -: E(Xu). By trans-
finite induction the lemma is true for everl' 6 6 pl.

By 3.3, Iuis(F)@) is the l irnit  of (X', Depr) so that Luis@)(Ol :

[(Luis (F)(r)). By antisymmetry rve conclude that luis(F)(.n):
E(tui,s (F XD)).

6.L.2. Let D be an arbitrary element of L, then by the dual
of Theorem 4.L, IIis ()"2 . Z ) Y(Z))(D) e prefp (4) e prefp (F) so that
Theorem 3.3 impl ies thab lar , is  (F)" l l is ( ) "Z.Za EQD@) efp @).  AIso
by 6.1.1 tuis (F) " llis (\,2 . Z ) tQD@) e fp (E). Consequently
tuis (F) " t | is (\,2 . Z . F(ZD(,) q fe (D Ctfp @) : 7p {{, F) and
fp(!, F) is not empty (take D equal to -r).

L e t  P e f p ( E , F ;  t h e n  P e L  a n d  l u i s ( F t " I t i s \ ^ , Z . Z a F \ ( Z ) ) ( P )
is equal to P since Ee) : P and tr1el : e. Therefore fn {F, F1 -

lui,s (F) .I,Lds (xZ . Z ) EQD(,[ ) so that by antisymmetry we conclude



CONSTRUCTIVE VERSIONS OF TARSKI'S FIXED POINT THEOREMS 53

fp (8, F) : tuit 1r7.uts (>"2 . z ) F(z))(L).
6.1.3. By 4.3 ILi,s (t Z . Z et EQDQ) is a nonempty complete

l a t t i c e  p r e f p  ( 4 ) ( 9 ,  L , s f p ( 4 ) ,  U , x S . l l i s O " Z . Z  n 4 ' ( Z ) ) ( n S ) ) .  B y
3.4 Lui,s (F) is an upper closure operator so that by 6.L.2 and Ward
[2f]'s theorem fe (8, F; is a nonempty complete lattice with ordering
e , infi.mum luis(F)(L) : lfp 1F) and least upper bound operation
\,5 .Luis (FX U S).

The remaining parts of Lemma 6.1 are obtained by duality,
fp({, F) is the image of the nonempty complete lattice ttostfp (F)
( = , t f p ( F ) ,  r , , \ , S . l u i s ( ) " Z . Z U F Q D ( U S ) ,  n )  b y  t h e  l o w e r  c l o s u r e
operation lli,s (4) so that the supremum of fp \t, F1 is ttts ({)( T ) :

sfe@) and the greatest lower bound operat ion is \S.rr is(4XnS).

THnonnm 6.2. (Constt"ucti,ae aersion of Tarski's generali,aed,
latti,ce tlr,eoret'ical fi,ned, point theorem.) Let {Fr: i, e I\ be a nonempty
family of monotone commuting operators on the nonemptA complete
Latt i ,ae Z(9, r ,T, U, ))  i ,nto i tsel f .  The set of  aLL common f ,ned,
poi,nts fp({F,: i .e l \ )  of  aLL the operators {F,: ieI \  i ,s a nonempty
complete Lattice wi,tlt, ord,ering e , i,nrt,mum Lfp(1,2.1J,., Fr(Z)),
suprenlunL sfp (xZ. fl,., Fr(Z)), Least upper bound operation
XS . Zzris (\Z . U,., F,(Z))(U S) ancl greatest lower bound operation
rs. l lzs (\z .(1,, ,  F,(z))()s).

Proof.
6 .2 .1 .  Le t  F  be  ) ,Z .1J , . . ,  F , (Z)  and {  be  \ ,2 . f l , . ,  F , (Z) .  F

and -{ are monotone operators on L inlo itself such that E s F.
vx e L, Yi  e I ,  we have F@,(xD: (J, . .  Fi@,(X)):  tJ, .u,  Fd(F j(X)) =
F,(Ur,, tr/X)) : F.(F(X)) by monotony and the commuting property.
There fore  YXeL,  F tE{S l :  F ( f l , - ,  F1X) )  I  f l , . . ,  F IF , (X) )  e

f1,,, F,(F(X )) : 4(F(x)).
6.2.2. Clearly fp (\F,: i  e I\) 4 fp (F,4) since {yi e I,  F,(X) : yy

implies F1X1 : lJu,, Fr(X): lJo., X : X and duaily E(X) : X.
Whenever  Xefp(F,  Y l  we have v ie I ,  X:  I (X) :  f l , .u ,  F j (X)e
F,(X) and dually F,(X) G 1J,..,  F/X): F(X): X so that by anti-
symmetry X : Fo(X) and fp (F, F) e fp (F,: i, e ID. By antisym-
metry .fp (F, F) : fp (\F,: i, e 1)) so that by Lemma 6.I, fp ({F,: i e Il)
is a complete latt ice (c,Ifp 1F t, ufn (4r, l ,S . Irzfs qF)(US), ),S.
l,is (.F )( n S)).

Conollany 6.3. Let D be an arbitrary element of L, then
lui,s (\,2. 1J,.. F,(Z)) " ili,s (),,2 . Z ) ((1,", F.QD)@) and, Llis (\,2 .
(1u,' Fo(Z)) "Luis (\,2 . Z \J (U0,, F/Z)))(D) are coTnnLon rtxed, points
of the Fr, 'i e I which are greater than or equal to anA cornmon f,ned
point of the F, less th,an or equal to D and, u)lli,clL are less than or
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equcll to anA com,nLon Jired, point of the F, greater th,an or equal to
D. Moreouer

Luis (\.2. u F,(z)).LLi,s (\z. z a (n F,Q)D@)

e Llis (^,2 . n F,QD"Iuis (\,2 . Z t) (U F,(ZD@) .

Conor,i,nny 6.4. The set fp({F,:ieIl) of comrnon f,ned, poi,nts
of the family {Fn: iel \  is the , image of L bU the lower preclosure
operator Luis ( \ ,2.  lJ, . ,  F,(ZD " l l is Q,,Z .  Z n ((1,. ,  F,(Z)))  and, the
'image of L bU th,e uppet" pt'eclosut.e operatot. ll is\,Z.fl '., Fr(Z))"
Luis ( \ ,2 .  Z u (U0,,  F,(Z))) .

Let {Fo: i e 1} be a finite family of monotone comrnuting operators
on the complete lattice Z into itself. If we assume that / is
well-ordered (i.e., 7 : {' i": a ! t} where t e a) then we denote
\Z  .Fro(F i , ( . . . .  F , , (Z)  . . . ) )  bv  C lo , ,  F , .

Applying Theorem 5.1 to Or,rF. and Theorem 6.2 to {Fr: ieI l
a natural question is whether fF (Cr., Fr) : fp ({F,: i, e ID. The
answer is affirmative thanks to the following:

Trinonnu 6.5.

Iuis (\,2 . U tr,(ZD " lli,s (),,2 . Z ) (n F,QD)

:  Iui.s (O f ,7 . l l i ,s (\,2 . Z ) (C F,)(ZD

LIi,s (xZ . n F,Q)). Lui,s (\Z . Z U \U F,(z)))

: IIis (C f',) "Iui,s (\,2 " Z u (O tr,(Z))) .

Proof. It is sufficient to proye that if D is a prefixed point of
each F, such that z e ,I then luis (\,2. [J,u, F.QD@) : Luis (C,,, Fu)(D).
Since {vz e I, D e Fd(D)\ we have by monotony and the commuting
property D e (C,,, F,)(D) and Theorem 3.3 implies that P -

luis(Cn.,  Fr)(D) :  (C,.2 tr , )(P) and D; P. For every 1e . I  we have
D e: F j (D) e F j@) :  Ft((o,. ,  F,)(p)) :  (onu, F)(FieD. Therefore
F/P) is a fixed point of C)0.r1-u greater than or equal to D so that
by Theorem 3.3 {vj e I, PcF,(P)}. Then by monotony and transitivity
P  e  F , ( P )  S  F , , ( . . .  F o , . ( P ) . . . ) g  ( O , , , F , ) ( P ) :  P  s o  t h a t  y  j  e I ,  P :
F/P).  P is a eommon f ixed point of  the family \F,; ie, I)  greater
than or equal to D. Let I be another cornmon fixed point of
{F , : i ,e  1 }  g rea ter  than or  equa l  to  D.  Then (e , . ,F r ) (Q) :  Q so
that by Theorem 3.3 we have P e 8. Hence P is the least common
fixed point of  the family lFr: ie. I)  greater than or equal to D.
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By Corol lary 6.8, R :  Luis ( \Z . l ) ," ,  F,(ZD@) is a common f ixed
point of {Fr: i e 1} greater than or equal to D. Let 0 be another
common fixed point of {Fn: i, e I} greater than or equal to D. Then
U',' F,(Q) : Q so that by Theorem B.B we have E e 0. Hence R
is the least common f ixed point of  the family {F,: ie l}  greater than
or equal to D.

By existence and unicity of the least common fixed point of
the family {F' : ieI}  greater than or equal to D, we conclude
luis(O,, ,  F,)(D) :  P :  R :  lu is ( \Z .  l ) , , ,  Fte)@).

7. Fixed point theorerns for contin'ous operators. An
operator F on the compiete lattice L into itself is upper-semi,-con-
ti,ttuous if and only if for every ordinal D s ro and every D-termed
increasing chain (C", ae D) of elements of Z we have F()*,uC"):
u^.u F(c"). The dual notion is the one of rouer-se?ni,-cont,inuous
operator. An operator is cotr,ti,nuous when it is lower and upner-
semi-continuous.

since semi-continuity implies monotony the results of paragraphs
3, 4, and 5 can be applied to continuous operators. However the
proofs are simplified since one can consider (ar + l)-termed iteration
sequences. For example, Theorem 3.3 can be reformulated as
fol lows:

Tuoonou 7.1. Let F be an upper-sern,i-continuous operato,t, on
th'e complete lattice L into itself . An upper i,terat,i,o,n, sequence
<Xu,Aemin(p , r r l+1) )  fo r  F  s ta r t i ,ng  w i , th  Depre fp(F)  i s  d ,
stati'on'ary increasi,ng clrain, its timi,t Luis(F)(D) is th.e least of the
f,red points of F greater than or equal to D.

Proof . When lt ) ro * l" Deflnition 2.1, Theorern 8.3 and upper_
semi-continuity imply Xo':'t - F(X.) : F(LJ^., X*) : LJ*., _,c,(X") :
U^..X"+'  G LJo.,  X":  X" ' .  Alsoby Theorem B.B, X- c- f ,a+t so that
by antisymmetry x"' : y'+'. Then by transfinite induction it is
easy to show that {yp: at S B < p, X. : Xp}.

when considering a family of commuting monotone operators
the results of paragraph 6 can be perfected as follows:

LpMlr,q. 7.2. Let E and, tr be upper-semi,-cont,inuous operators
on the contplete lattice L i,nto i,tself such tlr,at F"ge E.F and,
Ea F. Then for eaerg prefi,red, point D of F we haae:

{4@) : F@)} - ltui,s (4XD) : Iuis (FXr)} .
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Proof.  Let (Xu, aemin ko + L, p))  and (y ' ,  Aemin (a + 1, p))
be respectively the upper iteration sequences f.or F and F starting
with the prefixed point D of -F and ,F.

For D : 0 we know by hypothesis and z.L(a) that D : Xo : Yo e
F(x') : E(Y').

Assume that D e min (ar t t, p) is a successor ordinal such that
Xu-' : yd-' and F1X'-'S : g(yu-'). Then by 2.1(b) Xu : F(Xu-,) :
Y.(Y'-') and Flxu-') : F( yu-') - Yu so that by induction hypothesis
and transi t iv i ty Xu: Yu. Also since {.=F and X':  Yu we know
that,F(Y')e F(X') .  Since F.E=F"F and Xu- ' :  Y'- '  we know that
F(E(X'-')) e E@(Y'-')) so that by Definition 2.1(b) we get F(X') =
g(Y'). By antisymmetry we conclude F(X') : F(Y').

Assume that D e min (ro + J., p) is a limit ordinal then 6 : a. If
by induct ion hypothesis {vB 1a, Xp: Yp and F6\: f(Yr) then
by 2.L(c) and definition of least upper bounds we have X' :

Uo., X" : LJo., Y" : Y,. The same way by upper-semi-continuity,
F(x'): F(u.., x") : l)"., F(x"): LJo., EV): 4'(LJo., y") : F(y,).

By transfinite induction and Theorem 7.L we conclude
lu is  (E)@) :  lu is  @ ) (D) .

As an appiication of Lemma 7.2 f.or D : L, we get:

Tnnonnn 7.3. Let \F,: i, e I\ be a fam,i,Iy of commut,ing operators
on the com,plete lattice L i,nto itself. Then {lYi e I, Fi'is upper-semi-
c o n t ' i n u o u s j  a n d "  { Y i , ,  j e I ,  F u ( r ) : F r ( r ) } } = - { Y i , ,  j e I ,  L f p ( F , ) :
Lfp (F )\.

8. Rerrark. In our proofs it is the existence of lower or
upper bounds of chains and not the existence of lower or upper
bounds of arbitrary sets that is crucial. The same remark was
made by numerous authors who generalized Tarski's flxed point
theorem to weaken the completeness hypothesis (see among others
Abian and Brown [1], Hdft [9], Pasini ftl l, Pelczar [16], Markowsky

[14],  Ward [zo],  Wolk l22l) .  This was also the case for Tarski 's
fixed point theorem on commuting maps (see &.o., DeMarr [6],
Markowsky ll4l, Pelczar [17], Smithson [18], Wong l23l). Along
the same iines our results could be strengthened to be applicable
to partially ordered sets which are not complete lattices.

AcxNowr,nDGMENT. The authors thank the referee in narticular
for strengthening the initial version of Theorem 4.1.
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