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Abstract. The use of infinite abstract domains with widening and -
narrowing for accelerating the convergence of abstract interpretations
is shown to be more powerful than the Galois connection approach re
stricted to finite lattices (or lattices satisfying the chain condition).

1 Introduction

A widely-held opinion is that finite lattices (or lattices satisfying the chain condi
tion, i.e., such that all strictly increasing chains are finite) can be used instead of
widenings and narrowings to ensure the termination of abstract interpretations
of programs on infinite lattices. We show that, in general, this can only be to the
detriment of precision and prove that the use of infinite abstract domains with
widenings and narrowings is more powerful than the Galois connection approach
for finite lattices (or lattices satisfying the chain condition). By way of example,
various widenings are suggested for solving non-convergence problems left open
in the literature.

2 Upper Approximation of the Collecting Semantics

Following [CC76,CC77a,CC79b] , the abstract interpretation of a program can
be formalized as the effective computation of an upper approximation A of the
collecting semantics of the program.
This collecting semantics can often be specified as the least fixed point

lfp⊥- (F ) of a continuous1 operator F ∈ L
con�−→ L on a cpo L(� , �) greater

than a basis ⊥- satisfying ⊥- � F (⊥- )2. By Kleene fixpoint theorem (Prop. 23 in
the appendix), lfp⊥- (F ) is the least upper bound

⊔
n∈IN F

n(⊥- ) of the iterates
Fn(⊥- ) defined by F 0(x) def= x and Fn+1(x) def= F (Fn(x)) for all x ∈ L.
� This work was supported in part by Esprit BRA action 3124 “Sémantique”.
1 Monotony is sufficient by considering transfinite iterations [CC79a].
2 The basis ⊥- is often the infimum ⊥ of the cpo, in which case lfp⊥- F is written lfpF .
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This approximation A must be sound in the sense that lfp(F ) � A3.

Example 1 ((Imperative programs)). Assume that the collecting semantics of the
following Pascal program:

program P;
var I : integer ;

begin
I := 1;
while I <= 100 do

begin
{ I ∈ [1, 100] }
I := I + 1;

end;
{ I = 101 }

end.

is the set of possible values of integer variable I when starting execution of the
loop body. It is the least fixed point lfp(F ) = lfp∅(F ) = {i ∈ ZZ | 1 ≤ i ≤ 100}
of the continuous (and even additive) operator:

F ∈ L con�−→ L = λ X. ({1} ∪ {i+ 1 | i ∈ X}) ∩ {i ∈ ZZ | i ≤ 100} (1)

on the complete lattice L = ℘(ZZ)(⊆, ∅, ZZ,∩,∪) where ZZ is the set of integers
and ℘(S) is the powerset of the set S.
A sound upper approximation is the loop invariant A = {i ∈ ZZ | i ≥ 0}

specifying that I is non-negative. ��

Example 2 ((Logic programs)). Let P be a logic program (containing at least
one constant), BP be its Herbrand universe over a family F =

⋃
n∈INFn of

n-ary functors f ∈ Fn and ground(P ) be the set of all ground instances of
clauses in P . The immediate consequence operator is TP ∈ ℘(BP )

con�−→ ℘(BP )
such that:

TP = λ X. {A | A← B1, . . . , Bn ∈ ground(P ) ∧ ∀i = 1, . . . , n : Bi ∈ X } .

Amodel of P is a set I ⊆ BP , such that TP (I) ⊆ I. The characterization theorem
of van Emden and Kowalski [vEK76] shows that P has a least model MP in the
complete lattice ℘(BP )(⊆ , ∅ , ∪) such that MP = lfp∅ TP =

⋃
n∈IN TP

n(∅). ��

Example 3 ((Functional programs)). Following [CC92c] , the relational seman
tics of the functional factorial program:

f(n) ≡ if n = 0 then 1 else n ∗ f(n − 1);

is f ∈ ℘(IN⊥ × IN⊥) , where IN⊥
def= IN ∪ {⊥} and ⊥ represents non-termination,

such that: f = {〈⊥, ⊥〉} ∪ {〈n, ⊥〉 | n < 0} ∪ {〈n, n!〉 | n ≥ 0}. It is the least
fixpoint lfp⊥- F of F ∈ ℘(IN⊥ × IN⊥)

con�−→ ℘(IN⊥ × IN⊥) such that:

F (f) = {〈⊥, ⊥〉} ∪ {〈0, 1〉} ∪ {〈n, n ∗ ρ〉 | 〈n− 1, ρ〉 ∈ f}
3 Although commonly satisfied, these hypotheses on the definition of the collecting
semantics and the specification of the approximation are stronger than strictly nec
essary, see a discussion of various weaker hypotheses in [CC92b].
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where ⊥− ρ = ρ−⊥ =⊥ and ⊥∗ ρ = ρ ∗⊥ =⊥. The semantic domain ℘(IN⊥×
IN⊥)(� , ⊥- , �- , �) is a complete lattice, where:

⊥- def= IN⊥ × {⊥}
�- def= IN⊥ × IN

f � f ′ def= (f ∩ �- ) ⊆ (f ′ ∩ �- ) ∧ (f ∩⊥- ) ⊇ (f ′ ∩⊥- )
�i∈�fi

def= ∪i∈�(fi ∩ �- ) ∪ ∩i∈�(fi ∩⊥- ) .
Observe that f � f ′ if and only if f ′ produces more output results in IN that f
for a given terminating or non-terminating argument in IN⊥ and f ′ terminates
more frequently than f . ��

3 The Galois Connection Approach to Abstract
Interpretation

Principle of the Approach. The Galois connection approach to abstract inter
pretation [CC76,CC77a] formalizes the idea that the equation X = F (X) can
be first simplified into X = F (X) , where F ∈ L mon�−→ L and L(�,�) is a poset,
and then solved iteratively starting from the basis ⊥- . The technique consists in
understanding L as a discrete approximation of L and in extending this notion
of approximation, in various ways, to semantic domains such as products L×L ,
powersets ℘(L) and function spaces L �−→ L [CC77b,CC79b].

Galois Connection. The correspondence between the semantic domain L and its
abstract version L can be formalized by a Galois connection (also called pair of
adjoined functions).

Definition 4. * If L (�) and L (�) are posets, then 〈α, γ〉 is a Galois connec
tion , written L↼−−⇁γα L , if and only if α ∈ L �−→ L and γ ∈ L �−→ L are functions
such that:

∀x ∈ L, y ∈ L :
(
α(x) � y

)
⇐⇒ (x � γ(y)) . (2)

α(x) is the abstraction of x , i.e., the most precise approximation of x ∈ L in L.
γ(y) is the concretization of y , i.e., the most imprecise element of L which can
be soundly approximated by y ∈ L.
Example 5 ((Intervals)). In [CC76] , ℘(ZZ) ordered by ⊆ is approximated using
the abstract lattice of intervals L = {⊥} ∪ {[�, u] | � ∈ ZZ ∪ {−∞} ∧ u ∈
ZZ ∪ {+∞}∧ � ≤ u} ordered by � , such that:

⊥ � [�, u] def= true
[�0, u0] � [�1, u1]

def= �1 ≤ �0 ≤ u0 ≤ u1 .
(3)

This approximation is formalized by the Galois connection defined by:

γ(⊥) = ∅
γ([�, u]) = {x ∈ ZZ | � ≤ x ≤ u}

α(∅) = ⊥
α(X) = [minX, maxX ] .

For example the set {1 , 2 , 5} ∈ ℘(ZZ) is soundly approximated by [1, 5] ∈ L. ��
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Soundness and Precision. Here, the concrete and abstract notions of soundness
and precision are formalized in the same way, by the respective partial orders
� on L and � on L. x � y is interpreted as “y is a sound approximation of
x”, “x is a more precise concrete assertion than y ” or “x logically implies y ”.
The same way x � y � z means that y and z are sound approximations of x
but y is more precise than z. We may have x � y and x � z but neither y � z
nor z � y in which case y and z are non-comparable sound approximations
of x. Equation (2) states that the concrete and abstract notions of soundness
and precision coincide, up to an approximation, which consists in representing
several concrete assertions {x | α(x) = x} by the same abstract assertion x.

Example 6 ((Intervals, continued)). For intervals considered in Ex. 5, the con
crete approximation relation � is subset inclusion ⊆ whereas the abstract ap
proximation relation � is defined by (3). For example, {1 , 2 , 5} ⊆ {i ∈ ZZ |
i ≥ 1} and {1 , 2 , 5} ⊆ {i ∈ ZZ | i ≤ 5} since the assertion that the value of a
variable can only be 1, 2 or 5 during execution is more precise than saying that
it is strictly positive. These assertions are respectively abstracted by [1, 5] � [1,
+∞] and [1, 5] � [−∞, 5] but these approximations are not comparable since
[1, +∞] �� [−∞, 5] and [−∞, 5] �� [1, +∞]. [1, 5] is the best possible abstract
approximation of the concrete assertion {1 , 2 , 5}. ��

Extension to Function Spaces. The concrete approximation relation� ∈ ℘(L×L)
can be extended to the function space L �−→ L pointwise, i.e., F � F ′ def=
∀x ∈ L : F (x) � F ′(x). The intuition is that F is more precise than F ′ if and
only if F always yields more precise results than F ′.
Then, the approximation of L by L can be extended to the approximation of

the function space L �−→ L by L �−→ L using the functional abstraction α� and
concretization γ� defined, as in [CC77b] , by:

α� ∈ (L �−→ L) �−→ (L �−→ L)
α�(ϕ) def= α ◦ ϕ ◦ γ

γ� ∈ (L �−→ L) �−→ (L �−→ L)
γ�(ϕ) def= γ ◦ ϕ ◦ α

(4)

such that, by Prop. 25 in the appendix:

(L mon�−→ L)↼−−⇁γ�
α�
(L mon�−→ L) . (5)

Intuitively, α�(F ) is the abstract image of F up to the Galois connection L↼−−⇁γα L.
It follows, by Prop. 30 in the appendix, that if L(� , �) is a poset, F ∈ L con�−→ L ,
and ⊥- is α(⊥- ) , then lfp⊥- (F ) � γ

(
lfp⊥- (α�(F ))

)
. Otherwise stated, the fixpoint

operator lfp preserves the soundness of the approximation [CC77b].

Functional Abstraction. In practice α�(F ) may not be easy to program. In this
case we can use an upper approximation F . More precisely, F ∈ (L �−→ L) is an
abstraction of F ∈ (L con�−→ L) if and only if α�(F ) � F or, equivalently, F � γ�(F ).
Diagrammatically:



273

� �

�

�

�

✲❄

✲

✻

L

γ

L

L

α

L

F

F

�
⇐⇒

� �

�

�

�

✲

✻
✲

❄

L

α

F L .

γ

L LF

�

Intuitively, F (x) is an approximation of F (x) when applied to an approximation
x of x.

Definition 7. * 〈L, ⊥- , F 〉 is an abstract interpretation of 〈L, ⊥- , F 〉 , written
〈L, ⊥- , F 〉↼−−⇁γα 〈L, ⊥- , F 〉 , if and only if L ↼−−⇁γα L , α(⊥- ) � ⊥- and α�(F ) � F 4.

If 〈L, ⊥- , F 〉 ↼−−⇁γα 〈L, ⊥- , F 〉 and A is an upper bound of the abstract iterates
F

n
(⊥- ) , n ∈ IN, then lfp⊥- (F ) � γ(A) , as shown by Prop. 31 in the appendix5.

Otherwise stated any upper bound of the abstract iterates is a sound approxi
mation of the collecting semantics.

Example 8 ((Intervals, continued)). Given the interval abstraction of Ex. 5, the
approximate equation X = F (X) corresponding to (1) for program P is defined
by:

F ∈ L mon�−→ L = λ X. ([1, 1] � (X ⊕ [1, 1])) � [−∞, 100]

where ⊥ �X = X � ⊥ = X , [�0 , u0] � [�1 , u1] = [min(�0 , �1) , max(u0 , u1)] ,
⊥ �X = X � ⊥ = ⊥ , [�0 , u0] � [�1 , u1] = if max(�0 , �1) > min(u0 , u1) then
⊥ else [max(�0 , �1) , min(u0 , u1)] , ⊥⊕X = X ⊕⊥ = ⊥ and [�0 , u0]⊕ [�1 , u1]
= [�0 + �1 , u0 + u1]. It can be solved iteratively starting from the infimum ⊥.
The successive iterates are ⊥ , [1 , 1] , [1 , 2] , . . . , [1 , 100]. This sequence might
be infinite and strictly increasing (e.g. for nonterminating programs). ��

In practice, finite convergence of the abstract iterates Fn(⊥- ) , n ∈ IN must be
ensured. This leads to hypotheses on L and F such as, e.g., L is finite or F

n
(⊥- ) ,

n ∈ IN is an increasing chain and no strictly increasing chain in L can be infinite
(i.e. L satisfies the so-called ascending chain condition). Observe that various
hypotheses ensure that F

n
(⊥- ) , n ∈ IN is an increasing chain. For example, F

might be extensive (i.e., ∀x ∈ L : x � F (x)) or ⊥- may be a prefixpoint of F (i.e.,
⊥- � F (⊥- )) and F ∈ L mon�−→ L may be monotone. For more details or equivalent
approaches, see [CC79b] , [Cou78, chapter 4] and [CC92a].

Example 9 ((Descriptive types)). In Prolog type analysis of Bruynooghe et al.
[BJCD87,JB92] , a set of ground terms is approximated by a type graph such
as the following one (where a and b are constants of arity 0 and f is a binary
functor):
4 α(⊥- ) � ⊥- is equivalent to ⊥- � γ(⊥- ) and α�(F ) � F is equivalent to F ◦ γ � γ ◦ F or
to α ◦ F � F ◦ α (see Prop. 26 in the appendix), so that we can dispense with either
α or γ , [CC92b].

5 which is the case for A = lfp⊥- F whenever this least fixpoint exists.
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A type graph G ∈ G is a finite bipartite graph, consisting of:
1. A finite set Nt of type nodes (marked ◦ in diagrams),
2. A finite set Nf of functor nodes m , labeled with n-ary functors f(m) ∈ Fn ,
and such that Nt ∩Nf = ∅ ,

3. A root r ∈ Nt such that there is a path from r to any node of G ,
4. A set A ∈ ℘(Nt ×Nf ) ∪ ℘(Nf × IN×Nt) of arcs, such that:
(a) All type nodes k ∈ Nt have at least one outgoing arc and all outgoing

arcs 〈k, m〉 go to functors nodes m ∈ Nf with distinct labels f(m) ,
(b) All functors nodes m ∈ Nf labeled with a functor f(m) ∈ Fn of arity

n ∈ IN have n outgoing arcs 〈m, i, ki〉 , 1 ≤ i ≤ n (so that there is no
outgoing arc when n = 0).

We write k : g(k1, . . . , kn) for ∃m ∈ Nf : 〈k, m〉 ∈ A ∧ f(m) = g ∈ Fn ∧ ∀i ∈ [1,
n]: 〈m, i, ki〉 ∈ A and say that type nodes k1 , . . . , kn are the sons of node k. A
ground term t ∈ BP is said to fold on type node k of type graph G , if and only
if:

1. t = c ∈ F0 and k : c ,
2. t = g(t1, . . . , tn) , k : g(k1, . . . , kn) and each ground term ti , 1 ≤ i ≤ n folds
on type node ki of graph G.

The concretization function is defined by:

γ(G) = {t ∈ BP | t folds on the root of G}

For the type graph G above, we have γ(G) = {a , f(b , a) , f(b , f(b, a)) , f(b ,
f(b, f(b , a))) , . . . }.
Define the equivalence relation G ≡ G′ by γ(G) = γ(G′). The partial order

relation � on L = G/≡ is defined by G � G′ if and only if γ(G) ⊆ γ(G′). We
have G � G′ if and only if all paths in G exist in G′ , which can be checked by
path-finding algorithms. ��

Example 10 ((Strictness analysis)). In Mycroft’s strictness analysis [Myc80] , a
relation f ∈ ℘(IN⊥× IN⊥) is approximated by a function f 
 ∈ {0 , 1} mon�−→ {0 , 1}
such that 0 � 1 and f 
(0) = 0 only if f is strict , that is: ∀ρ ∈ IN⊥: 〈⊥, ρ〉 ∈ f
=⇒ ρ = ⊥. This approximation is formalized by the Galois connection defined
by:

γ(λ x. 0) = IN⊥ × {⊥}
γ(λ x. x) = {〈⊥, ⊥〉} ∪ IN× IN⊥
γ(λ x. 1) = IN⊥ × IN⊥

α(f) = λ x. 0 if f = IN⊥ × {⊥}
α(f) = λ x. x if 〈⊥, ρ〉 ∈ f =⇒ ρ = ⊥
α(f) = λ x. 1 otherwise .
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This abstract interpretation can be lifted to higher-order functions using (4). ��

4 The Widening/Narrowing Approach to Abstract
Interpretation

Another method [CC76,CC77a] for enforcing termination of the abstract inter
pretation consists in using a widening % ∈ L× L �−→ L such that:

∀x, y ∈ L : x � x% y (6)
∀x, y ∈ L : y � x% y (7)

for all increasing chains x0 � x1 � . . . , the increasing chain
defined by y0 = x0 , . . . , yi+1 = yi % xi+1 , . . . is not strictly
increasing .

(8)

It follows, as shown by Prop. 33 in the appendix, that the upward iteration
sequence with widening:

X̂0 = ⊥-
X̂ i+1 = X̂ i if F (X̂ i) � X̂ i

= X̂ i % F (X̂ i) otherwise
(9)

is ultimately stationary and its limit Â is a sound upper approximation of
lfp⊥- (F )6. Observe that if L is a join-semi-lattice (the least upper bound x � y
exists for all x , y ∈ L) satisfying the ascending chain condition, then � is a
widening.
This approximation can then be improved using a narrowing operator & ∈

L× L �−→ L such that:

∀x, y ∈ L : (y � x) =⇒ (y � (x& y) � x) (10)
for all decreasing chains x0 ' x1 ' . . . , the decreasing chain
defined by y0 = x0 , . . . , yi+1 = yi & xi+1 , . . . is not strictly
decreasing .

(11)

It follows, as shown by Prop. 34 in the appendix, that the downward abstract
iteration sequence with narrowing:

X̌0 = Â
X̌ i+1 = X̌ i &
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then X̌ i+1 = X̌ i so that if the approximation Â of lfp⊥- F is a fixpoint of F
then it cannot be improved by (12). Observe also that if L is a meet-semi-lattice
(the greatest lower bound x� y exists for all x , y ∈ L) satisfying the descending
chain condition (no strictly decreasing chain in L can be infinite), then � is a
narrowing.

Example 11 ((Widening and narrowing for intervals)). The widening and nar
rowing introduced in [CC76] for the lattice of intervals L = {⊥} ∪ {[�, u] | � ∈
ZZ ∪ {−∞} ∧ u ∈ ZZ ∪ {+∞}∧ � ≤ u} are defined as follows:

⊥%X = X (13)
X %⊥ = X

[�0, u0]% [�1, u1] = [if �1 < �0 then −∞ else �0,
if u1 > u0 then +∞ else u0] .

The widening (13) extrapolates unstable bounds to infinity. Observe that the
widening (13) is not monotone. For example [0, 1] � [0, 2] but [0, 1] % [0, 2] =
[0, +∞] �� [0, 2] = [0, 2] % [0, 2].
The narrowing introduced in [CC76] for the lattice of intervals L = {⊥}∪{[� ,

u] | � ∈ ZZ ∪ {−∞} ∧ u ∈ ZZ ∪ {+∞}∧ � ≤ u} is defined by:

⊥&X = ⊥ (14)
X &⊥ = ⊥

[�0, u0]& [�1, u1] = [if �0 = −∞ then �1 else �0,
if u0 = +∞ then u1 else u0] .

The narrowing (14) improves infinite bounds only.
Resolution of the equation:

X = F (X) = ([1, 1] � (X ⊕ [1, 1])) � [−∞, 100]

considered in Ex. 8 starts with the following increasing iterates:

X̂0 = ⊥
X̂1 = X̂0 %

((
[1, 1] � (X̂0 ⊕ [1, 1])

)
� [−∞, 100]

)

= ⊥%
((
[1, 1] � (⊥⊕ [1, 1])

)
� [−∞, 100]

)

= ([1, 1] � ⊥) � [−∞, 100]
= [1, 1]

X̂2 = X̂1 %
((
[1, 1] � (X̂1 ⊕ [1, 1])

)
� [−∞, 100]

)

= [1, 1]%
((
[1, 1] � ([1, 1]⊕ [1, 1])

)
� [−∞, 100]

)

= [1, 1]%
(
([1, 1] � [2, 2]) � [−∞, 100]

)

= [1, 1]% ([1, 2] � [−∞, 100])
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= [1, 1]% [1, 2]
= [1, +∞]

X̂3 = X̂2 %
((
[1, 1] � (X̂2 ⊕ [1, 1])

)
� [−∞, 100]

)

= [1, +∞]%
((
[1, 1] � ([1, +∞]⊕ [1, 1])

)
� [−∞, 100]

)

= [1, +∞]%
(
([1, 1] � [2, +∞]) � [−∞, 100]

)

= [1, +∞]% ([1, +∞] � [−∞, 100])
= [1, +∞]% [1, 100]
= [1, +∞]
� X̂2 .

Then the decreasing iterates are as follows:

X̌0 = X̌2

X̌1 = X̌0 &
((
[1, 1] � (X̌0 ⊕ [1, 1])

)
� [−∞, 100]

)

= [1, +∞]&
((
[1, 1] � ([1, +∞]⊕ [1, 1])

)
� [−∞, 100]

)

= [1, +∞]&
(
([1, 1] � [2, +∞]) � [−∞, 100]

)

= [1, +∞]& ([1, +∞] � [−∞, 100])
= [1, +∞]& [1, 100]
= [1, 100]

X̌2 = X̌1 &
((
[1, 1] � (X̌1 ⊕ [1, 1])

)
� [−∞, 100]

)

= [1, 100]&
((
[1, 1] � ([1, 100]⊕ [1, 1])

)
� [−∞, 100]

)

= [1, 100]
= X̌1 .

In what follows, we will consider the fact that given two integer constants n1 ≤
n2 , the abstract interpreter syntox [Bou90] will analyze the program:

program Pn1n2;
var I : integer ;

begin
I := n1;
while I <= n2 do

begin
{ I ∈ [n1, n2] }
I := I + 1;

end;
{ I = n2 + 1 }

end.

by solving a system of fixpoint equations equivalent to:

X = F (X) = ([n1, n1] � (X ⊕ [1, 1])) � [−∞, n2]

and automatically discover the loop invariant:
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{ I ∈ [n1, n2] } . ��

Example 12 ((Type graphs widening)). [BJCD87] have defined the restriction of
type graphs. It is a widening. For example:
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More precisely, the widening G = G1 % G2 of two type graphs G1 and G2 is
obtained by:

1. Initializing G with a copy of G1 and G2 where roots are merged (merging
consists in joining type nodes without removing any arc),

2. and then, in repeatedly applying the following transformations to G:
(a) type nodes k ofG with distinct sons k : g(k1

1 , . . . , k
n
1 ) and k : g(k

1
2 , . . . , k

n
2 )

with the same functor g have their sons ki
1 and k

i
2 pairwise merged,

(b) distinct type nodes k1 : g(k1
1, . . . , k

n
1 ) and k2 : g(k1

2 , . . . , k
n
2 ) with the

same functor g on an acyclic path from the root are merged7.

All sons of a type node must have different functors, so that the breadth of a
type graph is finite. No acyclic path starting from the root can contain the same
functor twice, so that the depth of a widened type graph is finite. It follows that
a strictly increasing chain of type graphs is finite. ��

5 Combining the Galois Connection and
Widening/Narrowing Approaches to Abstract
Interpretation

In practice both Galois connection and widening/narrowing approaches are used
simultaneously [CC76,CC77a]. First a Galois connection is used to obtain ap
proximate equations X = F (X) on an abstract domain L. The goal is to obtain
computer representable properties of programs. These fixpoint equations are
then solved iteratively. Widenings and narrowings are used when the domain L
has infinite or very long strictly ascending chains or even when it is finite but
7 As noticed by [BJCD87] , several solutions are possible.
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very large. The goal is then to enforce or accelerate the convergence. For more
details see [CC76,CC77a] , consult [Cou81] to minimize the number of widenings
within loops and chapter 4 of [Cou78] for dual problems.
The use of Galois connections corresponds to an ideal situation where con

crete assertions have a unique best abstract interpretation [CC79b]. In practice
this property is not always satisfied for reasons of efficient computer representa
tion of abstract properties. Moreover the abstract domain need not be partially
ordered since many equivalent abstract values can be used to represent the same
abstract assertion or least upper bounds may not exist or may not be efficiently
computable. In this case, widenings and narrowings can be used to palliate the
non-existence of least upper bounds or greatest lower bounds in the abstract do
main L(�) [CC92b]. Proposition 35 in the appendix can be applied in this case.
Examples of such a situation are given in [Bou92,BJCD87,CH78,Deu92 ,MS88,Str88].

6 Unappreciated Conjectures about the Two Approaches

The widening/narrowing approach to abstract interpretation is not so well un
derstood as the Galois connection approach, as exemplified by [AH87] where no
paper refers to the convergence acceleration method.
An often used argument for ‘proving’ the uselessness of the widening/nar-

rowing approach is that given an infinite abstract domain together with specific
widening and narrowing operators, it is possible to find a finite lattice which will
give the same results. For example [KN87] claim that “One may wonder whether
or not it is necessary to choose a finite domain for abstract interpretation, since
apparently more information can be obtained from an interpretation over an
infinite domain. The answer is that if uniform termination of the abstract inter
pretation is required, no more information can be obtained by choosing an infi
nite domain”. In [HH90] , a fixpoint approximation method is considered which
consists in an upwards iteration using a safe approximation α�(F ) of the func
tion F ∈ L con�−→ L in a finite small lattice L such that L ↼−−⇁γα L and in which
the problem of finding fixpoints is tractable, followed by a downwards iteration
from γ

(
lfpα(⊥- ) (α�(F ))

)
in L (or in a sequence of intermediate lattices larger than

L). [HH90] claim that “We have now shown the equivalence of step 1 of that
process and the Cousot’s notion of widening.” For step 2, which consists in work
ing in a larger lattice, [HH90] claim that “the refinement of the upper bound in
intermediate lattice corresponds to narrowing”.

7 Comparing the Two Approaches

To correct these overstatements, we show that, on the contrary and in general,
no finite abstract domain (or domain satisfying the ascending chain condition)
can be used instead of widening/narrowing operators on infinite domains to
obtain the same results (or equivalent ones, up to the computer representation).
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7.1 Finite Abstract Domains (or Domains Satisfying the Ascending
Chain Condition) Cannot Do for Widenings and Narrowings

More precisely, we prove in this section that there exist infinite domains and
widening/narrowing operators such that:

1. For each program there exists a finite lattice which can be used for this
program to obtain results equivalent to those obtained using widening/nar-
rowing operators;

2. No such a finite lattice will do for all programs;
3. For all programs, infinitely many abstract values are necessary;
4. For a particular program it is not possible to infer the set of needed abstract
values by a simple inspection of the text of the program.

Let lfp⊥- (F ) where F ∈ L
mon�−→ L be the collecting semantics of a given

program P. Assume that 〈L, ⊥- , F 〉↼−−⇁γα 〈L, ⊥- , F 〉 is an abstract interpretation
such that lfp⊥- (F ) is not computable iteratively in finitely many steps and A
is an upper approximation of lfp⊥- (F ) effectively computed using the widening-
/narrowing approach. We have lfp⊥- (F ) � γ

(
lfp⊥- (F )

)
and lfp⊥- (F ) � A , so

that, by monotony and transitivity, lfp⊥- (F ) � γ(A). We want to find a finite

equivalent abstract interpretation 〈L, ⊥- , F 〉↼−−⇁γ
′

α′ 〈L, ⊥- , F 〉 such that L is finite
and lfp⊥- (F ) gives results equivalent to A , i.e., γ

′(lfp⊥- (F )
)
= γ(A).

We choose the finite lattice L consisting of the elements ⊥- � A � �- and
the operator F ∈ L

mon�−→ L such that F (⊥- ) = F (A) = A and F (�- ) = �- .
Define the Galois connection L ↼−−⇁γ

α
L such that α(X) = if X = ⊥- then ⊥- elsif

X � A then A else �- and γ(⊥- ) = ⊥- , γ(A) = A , γ(�- ) = �- , where �- is
the supremum of L (which is added to L if no one exists). We have L ↼−−⇁γ

◦γ

α◦α
L ,

α ◦α ◦F ◦γ ◦γ � F and lfp⊥- (F ) = A. It follows that the effective computation of
any upper approximation A of lfp⊥- (F ) (obtained by widening/narrowing) can
also be done by iteration of a fixpoint operator F on a finite lattice L.
If equivalent results are required for the two approaches, we observe that L

must contain an element lfp⊥- (F ) such that γ
′(lfp⊥- (F )

)
= γ(A) for each program

P. For the family of programs Pn1n2 defined in Ex. 11, this lattice L would have
to contain infinitely many different elements equivalent to γ(A) where A = [n1 ,
n2]. It follows that in general, L cannot be finite and must contain infinite strictly
increasing chains.
Since the above proof is rather contrived, it could be argued that the finite

subset of L which is needed for analyzing a given program can be directly derived
from a simple inspection of its text. This is not possible in general since, as shown
by the series of examples below, the invariant A which is found by the analysis
does not necessarily appear in the program and, more generally, is not a simple
function of the program text.
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Example 13 ((Interval analysis)). Given an integer constant n , the abstract in
terpreter syntox [Bou90] will analyze the program Function91ofMcCarthy below
(known for n = 100) and automatically discover the invariant given as comment:

program Function91ofMcCarthy;
var X, Y : integer;
function F(X : integer) : integer;
begin
if X > n then
F := X − 10

else
F := F(F(X + 11));

end;
begin

readln(X);
Y := F(X);
{ Y ∈ [n − 9, maxint− 10] }

end.

Observe that the integer constants (n−9) and (maxint−10) which are found as
bounds for Y by the automatic interval analysis do not appear in the program.
Even more convincing is the following example:

program Function91ofMcCarthy;
var X, Y : integer;
function F(X : integer) : integer;
begin

if X > 100 then
F := X − 10
{ F ∈ [91, maxint - 10] }

else
F := F(F(F(F(X + 33))));
{ F ∈ [91, 93] }

{ F ∈ [91, maxint - 10] }
end;

begin
readln(X);
Y := F(X);
{ Y ∈ [91, maxint - 10] }

end. ��
Example 14 ((Rational congruence analysis)). [Gra91a] considers the discovery
of arithmetical congruences of the form x ≡ p[q] where p, q ∈ Q are rational
numbers automatically determined by the analysis and x denotes the value of
a program variable. The non-extremal elements of the corresponding lattice
L = {⊥ , �} ∪ (Q × Q) are denoted p + qZZ since γ(p+ qZZ) = {x ∈ Q | ∃k ∈
ZZ : x = p + q.k}. This lattice does not satisfy the ascending chain condition
since:

1
20
ZZ ❁

1
21
ZZ ❁

1
22
ZZ ❁ . . . ❁

1
2n
ZZ ❁ . . . .

Using the widening/narrowing approach to abstract interpretation, the following
loop invariant is derived in [Gra91b]:

program PC;
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var X : real;
begin

X := 2.8542;
while ... do begin

{ X ≡ 1/5000 [1/500] }
X := X + 1/500;

end;
end.

Observe that the constant 5000 which is derived from 2.8542 = 14271
5000 does not

appear in the program text. ��

Example 15 ((Linear inequality analysis)). The abstract interpretation introduced
in [CH78] has been designed, using the widening/narrowing approach, to dis
cover linear invariants such as:

program PL;
var I, J : integer;

begin
I := 2; J := 0;
while ... do begin

{ 2J + 2 ≤ I ∧ 0 ≤ J }
if ... then begin

I := I + 4;
{ 2J + 6 ≤ I ∧ 0 ≤ J }

end else begin
I := I + 2; J := J + 1;
{ 2J + 2 ≤ I ∧ 1 ≤ J }

end;
{ 2J + 2 ≤ I ∧ 6 ≤ I + 2J ∧ 0 ≤ J }

end;
end.

Observe that the analysis discovers relations between variables that never ap
pear within the same command. Incidentally, this fact can be used to prove
automatically the termination of loops [Hal79]: a new counter is added to the
program for each loop which is initialized to zero and incremented by one within
the loop body. The analysis will relate its value to that of the other variables of
the program. If the value of the counter is bounded on loop exit, then termina
tion is automatically proved. ��

7.2 Widenings and Narrowings Can Do for Finite Abstract Domains
(or Domains Satisfying the Ascending Chain Condition)

To prove that the widening/narrowing approach is more general than the Galois
connection approach, it remains to show that given an infinite domain L , it
is always possible to find widening/narrowing operators giving results similar
(in precision and speed of convergence) to the ones that could be obtained by
approximations of the domain L based upon Galois connections L ↼−−⇁γα L.
Assume that L(� , �) is a poset, F ∈ L con�−→ L is continuous, ⊥- ∈ L is

such that ⊥- � F (⊥- ) , and lfp⊥- (F ) =
⊔

n∈IN F
n(⊥- ) exists (see Prop. 23 in the

appendix). Assume as well that L(� , �) is a poset satisfying the ascending
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chain condition and 〈L, ⊥- , F 〉 ↼−−⇁γα 〈L, ⊥- , F 〉. We can assume that γ(⊥- ) = ⊥-
since otherwise more precision could be obtained by considering L ∪ {⊥} where
⊥ �∈ L is a new abstract element such that γ(⊥) = ⊥- and ⊥ � ⊥- . For simplicity,
we can also assume that α is surjective since otherwise by choosing L = {α(x) |
x ∈ L} we could eliminate useless abstract values (these abstract value x are
useless since they can be replaced by α ◦ γ(x) without any loss of information).
Consequently, by Prop. 29 in the appendix, ∀x ∈ L: α ◦ γ(x) = x. Finally we
assume that F = α◦F ◦γ which, by Prop. 31 in the appendix, is the most precise
F among those satisfying α ◦F ◦γ � F . By (24) and (25), F is monotone, hence
it is continuous since L satisfies the ascending chain condition. Together with
Prop. 30 in the appendix, this implies that the increasing chain X

0
= ⊥- , . . . ,

X
i+1
= F (X

i
) , . . . converges in n steps to the limit X

n
= lfp⊥- (F ) , which is the

result obtained by the Galois connection approach. The result of the analysis is
sound since lfp⊥- (F ) � γ(X

n
). Define the partial widening:

% ∈ L× L �→ L

x% y = γ
(
α(x)�α(y)

)
.

(15)

According to (9), the widening approach consists in computing the iteration
sequence X0 = ⊥- , . . . , X i+1 = if F (X i) � X i then X i else X i % F (X i) , . . .
This sequence is well-defined and converges in m steps to Xm = A which is the
result obtained by the widening approach. We have m = n and A = γ

(
lfp⊥- (F )

)
so that both approaches have the same cost and precision (up to 〈α, γ〉 as far
as the representation of abstract values is concerned). The proof is as follows:

Proof. First we must show that (15) defines a widening. Observe that if x, y ∈ L
then α(x) � α(x)�α(y) by definition of upper bounds so that, by (22) and (25),
x � γ ◦α(x) � γ

(
α(x)�α(y)

)
= x%y proving (6). The same way, (7) holds. Let

x0 � x1 � . . . be an increasing chain such that y0 = x0 , . . . , yi+1 = yi% xi+1 ,
. . . is well-defined. By (6) and (24), yi , i ∈ IN and xi , i ∈ IN hence α(yi) , i ∈ IN
and α(xi) , i ∈ IN are increasing chains. Since L satisfies the ascending chain
condition, there exists �′ ∈ IN such that α(y�′) = α(y�′+k) for k ≥ �′ and �′′ ∈ IN
such that α(x�′′ ) = α(x�′+k) for k ≥ �′′. So let � be the maximum of �′ and �′′.
For all k ≥ � , we have α(yk) = α(y�) and α(xk) = α(x�) so that, by (15), yk+1

= yk % xk = γ
(
α(yk) � α(xk)

)
= γ

(
α(y�) � α(x�)

)
= y� % x� = y�+1 , proving

that ∀k > �: yk = y�+1 , so that yi , i ∈ IN is eventually stable, as required by
(8).
Since L is a poset, the least upper bound � may not exist in (15). Therefore,

we must show that the iteration sequence X i , i ∈ IN is well-defined. More pre
cisely, we prove that ∀n ∈ IN: Xn is well-defined such that α(Xn) � α

(
F (Xn)

)
.

For the basis, we have X0 � F (X0) since X0 = ⊥- � F (⊥- ) whence α(X0) �
α
(
F (X0)

)
by (24). If, by induction hypothesis, Xn is well-defined and such that

α(Xn) � α
(
F (Xn)

)
, then α(Xn)�α

(
F (Xn)

)
= α

(
F (Xn)

)
exists, whence, by

(15), Xn % F (Xn) = γ
(
α(Xn)�α(F (Xn))

)
= γ ◦ α

(
F (Xn)

)
is well-defined.

If F (Xn) � Xn then Xn+1 = Xn whence, by induction hypothesis, Xn+1 is
well-defined such that α(Xn+1) � α

(
F (Xn+1)

)
. Otherwise, we have shown that
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Xn+1 = Xn%F (Xn) = γ ◦α
(
F (Xn)

)
is well-defined. Moreover, by (22), induc

tion hypothesis and (25), we have Xn � γ ◦ α(Xn) � γ ◦ α
(
F (Xn)

)
= Xn+1.

From Xn � Xn+1 , we derive by (26) and continuity, hence monotony of F ,
(24), (25) that α(Xn+1) = α ◦ γ ◦ α

(
F (Xn)

)
= α

(
F (Xn)

)
� α

(
F (Xn+1)

)
. By

recurrence, we conclude that ∀n ∈ IN: Xn is well-defined such that α(Xn) �
α
(
F (Xn)

)
.

We now prove, by recurrence, that ∀k ∈ IN: γ(Xk
) = Xk. For the basis,

we have γ(X
0
) = X0 since γ(⊥- ) = ⊥- . For the induction step, assume γ(Xk

)
= Xk so that X

k
= α ◦ γ(X

k
) = α(Xk). If F (Xk) �� Xk then γ(X

k+1
) =

γ(X
k �Xk+1

) [since X
k � Xk+1

] = γ
(
X

k �F (Xk
)
)
[since X

k+1
= F (X

k
)] =

γ
(
X

k �α ◦ F ◦ γ(Xk)
)
[by definition of F = α ◦ F ◦ γ] = γ

(
α(Xk)�α ◦ F (Xk)

)
[by induction hypothesis] = Xk % F (Xk) [by (15)] = Xk+1 [by definition of
Xk+1 when F (Xk) �� Xk]. Otherwise F (Xk) � Xk in which case γ(X

k+1
) =

γ
(
F (X

k
)
)
[by definition of X

k+1
] = γ ◦ α ◦ F ◦ γ(X

k
) [by definition of F ] =

γ ◦α ◦F (Xk) [by induction hypothesis] � γ ◦ α(Xk) [by F (Xk) � Xk , (24) and
(25)] = γ(X

k
) [since α(Xk) = X

k
, by induction hypothesis] = Xk [by induction

hypothesis] = Xk+1 [by (9) when F (Xk) � Xk]. Moreover X
k
, k ∈ IN is an

increasing chain so that X
k � Xk+1

whence Xk = γ(X
k
) � γ(Xk+1

) by (25).
By antisymmetry, we have γ(Xk+1) = Xk+1.
Observe that the chain Xk , k ∈ IN is increasing but not strictly by (8), so

that there exists � ∈ IN such that X�+1 = X�. By (9), we have F (X�) � X�

or X�+1 = X� % F (X�) = X� , whence F (X�) � X� by (7). So let m be the
smallest � such that F (X�) � X�. The chain Xk , k ∈ IN is increasing but not
strictly since L satisfies the ascending chain condition so let n be the smallest
natural such that X

n+1
= F (X

n
) = X

n
.

We have F
(
γ(X

m
)
)
� γ(X

m
) which implies α

(
F

(
γ(X

m
)
))
� X

m
that is

F (X
m
) � X

m
. Since the sequence 〈X i

, i ≥ 0〉 is increasing, we have Xm �
X

m+1
= F (X

m
) so that F (X

m
) =X

m
, by antisymmetry. It follows that n ≤ m.

Reciprocally, F (Xn) = Xn so that α ◦ F ◦ γ(Xn) = Xn whence F ◦ γ(Xn) �
γ(X

n
) by (2) that is F (Xn) � Xn and therefore m ≤ n. We conclude m = n

and A = Xm = γ(X
m
) = γ(X

n
) = γ

(
lfp⊥- (F )

)
. ��

8 Remarks on the Design of Widenings and Narrowings

The design of abstract domains using Galois connections is rather familiar since
a great number of examples is available and because it can be presented us
ing a number of equivalent and well understood mathematical objects such as
upper closure operators, Moore families, topologies, complete join congruence
relations, families of principal ideals (see [CC79b]). On the contrary, the design
of widenings and narrowings is often thought off to be more difficult since it
appears as an heuristic to cope with induction. The following remarks can help
in the design of widenings and narrowings.
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The rapprochement between the two approaches can be made by observing
that whenever a Galois connection L ↼−−⇁γα L is available and L (� , �) is a
join-semi-lattice satisfying the ascending chain condition then a widening % ∈
L× L �−→ L can be defined on any infinite abstract domain L (�) such that L
↼−−⇁γ

α
L by projection into L of the least upper bound � defined on L , as follows:

x% y = α
(
γ
(
α ◦ γ(x)�α ◦ γ(y)

))
. (16)

By Prop. 37 in the appendix, if α is surjective then (16) defines a widening. In
particular, when L is L so that α and γ are identity functions, we obtain the
widening defined in (15). Similarly, if L (� , �) is a meet-semi-lattice and L (�)
is a poset satisfying the descending chain condition, then & ∈ L×L �−→ L can
be defined on L for speeding up the convergence by projection in L , as follows:

x& y = x � γ ◦ α(y) . (17)

Proposition 38 in the appendix shows that & is a narrowing.

Example 16 ((Rule of signs based widening and narrowing for interval analysis)).
Assume that L is the lattice of intervals and L is the lattice of signs {⊥, 0, −, +, �}
[CC79b] , such that ⊥ � 0 � − � � , 0 � + � � , and γ(⊥) = ⊥ , γ(0) = [0,
0] , γ(−) = [−∞, 0] , γ(+) = [0, +∞] , γ(�) = [−∞, +∞] . Then (15) becomes:

⊥%X = X
X %⊥ = X

[�0, u0]% [�1, u1] = if �0 = u0 = �1 = u1 = 0 then [0, 0]
elsif (u0 ≤ 0) ∧ (u1 ≤ 0) then [−∞, 0]
elsif (0 ≤ �0) ∧ (0 ≤ �1) then [0, +∞]
else [−∞, +∞] .

Similarly, (17) becomes:

⊥&X = ⊥
X &⊥ = ⊥

[�0, u0]& [�1, u1] = [if �0 ≤ 0 ≤ �1 then 0 else �0,
if u1 ≤ 0 ≤ u0 then 0 else u0] . ��

Another example of application of (16) and (17) for boolean-based abstract
interpretations of higher-order functional languages such as strictness analysis
is given by [HH90]. However the restriction to a finite lattice L is unfortunate
since expressiveness can be severely restricted without necessary speed up since
only the length of strictly increasing and decreasing chains has to be taken into
account. The use of (15) and (17) with finite lattices L should be understood as
a last resort since the power of the widening/narrowing approach relies on the
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ability to extrapolate to infinitely many distinct abstract values for all programs
but to a finite number only for any given program.

The results obtained using an infinite domain with a widening can be worse
than those obtained using a finite domain corresponding to a coarser Galois
connection. This is the case for example when using intervals with widening
(13) which can give worse results than those obtained by application of the rule
of signs [CC79b] , as shown by the following:

Example 17 (On loose widenings).
program S;

var X : integer;
begin

X := 1;
while ... do begin

{ X1 }
if ... then

X := X + 1
else

X := 0;
{ X2 }

end;
end.

The following system of approximate equations on intervals for program S:

X1 = F1(X2) = [1, 1] �X2

X2 = F2(X1) = (X1 ⊕ [1, 1]) � [0, 0]
can be solved iteratively using widening (13), as follows:

X̂0
1 = ⊥

X̂0
2 = ⊥

X̂1
1 = X̂

0
1
% F1(X̂0

2 ) = [1, 1]
X̂1

2 = F2(X̂1
1 ) = [0, 2]

X̂2
1 = X̂

1
1
% F1(X̂1

2 ) = [1, 1]% [0, 2] = [−∞, +∞]
X̂2

2 = F2(X̂2
1 ) = [−∞, +∞] .

The system of approximate equations on signs for program S:

X1 = F1(X2) = + �X2

X2 = F2(X1) = (X1 ⊕+) � 0
can be solved iteratively as follows:

X̂0
1 = ⊥

X̂0
2 = ⊥

X̂1
1 = F1(X̂0

2 ) = +
X̂1

2 = F2(X̂1
1 ) = +

X̂2
1 = F1(X̂1

2 ) = +
X̂2

2 = F2(X̂2
1 ) = +
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and this yields better results, that is X ∈ [0, +∞]. ��

The remedy is very simple and consists in using a widening that does not
lose more information than the Galois connection.

Example 18 (On reducing the loss of information by widening). The widening (13)
and narrowing (14) can be improved to give results always better than the rule
of signs analysis, as follows:

⊥%X = X (18)
X %⊥ = X

[�0, u0]% [�1, u1] = [if 0 ≤ �1 < �0 then 0 elsif �1 < �0 then −∞ else �0,
if u0 < u1 ≤ 0 then 0 elsif u0 < u1 then +∞ else u0]

⊥&X = ⊥ (19)
X &⊥ = ⊥

[�0, u0]& [�1, u1] = [if (�0 ≤ 0 ≤ �1) ∨ (�0 = −∞) then �1 else �0,
if (u1 ≤ 0 ≤ u0) ∨ (u0 = +∞) then u1 else u0] .

The widening (18) extrapolates unstable bounds to zero or infinity whereas the
narrowing (19) improves these bounds. Other bounds such as −1 and +1 or
even declared bounds might also be taken into account in these definitions. The
iterates are now:

X̂0
1 = ⊥

X̂0
2 = ⊥

X̂1
1 = X̂

0
1
% F1(X̂0

2 ) = [1, 1]
X̂1

2 = F2(X̂1
1 ) = [0, 2]

X̂2
1 = X̂

1
1
% F1(X̂1

2 ) = [1, 1]% [0, 2] = [0, +∞]
X̂2

2 = F2(X̂2
1 ) = [0, +∞] .

Another solution is to alternate the collection of bounds on one iteration and
the extrapolation of the unstable ones by widening on the next iteration. ��

A suggestion for designing widenings and narrowings consists in using least
upper bounds/greatest lower bounds as long as the iterates follow finite chains in
the lattice L and in extrapolating as soon as some iterate belongs to an infinite
chain.

Example 19 ((Widening for congruence analysis)). Let us come back to the lat
tice L = {⊥- , �} ∪ (Q × Q) considered in Ex. 14 for discovering arithmetical
congruences of the form x ≡ p[q]. The widening proposed by [Gra91b] is:

p0 + q0ZZ % p1 + q1ZZ = if 0 �= |q0| �= |q1| �= 0 (20)
then �
else p0 + q0ZZ � p1 + q1ZZ
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where the least upper bound is defined by:

p0 + q0ZZ � p1 + q1ZZ = p0 + gcd(q0, q1, p0 − p1)ZZ .

The idea is that extrapolation is necessary only when the modulus of the con
gruence class is not constant through consecutive iterates. ��

The general idea of widenings is to eliminate unstable components through
consecutive iterates (or through all previous iterates, which is equivalent, up to
the choice of a different abstract domain which would allow for the accumula
tion of successive iterates in a single abstract value). Hence a very brute force
widening would be:

x% y = if y � x then x else � .

Similarly, a naïve narrowing consists in immediately stopping the decreasing
iteration sequence:

x& y = x .

The above definitions prove that widenings and narrowings always exist, but
this is not a convincing argument. Therefore the idea can always be softened
by introducing a extrapolation threshold under which the least upper bound �
or greatest lower bound � is used and above which extrapolation is enforced. A
simple way to do this is to limit the number of exact iterations to some given
positive integer n , as follows (abstract values are extended to pairs so as to
memorize the number of iterations):

〈x, i〉 % 〈y, i+ 1〉 = if y � x then 〈x, i + 1〉
elsif i ≤ n then 〈x � y, i + 1〉
else 〈x% y, i + 1〉

〈x, i〉 & 〈y, i+ 1〉 = if i ≤ n then 〈x � y, i + 1〉
else 〈x& y, i + 1〉 .

Example 20 ((Widening for congruence analysis, continued)). Following this idea
of extrapolation threshold, [Gra91b] proposes to improve the widening (20) as
follows:

p0 + q0ZZ % p1 + q1ZZ = if (0 �= |q0| �= |q1| �= 0) ∧ (|q0| < r)
then �
else p0 + q0ZZ � p1 + q1ZZ .

The idea is that extrapolation is necessary only when the modulus is not constant
and less than some fixed rational number r > 0 , which, for example, can be
chosen equal to 1 or to some modulus encountered during the first iterates. ��
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9 Using Widenings to Solve Convergence Problems Left
Open in the Literature

Numerous program analysis methods can be found in the literature which can be
easily generalized by expressing them as abstract interpretations. Non-conver-
gence problems which are dodged by resorting to restricted classes of programs or
to human interaction can be solved using widenings. We consider two examples.

9.1 Simple Sections

Balasundaram and Kennedy [BK89] use simple sections to provide a compact
representation of commonly encountered array access shapes in Fortran pro
grams. A simple section for program variables x1 , . . . , xn is either ∅ (such that
γ(∅) = false) or a pair 〈�, u〉 representing the predicate:

γ(〈�, u〉) =
n∧

i=1

�i ≤ xi ≤ ui

∧
n∧

i=1

n∧
j=1, j �=i

�+ij ≤ xi + xj ≤ u+
ij

∧
n∧

i=1

n∧
j=1, j �=i

�−ij ≤ xi − xj ≤ u−ij

where the �i , ui , �+ij , u
+
ij , �

−
ij , u

−
ij belong to ZZ

∞ = ZZ ∪ {−∞, +∞}.
Since Balasundaram and Kennedy consider only relationships between loop

indices in Fortran programs that consist of a sequence of perfectly-nested DO-loops
in which all subroutines calls are expanded inline, they can infer the loop invari
ants directly from the program text ([BK89] , page 47). This solves the conver
gence problem but for a very particular class of programs only.
The simple sections analysis can be generalized to arbitrary programs using

the framework of abstract interpretation. One obtains a slight extension of in
terval analysis [CC76] and a very restricted form of linear invariants [CH78]. To
do this it is formally sufficient to specify the corresponding Galois connection
(which is uniquely determined by the function γ above) as well as the widening
operator:

∅ % 〈�, u〉 = 〈�, u〉
〈�, u〉 % ∅ = 〈�, u〉

〈�, u〉 % 〈�′, u′〉 = 〈�′′, u′′〉

where, x standing for one of the �i , �+ij , �
−
ij , x

′ for �′i , �
+
ij

′
, �−ij

′ and x′′ for the
corresponding �′′i , �

+
ij

′′ , �−ij
′′ , and similarly y , y′ , y′′ standing for bounds in u ,

u′ and u′′ , we have:

x′′ = if x′ < x then −∞ else x
y′′ = if y′ > y then +∞ else y
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and the narrowing operator:

∅ & 〈�, u〉 = ∅
〈�, u〉 & ∅ = ∅

〈�, u〉 & 〈�′, u′〉 = 〈�′′, u′′〉

where:

x′′ = if x = −∞ then x′ else x
y′′ = if y = +∞ then y′ else y .

Again more precision can be obtained by widening or narrowing to -1, 0, 1 and
bounds given by declarations of scalar variables of subrange type or arrays.
The step size of each loop index variable is ignored when computing simple

sections. As noticed by [BK89] , “this is an inadequacy in the simple section
representation”. A simple way to cope with this problem is to combine simple
sections with arithmetical congruences [Gra89,Gra91b].

9.2 Deriving Constraints on the Sizes of Data Structures

van Gelder [vG90] proposes a method for deriving constraints among argument
sizes in logic programs: the set of possible n-tuples of arguments of a logic pro
cedure is approximated by the set of tuples of the sizes of these data structures
which in turn is approximated by the polyhedron which is the convex hull of
these points in IRn so as to obtain an invariant in form of a conjunction of in
equalities proven to hold among the argument sizes. He shows that this invariant
can be defined as a fixpoint of an operator associated with the logic program and
observes that the iteration process to compute this fixpoint may not converge in
finitely many steps. Therefore he proposes “an heuristic which often works” else
resorts to human interaction, verifies experimentally that fixpoints are difficult
to guess, therefore indicates in his “directions for further work” that ”we need
more ways to generate candidates for the fixpoint” and concludes that “there
is still much work to be done in the automatic analysis of argument term size
constraints”.
Thinking in terms of abstract interpretation, a major step towards this goal

was taken by [CC77a] who observed that post-fixpoints are upper approxima
tions of the least fixpoint (as shown by Prop. 32 in the appendix) and that
post-fixpoints are much easier to compute than fixpoints. Another major step
towards this goal was taken by [CC76,CC77a] who used a widening/narrowing
approach to enforce convergence of the iterates. As far as linear inequalities
are concerned, one can choose the widening proposed in [CH78] and further
improved in [Hal79] as follows:

If P1 and P2 are two polyhedra in IRn , respectively defined by two sets of linear
inequalities S1 = {β1, β2, . . . , βn} and S2 = {γ1, γ2, . . . , γm} then

P1 % P2 = S1
′ ∪ S′

2 (21)
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where:

– S1
′ is the subset of S1 consisting of all inequalities βi which are satisfied by

all points of P2;
– S2

′ is the subset of S2 such that: γi ∈ S2
′ if and only if there exists βj ∈ S1

such that (S1 − {βj}) ∪ {γi} defines the same polyhedron than P1.

Observe that this widening also mitigates the non-existence of least upper bounds
(the circle is the limit of inscribed polygons), see [CC92b].

Example 21 ((Widening for linear inequality analysis)). If P1 = {〈x, y〉 ∈ IR2 |
0 ≤ x ≤ 1 ∧ y = 0} and P2 = {〈x, y〉 ∈ IR2 | x ≤ 2 ∧ 0 ≤ y ∧ y ≤ x} then S1 =
{0 ≤ x , x ≤ 1 , y ≤ 0 , 0 ≤ y} and S2 = {x ≤ 2 , 0 ≤ y , y ≤ x}. The extremal
points of P2 are 〈0, 0〉 , 〈2, 0〉 and 〈2, 2〉. They only satisfy the constraints 0 ≤ x
and 0 ≤ y in S1 so that S′

1 = {0 ≤ x , 0 ≤ y}. The constraint 0 ≤ x of S1 can
be replaced by y ≤ x without changing P1. The constraint 0 ≤ y appears in S1
and S2. The constraint x ≤ 2 can replace no constraint in S1 without changing
P1. It follows that S′

2 = {0 ≤ y , y ≤ x}. We have S′
1 ∪ S′

2 = {0 ≤ x , 0 ≤ y ,
y ≤ x} where the constraint 0 ≤ x is redundant. Consequently, P1 % P2 = {〈x,
y〉 ∈ R2 | 0 ≤ y ≤ x}. ��
A simple narrowing is obtained by limiting the length of the decreasing iteration
sequence to some k ≥ 1 (experience shows that k > 1 often brings no significant
improvement).

Example 22 ((Argument size analysis)). The logic procedure below [vG90] might
test for precedence in some partial order, thinking of s as successor:

p(X, X)
p (X, s(Y ))← p(X,Y ) .

Knowing that size(c) = 0 if c is a constant and that size (s(Y )) = 1 + size(Y ) ,
the constraints among argument sizes of predicate p are upper approximations
to the least solution of the fixpoint equation:

p = F (p) = {〈x, y〉 ∈ IR2 | x ≥ 0 ∧ y ≥ 0 ∧ ((x = y) ∨ 〈x, y − 1〉 ∈ p)}

which can be effectively computed by the following iteration sequence with widen
ing (21):

p0 = ∅
p1 = p0 % F (p0) = ∅ % F (p0) = F (p0) = {〈x, y〉 ∈ IR2 | 0 ≤ x = y}
p2 = p1 % F (p1)
= {〈x, y〉 ∈ IR2 | 0 ≤ x = y} % {〈x, y〉 ∈ IR2 | 0 ≤ x ≤ y ≤ x+ 1}
= {〈x, y〉 ∈ IR2 | 0 ≤ x ≤ y}

which is such that F (p2) = p2. ��
Let us conclude with [vG90] that “the method may be applicable to other

languages in which the sizes of data structures can be determined syntactically”
and refer to chapter 7.3 of [Hal79] for examples illustrating this point of view.
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10 Conclusion

The widening/narrowing approach [CC77a] to abstract interpretation, which is
more powerful than the popular variations on the Galois connection approach
[CC77a] , deserves to be better understood since it can significantly improve the
precision of the analyses as well as the speed of convergence including in the case
of finite lattices which too large for the fixpoint finding problem to be tractable.
Our practical experience is that the combination of the two approaches using
infinite abstract domains is worthwhile.

Acknowledgments. We thank P. Granger and C. Hankin for their comments
on a first version of this paper.
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Appendix

A preorder is a preordered set L(�) where � ∈ ℘(L × L) is reflexive (∀x ∈ L :
x � x) and transitive (∀x , y , z ∈ L: (x � y ∧ y � z) =⇒ x � z). A poset is a
preorder L(�) where � is antisymmetric (∀x , y ∈ L: (x � y∧y � x) =⇒ x = y).
An upper bound u of X ⊆ L is such that ∀x ∈ X : x � u. The least upper bound ,
written �X is an upper bound such that for all upper bounds u , �X � u. When
it exists, the least upper bound �X is unique, by antisymmetry. A strict poset
has an infimum ⊥ such that ∀x ∈ L : ⊥ � x. A cpo is a complete poset i.e.,
such that any IN-termed sequence ci ∈ L , i ∈ IN, which is an increasing chain
(i.e., ∀i ∈ IN : ci � ci+1) has a least upper bound

⊔
i∈IN ci. A complete lattice

is a poset such that every subset X ⊆ L has a least upper bound �X and a
greatest lower bound �X . A map F ∈ L mon�−→ L is monotone i.e. x � y implies
F (x) � F (y). It is continuous (written F ∈ L con�−→ L) if and only if F (

⊔
i∈IN ci)

=
⊔

i∈IN F (ci) for all increasing chains ci ∈ L , i ∈ IN such that the least upper
bound

⊔
i∈IN ci exists. Continuity implies monotony.

Proposition 23 ((Kleene fixpoint theorem)). If L(� , �) is a poset, F ∈
L

con�−→ L is continuous, and ⊥- ∈ L is such that ⊥- � F (⊥- )8 , then Fn(⊥- ) ,
8 If this is not true and L is a lattice, we can iterate with λ X.X � F (X) instead.
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n ∈ IN is an increasing chain. If
⊔

n∈IN F
n(⊥- ) exists9 , then it is the least fixpoint

lfp⊥- (F ) of F greater than or equal to ⊥- .

Proposition 24 ((Characteristic property of Galois connections)). If L(�
) and L(�) are posets, then (2) is equivalent to:

∀x ∈ L : x � γ ◦ α(x) and (22)
∀x ∈ L : α ◦ γ(x) � x and (23)

α ∈ L mon�−→ L and (24)
γ ∈ L mon�−→ L . (25)

Proposition 25 ((Functional Galois connection)). If L(�) and L(�) are
posets, and α ∈ L �−→ L and γ ∈ L �−→ L satisfy (2), then (4) implies (5).

Proposition 26 ((Function approximation)). If L(�) and L(�) are posets,
F ∈ L mon�−→ L and F ∈ L mon�−→ L are monotone, then (2) and (4) imply that
α�(F ) � F is equivalent to F ◦ γ � γ ◦ F , or to α ◦ F � F ◦ α.

Proposition 27 ((Least upper bounds inducing)). If L(� , �) and L(� ,
�) are posets such that L ↼−−⇁γα L is a Galois connection, X ⊆ L , and �X exists,
then

⊔
x∈X α(x) exists and is equal to α(�X).

Proposition 28 ((Connection property)). If L(�) and L(�) are posets such
that L ↼−−⇁γα L is a Galois connection, then:

α ◦ γ ◦ α = α (26)
γ ◦ α ◦ γ = γ . (27)

Proposition 29 ((Galois surjection)). If L(�) and L(�) are posets such that
L ↼−−⇁γα L is a Galois connection, then α is surjective if and only if ∀x ∈ L: α◦γ(x)
= x.

Proposition 30 ((Fixpoint abstraction)). If L(� , �) is a cpo, L(� , �) is
a poset10 , L ↼−−⇁γα L is a Galois connection, F ∈ L con�−→ L is continuous, ⊥- ∈ L
is such that ⊥- � F (⊥- ) , and α� is defined by (4), then lfp⊥- (F ) � γ(A) where the
least upper bound A =

⊔
n∈IN α�(F )

n
(
α(⊥- )

)
of the increasing chain α�(F )n

(
α(⊥- )

)
,

n ∈ IN exists and is such than A � α�(F )(A) � x whenever ⊥- � x = α�(F )(x).
In particular, if α�(F ) ∈ L con�−→ L , then A = lfpα(⊥- ) (α�(F )) , but this equality does
not hold in general11.

Proposition 31 ((Fixpoint abstract approximation)). If L(� , �) is a cpo,
L(� , �) is a poset, L ↼−−⇁γα L is a Galois connection, F ∈ L con�−→ L is continuous,
9 This is the case when L(� , �) is a cpo.

10 Not necessarily a cpo, see [CC92b] for even weaker hypotheses.
11 But it does by considering transfinite iterates.
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⊥- ∈ L is such that ⊥- � F (⊥- ) , α� is defined by (4), F ∈ L �−→ L is such that α�(F )
� F for the pointwise ordering � , ⊥- ∈ L is such that α(⊥- ) � ⊥- , and A ∈ L
is such that ∀n ∈ IN: Fn(⊥- ) � A , then, lfp⊥- (F ) � γ

(⊔
n∈IN α�(F )

n
(
α(⊥- )

))
�

γ(A).

Proposition 32 ((Approximation by postfixpoints)). If L(� , �) is a poset,
F ∈ L con�−→ L is continuous, ⊥- ∈ L is such that ⊥- � F (⊥- ) ,

⊔
n∈IN F

n(⊥- ) exists,
and A ∈ L is such that ⊥- � A and F (A) � A , then lfp⊥- (F ) � A.

Proposition 33 ((Upward iteration sequence with widening)). If L(� ,
�) is a cpo, F ∈ L

con�−→ L is continuous, ⊥- ∈ L is such that ⊥- � F (⊥- ) ,
% ∈ L × L �−→ L satisfies (6), (7) and (8), then the upward iteration sequence
with widening X̂n , n ∈ IN defined by (9) is ultimately stationary and its limit Â
is such that lfp⊥- F � Â and F (Â) � Â.

Proposition 34 ((Downward iteration sequence with narrowing)). If L(� ,
�) is a cpo, F ∈ L

con�−→ L is continuous, ⊥- ∈ L is such that ⊥- � F (⊥- ) ,
& ∈ L× L �−→ L satisfies (10) and (11), then the downward iteration sequence
with narrowing X̌n , n ∈ IN defined by (12), where lfp⊥- F � Â and F (Â) � Â ,
is ultimately stationary and all terms X̌n , n ∈ IN are such that lfp⊥- F � F (X̌n)
� X̌n.

Proposition 35 ((Preordered upward iteration with widening)). If L(� ,
�) is a poset, F ∈ L con�−→ L is continuous, ⊥- ∈ L is such that ⊥- � F (⊥- ) ,⊔

n∈IN F
n(⊥- ) exists, L is a set, γ ∈ L �−→ L , � is the preorder defined by x � y

def= γ(x) � γ(y) , ⊥- ∈ L is such that ⊥- � γ(⊥- ) , F ∈ L mon�−→ L is such that F ◦ γ
� γ ◦F and % ∈ L×L �−→ L satisfies (6), (7) and (8) (where � , ⊥- and F are
respectively � , ⊥- and F ) then the upward iteration sequence with widening (9)
is ultimately stationary with limit Â such that lfp⊥- (F ) � γ(Â) and F (Â) � Â.

Proposition 36 ((Preordered downward iteration with narrowing)). If
L(� , �) is a poset, F ∈ L con�−→ L is continuous, ⊥- ∈ L is such that ⊥- � F (⊥- ) ,⊔

n∈IN F
n(⊥- ) exists, L is a set, γ ∈ L �−→ L , � is the preorder defined by x � y

def= γ(x) � γ(y) , ⊥- ∈ L is such that ⊥- � γ(⊥- ) , F ∈ L mon�−→ L is such that F ◦ γ
� γ ◦ F and & ∈ L × L �−→ L satisfies (10) and (11) where � is � , then the
downward iteration sequence with narrowing X̌n , n ∈ IN defined by (12) where
F is F , lfp⊥- (F ) � γ(Â) and F (Â) � Â , is ultimately stationary and all terms
X̌n , n ∈ IN are such that lfp⊥- F � γ(X̌n) and F (X̌n) � X̌n.

Proposition 37 ((Widening inducing)). Let L(�) and L(�) be posets and
L(� , �) be a join-semi-lattice satisfying the ascending chain condition, such that
L ↼−−⇁γ

α
L , L ↼−−⇁γ

α
L and α is surjective. Then % ∈ L × L �−→ L defined by (16)

is a widening on L. (6) and (7) may not hold when α is not surjective.

Proposition 38 ((Narrowing inducing)). if L (� , �) is a meet-semi-lattice
and L (�) is a poset satisfying the descending chain condition then& ∈ L×L �−→
L defined by (17) is a narrowing satisfying (10) and (11).
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