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Abstract

We introduce and illustrate a specification method combin-
ing rule-based inductive definitions, well-founded induc-
tion principles, fixed-point theory and abstract interpre-
tation for general use in computer science. Finite as well
as infinite objects can be specified, at various levels of de-
tails related by abstraction. General proof principles are
applicable to prove properties of the specified objects.

The specification method is illustrated by introducing
G*SO08, a structured operational semantics generalizing
Plotkin’s [28] structured operational semantics (SOS) so
as to describe the finite, as well as the infinite behav-
iors of programs in a uniform way and by constructively
deriving inductive presentations of the other (relational,
denotational, predicate transformers, ...) semantics from
G°SOS by abstract interpretation.

1 Inductive definitions

Inductive definitions which are widely used in math-
ematical logic to define sets inductively generated by
closure conditions, have popularized in computer sci-
ence over the past few years. Classical or positive
inductive definitions, co-inductive, kernel or negative
definitions [1] as well as bi-inductive definitions mixing
these two kinds of definitions are first captured by a
general definition of the notion of rule-based inductive
definition which is then generalized to systems of it-
erated inductive definitions so as to define inductively
cartesian products of sets of finite and infinite objects
indexed by a well-founded ordering. Examples show
that many concepts related to programming come out
of such inductive definitions.
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1.1 Rule-based inductive definitions

Example 1 (Even numbers) Let the universe U be

the set A of natural numbers. The subset 2N of even

numbers can be defined by the following axiom and
rule schema: neIN

2 _— 1

€2V n+2¢e2N (1)

Instead of considering a formal language for writing
such rules and axioms schemata, we reason upon a
set @ of rules instances where axioms have empty

premises: {2} U { ) |, e N} (2)

n+ 2
The induced operator is:

B = {0l ufn+2 (1 CX} ()
Let the basis be L = 0 and the join be U which induces
the ordering C. The C-smallest set |®| greater than
1 which satisfies the rules ® is the least fixpoint of ®
that is 2V = @ = Unzoin where @ = 1 = 0 and
= 5(671) ={0,2,...,2n}. The closure ordinal

)
of @ is the first infinite limit ordinal w. O

We now give a general set-theoretic definition of such
inductive definitions. We write p(.S) for the powerset
of the set S and S — S’ (respectively S — S”) for the
set of total (respectively partial) maps from S into the
set S,

Definition 2 (Inductive definition) An induc-
tive definition  is a quadruple (U, ®, L, U) such
that:

o The unverse U is a set,

o @ is a set of rules instances % where P C U and

cel,
o L CU is the basis,
o U € p(plU)) — p(U) is the join and the induced

orderingis v C y S y = y is a partial order on

p(U).
a

Definition 3 (Operator induced by an induc-
tive definition) The operator ® induced by S =
(U, @, L, 1W)is®€plU)— p(U) su%h that!:

$(X):{CEU|E|P§X:?E<I>} (4)

O

1 More generality can be obtained when replacing C by an
arbitrary relation.



Definition 4 (Iteration of an operator) The iler-
ation of € S'+— S for U € p(S) — S is the partial
operator Fi$° € S < S such that F{°(X) = F'© where:
. FO = X,
A= if 0 <X e Ord,
« FA=F¢ if A >e.
clo (F) 1 ¢ is called the closure ordinal of F for X.
O

a<A FQ)

A complete partial order L{C, L, U} (cpo for short)
is a set partially ordered by C such that all increasing
chains €' have least upper bounds UC and L € L (L
is usually the infimum of L). Tt is a complete lattice
if and only if all subsets X have least upper bounds
UX and therefore greatest lower bounds MX (in which
case we usually write L = ML and T = UL). F €

L — L is monotonic (written F' € L pok L) if and
only f Ve,y € Lt 2 Ey = F(x) C F(y). Tt is
extensive (written F' € L Rk L) if and only if V& €
L:xzC F(z)). Tt is a complete U-morphism (written
Fel ™ L) if for all families of sets X; C L such
that U; X; exists in L, we have L; F(X;) = F(U; X;).
The propositions below immediately follow from the
constructive proof of Tarski’s fixpoint theorem [9]:

Proposition 5 If S(C, L,U)isacpoand FF € S — S
is monotonic or extensive then F € pre(F) — S
where pre(F) = {x € S|« C F(x)} (so that F$° is
totally defined for pre-fixpoints of F'). O

Definition 6 (Well-formed inductive definition)
The inductive definition & = (U, &, L, U) is well-
formed if and only if 630@_) exists in which case it is
the set || inductively defined by . O

Definition 7 (Inductive definitions on a cpo or
a complete lattice) Let & = (U, &, L, U) be an
inductive definition. < is on a cpo (respectively on
a complete lattice) if and only if p(U) (C, L, U) is a
cpo (respectively p(U) (C, L, T, U, M) is a complete
lattice). O

Definition 8 (Monotonic and extensive induc-
tive definitions) The inductive definition & = (U,
®, L, L) is monotonic (respectively extensive) when-
ever ® is monotonic and L C ®(L) (respectively @ is
extensive). O

Corollary 9 A monotonic or extensive inductive def-
inition on a cpo is well-formed. O

When it exists, we write Ifp= F for the least fixpoint
of F greater than or equal to = : F(IfpS F)) = lfpS F,
e <lfpEFandVy: [F(y) =y Aa<y]=[pZF <
y]. The same way, gfp= F is the greatest fixpoint of F
less than or equal to x.
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Proposition 10 If S{C, L, U) is a cpo and F €

S "5 S then F € pre(F) — S is an upper clo-
sure operator, for all X € pre(F), F?(X) is the least
fixpoint IfpS F of F' greater than or equal to X. O

Corollary 11 If & = (U, &, L, U} is a monotonic
inductive definition on a cpo then 530 18 an upper
closure operator, 530 (X) is the least fixpoint IfpS @ of
® greater than or equal to X € pre(®) for the ordering

C induced by U and |3 = @, (L) = (S T. O

Definition 12 (Rule satisfaction) The set S C U
is said to satisfy the rules ® if and only if satg(S) =
(LES)A(P(S)C S) holds. O

Proposition 13 If & = (U, ®, L, U} is a monotonic
inductive definition on a complete lattice then [J| =
M{S C U | sats(S)} is the least set (for C) which
satisfies the rules. O

1.2 Positive inductive definitions

Definition 14 (Positive inductive definition) A
positive inductive definition S = (U, ®) is St = (U,
® 0, U). O

Proposition 15 A positive inductive definition
St = (U, ®)* is well-formed and |3 = @ (0) =
Ifp®@ = N{S C U | satg+(S)} is the least (for C)
closed set, that is which satisfies the rules: closedg(S)

L satas (S) = VE€d: (PCS) = (ces)). O

Example 16 (Logic programs) Using the nota-
tions of [2], let P be a logic program (containing at
least one constant), Bp be its Herbrand universe and
ground(P) be the set of all ground instances of clauses
in P. The inductive definition corresponding to P is
St = (Bp, ®)T where:

d = {BI""A%Bn | A~B,,. B, € ground(P)}

(5)
The operator ® induced by 7 is the immediate conse-
quence operator Tp. Then proposition (15) implies the
characterization theorem of van Emden and Kowalski
[30]: A closed set T C Bp (such that Tp(I) C I) is a
model of P, the least model Mp being the least fix-
point Tp(0) of Tp. Lassez and Maher [20] observed
that T is a closure operator. O

Example 17 (Maximal finite execution traces)
Following [21], let T' = (S, Act, {-= | « € Act}, Init)
be a labelled transition system where S 1s a set of
states, Act 1s a set of actions, each == C 5 x S is the
transition relation for action o € Act and Init C S
is the set of initial states. We write s = s for
(s, sy €= sis’ for (s, sy ¢ = s — ¢ for
Ja € Act 1 s = s’ and s for Voo € Act : Vs’ € S :

o

s4-s'.



¥ <% is the universe of finite traces ¢ = &g
- Ty_1 47 Ty such that £ = |o| — 1 where |o| is the
lengthofo, 1 <lo| < w,7; € Sfor0 <i<{ d; € Act

and ¢’ through action «, also written ¢ -+ ¢/ when

Tlo—1 = 0’p. X% is the universe of infinite traces o

LT, in
n

= 5y - such that |o] = w,

T, € S and &, € Act for n > 0. X=¥ e y<w ysw s
the universe of traces.

The set T<% of mazimal finite execution traces of
this transition system 7' is defined by the following
schemata (where free variables o € Act, s € S and &
€ X<% are universally quantified):
520y ANoeT<¥

s 2 oge<w

54—
s € T<w

(6)
which stands for the set ® of rule instances:

L {o}

s s 2o

+ <

(7)

for all s € S such that s+ and s’ € S, o € Act and
o € <% guch that s' == Ty. The rules are deco-
rated by the + sign to indicate that 1 = and U = U
followed by the universe U = <%, One or both indi-
cations can be left out when clear from the context.

The monotone operator ® € p(I<%) mo$ p(X<)
induced by this inductive definition is:

o(X) = {s|s+}U (8)
{s %0o|s>2Ty ANoeX}
def

Let us define 7°% < ¢ and the set 774 & {ocex<
| o) =n AVi<|o|=1:7 22 Fip1 A Tno1—+}
of execution traces of T of length n > 0. Observe,
by induction on n, that the iterates of the operator
P are & = UL T so that & = U,»oT"" = T<¥.
Moreover 31! = 3 so that the closure ordinal of ®
is w. Finally, we have defined Y = Ifps ® = T<v¥ =
{O’ e x<w | Vi < |0'|—1 o ERAN Oi41 /\E|O,|_1—/—>}. O

1.3 Negative or co-inductive defini-
tions

Definition 18 (Negative co-inductive defini-
tion) A negative inductive definition S = (U, ®) is

S~ = (U, ®, U, n). O

Proposition 19 A negative inductive definition
3™ = (U, ®)~ is well-formed and [S7| = 3, (U) =
gfp® = U{S C U | satg-(S)} is the greatest (for
C) dense set, i.e. satisfying the rules: denses(S) def
salg-(S) = [Vees:3PCS: L el O

The definition of observation equivalence in [21] and
of static typing in [22] are examples of negative co-
inductive definitions.
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Example 20 (Infinite execution traces) The set
TY of infinite execution traces of a transition system
T = (S, Act, {= | o € Act}, Init) is defined by the
following schema (where free variables o € Act, s € S
and o € X% are universally quantified):
s g Ao ETv
s X oev
which stands for the set ® of rule instances:
(o}
e (10)
for all s €S, a € Act and o € X% such that s = 7.
The monotone operator ® € p(X¥) mos p(X¥)
induced by this inductive definition is:

9)

O(X) = {s20|s2GFy ANo€X} (11)

Let us define 70 %' % and the set 77 { o e X
| Vi<n:o; 2% Tit1 } of infinite traces starting with
n > 1 transitions. Observe, by induction on n, that
the iterates of the operator & are & = MP_I"° so
that & = Np>oT"™ = T*. Moreover T =T o
that the closure ordinal of ® is w. Finally, we have
defined ®° = ¢fpS. @ = 7% = {c € X% | ¥n > 0 :

Tn 2 Gpyr ). O

def

Example 21 (Maximal execution traces I) The

set T<w X 7<w (7w of execution traces of a transi-
tion system 7' = (S, Act, {-= | « € Act}, Init) can
be characterized by a negative inductive definition §~
= (U, ®, U, N) where U = 5% and &~ is specified

by the following rule schemata:

s 2Ty A oe TSV

s geTsw

5
s eTsw

(12)
The monotone operator ®- € p(XN=v) mos p(BEw)
induced by this inductive definition is:
- (X) = {se€S|s+—}U
{s =0]s2T) AoeX}

(13)

DeﬁneT”mdéf{UEE“’ |lol=m>nAVi<n:
7 2 Tit1 } to be the set of finite traces of length m
starting with n transitions. Observe, by induction on
n, and using the notations of examples 17 and 20 that
the iterates of the operator & are & = (UL T")
U (UmsnT™™) U (N T%°). For all m, n > 0, if o
=T . .
€ 1™ then o € &= since either n > m and o €
T C ®" orn < mand ¢ € "™ C o-". Also
o € T implies ¢ € T* for all i > 0. Reciprocally
o ¢ T<% has either Enf,ﬁ»ﬁn_H for some n such that
0 < n < lo|—1, in which case ¢ ¢ "t or lo| =
. —t

£ and 3s € S : Ty_1 — s so that again o ¢ &~ +1.
—w —n .

It follows that: ®= = M, >0~ = Nyp>o[(Uf_oT*") U
(UpsnT™) U (M2 T7)] = (Unzo ) U (M=o 1)
— T<¢ U T¥ = 7S¢ Moreover 31" = 3 5o that



the closure ordinal of - is w. Finally, we have defined
- = gfp%Sw - = T=¥. However this definition is
not quite satisfactory because of the term U,,~, 77"
in @ which disappears when passing to the limit
- (since Np>oUmsn T = 0). A definition of Tw
such that =" is a conservative extension of the =
is proposed in example 28. O

If ' € B+ B is an operator on a complete boolean
lattice B(C, L, T, U, M, =), its dualis FF € B —
B is defined by Vo € B : f(a:) = F(-2). If Fis
monotonic, so is F. By duality, a negative inductive
definition can always be given an indirect equivalent
positive definition. However, as shown by the above
examples, most of the time, using a direct co-inductive
definition is much more clear.

Proposition 22 (Duality of positive and nega-
tive inductive definitions) If & = (U, ®) is an
inductive definition then satg+(S) = satg-(=.9), |3V
=Up®=-gfp® 37| = gfp® =-lfp P and 3] =

=[S~ O

1.4 Bi-inductive definitions

Assume the universe U is covered by two subsets U/t
and U™, that is U = Ut UU~. For example Ut may
be the set of finite objects of U while U~ is the set
of infinite objects of U. To define a subset || of U,
we could define separately the finite objects |S| N U
using a positive inductive definition and the infinite
objects |3 N U~ using a negative inductive definition.
In practice, this must often be done simultaneously.
For example in denotational semantics the terminat-
ing and non-terminating behaviors of programs are de-
fined at the same time using a single fixpoint opera-
tor. Since, for clarity, we insist upon using rule-based
inductive definitions (preferred to fixpoint definitions
[5]), we propose a method for combining inductive and
co-inductive definitions which allows for the simulta-
neous use of positive and negative axioms and induc-
tion rules. We then give equivalent (but maybe less
intuitive) fixpoint characterizations.

Definition 23 (Bi-inductive definition) A bi-in-
ductive definition S = (U, 7%, 7=, ®), where 7%, 7~
€ p(U) — p(U) is 9% = (UF/=*, 8%, 1*, U¥)
with, for all S, 7', 5; C U:
LU E Uy U (),
def — —
[x*(5) = 7 H(D)] A [x=(5) = 7~ (T)],

. S=ETE
cot WD e o p e nt({e])

déf{@ Pedncer({c)

. O o s

}
j

.ot oty o,
e 7~ (U) and
. LI;ESZ' déf UZ 7T+(Si) U ﬂz 7"_(52')'
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O

We often use bi-inductive definitions to simultaneously
define subsets of the universe which are separated in
the following sense:

Definition 24 (Separated bi-inductive defini-
tion) A bi-inductive definition & = (U, #t, 7=, ®)
is separated if and only if 7T and 7~ are monotonic
for C, idempotent and satisfy the separation property:
VP Cat(U):VYM C 7 (U): at(PUM) = at(P)
and 7 (PUM) =7"(M). O

Proposition 25 Let S = (U, 77, 7, ®) be a sepa-
rated bi-inductive definition. Let us define, for all §,
T, Sz g U:
c STETE [7H(S) St (D) A [17(8) 2 7 (1)),
LT 7t(U) and

o TESE (S U U (90)!

Then:

1) p(U)/=* (C*, 1%, T+ ut, n#t) is a complete
lattice,

2) ®F is monotonic for CF,

3) ST is well-formed.

O

Disjoined bi-inductive definitions are used to simulta-
neously define subsets of disjoined universes:

Definition 26 (Disjoined bi-inductive defini-
tion) A disjoined bi-inductive definition S = (U™,
U™, ®) where UY NU~™ =0 is 3T = (Ut UuU~, =¥,
77, ®) with 77(X) = X N UT and 7= (X) = X N
U-. o

Proposition 27 A disjoined bi-inductive definition
3t = (UT, U™, ®)* is separated, hence well-formed
and such that =% is equality and [3%| = lfpEi o =
ISH U IS~ = IfpS @+ U gfpS @-. O

Example 28 (Maximal execution traces IT) The

def . .
set TSW = T<@ U TY of execution traces of a transi-

tion system 7' = (S, Act, {- | « € Act}, Init) can
be defined by a disjoined bi-inductive definition 3% =
(U+, U=, ®*)* where Ut = X<¥ is the set of finite
traces, U~ = X* 1s the set of infinite traces over .S and
Act and ®% is specified by the following rule schemata:

s 2Ty A oe TSV
s 2 geTsw

S——
— 4
s e Tsw

+ (14)

s 2 Fg A oeTsv
s 2 ge v

(15)

For simplicity we write ¢ € 7<% instead of ¢ €
7T (T<¥) (that is ¢ € T<¥) in positive rule schemata
and the same way 7<% stands for 7~ (7<) that is T



in the negative ones. For short, the rule schemata (14)
and (15) can be written as follows:

52Ty A o€ TS¥
s 2 geTsw

S——
—_— 4
s e Tsw

(16)

_ +
The monotone operator @+ € p(T¥) mok p(LEw)
induced by this inductive definition is:

(X)) = {s€S|s+}U

{s %o|s2Tg ANoeX}

(17)

Observe, by induction on n, and using the notations of
examples 17 and 20 that the iterates of the operator
OF are B = (U T U (NP T7%°) so that [
= (Up>oT"") U (Np3oT7®) = T<¥ U T¥ = Tsw,

Moreover =~ 7' = B 5o that the c}uosure orglinal of

Pz ; i P = CT pt —

?S;s (S Finally, we have defined ® Ifpsy @

Our approach for defining program behaviors, and

more generally a subset of a space with finite and in-

finite computable objects, is characterized by the fol-
lowing remarks:

1. The finite objects are constructed from their finite
components using positive rules;

2. The infinite objects are not obtained as limits of
finite ones (this may be done once for all in the do-
main theoretical definition of the universe U) but
selected among all possible ones by successive in-
spections of finite parts using negative rules;

3. By combining the two methods, one can define
other fixpoints, in addition to the usual least (for
C) and greatest fixpoints.

The usefulness of such non-extremal fixpoints is illus-

trated by the example below:

Example 29 (Infinitary languages) Let A = {a,
b, ¢} be an alphabet, U = Ut U U~ where UT = A*
and U~ = AY are respectively the sets of finite and
infinite words written on A. The infinitary language
L =(aUb)*c U b is defined by the following axioms
and rule schemata (which are disjoined since Ut N

U~ =0):

oc € L

oc € L
—+ +
ac € L

L
¢ &L bo € L

(18)

The operator associated with the instances of rules
schemata (18) is ®% = {¢} U {ac | ¢ € X N A*} U
{bo | 0 € X}. Tt is a monotone operator on p(U)(C,*
1* T Ut n*) and lfpEi O = (aUb)*cU b = L.
Observe however that L is neither the least fixpoint
(a U b)*e nor the greatest fixpoint (a U b)*e U (a U b)¥
of the context-free grammar X 1= ¢ | aX | bX (these

fixpoints being extremal for C). O
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1.5 Proof methods

It is interesting to notice that numerous mathematical
tools come of such inductive definitions. In particular,
methods for proving properties of fixpoints (such as
Park’s fixpoint induction) can be transcribed to prove
properties of inductively defined sets.

Proposition 30 (Fixpoint induction) Let L (C,
1, U beacpoand F e L 25 ot Then [ifps F C Y]

S [@BZEL:LCZAF(Z)CZAZCY]. Ifnis
well-defined then [X IS FC Y] @37 e L: L C
Z ANF(Z)CZAXNZEY]D

Corollary 31 If & = (U, &, L, U} is a monotonic
inductive definition on a cpo then || E S if and only

if 35" CU : (S'C S) Asats(S'). O

Moreover x <yd§f Ja, g € Ord:oz<ﬁ/\x€5a/\y6

3’ —T" is a strict well-founded partial ordering so that

transfinite induction can be used to prove the inverse
inequality:

Definition 32 (Well-foundedness)
< on a class W 1is well-founded if and only if
WellFounded(W, <) =VECW : [E#0 = 3Jy e F:
(732 € F:z < y)] holds. O

A relation

Proposition 33 (Iteration induction) Let L (C,
L, U) be a cpo with infimum L = U, F € L ok,
and Q € L. We have: [Q ClfpF] < AW :3 < C
W x W : WellFounded(W, <) ANIT €W — L: (Yx €
W () © F(y 4 1(2) AMQ E Upew 1(2))] O

Another useful method for proving properties of fix-
points is computational induction. We let Ord be the
class of ordinals and Limit = {« € Ord | Ua = o #£ 0}
be the class of limit ordinals.

Proposition 34 (Computational induction) Let
L(C, L, I_I)beacpo,FELMLandPEp( L).

We have: (IfpS F € P) < (31 € Ord — L : [L € 1(0)]
A Vo € Ord - VX € I(a) : F(X) € I(a+ 1)] A
Vo € Limit :¥X €a 5 L VA< - X() I(8)]

[|_|ﬁ<oz
Ord : X(a) € I(a)) =

(B) € I(a)]] A VX € Ord 225 L : (Va €
(Uagora X(a) € P)]) O

An interesting particular case (which amounts to Scott
induction when the function is upper continuous and
the property is admissible) consists in choosing the
invariant I(«) as P, but this is not a semantically
complete proof method.

in-

Proposition 35 (Stepwise computational

duction) Let L (C, L, U) beacpo,FELMLand
P e p(L). Wehave: ([Le PIAVX € P: F(X) € P]

A [Va € Limit : VX €a S L (V< a:X(B)€eP)
(e F e P). o

= (Us<ca X(B) € P))) =



A last example is the inductive definitions of functions
f € Bl D:

Proposition 36 (Inductive function definition)
Let &= (U, @, L, U} be a well-formed inductive defini-
tion, D be aset and 7; € p(P;x D) — D for all % cod.
There exists a unique total function f € |3 — D such
that for all % €D fle) = n({{x, f(x)) |z € B}).
O

When specialized to positive inductive definitions,
propositions (30) and (33) amount to (for short, simi-
lar corollaries holding for the other varieties of induc-
tive definitions are not stated):

Corollary 37 (Fixpoint induction for positive
inductive definitions) Let ST = (U, ®)* be a posi-
tive inductive definition and R C U. Then [|St|NQ C
Rle[Plelu@—{tff} :(VEed:[VaeP:
I(z)] = I(c)) AN (Ve € Q : I(x) =z € R)]. O

Corollary 38 (Iteration induction for positive
inductive definitions) Let ST = (U, ®)* be a pos-
itive inductive definition and @ C U. We have: [Q C
ST 3W :3 < C W x W : WellFounded (W, <)
ANTEW —pU):VueQ :FeeW uellx))A
[Vl‘EW:VCEI(l‘)ZH%E@ZVC/EPZEM‘/ < T
del(x)]. O

Example 39 (Well-founded part of a relation)
Let S be a set of states and ¢ C S x S be a relation on
S. We write s - s’ for (s, s') € t. The well-founded
part Wf(t) of ¢ is the set of og € S such that there is

no infinite sequence oy -= o1 -% o9 - ... that is:

Wft)={seS|-~(Focw—S:
s=ogAViEw:o; - oiq1)} (19)
The well-founded part Wf(t) of t is specified by the
inductive definition ST = (S, ®)* where & consists
of the rules instances [1]:
{seS|s L s}
s

(20)
for all s € 5.

« To show that |[St| C Wf(¢), we use proposition 37
with I(z) =[x € Wf(t)] so that (Ve € S:I(x) = x €
Wf(t))] is obvious. We must also show that Vs € S :
Vs € S :s s = I(s")] = I(s) which holds since
—l(s)=[Fc' cwr—S:s=05 AVicw: o] -5 0)]
implies [Is' € S:s L s A(JoEwr— S :s =09 A
Vicw:o; Looqr)] =3 €8s L A-I(s)] by
choosing s = oy = o and o; = o, for all i € w.

« To show that Wf(¢) C |3|, we use proposition 38
with W = Wf(t) and ' < s = s -~ s’ so that ob-
viously WellFounded (W, <) holds and I(z) = {x} so
that [Vu € Wf(t) : 3z € W : u € I(x))] is true when
choosing * = u. Moreover s -~ s’ implies s’ < s
so that [Yo € W : Ve € I(x) : 3£ € @ : ¥V € P :
o' < x: ¢ € I(x')] holds. O
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Example 40 (Floyd’s partial correctness and
termination proof methods) Let T = (S, Act, {=
| o« € Act}, Init) be a labelled transition system spec-
ified by a program P. Let ¥ € S x S — {i, [}
be an input-output specification of program P. P
is partially correct with respect to ¥ if and only if
Vs, s' €S :s 2 s = U(s,s") (where = is the reflex-
ive transitive closure of —). According to proposition
37, the partial correctness proof can be done by dis-
covering an invariant I C U = S x S satisfying the
following verification conditions (as given in [11]):

VseS:{s,s)el
Vs,s', 8" €S :Va € Act :
(s, Y el N s =s5"] = (s,5)Vel (22)
Vs,s' € S:[(s, s’y el] = U(s,s) (23)
Let ¢ € S — {it, [J} be a specification of the initial
states of program P. Program P terminates if and
only if there is no infinite execution trace og — o1 —
o3 — ..., such that £(cg). According to example 39,
we must show that: Vs € S : e(s) = s € Wf(—).

By proposition 38 applied to the rule-based inductive
definition:

(21)

{s€S|s—s'}

s
of Wf(—), this can be done by finding a well-founded
set (W, <) and an invariant I € W — gp(5) satisfying
the following verification conditions (as given in [12]):

Vse S (24)

VneW :¥seI”:Vs'eS:
[s —s'] = [3¢ <n:s €I
Vse€S:e(s) = [AneW :se ]

(25)
(26)

1.6 Well-founded system of inductive
definitions

To get more expressive power, we introduce systems
of inductive definitions in order to define subsets of
a cartesian product [, . U[i] of sets Ufi],i € A.
We mix this notion with transfinitely iterated defi-
nitions by induction on a well-founded set (W, —<).
Such well-founded (also called iterated) inductive def-
initions were first introduced by G. Kreisel and then
further developped by S. Fefermann [15].

Definition 41 (Well-founded system of induc-
tive definitions) A well-founded system of inductive
definitions  is a tuple (W, —<, A, U, ®, L, U) such
that:
+ —< 18 a well-founded binary relation on the set W,
o The index A is such that for all w € W, Afw] is a
set,
o For all w € W and all i € Afw], the universe
Ulw][d] is a set,



: : P v
o ® is a set of rules instances Tl where w € W,

i € Alw], P € Leapuy 9(ULwll]), 7,v € {{v, 5)
| w'—=w A S € [Lieapp #ULW[D} and ¢ €
Ulw]ld),

. ijorlall we W, L[w] € [Ticape #(UIwll]) is the

o Forall w e W, U[w] € p([];eapug #(UIw]l]) —
[Licage #(UTw][]) is the joun.

O

Definition 42 (Operator induced by a well-
founded system of inductive definitions) For
each w € W, the operator ®[w] induced by I = (W,
[Lieagey #(UIw][i]) such that:

P[w](X) = Ticaguy { ¢ € ULwIli] |3PC X
dr C {{w', S) | w'—<wASC|S[w]}:
= % {w', S) | w'—<wA S ZS|[w]}:
T € @)

where Vi € Afw] : [3|[w'Ti] & [T, o(LIW'DE.

O

Definition 43 (Well-formed well-founded sys-
tem of inductive definitions) The well-founded
system of inductive definitions & = (W, —, A, U,
®, L, U)is well-formed if and only if 5[[w]]ao|[w]l(J_[[w]])
exists for all w € W, in which case it is the carte-
stan product 3|[w] of rank w of sets ||[w][i] of index
i € AJw] inductively defined by . O

It each p(Uwli)(C [w]li), LEwll], Uelli) is a cpo
(or a complete lattice) then propositions 9, 11, 13 and
the above proof methods are easily extended to well-
founded systems of inductive definitions by componen-
twise induction on the well-founded relation (W, —<}.
When defining subsets of a cartesian product of sets,
the well-founded set (I¥, —<) can be omitted since it
is reduced to a singleton. This would be the case for
example when understanding a context-free grammar
as a system of inductive definitions. The next example
is a well-founded inductive definition (the index set A
being omitted since it is reduced to a singleton).

Example 44 (Weak fairness) Let A be an alpha-
bet and X be a finite subset of A. The set F[X] of
finite words containing at least one occurrence of each
x € X is defined by:

ye A r e X
y e FlO] ve eyt 7
yeA A YCX A o€ F[Y]
yo € F[Y] ’ (28)
re€X AN YCX A o€ F[Y], (29)

zo € F[Y U{z}]

The set I[X] of infinite words with infinitely many
occurrences of each z € X 1s defined by:
c € FIX] AN <€ I[X]
os € I[X]
This is a very simple example with W = {F[Y] | Y C
XYUJ{I[X]}, FIY] —< F[Z] when Y € Z C X and
FIY] < I[X] when Y C X. O

(30)

Negation can be used in the premises of the rules of
iterated definitions: a set X[A] can be inductively de-
fined in terms of X[A] as well as X [o] and =X [o] for
a—< A. In particular this generalizes J. Groote’s tran-
sition system specifications with negative premises [16]
without resorting to 3-valued minimal model or stable
model approaches [6] originating from logic program-
ming, for which the logical meaning is not always sim-
ple and clear [19].

Combining systems and well-founded inductive def-
initions, we get well-founded systems of inductive def-
initions as illustrated by the following example:

Example 45 (Maximal execution traces III) Let
T = (S, Act, {== | o € Act}, Init) be a labelled
transition system.

The set TTA] (T[<A] and T[<A]), A < w, of maxi-
mal execution traces of length A (respectively strictly
less than A and less than or equal to A) can be defined
as follows (s,5",8”" € S, 0 < n < w, A < w):

S,
s € T[-0][s, s]

s AN oceT[n][s,s"]

(31)

5= o eTlnt 11,51 (2

s € Init 2 . ;[[i]]T[[M][& ST, (34)
s € Init U/; TEE TTw]ls] | (35)

n < /\U EAT[[ZE Tl (36)
Ziim s (:EETI& NEYS

The partial ordering — such that for all 0 < n < A <
w, n —~< n+1l,n —~<n w-—<wn—<<A\I—=<
<A, <A —< <A, 18 well-founded. O

Such iterated inductive definitions are very powerful
since they have an expressive power greater than D.
Park’s p-calculus [26] or E. Emerson’s CTL* [14].

These iterated inductive definitions are used in
G=SOS to define the semantics of programming lan-
guages by induction on the syntax of programs. In this
case, W is the set of all program components while —<
means “is a sub-component of”.



2 Abstract interpretation of in-
ductive definitions

The quest for a unique general-purpose semantics for
programming languages has failed. A better approach
is to establish correspondences between various se-
mantics at different levels of abstraction. As noticed
by E. Astesiano [4] and G. Reggio [29], rule-based in-
ductive definitions should form a unifying framework
for expressing these semantics. A first step toward
this goal is to describe finite and infinite program be-
haviors in the same way. A second step consists in
adopting an abstract interpretation approach [8] [10]
in order to relate inductive definitions. Abstract in-
terpretation can be used, as follows, to justify and
even to formally construct abstract rules in terms of
a concrete ground (named static in [8] and renamed
collecting in [24]) semantics (which could involve e.g.
execution traces as it is the case in our examples):

Definition 46 (Operator abstraction) < standing
either for = or C’, we write:

S(C L0y, F] 2[5, 1 U, P (38)
to mean that:
« S{C, L, U)is a cposuch that L € 5,
o SY{C', L', 1) is a partial order such that L' € S’
L FesTS s pres et g
e x€S— S and
« VA< clo(F): a(F*) < F' (iteration from F =
L and F"° = 17).
O

The above condition YA < ¢lo' (F) :
implied by the following ones:
o a(l) < L
e VAL el (F):ao F(F*) < F'oa(F?) and
o for all limit ordinals A € Limit such that A <
clo} (F), we have a(Us<r F?) < I_I’5<>\oz(F5).
and by the strongest ones:
o a(l) < L
e a0 F < Floa and
o a(Uscrz®) < U a(x?) for all increasing chains
{8 |8 < clo® (P,
This last condition is implied by the fact that « is a
complete join morphism, which is the case when it is

oz(FA) < F"™ is

the upper adjoint of a Galois connection:

Definition 47 (Galois connection) We write
P (<) %) Q (=) to mean that:

o P(<) and Q (=) are posets,

s v EP—Q,

e YEQ— P and

Ve eP:VyeQ:[o(x) 2yl & [z <y(y)]

O

oz[<]

In this case, we write [S(C, 1, U), F] <
17wy, .

[S/ < /

Proposition 48 If [S(C, L, I_I) F] = Ll [s" (&, L,
Uy, F’] then o(lfp§ F) < lpr, F'" where < stands el-
ther for = or C’. O

Abstractions are usually specified by successive com-
positions:

Proposition 49 If [S (C, 1, U}, F]aﬁ}][S’ (R
|_|/>’ F/] and [S/ <E/’ 1/ |_|/>’ F/]aigl[s// <E//’ 1"
Uy, F”] then [S (T, L, U), F]*>2eal[grn or o
Uy, F""] where < (respectively <s) stands either for
= (resp. =) or C/ (resp. C"). O

Definition 50 (Inductive definition abstrac-
tion) If S = (U, @, L, W) and &' = (U, &, L,
U} then we write < M 3 for [p(U)(C, L, U), @
ak] 2= [p(Un{E!, L', U'), ®] where C and C’ are the
partial orderings respectively induced by U and L’ and
~ stands either for = or C’.
If[r?oreover p(U)(C) == p(U’)(C’) then we write
alk ’
S 3.0
Corollary 51 If & 251 &/ then o(|S]) < 37| where
~ stands either for = or C’. O

Example 52 (Disjoined bi-inductive definition)
A positive inductive definition S = (U*, ®T)* and a
negative one I~ = (U=, ®~)~ such that Ut NU~ =0
can be combined into a system of inductive definitions

= (A, U, ®, L, U) where A ={1,2}, U = U™T x
vmeo={G et u {4 2eo} 1=
(0, U~) and Uies(Xi, Vi) = (Uies Xy, NiesYs). They
can also be combined into a disjoined bi-inductive def-
inition 3* = (U+, U=, ®  U®*t). The bijection
is established by a((X, Y)) = X UY and vy(X) =
(XNU*, XNU™), so that by propositions 27 and
51, we have |3t US| = [9F]| = o(9]) D

A simple way to abstract inductive definitions is to
use an abstraction of subsets of the universe:

Proposition 53 Let & = (U, ®, L, L) be a mono-
tonic inductive definition on a cpo p(U){C, L, U},
p(U(C', U be a partial order and o € p(U) —
p(U’) be a complete U-morphism (for all sets {5ﬁ |
B < A}, A € Ord) and a complete U-morphism such
that:

VEe® VX CU: a(P) Ca(X) =
3P co: P C X Aa({e}) Ca({c}) (39)

Define & { Leande a({c})} and 1'%
a(L). Then & def (a(U), @ U’y is a well formed

inductive definition such that & M I moreover

p(UYC, L, T, U, N)is a complete lattice then < <c%>

S where v € p(U) — pU)is y(V) = WX € U |
a(X)C'Y}. D



This notion of abstraction can be used to show the
equivalence of inductive definitions.

Example 54 (Maximal execution traces IV) In
example 21 we have characterized the execution traces
TS¥ of a transition system 7 = (S, Act, {= | o €
Act}, Init) by a negative inductive definition I~ =
(5@ @, ¥ M) where @~ is specified by schema
(12) and p(X=¥) (D, =¥ ) is the induced cpo. In
example 28 we have characterized 7<% by a disjoined
inductive definition 3* = (X< %@ &%)+ where &% is
specified by schemata (14) and (15) and p(XS@) (C*,
1% UF) is the induced cpo.

In order to relate them, we observe that they are
abstractions of a common ground semantics:

S5 x @A (S, LU, 6l (40)
such that (X, A) C (X, M) & (X CF X') A (A < X)),
L (J_i, 0), U (X, A) = def (U Z:»tXZ', maz;A;) where
the set w of natural numbers 1s the supremum of the
set w41 =wU{w} and ¢({X, A)) = (PF(X), 1 + 1)
with 1 +w = w.

atl=

We have [ES‘” x (w 4+ DI(C, L, Uy, 4] i]
5

[Ls(C*, 1%, U*), %] where a*((X, A)) = X and

y(X) = (X, w). By proposition 48, it follows that
it

S(pS 6) = Up=E 3% = [3%]

We also have the correspondence [YS% x (w +
D(C, L, 1), ¢] 5 [55¢ (D, u5¢, n), 7] where
a”((X, ) = XU(Ups2T?™) and Uy, yTA™ has been
defined at example 21 for A < w and is equal to @ﬂlen
A = w. By proposition 48, a~(Ifp§ ¢) = lfpiSw o= =
[S-]. O

Abstraction can also be used to relate definitions of the
semantics of languages described at different levels of
details.

Example 55 (Erratic, demoniac and angelic re-
lational semantics of transition systems)

o The erratic relational semantics is obtained by ab-
straction of T<“ as characterized by the disjoined in-
ductive definition 3% = (N<¢ Y% d=)F of example
28, where ®* is specified by schemata (14) and (15)
and p(U)(C*t, L%, UF) (where U = XS¢) is the in-
duced cpo. The finite traces are approximated by the
pair of their initial and final states and the infinite
ones by their initial state together With L denoting

non-termination. Let us define U+ 4§ x S, Ui- = def
S x {L} where L ¢ S and U* L i+ U Uh-. By
propositions 25.1 and 27, p(Uf) (CF, L8, T8 1f, nf)
i1s a complete lattice, where:

Hr) = rn(SxS) (41)
=) E rn(Sx{L}) (42)
t;w = [ S AT ()] A (43)

(7= (t) 2 7" (r)]
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def

1" S x {L}

L Ui () U et ()

|_|E7°Z' =
The approximation can be formalized by the erratic
abstraction af € p(U)(C*) — p(U") (C!) such that:

of(X) = {(70, Tpp-1) |0 € XN T}

U{(@0, L) | o e X nx¥}

Let SF = (UF, ®% Lf L") be the inductive definition
such that the abstract rules instances ® are given
by the following schemata (where s,8' € S and z €

Su{l}):

(46)

L x)eTh
(s, ) € 1"

S~
(s, s) €T"

+ (47)

Then proposition 53 implies % <:> 3" since

QE(UEX;) = Ulaf(X,), ad(UEX) = Uial(X,), prop-
erty (39) holds, of (L%) = 1% and o%(U) = U,

o The angelic relational semantics is obtained by ab-
straction of finite traces by the pair of their initial
and final states while infinite ones are simply ignored.
This can be formalized by U® = S x S and the angelic

abstraction: ,
p(U) (CF) = p(U")(C) (48)

such that: 7
o (X) = XnU’ (49)
Y(X) = X (50)
Let 3" = (U°, @, 0, U) be the inductive definition

such that the abstract rules instances ® are given by
the following schemata (where s,s',s" € S):
S+, s s A (s s eT

(s, s) €T (s, 8"y eT”

(51)

" . . bi=l . .
Then proposition 53 implies P %:ﬁ 3 since « is a
¥

complete U—morphism, property (39) holds, o’ (U") =
U’ and o’ (L") = 1* = . By proposition 49, we con-
Q& ak&% g,
[

o The demoniac relational semantics is obtained by
abstraction of 7<% as characterized by the negative
inductive definition = = (L% &~ %S9 M) of ex-
ample 21 where ®~ is specified by schema (12) and
P(X<9) (D, 2% ) is the induced cpo. Finite traces
are approximated by the pair of their initial and fi-
nal states and the infinite ones by their initial state
together with L denoting non-termination as well as
any state so as to represent demoniac termination. Let
us define the demoniac abstraction af € p(XS¥) (D)
— p(U?) (D) where Ut = S x (SU{L}) such that:

clude &

o (X) = {(Go, Tpo1) |o € X NZ<} U
{0, ) loe X NI Az e SU{L}}
(52)



Let &' = (U', ' U' N) be the negative inductive
definition such that the abstract rules instances ®! are
given by the following schemata (where s,5',s"” € S

and v € SU{L}):

S+ s s A (s s")eTh (53)
(s, s) €11 (s, sy €Tt

s s AVye SU{L}: (s, y)eT"

- (54
(s, z) € T4
Then proposition 53 implies &~ o] 3. Then rule
schema (54) can be simplified into:
~ s A (s, LyeTt

s s (s', Ly e B (55)

(s, z) € T4
since L € 7% implies Yy € SU{L} :y €Tt O

By further abstractions one can derive powerdomains
based state transformation semantics [3].

3 G>™SOS

We now introduce G*SOS, a generalization of SOS
(G. Plotkin’s structured operational semantics [28])
using the above rule-based systems of transfinitely it-
erated inductive definitions. G®SOS enables us to
describe the finite, as well as the infinite executions
of programs. The nature of the finitary or infinitary
objects representing terminating and non-terminating
program executions is not fixed and depends upon the
considered language. For example we have defined the
GS0S semantics of A-calculi [27] using judgements
pF E ~ v (expression F evaluates to v in environ-
ment p) and p F E ~ L (evaluation of expression
FE does not terminate in environment p); K. Apt and
G. Plotkin’s nondeterministic language [3] using maxi-
mal finite and infinite execution traces and R. Milner’s
CCS using infinite synchronization trees [21] and par-
tial orders [13] with infinite chains?.

Example 56 (Trace semantics of while loops)
In order to define the operational trace semantics of
an imperative language, let p € I' be an environment
(recording the values of identifiers), ¢ € C' be a com-
mand, s € S = (I'x C)UT be astate written p F ¢ or p,
Ut = ¥<% be the set of finite traces, U~ = X* be the
set of infinite traces and U/ = L% = ¥<¢ ¥ be the
set of traces over states S and actions C'. For short as-
sume that the evaluation of a boolean expression b € B
in environment p always terminates without error and
yields a boolean value B[b]p. If ¢ € =% and ¢ € C,
definecQcbypQe=pke,(pkFc)Od =pt(¢;¢)
and (¢ = 6 YDe=(c(®Dc) = (6" Dec). The trace

2These examples, as others, are omitted for lack of space.
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semantics of the while loop w = while b do ¢ is the set
T [w][p] € =¥ defined by the following rule schemata:
« Execution of the while loop w terminates immedi-
ately when the test b evaluates to false:

pbw-p € Tlw]lp]

(56)

« A terminating or non-terminating execution of the
while loop starts with a first step p - w > p F c;w
to evaluate the test b to true followed by an execution
pt e = o =L p of the loop body ¢ (where control
states memorize the fact that further iterations of w
may be necessary: (p F ¢ = o =% p/) D w) followed

by the remaining iterations p’ - w 22 o':

B[blp A ptec-= o=l p € T[c]lp]
Ap kw2l e Tlw]lp']

prw-2pkecw == (cQu) =L p w2l o *
& TLull)
(57)
« Execution of the while loop may also not terminate
when the test b is true and execution of the body ¢
never terminates:

Blblp A pbec =0 € T[c]lp]
phw = ptouw = (cQuw) € Tw][p]

- (58)

Observe that we proceed by syntactic induction on
the well-founded ordering ¢ —< ¢’ iff ¢ is a syntactic
component of ¢/. For example in rule schema (57),
¢ —~< w = while b do ¢. In the instances of rule
(57) corresponding to finite execution traces, we use
induction on the length of execution traces: execution
of w in environment p’ takes strictly less steps than
its execution in environment p. This can also be un-
derstood as action induction [21], an induction upon
the depth of the inference by which p F w > p
cw = (cQuw) =L p F w 22 ¢ is inferred. Tt is
a sound principle just because lengths of finite execu-
tions ordered by < are well-founded. This argument is
no longer valid in the instance of rule (57) for infinite
execution traces since non-terminating executions of
w in environments p’ and p both take infinitely many
steps. This shows that negative rules are useful to
provide a direct description of non-termination. O

Denotational semantics [23] has several important ad-

vantages over traditional operational semantics:

(1) The semantics of programs is given in terms of
mathematical models (domain theory [17]);

(2) Denotations are defined by induction on the ab-
stract syntax of programs;

(3) Finite and infinite program behaviors are handled
in the same way (using fixpoints).

SOS copes with point (2) but not (3). One can define

a big-steps SOS semantics where only error-free, ter-

minating behaviors of programs are described. Alter-

natively, one can define a small-steps semantics where



non-terminating executions have to be described us-
ing another formalism such as execution traces (see
[3]). Both approaches are incomplete since the first
describes the “good” cases and leaves out the “bad”
ones while the second provides a microscopic view of
a macroscopic process. Using both approaches simul-
taneously implies a lot of work to relate them, and
this has to be done again and again for each language
[4]. G®SO0S can cope with terminating and non-
terminating executions whence the prefix G added
to SOS indicating the generalization to infinite be-
haviors. The correct handling of non-termination is
necessary, for example to define fair executions of par-
allel processes or to serve as a ground semantics for
the inference of liveness properties of programs by ab-
stract interpretation such as strictness analysis. This
abstraction process can also be used to define more
abstract semantics as shown by the following:

Example 57 (Relational semantics of while
loops) To obtain the big-step semantics of commands,
we define an abstraction a € p(¥=%) — p(T x 1) by
al{o; | i € A}) ! {a(o;) | i € A} where T, Ly
{1}, 0 € X% = T'x 'y is given by a(pF ¢ =4 o =2
P E
def (p, L) for infinite traces. The relational semantics
of ¢ € C is then R[c] = a({7T[e]lp] | p € T}). We
write p e~ p’ for {p, p'} € R[c]. The natural se-
mantics [18] of commands is R[c] N X<“ since it only
deals with terminating executions. By proposition 53

applied to (56), (57), (58), it is defined for the while

loop w = while b do ¢ by the following rule schemata:

(p, p') for finite traces and by a(p F ¢ <= o)

B[] A
~B[blp phe~p'Np'w~~—p” 5
prw~—p prw~p’ (59)

Using G*°SOS, non-termination can be expressed di-
rectly:

B[] A B[]y A
phe~ 1 phe~p' A pFw~ L 60
pl—wMJ__ pFw~ L - (60)

O

Example 58 (G*SOS semantics of the nonde-
terministic choice) To illustrate fairness, let us con-
sider the simple case of the nondeterministic choice
operator [cy [ ]ea].

« With Plotkin’s erratic semantics, termination or
non-termination of [cq [g]¢s] is possible whenever that
of ¢; or ¢ 1s possible:

pbe~p pbeg~p”
+ + (61
P el ~ ¢ pFladal < O
plhep~ L1 phey~ L1 (62)

pl—[clcz]MJ__ pl—[clcz]MJ__
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« With Hoare’s fair angelic semantics, termination is
possible when execution of ¢; or that of ¢o may termi-
nate whereas non-termination of [¢; [4]¢o] requires that
both ¢; and ¢5 cannot terminate:

phei~p pkes~p”

+ + 63

SFlalal~7 "’  pFala~s
phei~L A pkepwp
Apke L A pkegp”

prey~ presp (64)

ptleifa]en] ~ L
(As pointed out by M. Broy, if pt ¢y~ 1, pbF g~ L,
pt e~ 2and pt ¢ ~ L then p F [e1[aes] ~ 1,
p E lei[aes] ~ 2 but p F [e1[aJea] ~ L is not true,
a miracle since [cq [s]cs] must be able to avoid non-
termination in the erratic behavior of both ¢; and ¢,!)
o With McCarthy’s fair parallel semantics,
termination is possible when both executions of ¢; and
¢ may not terminate:

non-

pb ey~ p!
+
pElerfelea] ~ p”
pFei~1 AN pkhea~ L
ptlea[flea] ~ L
o With Smyth’s unfair demoniac semantics, termina-
tion of [¢1[fes] is possible only when both that of ¢;

and cy are guaranteed whereas non-termination is pos-
sible whenever that of ¢; or ¢s is possible:

prea~p |
plei[eea] ~ pf

(65)

phei~p Apkew Ll A pl—czf\/»J_Jr

66
pFleie]ea] ~ pf (66)
- "N pE e L A ph g L
= e L D )
pFlertes] ~ p
pbhep~ L1 phes~ L (68)

prlerfes] ~ L ptler[ea] ~ L
o With the unfair, a la Prolog, left to right semantics,
termination of [c; [4cs] is possible when that of ¢; is
possible or when ¢; cannot diverge and ¢y may ter-
minate. Non-termination of [¢; []es] is possible when
that of ¢; is possible or when ¢; cannot diverge but ¢
can:

phocg~p pheiw L A plkeg~p’
+
pEleres] ~ pf pElerffes] ~ p” (59)
69
pbel~ L pbhcei~w L A pkFes~ L

pl—[clcz]MJ__ ptleifden] ~ L

(70)
In rule schemata (63) to (70), the use of negations is
sound since ¢; —< [c1 [ ]eo] and ¢s —< [e1[ ]es]. O

This last example illustrates the semantical composi-
tionality property: we can change the semantics of
the nondeterministic choice command without hav-
ing to change the semantics of other (while, if, ...)



(sub)commands. In denotational semantics, one will
have to use Plotkin, Hoare, Smyth, ...powerdomains
[17] to describe the behavior of the choice command.
By doing so one will have to change the ordering used
for computing fixpoints, hence potentially the seman-
tics of other commands (such as while loops or re-
cursion). More generally, semantical compositionality
requires that the specification of the whole should be
done without interfering with the specification of the
components.

As alast abstraction, let us consider predicate trans-
formers:

Example 59 (Predicate transformers) The pred-
icate transformer of command ¢ € C is wp[e] =
a(R[c]) where the abstraction o € p(I' x T'y) —
(p(T') — p(I')) is defined by o(R) = AP{p | (3¢ €
Podp, pf) € )N = (p, p) € R = p €
PYA ({p, L) ¢ R)}. Since R[c] #0, proposition 53
applied to (59) and (60) yields the following definition
of wp[w] where w = while b do ¢:

B[b]p A Blblp A p € wple(Q)
pEP . A Q C wp[w](P) - ()
p € wp[w](P) p € wp[w](P)

O

Further abstractions would perfect the lattice of ab-
stract interpretations considered in [10]. Abstract in-
terpretation was first introduced using transition sys-
tems [7] that is an operational semantics. Mycroft [24],
followed by Nielson [25], advocated using denotational
instead of operational base semantics. We think that
G*S0S is better suited for designing ground seman-
tics from which other, more abstract or approximate,
semantics can be derived. In particular denotational
semantics, which are abstract interpretations of oper-
ational behaviors, can be understood as intermediate
steps in the approximation process.
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